《立体几何》精品练习-3
立体几何练习题及答案
立体几何练习题及答案在学习立体几何的过程中,练习题对于巩固知识、提高应用能力起着至关重要的作用。
本文将为大家提供一些立体几何的练习题,并给出详细的答案解析,以帮助读者更好地理解和掌握立体几何的知识。
一、球的表面积和体积1. 某个球的半径为3cm,求其表面积和体积。
解析:球的表面积公式为S = 4πr²,体积公式为V = (4/3)πr³。
将半径r代入公式进行计算即可。
表面积:S = 4π(3)² = 4π(9) ≈ 113.04cm²体积:V = (4/3)π(3)³ = (4/3)π(27)≈ 113.04cm³因此,该球的表面积约为113.04cm²,体积约为113.04cm³。
二、立方体的表面积和体积2. 一个立方体的边长为5cm,求其表面积和体积。
解析:立方体的表面积公式为S = 6a²,体积公式为V = a³。
将边长a代入公式进行计算即可。
表面积:S = 6(5)² = 6(25) = 150cm²体积:V = (5)³ = 5(5)(5) = 125cm³因此,该立方体的表面积为150cm²,体积为125cm³。
三、圆柱的表面积和体积3. 一个圆柱的底面半径为4cm,高度为10cm,求其表面积和体积。
解析:圆柱的表面积公式为S = 2πr² + 2πrh,体积公式为V = πr²h。
将底面半径r和高度h代入公式进行计算即可。
表面积:S = 2π(4)² + 2π(4)(10) = 2π(16) + 2π(40) ≈ 321.2cm²体积:V = π(4)²(10) = π(16)(10) ≈ 502.4cm³因此,该圆柱的表面积约为321.2cm²,体积约为502.4cm³。
立体几何练习题含答案
立几测001试一、选择题:1.a 、b 是两条异面直线,以下结论正确的选项是〔 〕A .过不在a 、b 上的任一点,可作一个平面与a 、b 都平行B .过不在a 、b 上的任一点,可作一条直线与a 、b 都相交C .过不在a 、b 上的任一点,可作一条直线与a 、b 都平行D .过a 可以且只可以作一个平面与b 平行2.空间不共线的四点,可以确定平面的个数为 ( )A.0 B.1 C.1或4 D.无法确定3.在正方体1111ABCD A B C D -中,M 、N 分别为棱1AA 、1BB 的中点,则异面直线CM 和1D N 所成角的正弦值为 ( ) A.19 B.23C.459 D.2594.平面α⊥平面β,m 是α的一直线,n 是β的一直线,且m n ⊥,则:①m β⊥;②n α⊥;③m β⊥或n α⊥;④m β⊥且n α⊥。
这四个结论中,不正确...的三个是 ( )A.①②③B.①②④C.①③④D.②③④5.一个简单多面体的各个面都是三角形,它有6个顶点,则这个简单多面体的面数是( ) A. 4 B.5 C. 6 D. 86. 在北纬45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为〔设地球半径为R 〕( )A.R π42B.R 3πC.R 2πD.3R7. 直线l ⊥平面α,直线m ⊂平面β,有以下四个命题(1)m l ⊥⇒βα//(2)m l //⇒⊥βα(3)βα⊥⇒m l //(4)βα//⇒⊥m l 其中正确的命题是( )A. (1)与(2)B. (2)与(4)C. (1)与(3)D. (3)与(4)8. 正三棱锥的侧面均为直角三角形,侧面与底面所成角为α,则以下不等式成立的是( ) A.60πα<< B.46παπ<< C.34παπ<< D.23παπ<<9.ABC ∆中,9AB =,15AC =,120BAC ∠=︒,ABC ∆所在平面α外一点P 到点A 、B 、C 的距离都是14,则P 到平面α的距离为( )A.7 B.9 C.11 D.1310.在一个45︒的二面角的一个平面有一条直线与二面角的棱成角45︒,则此直线与二面角的另一个平面所成角的大小为 ( )A.30︒ B.45︒ C.60︒ D.90︒11. 如图,E, F 分别是正方形SD 1DD 2的边D 1D,DD 2的中点, 沿SE,SF,EF 将其折成一个几何体,使D 1,D,D 2重合,记作 D.给出以下位置关系:①SD ⊥面DEF; ②SE ⊥面DEF; ③DF ⊥SE; ④EF ⊥面SED,其中成立的有: ( )A. ①与② B. ①与③ C. ②与③ D. ③与④12. *地球仪的北纬60度圈的周长为6πcm,则地球仪的外表积为( )A. 24πcm 2B. 48πcm 2C.144πcm 2D. 288πcm 2二、填空题〔本大题共4小题,每题4分,共16分〕13. 直二面角α—MN —β中,等腰直角三角形ABC 的斜边BC ⊂α,一直角边AC ⊂β,BC 与β所成角的正弦值是46,则AB 与β所成角大小为__________。
高中立体几何练习题
高中立体几何练习题几何学是数学中非常重要的一个分支,而立体几何则是其中的一个重要部分。
在高中阶段,学生需要掌握各种与立体几何相关的概念和定理,并且能够运用这些知识解决实际问题。
本文将为大家提供一些高中立体几何的练习题,以帮助大家巩固知识和提高解题能力。
练习题一:三棱柱1. 一个三棱柱的底面是一个等边三角形,边长为8cm,高度为10cm。
求该三棱柱的体积和表面积。
2. 一个三棱柱的体积是72cm³,底面边长为6cm。
求该三棱柱的高度和表面积。
练习题二:四棱柱和四棱锥1. 一个正四棱柱的底面是一个边长为4cm的正方形,高度为6cm。
求该四棱柱和与之相似的正四棱锥的体积比值。
2. 一个四棱柱的底面是一个边长为10cm的正方形,高度为8cm。
求该四棱柱和与之相似的四棱锥的表面积比值。
练习题三:球体和圆柱1. 一个半径为4cm的球从中间切割,得到两个半球。
求这两个半球的表面积之和。
2. 一个圆柱的底面半径为3cm,高度为10cm。
在底面上画一个直径,求这个直径与圆柱的侧面交点处的高度和侧面的面积。
练习题四:棱台和棱锥1. 一个棱台的上底是一个边长为6cm的正三角形,下底是一个边长为12cm的正六边形,高度为8cm。
求该棱台的体积和表面积之和。
2. 一个棱台的上底是一个边长为8cm的正方形,下底是一个边长为12cm的正六边形,高度为10cm。
求该棱台的体积和表面积的比值。
以上仅为一些高中立体几何的练习题,希望能够帮助大家巩固知识并提高解题能力。
在解答这些题目时,可以根据已学习的定理和公式进行计算,并注意单位和精度的问题。
同时也要灵活运用几何思维和建模能力,将实际问题转化为几何图形,从而更好地解决问题。
祝各位同学在立体几何学习中取得好成绩!。
高中空间立体几何经典例题精选全文完整版
可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
立体几何练习题及解答
立体几何练习题及解答《立体几何练习题及解答》练习一:体积计算题目:一个正方体箱子的边长为3cm,请计算该正方体箱子的体积。
解答:正方体的体积计算公式为边长的立方,即V = a³,其中a为正方体的边长。
代入已知条件,正方体箱子的边长a = 3cm。
则体积V = 3³ = 27cm³。
所以该正方体箱子的体积为27cm³。
练习二:表面积计算题目:一个长方体的长为5cm,宽为3cm,高为4cm,请计算该长方体的表面积。
解答:长方体的表面积计算公式为2ab + 2bc + 2ac,其中a、b、c分别为长方体的三个边长。
代入已知条件,长方体的长a = 5cm,宽b = 3cm,高c = 4cm。
则表面积S = 2(5×3) + 2(3×4) + 2(5×4) = 30 + 24 + 40 = 94cm²。
所以该长方体的表面积为94cm²。
练习三:棱柱的体积计算题目:一个棱柱的底面为边长为5cm的正方形,高为8cm,请计算该棱柱的体积。
解答:棱柱的体积计算公式为底面积乘以高,即V = S × h,其中S为底面积,h为高度。
代入已知条件,棱柱的底面为正方形,边长a = 5cm,高度h = 8cm。
底面积S = a² = 5×5 = 25cm²。
则体积V = S × h = 25 × 8 = 200cm³。
所以该棱柱的体积为200cm³。
练习四:金字塔的体积计算题目:一个金字塔的底边是边长为6cm的正方形,高为10cm,请计算该金字塔的体积。
解答:金字塔的体积计算公式为底面积乘以高再除以3,即V = S ×h ÷ 3,其中S为底面积,h为高度。
代入已知条件,金字塔的底边为正方形,边长a = 6cm,高度h =10cm。
底面积S = a² = 6×6 = 36cm²。
专题1 空间向量与立体几何练习(三)
专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。
专题03 立体几何大题基础练(原卷版)
【一专三练】 专题03 立体几何大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·河北·校联考模拟预测)在斜三棱柱111ABC A B C -中,ABC V 是等腰直角三角形,,AB BC AC ==,平面11ACC A ⊥底面ABC ,112A B AA ==.(1)证明:1A B AC ⊥;(2)求二面角11A BC C --的正弦值.2.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =,13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.3.(2023·江苏泰州·统考一模)如图,在ABC V 中,AD 是BC 边上的高,以AD 为折痕,将ACD V 折至APD △的位置,使得PB AB ⊥.(1)证明:PB ⊥平面ABD ;(2)若4,2AD PB BD ===,求二面角B PA D --的正弦值.4.(2023·辽宁阜新·校考模拟预测)如图,在等腰直角三角形ABC 中(如图1),∠A =90°,点E ,F 分别是AB ,BD 的中点,将△ABC 沿AD 折叠得到图2所示图形,设l 是平面EFC 和平面ACD 的交线.(1)求证:l ⊥平面BCD ;(2)求平面ACD 和平面BCD 夹角的余弦值.5.(2023·江苏南通·统考模拟预测)三棱柱111ABC A B C -中,112AB AB AA AC ====,120BAC ∠= ,线段11A B 的中点为M ,且BC AM ⊥.(1)求1AA 与BC 所成角的余弦值;(2)若线段11B C 的中点为P ,求二面角11P AB A --的余弦值.6.(2023·福建莆田·统考二模)如图,直三棱柱111ABC A B C -的侧面11BCC B 为正方形,22AB BC ==,E ,F 分别为AC ,1CC 的中点,11BF A B ⊥.(1)证明:BF ⊥平面11A B E ;(2)求平面11A B E 与平面11ACC A 夹角的余弦值.7.(2023·辽宁·校联考一模)如图,四棱锥P ABCD -中,底面ABCD 是菱形,PD ⊥底面ABCD ,PD DA =,M 为AD 的中点,且平面PBM ⊥平面PDA .(1)证明:BM AD ⊥;(2)求二面角M PB C --的正弦值.8.(2022·河北邯郸·统考二模)如图,在三棱锥P -ABC 中,△ABC 为等腰直角三角形,且2AB AC ==,△ABP 是正三角形.(1)若PC BC =,求证:平面ABP 平面ABC ;(2)若直线PC 与平面ABC 所成角为π4,求二面角P AB C --的余弦值.9.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B ⊥平面1AB C ;(2)点P 在线段1A E 上(异于点1A ,E ),AP 与平面1A BE 所成角为π4,求1EP EA 的值.10.(2022·山东·潍坊一中校考模拟预测)在如图所示的多面体AFDCBE 中,AB ⊥平面BCE ,////AB CD EF ,BE EC ⊥,4AB =,2EF =,24EC BE ==.(1)在线段BC 上是否存在一点G ,使得//EG 平面AFC ?如果存在,请指出G 点位置并证明;如果不存在,请说明理由;(2)当三棱锥D AFC -的体积为8时,求二面角D AF C --的余弦值.11.(2022·山东日照·校联考二模)如图,等腰梯形ABCD 中,AD BC ∥,12AB BC CD AD ===,现以AC 为折痕把ABC V 折起,使点B 到达点P 的位置,且PA CD ⊥.(1)证明:平面APC ⊥平面ADC ;(2)若M 为PD 上一点,且三棱锥D ACM -的体积是三棱锥P ACM -体积的2倍,求二面角P AC M --的余弦值.12.(2022·湖北武汉·武汉二中校考模拟预测)如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC V 沿BC 边折起如图(2),使AD =,点M ,N 分别为AC ,AD 中点.(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求二面角A MN B --的正弦值.13.(2022·湖北·校联考模拟预测)如图,四棱台1111ABCD A B C D -中,上底面1111D C B A 是边长为1的菱形,下底面ABCD 是边长为2的菱形,1D D ⊥平面ABCD 且11=D D(1)求证:平面11AA C C ⊥平面11BB D D ;(2)若直线AB 与平面11BB C C 1111ABCD A B C D -的体积.14.(2022·湖北宜昌·宜昌市夷陵中学校考模拟预测)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,90ACB ∠=︒,112BC AC CC ===,.(1)证明:11AC A B ⊥;(2)若12A C =,求二面角1A AB C --的余弦值.15.(2022·湖北十堰·丹江口市第一中学校考模拟预测)如图,在多面体ABCDEF 中,四边形CDEF 是边长为2的正方形,//,,33,2AB CD AD CD BE AB AD ⊥===.(1)求证:平面ADF ⊥平面BCE ;(2)求平面ADF 与平面BCF 所成锐角的余弦值.16.(2022·湖南岳阳·统考三模)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,F 是PD 的中点.(1)证明://PB 平面AFC ;(2)若直线PA ⊥平面ABCD ,2AC AP ==,且PA 与平面AFC ,求锐二面角F AC D --的余弦值.17.(2022·湖南·校联考模拟预测)如图,在直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点P 为棱11B C 的中点,点Q 为线段1A B 上的一动点.(1)求证:当点Q 为线段1A B 的中点时,PQ ⊥平面1A BC ;(2)当点Q 位于线段1A B 的什么位置时,1B Q 与平面1A BP 请说明理由.18.(2022·湖南长沙·长郡中学模拟预测)如图,已知直三棱柱111ABC A B C -,O ,M ,N 分别为线段BC ,1AA ,1BB 的中点,P 为线段1AC 上的动点,116AA =,8AC =.(1)若12AO BC =,试证1C N CM ⊥;(2)在(1)的条件下,当6AB =时,试确定动点P 的位置,使线段MP 与平面11BB C C 所.19.(2023·湖南长沙·雅礼中学校考模拟预测)如图,在三棱锥-P ABC 中,已知PA PB PC AB AC ====,E 是PA .(1)求证:平面PAB ⊥平面BCE ;(2)若BC AB =,求平面ABC 与平面ABE 夹角的正弦值.20.(2022·湖南长沙·长郡中学校考模拟预测)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)求当面11BB C C 与面DFE 所成的二面角的正弦值最小时,三棱锥1E BDB -的体积.21.(2022·广东·统考模拟预测)如图,已知AB BC ⊥, //BE CD ,90DCB ∠=︒,平面BCDE ⊥平面ABC , 2AB BC BE ===,4CD =,F 为AD 的中点.(1)证明:EF ⊥平面ACD ;(2)求平面ACE 与平面ABD 所成锐二面角的余弦值.22.(2022·江苏·统考二模)如图,在四棱锥P ABCD -中,四边形ABCD 是边长为2的菱形,PAB V 是边长为2的等边三角形,PD AB ⊥,PD =(1)求证:平面PAB ⊥平面ABCD ;(2)求平面PAB 和平面PCD 所成锐二面角的大小.23.(2022·江苏南通·校联考模拟预测)如图,在四棱锥P -ABCD 中,底面ABCD 是4长为的正方形,侧面PAD ⊥底面ABCD ,M 为PA 的中点,PA =PD(1)求证:PC ∥平面BMD ;(2)求二面角M -BD -P 的大小.24.(2022·江苏徐州·统考模拟预测)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD BC CD ⊥⊥,,O 为BD 的中点,,22AB AD BD CD ===.(1)证明:OA ⊥平面BCD ;(2)点E 在棱AD 上,若DE DA λ= ,二面角E BC D --的大小为π4,求实数λ的值.25.(2022·江苏泰州·统考模拟预测)如图,在正三棱柱111ABC A B C -中,1AB =,1CC =D 为BC 的中点,E 为侧棱1AA 上的点.(1)当E 为1AA 的中点时,求证://AD 平面1BC E ;(2)若平面1BC E 与平面ABC 所成的锐二面角为60 ,求AE 的长度.26.(2022·江苏常州·华罗庚中学校联考三模)如图,ABCD 是边长为6的正方形,已知2AE EF ==,且////ME NF AD 并与对角线DB 交于G ,H ,现以ME ,NF 为折痕将正方形折起,且BC ,AD 重合,记D ,C 重合后为P ,记A ,B 重合后为Q .(1)求证:平面PGQ ⊥平面HGQ ;(2)求平面GPN 与平面GQH 所成二面角的正弦值.27.(2022·海南省直辖县级单位·校联考一模)如图,在三棱台ABC DEF -中,已知平面ABED ⊥平面BCFE ,BA BC ⊥,3BC =,112BE DE DA AB ====(1)求证:直线⊥AE 平面BCFE ;(2)求平面CDF 与平面AEF 所成角的正弦值.28.(2023·广东惠州·如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB ,求点P 到平面AEF 的距离.29.(2023·安徽蚌埠·统考二模)如图,正方体1111ABCD A B C D -的棱长为1,E ,F 是线段11B D 上的两个动点.(1)若//BF 平面ACE ,求EF 的长度;(2)若11114D E D B = ,求直线BE 与平面ACE 所成角的正弦值.30.(2023·山东·沂水县第一中学校联考模拟预测)已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.。
高考数学《立体几何》练习题及答案
立体几何1.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若某空间几何体的三视图如图所示,则该几何体的体积是A .2B .1C .D .【答案】B2.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D 【解析】3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积 A .与,x y 都有关 B .与,x y 都无关 C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】B4.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]5.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 一个圆锥SC的高和底面直径相等,且这个圆锥SC和圆柱OM的底面半径及体积也都相等,则圆锥SC和圆柱OM的侧面积的比值为A.322B.23C.35D.45【答案】C6.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【答案】D【解析】7.[广东省三校(广州真光中学、深圳市第二中学、珠海市第二中学)2020届高三上学期第一次联考数学(理)试题] 在如图直二面角ABDC中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD的中点E,将△ABE 沿BE 翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是A.BC与平面A1BE内某直线平行B.CD∥平面A1BEC.BC与平面A1BE内某直线垂直D.BC⊥A1B【答案】D8.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D【解析】9.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 圆锥的侧面展开图是半径为R 的半圆,则该圆锥的体积为________. 【答案】33πR 10.[辽宁省本溪高级中学2020届高三一模考试数学(理)试卷]【答案】4π11.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P ∥平面1A BM ,则1C P 的最小值是________.【答案】305【解析】 【分析】由面面平行找到点P 在底面ABCD 内的轨迹为线段DN ,再找出点P 的位置,使1C P 取得最小值,即1C P 垂直DN 于点O ,最后利用勾股定理求出最小值. 【详解】取BC 中点N ,连接11,,B D B N DN ,作CO DN ⊥,连接1C O ,因为平面1B DN ∥平面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN ,当点P 与点O 重合时,1C P 取得最小值,因为11152225DN CO DC NC CO ⋅=⋅⇒==,所以221min 11130()155C P C O CO CC ==+=+=. 故1C P 的最小值是305. 【点睛】本题考查面面平行及最值问题,求解的关键在于确定点P 的位置,再通过解三角形的知识求最值.12.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知某几何体的三视图如图所示,则该几何体的外接球的半径为________.21【答案】【解析】【分析】根据三视图还原几何体,设球心为O,根据外接球的性质可知,O与PAB△和正方形ABCD中心的连线分别与两个平面垂直,从而可得到四边形OGEQ 为矩形,求得OQ和PQ后,利用勾股定理可求得外接球半径.【详解】由三视图还原几何体如下图所示:设PAB△的中心为Q,正方形ABCD的中心为G,外接球球心为O,则OQ⊥平面PAB,OG⊥平面ABCD,E为AB中点,∴四边形OGEQ为矩形,112OQ GE BC ∴===,2233PQ PE ==, ∴外接球的半径:22213R GE PQ =+=. 故答案为21. 【点睛】本题考查多面体外接球半径的求解,关键是能够根据球的性质确定球心的位置,从而根据长度关系利用勾股定理求得结果. 13.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】【解析】14.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]【答案】1 315.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,平面ABP⊥平面BCP,90APB=,M为CP的中点.求证:∠=︒,BP BC(1)AP//平面BDM;(2)BM ACP⊥平面.【解析】(1)设AC 与BD 交于点O ,连接OM , 因为ABCD 是平行四边形,所以O 为AC 中点, 因为M 为CP 的中点,所以AP ∥OM , 又AP ⊄平面BDM ,OM ⊂平面BDM , 所以AP ∥平面BDM .(2)平面ABP ⊥平面BCP ,交线为BP , 因为90APB ∠=︒,故AP BP ⊥,因为AP ⊂平面ABP ,所以AP ⊥平面BCP , 因为BM ⊂平面BCP ,所以AP ⊥BM . 因为BP BC =,M 为CP 的中点,所以BM CP ⊥. 因为AP CP P =I ,AP CP ⊂,平面ACP , 所以BM ⊥平面ACP .16.[河南省新乡市高三第一次模拟考试(理科数学)] 如图,在四棱锥ABCDV -中,二面角D BC V --为︒60,E 为BC 的中点. (1)证明:VE BC =;(2)已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为︒60,求.VA VFABCDPMABCDPMO【解析】17.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]如图,在底面是菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=60°,PA=AB=2,点E,F分别为BC,PD的中点,设直线PC与平面AEF交于点Q.(1)已知平面PAB∩平面PCD=l,求证:AB∥l.(2)求直线AQ 与平面PCD 所成角的正弦值. 【解析】 【分析】(1)证明AB ∥平面PCD ,然后利用直线与平面平行的性质定理证明AB ∥l ; (2)以点A 为原点,直线AE 、AD 、AP 分别为轴建立空间直角坐标系,求出平面PCD 的法向量和直线AQ 的方向向量,然后利用空间向量的数量积求解直线AQ 与平面PCD 所成角的正弦值即可.【详解】(1)证明:∵AB ∥CD ,AB ⊄平面PCD ,CD ⊂平面PCD . ∴AB ∥平面PCD ,∵AB ⊂平面PAB ,平面PAB ∩平面PCD =l , ∴AB ∥l ;(2)∵底面是菱形,E 为BC 的中点,且AB =2, ∴13BE AE AE BC ==⊥,,, ∴AE ⊥AD ,又PA ⊥平面ABCD ,则以点A 为原点,直线AE 、AD 、AP 分别为x 、y 、z 轴建立如图所示空间直角坐标系,则()()()()020,002,30,300D P C E,,,,,,,,,∴()0,1,1F ,()()()()3000,11310022AE AF DC DP ===-=-u u u r u u u r u u u r u u u r,,,,,,,,,,,设平面PCD 的法向量为(),,x y z =n ,有0PD ⋅=u u u r n ,0CD ⋅=u u u rn ,得()133=,,n ,设()1AQ AC AP λλ=+-u u u r u u u r u u u r,则()()321AQ λλλ=-u u u r ,,,再设(3,,)AQ mAE n m n n AF =+=u u u r u u u r u u u r,则()3321m n nλλλ⎧=⎪=⎨⎪-=⎩,解之得23m n λ===,∴2223333AQ ⎛⎫=⎪⎝⎭u u u r ,,, 设直线AQ 与平面PCD 所成角为α,则3105sin cos ,AQ AQ AQα⋅>=<==u u u r u u u r u u u r n n n ,∴直线AQ 与平面PCD 所成角的正弦值为3105. 【点睛】本题考查直线与平面平行的判定定理以及性质定理的应用,直线与平面所成角的向量求法,合理构建空间直角坐标系是解决本题的关键,属中档题.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知三棱柱111ABC A B C -中,1AB AC AA ==,侧面11ABB A ⊥底面ABC ,D 是BC 的中点,160B BA ∠=︒,1B D AB ⊥.(1)求证:ABC △为直角三角形;(2)求二面角1C AD B --的余弦值. 【解析】(1)取AB 中点O ,连接OD ,1B O ,易知1ABB △为等边三角形,从而得到1B O AB ⊥,结合1B D AB ⊥,可根据线面垂直判定定理得到AB ⊥平面1B OD ,由线面垂直的性质知AB OD ⊥,由平行关系可知AB AC ⊥,从而证得结论;(2)以O 为坐标原点可建立空间直角坐标系,根据空间向量法可求得平面1ADC 和平面ADB 的法向量的夹角的余弦值,根据所求二面角为钝二面角可得到最终结果. 【详解】(1)取AB 中点O ,连接OD ,1B O ,在1ABB △中,1AB B B =,160B BA ∠=︒,1ABB ∴△是等边三角形, 又O 为AB 中点,1B O AB ∴⊥,又1B D AB ⊥,111B O B D B =I ,11,B O B D ⊂平面1B OD ,AB ∴⊥平面1B OD ,OD ⊂Q 平面1B OD ,AB OD ∴⊥, 又OD AC ∥,AB AC ∴⊥, ∴ABC △为直角三角形.(2)以O 为坐标原点,建立如下图所示的空间直角坐标系:令12AB AC AA ===,则()1,2,0C -,()1,0,0A -,()0,1,0D ,()1,0,0B ,()10,0,3B ,()11,0,3BB ∴=-u u u v ,()0,2,0AC =u u u v ,()1,1,0AD =u u u v,()1111,2,3AC AC CC AC BB =+=+=-u u u u v u u u v u u u u v u u u v u u u v,设平面1ADC 的法向量为(),,x y z =m ,10230AD x y AC x y z ⎧⋅=+=⎪∴⎨⋅=++=⎪⎩u u u v u u u u v m m ,令1x =,则1y =-,3z =,()1,1,3∴=-m , 又平面ADB 的一个法向量为()0,0,1=n ,315cos ,5113∴<>==++m n , Q 二面角1C AD B --为钝二面角,∴二面角1C AD B --的余弦值为15-.【点睛】本题考查立体几何中垂直关系的证明、空间向量法求解二面角的问题,涉及到线面垂直判定定理和性质定理的应用;证明立体几何中线线垂直关系的常用方法是通过证明线面垂直得到线线垂直的关系.19.[江西省宜春市上高二中2020届高三上学期第三次月考数学(理)试题]20.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]21.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【解析】22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 如图,在四棱锥P ABCD-中,底面ABCD为矩形,平面PCD⊥平面ABCD,2AB=,1BC=,2PC PD==,E为PB中点.(1)求证:PD∥平面ACE;(2)求二面角E AC D--的余弦值;(3)在棱PD上是否存在点M,使得AM⊥BD?若存在,求PMPD的值;若不存在,说明理由.【解析】(1)设BD交AC于点F,连接EF. 因为底面ABCD是矩形,所以F为BD中点 . 又因为E为PB中点,所以EF∥PD.因为PD ⊄平面,ACE EF ⊂平面ACE ,所以PD ∥平面ACE.(2)取CD 的中点O ,连接PO ,FO .因为底面ABCD 为矩形,所以BC CD ⊥.因为PC PD =,O CD 为中点,所以,PO CD OF ⊥∥BC ,所以OF CD ⊥. 又因为平面PCD ⊥平面ABCD ,PO ⊂平面,PCD 平面PCD ∩平面ABCD =CD . 所以PO ⊥平面ABCD ,如图,建立空间直角坐标系O xyz -, 则111(1,1,0)(0,1,0)(1,1,0),(0,0,1),(,,)222A C B P E -,,, 设平面ACE 的法向量为(,,)x y z =m ,131(1,2,0),(,,)222AC AE =-=-u u u r u u u r , 所以20,2,0,131.00222x y x y AC z y x y z AE -+=⎧⎧=⎧⋅=⎪⇒⇒⎨⎨⎨=--++=⋅=⎩⎩⎪⎩u u u v u u u v m m 令1y =,则2,1x z ==-,所以2,11=-(,)m .平面ACD 的法向量为(0,0,1)OP =u u u r ,则6cos ,OP OP OP⋅<>==-⋅u u u r u u u r u u u r m m |m |. 如图可知二面角E AC D --为钝角,所以二面角E AC D --的余弦值为66-. (3)在棱PD 上存在点M ,使AM BD ⊥.设([0,1]),(,,)PM M x y z PD=∈λλ,则,01,0PM PD D =-u u u u r u u u r λ(,).因为(,,1)(0,1,1)x y z -=--λ,所以(0,,1)M --λλ. (1,1,1),(1,2,0)AM BD =---=--u u u u r u u u r λλ.因为AM BD ⊥,所以0AM BD ⋅=u u u u r u u u r .所以12(1)0λ--=,解得1=[0,1]2∈λ. 所以在棱PD 上存在点M ,使AM BD ⊥,且12PM PD =。
立体几何练习题及答案
立体几何练习题及答案立体几何练习题及答案立体几何是数学中的一个重要分支,它研究的是空间中的几何形体。
在我们的日常生活中,立体几何无处不在,比如建筑物、雕塑、家具等。
掌握立体几何的基本概念和解题方法,不仅可以提高我们的空间想象能力,还能帮助我们解决实际问题。
下面,我将给大家提供一些立体几何的练习题及答案,希望能对大家的学习有所帮助。
1. 题目:一个正方体的体积是64立方单位,求它的边长。
解答:设正方体的边长为a,则根据正方体的性质可知,它的体积等于边长的立方,即a³=64。
两边开立方根,得到a=4。
所以,这个正方体的边长是4个单位。
2. 题目:一个圆柱的底面半径为3cm,高为8cm,求它的体积和表面积。
解答:圆柱的体积公式为V=πr²h,其中r是底面半径,h是高。
代入已知条件,可得V=π×3²×8=72π。
所以,这个圆柱的体积是72π立方厘米。
圆柱的表面积公式为A=2πrh+2πr²。
代入已知条件,可得A=2π×3×8+2π×3²=48π+18π=66π。
所以,这个圆柱的表面积是66π平方厘米。
3. 题目:一个球的半径为5cm,求它的体积和表面积。
解答:球的体积公式为V=4/3πr³,其中r是半径。
代入已知条件,可得V=4/3π×5³=500/3π。
所以,这个球的体积是500/3π立方厘米。
球的表面积公式为A=4πr²。
代入已知条件,可得A=4π×5²=100π。
所以,这个球的表面积是100π平方厘米。
4. 题目:一个圆锥的底面半径为6cm,高为10cm,求它的体积和表面积。
解答:圆锥的体积公式为V=1/3πr²h,其中r是底面半径,h是高。
代入已知条件,可得V=1/3π×6²×10=120π。
所以,这个圆锥的体积是120π立方厘米。
立体几何证明练习册必刷题练习册
立体几何证明练习册必刷题练习册立体几何是数学中的一个重要分支,它涉及到空间中物体的形状、大小和位置关系。
以下是一些立体几何证明的练习题,旨在帮助学生加深对立体几何概念的理解和应用。
练习一:证明长方体的对角线问题:在长方体ABCD-A'B'C'D'中,证明对角线AC'的长度等于\(\sqrt{AB^2 + BC^2 + AA'^2}\)。
证明:首先,我们设长方体的边长为AB=a, BC=b, AA'=c。
根据勾股定理,我们可以得到对角线AC的长度为\(\sqrt{a^2 + b^2}\),对角线AA'的长度为c。
由于AC'是AC和AA'的合成线,我们可以应用勾股定理,得出AC'的长度为\(\sqrt{(\sqrt{a^2 + b^2})^2 + c^2} =\sqrt{a^2 + b^2 + c^2}\)。
练习二:证明正四面体的体积问题:在正四面体ABCD中,已知边长为a,求四面体的体积。
证明:正四面体的底面是一个等边三角形,设其边长为a。
底面的高为\(h = \frac{\sqrt{3}}{2}a\)。
四面体的高是垂直于底面的线段,设其为h'。
由于正四面体的对称性,我们可以得出h' = h。
四面体的体积公式为V = \(\frac{1}{3} \times \text{底面积} \times\text{高}\)。
代入数值,得到V = \(\frac{1}{3} \times\frac{\sqrt{3}}{4}a^2 \times \frac{\sqrt{3}}{2}a =\frac{\sqrt{3}}{12}a^3\)。
练习三:证明球体的表面积和体积问题:给定一个半径为r的球体,证明其表面积为\(4\pi r^2\),体积为\(\frac{4}{3}\pi r^3\)。
证明:球体的表面积可以通过将球体切割成无数个微小的三角形面元来计算。
专题03 立体几何中的夹角问题(原卷版)
第三篇 立体几何专题03 立体几何中的夹角问题常见考点考点一 线线角典例1.如图,在多面体ABCEF 中,ABC 和ACE 均为等边三角形,D 是AC 的中点,EF BD ∥,2BD EF ==(1)证明:AC BF ⊥;(2)若平面ABC ⊥平面ACE ,求异面直线AE 与BF 所成角的余弦值.变式1-1.如图,在平行四边形ABCD 中,AB AC =,90ACD ︒=∠,以AC 为折痕将ACD ∆折起,使点D 到达点M 的位置,且AB AM ⊥.(1)证明:平面ACM ⊥平面ABC ;(2)E 为线段AM 上一点,F 为线段BC 上一点,且13AE CF AD ==,求异面直线AC 与EF 所成的角的余弦.变式1-2.如图,在直三棱柱111ABC A B C -中,1AA ,1AB =,AC =2BAC π∠=,D 是棱1CC 上一点.(1)若1A C BD ⊥,求1CD CC ; (2)在(1)的条件下,求直线1B D 与11A C 所成角的余弦值.变式1-3.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1BB 、CD 的中点.(1)求证:1D F AE ⊥;(2)求直线EF 和1CB 所成角的大小.考点二 线面角典例2.如图,在梯形ABCD 中,AD BC ∥,2ABC π∠=,22AB BC AD ===,E ,F 分别为边AB ,CD 上的动点,且EF BC ∥,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)求AE 为何值时,BD EG ⊥;(2)在(1)的条件下,求BD 与平面ABF 所成角的正弦值.变式2-1.如图所示的直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,E ,F 分别是棱BC ,CD 上的点,且2BE EC =,2DF FC =,点G 为棱1CC 上的动点,13AA =,1O 为上底面1111D C B A 的中心,1AO ∥平面EFG .(1)求CG 的长度;(2)求直线1BO 与平面EFG 所成的角的正弦值.变式2-2.如图,三棱锥P -ABC 中,PAB △为正三角形,侧面P AB 与底面ABC 所成的二面角为150°,AB =AC =2,AB AC ⊥,E ,M ,N 分别是线段AB ,PB 和BC 的中点.(1)证明:平面PEN ⊥平面ABC ;(2)求直线PN 与平面MAC 所成角的正弦值.变式2-3.如图,在直三棱柱111ABC A B C -中,1222AC AB AA ===,11A B AB M =,11A B B C ⊥.(1)求证:AB AC ⊥;(2)若点N 在线段1A C 上,满足MN ∥平面ABC ,求直线1B N 与平面1A BC 所成角的正弦值.考点三 二面角典例3.如图,在三棱柱111ABC A B C -中,侧面11ACC A 是矩形,AC AB ⊥,12AB AA ==,3AC =,1120A AB ∠=︒,E ,F 分别为棱11A B ,BC 的中点,G 为线段CF 的中点.(1)证明:1//AG 平面AEF ; (2)求二面角A EF B --的余弦值.变式3-1.如图,ABC 中AB BC ⊥,且2AB BC =,将AEF 沿中位线EF 折起,使得AE BE ⊥,连结AB ,AC ,M 为AC 的中点.(1)证明:MF ⊥平面ABC ;(2)求二面角E MF C --的余弦值.变式3-2.如图,已知四棱锥P -ABCD 的底面为直角梯形,AB DC ∥,90DAB ∠=︒,PA ⊥底面ABCD ,且112PA AD DC AB ====,M 是棱PB 的中点.(1)证明:平面PAD ⊥平面PCD ;(2)求平面AMC 与平面BMC 的夹角的余弦值.变式3-3.如图,三棱锥P ABC -中,PA AB ⊥,PA AC ⊥,AB AC ⊥,2AB AC ==,4PA =,点M 是P A 的中点,点D 是AC 的中点,点N 在PB 上,且2PN NB =.(1)证明:BD 平面CMN ;(2)求平面MNC 与平面ABC 所成角的余弦值.巩固练习练习一 线线角1.如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,AA 1=4,点D 是BC 的中点,求异面直线 A 1B 与C 1D 所成角的余弦值.2.如图,直棱柱111,ABC A B C -在底面ABC 中,1,90CA CB BCA ∠===,棱12,,AA M N =分别为111,A B A A 的中点.(1)求异面直线1BA 、1CB 成角的余弦值;(2)求证:BN ⊥平面1C MN .3.如图,在直三棱柱111ABC A B C -中,1,2,,,AC AB A A AB AC D E F ⊥===分别为1,,AB BC BB 的中点.(1)证明://DF 平面11AB C ;(2)证明:11AF B E ⊥; (3)求异面直线111A F B C 与所成角的余弦值.4.如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G 分别是1DD ,BD ,1BB 的中点.(1)求证:EF CF ⊥;(2)求EF 与CG 所成角的余弦值;(3)求CE 的长.练习二 线面角5.如图,已知三棱柱111ABC A B C -中,侧面11AA B B ⊥底面11,60,ABC AA BAA ABC =∠=︒为等腰直角三角形,2AC BC ==.(1)若O 为AB 的中点,求证:1CO AA ⊥;(2)求直线1BC 与平面11ACC A 所成角的正弦值.6.如图,已知四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 中,90ABC ∠=︒,AB CD ∥,1AB =,1BC =,2CD =,点A 在平面PCD 内的投影恰好是△PCD 的重心G .(1)求证:平面PAB ⊥平面PBC ;(2)求直线DG 与平面PBC 所成角的正弦值.7.已知平行四边形ABCD ,2AB =,1BC =,3A π∠=,点E 是AB 的中点,沿DE 将ADE 翻折得PDE △,使得PC =,且点F 为PC 的中点.(1)求证:BF ∥平面PDE ;(2)求直线PE 与平面BCDE 所成角的正弦值.8.如图1,在△MBC 中,24,BM BC BM BC ==⊥,A ,D 分别为棱BM ,MC 的中点,将△MAD 沿AD 折起到△P AD 的位置,使90PAB ∠=,如图2,连结PB ,PC ,BD .(1)求证:平面P AD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值.练习三 二面角9.如图,在四棱柱1111ABCD A B C D -中,AB DC ∥,AB AD ⊥,224CD AB AD ===,四边形11ADD A 为菱形,1A 在平面ABCD 内的射影O 恰好为AD 的中点,M 为AB 的中点.(1)求证:BC ⊥平面1AOM ; (2)求平面11A BC 与平面11AA D D 夹角的余弦值.10.如图所示,在四棱锥S ABCD -中,四边形ABCD 为菱形,SAD 为等边三角形,120ABC ∠=︒,点S 在平面ABCD 内的射影O 为线段AD 的中点.(1)求证:平面SOB ⊥平面SBC ;(2)已知点E 在线段SB 上,32SE BE =,求二面角B OE C --的余弦值.11.如图,在直棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=︒,12AA =,,M N 分别是11A B ,1AA 的中点.(1)求BN 的长;(2)求证:11A B C M ⊥;(3)求二面角11A BC B --的余弦值.12.如图,在多面体ABCDEF 中,四边形ABCD 为正方形,4AB =,AD EF ∥,2AF EF ==,90FAD AEC ∠=∠=︒.(1)证明:AF ⊥平面ABCD ;(2)求二面角B ED C --的正弦值.。
苏教版立体几何习题精选(含答案详解)
(江苏最后1卷)给出下列四个命题:(1)如果平面与平面相交,那么平面内所有的直线都与平面相交 (2)如果平面⊥平面,那么平面内所有直线都垂直于平面(3)如果平面⊥平面,那么平面内与它们的交线不垂直的直线与平面也不垂直(4)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面 真命题...的序号是 ▲ .(写出所有真命题的序号)【答案】(3)(4)(南师大信息卷)在棱长为1的正方体中,若点是棱上一点,则满足的点的个数为 6 . ?提示:点在以为焦点的椭圆上,分别在、、、、、上. 或者,若在上,设,有. 故上有一点(的中点)满足条件.同理在、、、、上各有一点满足条件. 又若点在上上,则.故上不存在满足条件的点,同理上不存在满足条件的点.(南通三模)已知正方体1C 的棱长为182,以1C 各个面的中心为顶点的凸多面体为2C ,以2C 各个面的中心为顶点的凸多面体为3C ,以3C 各个面的中心为顶点的凸多面体为4C ,依此类推。
记凸多面体n C 的棱长为n a ,则6a = ▲ .αβαααβαβαβαβαβαβ1111ABCD A B C D -P 12PA PC +=P P 1AC P AB AD 1AA 11C B 11C D 1C C P AB AP x =2211(1)(2)2,2PA PC x x x +=+-+=∴=AB P AB AD 1AA 11C B 11C D 1C C P 1BB 2211112PA PC BP B P +=+++>1BB P 1DD P解析:考查推理方法以及几何体中元素的关系理解应用。
正方体1C 的棱长为218111==B A a ,由1C 各个面的中心为顶点的几何体为正八面体2C ,其棱长182211222===B A B A a ,由2C 各个面的中心为顶点的几何体为正方体3C ,其棱长263222333===B A B A a ,如此类推:得到2,22,6654===a a a 。
2019-2020年高考数学大题专题练习——立体几何(三)
2019-2020年高考数学大题专题练习——立体几何(三)53.如图,在四棱锥E ﹣ABCD 中,平面CDE ⊥平面ABCD ,∠DAB =∠ABC =90°,AB =BC =1,AD =ED =3,EC =2.(1)证明:AB ⊥平面BCE ;(2)求直线AE 与平面CDE 所成角的正弦值.54.如图1,2,已知ABCD 是矩形,M ,N 分别为边AD ,BC 的中点,MN 与AC 交于点O ,沿MN 将矩形MNCD 折起,设AB =2,BC =4,二面角B ﹣MN ﹣C 的大小为θ.(1)当θ=90°时,求cos ∠AOC 的值;(2)点θ=60°时,点P 是线段MD 上一点,直线AP 与平面AOC 所成角为α.若sin α=,求714线段MP 的长.55.在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,∠CDA =∠BAD =90°,AD =DC =,AB =PA =2,且E 为线段PB 上的一动点.22(1)若E 为线段PB 的中点,求证:CE ∥平面PAD ;(2)当直线CE 与平面PAC 所成角小于,求PE 长度的3π取值范围.56.如图,在几何体中,平面底面,四边形是正方111ABC A B C -11A ACC ⊥ABC 11A ACC 形,,是的中点,且11B C BC ∥Q 1A B 112AC BC B C ==,. 2π3ACB ∠=(Ⅰ) 证明:平面;1B Q ∥11A ACC (Ⅱ) 求直线与平面所成角的正弦值.AB 11A BB57.如图,已知和所在平面互相垂直,且,ABC V BCD V 090BAC BCD ∠=∠=,点分别在线段,AB AC =CB CD =,E F ,BD CD上,沿直线将向上翻折使得与重EF EFD V D A 合(Ⅰ)求证:;AB CF ⊥(Ⅱ)求直线与平面所成角。
AE ABC 58.如图,四边形是圆台的轴截面,,点在底面圆周上,且ABCD 1OO 24AB CD ==M ,.2π=∠AOM DM AC ⊥(Ⅰ)求圆台的体积;1OO (Ⅱ)求二面角的平面角的余弦值.A DMO--59.如图,已知菱形与等腰所在平面相互垂直..ABCD PAB ∆120PAB BAD ∠=∠=为PB 中点 .E (Ⅰ)求证:平面ACE ;//PD (Ⅱ)求二面角的余弦值B CE D --60.如图,在四面体中,平面⊥平面,, ,ABCD ACD BCD 90BCA ∠=︒1AC =,为等边三角形.2AB =BCD ∆(Ⅰ)求证:⊥平面AC BCD(Ⅱ)求直线与平面所成角的正弦值.CDABD61.已知:平行四边形ABCD 中,∠DAB =45°,AB =AD =2,平面AED ⊥平面ABCD ,△22AED 为等边三角形,EF ∥AB ,EF =,M 为线段BC 的中点。
(完整版)立体几何经典大题(各个类型的典型题目)
1立体几何大题训练(1)1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。
(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;FCB A E D2AB CDEF立体几何大题训练(2)3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]C13立体几何大题训练(3)5。
如图,在正方体ABCD-A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C,AD 的中点. 求证:(1)MN//平面ABCD; (2)MN ⊥平面B 1BG .6。
如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1._ G_ M _ D_1_ C_1_ B_1_ A_1_ N _ D_ C_ B_ ABA 1F4立体几何大题训练(4)7、如图,在直四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,E 、E 1分别是棱AD 、AA 1的中点(1)设F 是棱AB 的中点,证明:直线EE 1∥面FCC 1;(2)证明:平面D 1AC ⊥面BB 1C 1C 。
立体几何练习题及答案
数学立体几何练习题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.如图,在正方体ABC D-A 1B 1C1D 1中,棱长为a ,M、N 分别为A 1B和AC 上的点,A 1M=AN =错误!,则M N与平面BB 1C 1C 的位置关系是( ) A.相交 B.平行 C .垂直 D.不能确定2.将正方形ABCD 沿对角线B D折起,使平面ABD ⊥平面CBD,E是CD 中点,则AED ∠的大小为( ) ﻩA .45 B.30C.60ﻩD.903.PA ,PB,PC 是从P 引出的三条射线,每两条的夹角都是60º,则直线PC 与平面P AB所成的角的余弦值为( )A.12B 。
3ﻩC 。
3ﻩD。
64.正方体AB CD —A 1B 1C1D1中,E、F 分别是A A1与CC 1的中点,则直线ED 与D 1F 所成角的余弦值是A .15ﻩB。
13C 。
12D 。
3 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABC D的中心,E、F 分别是1CC 、A D的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( )ﻩA.510 B .32 ﻩC.55ﻩD .515 6.在正三棱柱AB C-A 1B 1C 1中,若AB=2,A A 1=1,则点A到平面A 1BC 的距离为(ﻩ)A.43ﻩB.23ﻩC.433ﻩD.3 7.在正三棱柱ABC-A 1B 1C1中,若AB=错误!BB 1,则AB 1与C1B所成的角的大小为( )A.60ºﻩ B . 90º ﻩC.105º ﻩD. 75º8.设E ,F是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面A1ECF 成60°角的对角线的数目是( ) A .0 B.2 C.4 ﻩD.6 二、填空题:本大题共6小题,每小题5分,共30分.9.在正方体ABC D-A 1B 1C 1D 1中,M 、N分别为棱AA1和B B1的中点,则sin 〈CM ,1D N 〉的值为_________.10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点,AM DCAB CDP 那么点M 到截面AB CD 的距离是 .11.正四棱锥P-A BCD 的所有棱长都相等,E 为PC 中点,则直线AC 与截面BDE 所成的角为 .12.已知正三棱柱A BC-A1B 1C1的所有棱长都相等,D 是A1C 1的中点,则直线AD 与平面B1DC 所成角的正弦值为 . 13.已知边长为的正三角形A BC中,E、F 分别为BC和AC 的中点,PA ⊥面ABC ,且PA=2,设平面α过PF 且与AE 平行,则AE 与平面α间的距离为 . 14.棱长都为2的直平行六面体A BCD —A 1B 1C 1D 1中,∠BA D=60°,则对角线A 1C 与侧面DCC 1D 1所成角的余弦值为________.三、解答题:本大题共6小题,共80分。
立体几何测试题(共10篇)
立体几何测试题(共10篇)立体几何测试题(一): 立体几何问题立体几何试题已知正方体ABCD-A1B1C1D1中,E、F分别为D1C1、C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,则P、Q、R三点共线.1.EF平行于B1D1,B1D1平行于BD,所以EF平行于BD,EFBD四点共面2.F,D,A,C1属于平面A1ACC1,且AC1与PQ不平行,所以AC1与PQ相交A1C交平面DBFE于R点,又因为PQ属于平面DBFE,所以AC1与PQ相交于R 所以R属于PQ,PQR共线立体几何测试题(二): 几个书后练习题立体几何1.如果a、b是两条直线,且a‖b,那么a平行于经过b的任何平面.是否正确2.如果a、b是两条直线,且a‖b,那么a平行于经过b的任何平面.为什么不对谢不对,因为a有可能在经过b的面上,不是平行关系立体几何测试题(三): 一道数学基本的立体几何的题目~在正方形ABCD-A"B"C"D"中,P、Q分别为A"B"、BB"的中点.(1)求直线AP与CQ所成的角的大小(2)求直线AP与BD所成的角的大小我还没学过空间向量,1.取DC中点E,连EC,证明EC平行AP,用余弦定理算2.取AB中点F,连接FB,用余弦定理算【立体几何测试题】立体几何测试题(四): 求大量立体几何难题!立体几何综合试题(自己画图)1、已知正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点.(1)求证:DE‖平面A1B1C1;(2)求二面角A1—DE—B1的大小.2、已知直三棱柱ABC—A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF =BC=2a.(I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1;(II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么证明你的结论3、在底面是直角梯形的四棱锥中,AD‖BC,∠ABC=90°,且 ,又PA⊥平面ABCD,AD=3AB=3PA=3a.(I)求二面角P—CD—A的正切值;(II)求点A到平面PBC的距离.4、在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.(Ⅰ)确定点G的位置;(Ⅱ)求直线AC1与平面EFG所成角θ的大小.5、已知四棱锥P—ABCD,底面ABCD是菱形,平面ABCD,PD=AD,点E为AB中点,点F为PD中点.(1)证明平面PED⊥平面PAB;(2)求二面角P—AB—F的平面角的余弦值6.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P 在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP;(Ⅲ)求点P到平面ABD1的距离.7、在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I)证明平面;(II)证明平面EFD;(III)求二面角的大小.8、已知在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(I)试确定点F的位置,使得D1E⊥平面AB1F;(II)当D 1E⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).9、直四棱柱ABCD-A1B1C1D1的底面是梯形,AB‖CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.点P到直线AD1的距离为⑴求证:AC‖平面BPQ⑵求二面角B-PQ-D的大小10、已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心.(Ⅰ)证明:AF⊥平面FD1B1;(Ⅱ)求异面直线EB与O1F所成角的余弦值;这些题应该还可以!你来试试吧!题不要求多就精就可以了!不懂的或不会做的,我来帮你解答!立体几何测试题(五): 立体几何初步练习题已知正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱B1C1,C1D1,A1B1,D1A1的中点,求证(1)MN平行于DEF,(2)平面AMN平行于平面CEF(1)连接B1D1因为MN、EF为三角形A1B1D1、B1C1D1的中位线,所以MN平行于EF因为MN不属于面DEF,EF属于面DEF所以MN平行于面DEF(2)这题题目错了吧,应该是DEF吧立体几何测试题(六): 解析几何基础知识练习题靠!一楼的那么多废话那么多选择题:集合,函数(图像),立体几何,圆锥一、数学命题原则 1.普通高等学校招生数学科的考试,按照“考查基础知识的【立体几何测试题】立体几何测试题(七): 高一必修二立体几何习题1-7的题仓库的房顶呈正四棱锥形,量的地面的边长为2.6m,侧棱长2.1m,先要在房顶上铺一层油毡纸,问:需要油毡纸的面积多少运用海伦公式房顶为4个相同的三角形海伦公式a=2.6 b=2.1 c=2.1 p=a+b+c/2=3.4S=根号下p*(p-a)*(p-b)*(p-c)=2.1444S=2.144*4=8.576平方米立体几何测试题(八): 怎么根据题目画数学的立体几何图形搞懂了题目的要求,就照那意思去画,立体几何记住透视很重要.立体几何测试题(九): 求立体几何判断题的解题方法.①过平面外一点有且仅有一个平面与已知平面垂直②过直线外一点有且仅有一个平面与已知直线平行③过直线外一点有且仅有一条直线与已知直线垂直④过平面外一点有且仅有一条直线与已知平面垂直⑤……等等,诸如此类.见到很多这样的题目,但是却总找不到解题的方法,概念定理也经常记混.本人感激不尽!记一些模型,例如墙角模型什么的这个很重要.遇见不熟悉的题,用书本和笔(手指也可以)比划一下.这种题目主要是找反例!想象力也很重要啦……立体几何测试题(十): 一道高中立体几何的题目.已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,O1是底面A1B1C1D1的中心.E 是CO1上的点,设CE等于X,四棱锥E-ABCD的体积为y,求y关于X的函数关系式..图只有自己画一下了,做EF垂直于平面ABCD 垂足为F易得出CEF相似于O1CC1因为C1O1=根号2 CC1=4 得CO1=3根号2CE/CO1=EF/CC1 得出EF=4X/3根号2Y=底面积*EF/3=4*4X/9根号2Y=8根号2*X/9职高立体几何测试题空间立体几何测试题。
高三立体几何大题线面角练习
高三立体几何大题线面角练习介绍:立体几何是数学中的一个重要分支,主要研究物体的形状和空间位置关系。
高三学生在准备高考时,需要熟练掌握立体几何的相关知识和解题方法。
本文档为高三学生提供一个包含线面角练题的大题集,旨在帮助学生加深对立体几何的理解并提升解题能力。
大题一: 平面与立体的关系题目: 已知一个平面与一个立方体的三个面相交,求证该平面与立方体的其他三个面也相交。
解析:考虑立方体的性质,每个顶点都是三个面的交点。
假设已知的平面与立方体的三个面相交,将其中的三个交点标记为$A$,$B$和$C$。
由于平面与立方体的其他三个面都经过$A$,$B$和$C$,所以可以得出结论:该平面与立方体的其他三个面也相交。
大题二: 线面角的计算题目: 在一个正方体中,一个角所在的三条边分别与三个不同的面平行,已知其中两个面的夹角为$60^\circ$,求该角的大小。
解析:设该角所在的三条边分别为$AB$,$AC$和$AD$,与三个面分别平行。
已知$AC$与$AD$所在的两个面的夹角为$60^\circ$,即$∠CAD=60^\circ$。
由于正方体的每个内角都是$90^\circ$,所以可知$∠BAD=180^\circ - ∠CAD - ∠ACD = 180^\circ - 60^\circ -90^\circ =30^\circ$。
因此,该角的大小为$30^\circ$。
大题三: 空间几何的应用题目: 已知一个球塔高$10\sqrt{3}$,上底半径为$10$,下底半径为$8$,求球与塔的交线的长度。
解析:根据题意,球与塔的交线可以看作是球与一个圆台的交线,而圆台的上下底半径分别为$10$和$8$,高为$10\sqrt{3}$。
通过计算,可以得到圆台的斜高为$2\sqrt{3}$。
根据球和圆台的交线特性,可以计算出交线的长度为$\sqrt{3}$倍的圆台底面周长。
因此,球与塔的交线的长度为$2\sqrt{3}$倍的$\pi \times 10 = 20\pi\sqrt{3}$。
立体几何典型例题精选(答案)
FED CBA 立体几何专题复习热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC的中点,2,1,DB DC BC ===AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图.(1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.热点二:二面角例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值.变式3: [2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小.变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.热点三:无棱二面角例3.如图三角形BCD 与三角形MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且114BK BB =,134CM CC =.求:平面AKM 与ABCD 所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,AB =2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2014·四川,18] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.2.[2014·湖南卷] 如图所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.3.[2014·江西19] 如图1-6,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD. (2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P-ABCD 的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.M OH FED C B A 立体几何专题复习 答案例1.(2014,广二模)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ,则sin θ=cos ,n AE ⋅=n AE nAE=. ……………11分∴cos 3θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE……………14分 变式1:(2013湖北8校联考)(1)取BD 中点F ,连结,EF AF ,则11,,60,2AF EF AFE ==∠=……………2分由余弦定理知222360,AE AF EF AE AE EF =+=∴⊥………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分 (2)以E 为原点建立如图示的空间直角坐标系,则1(1,,0)2A C -,11(1,,0),(1,,0)22B D --- ………8分设平面ABD 的法向量为n(,,)x y z =,由00n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得20102x x y =⎧⎪⎨+=⎪⎩,取z ,则3,(0,y =-∴=-n . 13(1,,),cos ,2||||AC AC AC AC=--∴<>==-n n n ……11分故直线AC 与平面ABD . …………12分变式2:(2014福建卷)解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD . …………3分 又CD ⊂平面BCD ,∴AB ⊥CD . …………4分 (2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . ……6分以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12.则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1).…………7分设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). …………9分设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. …………11分即直线AD 与平面MBC 所成角的正弦值为63. …………12分例2.(2014,广东卷):(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DPDC DA x y z DC A CF CP F DFCF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,19||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:(2014浙江卷)解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . …………2分 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . …………4分 (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG . 由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.…………6分在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6.在Rt △AED 中,由ED =1,AD =6,得AE =7.…………7分在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23. …………9分在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23. …………11分在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF =32. …………13分所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.…………14分方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴, 建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).…………7分由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).…………9分由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2).…………11分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32. …………13分由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6. (14)分变式4:(2014全国卷) 19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面 AA 1C 1⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C . …………2分连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC 1⊥A 1B . ……4分(注意:这个定理我们不能用) (2) BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. …………6分又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3. …………8分 作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.…………10分 由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1DDF=15,……12分 所以cos ∠A 1FD =14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B . …………4分(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为 |CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c . …………6分又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3). …………8分 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1).…………10分 又p =(0,0,1)为平面ABC 的法向量,…………11分故 cos 〈n ,p 〉=n ·p |n ||p |=14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分例3. 无棱二面角(2010年江西卷)解法一:(1)取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD .又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO ∥AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则∠AEB 就是AM 与平面BCD 所成的角.OB =MO MO ∥AB ,MO//面ABC ,M 、O 到平面ABC 的距离相等,作OH ⊥BC 于H ,连MH ,则MH ⊥BC ,求得:OH=OCsin600=2,MH=2,利用体积相等得:5A MBC M ABC V V d --=⇒=。
立体几何100题精编版
立体几何100题1.如图,三角形中,,是边长为l 的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.2.在三棱锥P ABC -中, PAC ∆和PBC ∆ 2AB =, ,O D分别是,AB PB 的中点.(1)求证: //OD 平面PAC ; (2)求证: OP ⊥平面ABC ; (3)求三棱锥D ABC -的体积.3.如图,在直三棱柱111ABC A B C -中, 090BAC ∠=, 2AB AC ==,点,M N 分别为111,A C AB 的中点.(1)证明: //MN 平面11BB C C ;(2)若CM MN ⊥,求三棱锥M NAC -的体积.. 4.如图,在三棱柱中,平面,点是与的交点,点在线段上,平面.(1)求证:;(2)若,求点到平面的距离.5.如图,四棱锥P A B C -中,底面ABCD 是直角梯形,1,//,2AB BC AD BC AB BC AD ⊥==, PAD ∆是正三角形, E 是PD 的中点. (1)求证: AD PC ⊥;(2)判定CE 是否平行于平面PAB ,请说明理由.6.如图,在四棱锥S ABCD -中,侧面SAD ⊥底面ABCD , SA SD =, //AD BC , 22AD BC CD ==, M , N 分别为AD , SD 的中点.(1)求证: //SB 平面CMN ;(2)求证: BD ⊥平面SCM .7.如图,在矩形中,,平面,分别为的中点,点是上一个动点.(1) 当是中点时,求证:平面平面;(2) 当时,求的值.8.如图,在正三棱柱111A B C ABC -中,点,D E 分别是1,A C AB 的中点. 求证: ED ∥平面11BB C C若1AB 求证:A 1B ⊥平面B 1CE.9.如图,在长方体1111ABCD A B C D -中, 12,1,1AB AD A A ===.(1)证明直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.10.如图所示,菱形ABCD 与正三角形BCE 所在平面互相垂直, FD ⊥平面ABCD ,且2AB =, FD =(1)求证: //EF 平面ABCD ; (2)若3CBA π∠=,求几何体EFABCD 的体积.11.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (Ⅰ)平面AB 1E ⊥平面B 1BCC 1; (Ⅱ)A 1C //平面AB 1E .12.如图,在三棱柱中,平面,,,点为的中点. (1)证明:平面; (2)求三棱锥的体积.13.如图,在多面体中,四边形是正方形,在等腰梯形中,,,,为中点,平面平面.(1)证明:;(2)求三棱锥的体积.14.已知三棱锥,,,为的中点,平面,,,是中点,与所成的角为,且.(1)求证:;(2)求三棱锥的体积.15.在四棱锥中,平面平面,,是等边三角形,已知,,.(1)设是上一点,求证:平面平面.(2)求四棱锥的体积.-中,PA⊥底面ABCD,底面ABCD为菱形,16.如图,在四棱锥P ABCD60∠=,1,ABC==为PC的中点PA PB E.(1)求证: //PA 平面BDE ;(2)求三棱锥P BDE -的体积.17.如图,在直三棱柱(侧棱与底面垂直的棱柱)111ABC A B C -中,点G 是AC 的中点.(1)求证: 1//B C 平面1A BG ;(2)若A B B C =, 1AC ,求证: 11AC A B ⊥. 18.如图所示,四棱锥S ABCD -中,平面SAD ⊥平面ABCD , SA AD ⊥, //AD BC ,43SA BC AB ==24AD ==.(1)证明:在线段SC 上存在一点E ,使得//ED 平面SAB ;(2)若AB AC =,在(1)的条件下,求三棱锥S AED -的体积. 19.(本小题共12分)如图,边长为3的正方形ABCD 所在平面与等腰直角三角形ABE 所在平面互相垂直,AE AB ⊥,且2EM MD =, 3AB AN =.(Ⅰ)求证: //MN 平面BEC ;(Ⅱ)求三棱锥E BMC -的体积.20.如图,在四棱锥中,底面是边长为2的正方形,分别为的中点,平面底面.(1)求证:平面;(2)若,求三棱锥的体积.21.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证:(Ⅰ)平面AB 1E ⊥平面B 1BCC 1; (Ⅱ)A 1C //平面AB 1E .22.如图1,四边形ABCD 为等腰梯形, 2,1AB AD DC CB ====,将ADC ∆沿AC 折起,使得平面ADC ⊥平面ABC , E 为AB 的中点,连接,DE DB .(1)求证: BC AD ⊥; (2)求E 到平面BCD 的距离. 23.如图,四棱锥中,底面为菱形,平面,为的中点.(Ⅰ)证明:平面; (Ⅱ)设,求三棱锥的体积.24.如图,在多面体中,四边形是正方形,在等腰梯形中,,,,为中点,平面平面.(1)证明:;(2)求三棱锥的体积.25.如图1,在矩形中,,,是的中点,将沿折起,得到如图2所示的四棱锥,其中平面平面.(1)证明:平面;(2)设为的中点,在线段上是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.26.如图,在四棱锥P ABCD -中, 90ABC ACD ∠=∠=, BAC ∠ 60CAD =∠=,PA ⊥平面ABCD , 2,1PA AB ==.设,M N 分别为,PD AD 的中点.(1)求证:平面CMN ∥平面PAB ;(2)求三棱锥P ABM -的体积.27.如图所示,在长方体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形, 12AA =,P 为棱1BB 上的一个动点.(1)求三棱锥1C PAA -的体积;(2)当1A P PC +取得最小值时,求证: 1PD ⊥平面PAC .28.在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC 的中点,13,2,AC AB BC CC ===.(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.29.五边形11ANB C C 是由一个梯形1ANB B 与一个矩形11BB C C 组成的,如图甲所示,B 为AC 的中点, 128AC CC AN ===. 先沿着虚线1BB 将五边形11ANB C C 折成直二面角1A BB C --,如图乙所示.(Ⅰ)求证:平面BNC ⊥平面11C B N ;(Ⅱ)求图乙中的多面体的体积.30.如图1, 1AFA ∆中, 11,82FA FA AA CF ===,,点,,B C D 为线段1AA 的四等分点,线段,,BE CF DG 互相平行,现沿,,BE CF DG 折叠得到图2所示的几何体,此几何体的底面ABCD 为正方形.(1)证明: ,,,A E F G 四点共面;(2)求四棱锥B AEFG -的体积.31.如图,三棱锥P ABC -中, PC ⊥平面ABC , ,,F G H 分别是,,PC AC BC 的中点,I 是线段FG 上的任意一点, 22PC AB BC ===,过点F 作平行于底面ABC 的平面DEF 交AP 于点D ,交BP 于点E . (1)求证: //HI 平面ABD ;(2)若AC BC ⊥,求点E 到平面FGH 的距离.32.如图,已知正方体的棱长为3,分别是棱、上的点,且.(1)证明:四点共面;(2)求几何体的体积.33.如图,在四棱柱1111ABCD A B C D -中,已知平面11AA C C ⊥平面ABCD ,且A B B C C A == 1AD CD ==.(1)求证: 1BD AA ⊥;(2)若E 为棱BC 的中点,求证: //AE 平面11DCC D . 34.如图,在三棱柱111ABC A B C -中,底面ABC ∆是等边三角形,且1AA ⊥平面ABC ,D 为AB 的中点,(Ⅰ) 求证:直线1//BC 平面1A CD ;(Ⅱ) 若12,AB BB E ==是1BB 的中点,求三棱锥1A CDE -的体积;35.如图,将菱形沿对角线折叠,分别过,作所在平面的垂线,,垂足分别为,,四边形为菱形,且.(1)求证:平面; (2)若,求该几何体的体积.36.如图,在四棱锥P ABCD -中, 122PC AD CD AB ====, //AB DC , AD CD ⊥, PC ⊥平面ABCD .(1)求证: BC ⊥平面PAC ; (2)若M 为线段PA 的中点,且过,,C D M 三点的平面与线段PB 交于点N ,确定点N 的位置,说明理由;并求三棱锥A CMN -的高.37.如图,在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,侧棱OB ⊥底面ABCD ,且侧棱OB 的长是2,点,,E F G 分别是,,AB OD BC 的中点.(Ⅰ)证明: OD ⊥平面EFG ;(Ⅱ)求三棱锥O EFG -的体积.38.如图,多面体ABCDEF 中, //,AD BC AB AD ⊥, FA ⊥平面,//ABCD FA DE ,且222AB AD AF BC DE =====.(Ⅰ)M 为线段EF 中点,求证: //CM 平面ABF ;(Ⅱ)求多面体ABCDEF 的体积.39.在如图所示的几何体中,四边形11BB C C 是矩形, 1BB ⊥平面ABC , 1111//,2,A B AB AB A B E =是AC 的中点.(1)求证: 1//A E 平面11BB C C ;(2)若AC BC =, 12AB BB =,求证平面1BEA ⊥平面11AA C .40.如图,四边形ABCD 为梯形, AB CD , PD ⊥平面A B C D ,90BAD ADC ∠∠==︒, 22DC AB a ==, DA =, E 为BC 中点.(1)求证:平面PBC ⊥平面PDE ;(2)线段PC 上是否存在一点F ,使PA 平面BDF ?若有,请找出具体位置,并进行证明:若无,请分析说明理由.41.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形, 60BAD ∠=︒,SA SD SB ===E 是棱AD 的中点,点F 在棱SC 上,且SF SCλ=, SA //平面BEF .(Ⅰ)求实数λ的值;(Ⅱ)求三棱锥F EBC -的体积.42.在三棱柱ABC-A 1B 1C 1中,AB=BC=CA=AA 1=2,侧棱AA 1⊥平面ABC ,且D ,E 分别是棱A 1B 1,AA 1的中点,点F 在棱AB 上,且AF=14AB 。
立体练习题和答案
立体练习题和答案立体几何是高中数学中的一个重要分支,它涉及到空间中的点、线、面以及它们之间的关系。
以下是一些立体练习题以及相应的答案,供学生练习和参考。
练习题1:空间直线与平面的位置关系题目:在空间直角坐标系中,直线l1过点A(1, 2, 3)且与向量\( \vec{a} = (4, -1, 2) \)平行,直线l2过点B(-1, 1, 0)且与向量\( \vec{b} = (1, 2, -1) \)平行。
求证l1与l2平行。
答案:首先,我们可以写出直线l1和l2的参数方程。
对于直线l1,参数方程为:\[ x = 1 + 4t, \quad y = 2 - t, \quad z = 3 + 2t \]对于直线l2,参数方程为:\[ x = -1 + t, \quad y = 1 + 2t, \quad z = -t \]由于直线l1与向量\( \vec{a} \)平行,直线l2与向量\( \vec{b} \)平行,我们可以比较它们的向量方向。
直线l1的方向向量为\( \vec{a} \),直线l2的方向向量为\( \vec{b} \)。
由于\( \vec{a} = 4\vec{b} \),这表明l1和l2的方向向量是成比例的,因此l1与l2平行。
练习题2:空间多面体的体积题目:一个正四面体的顶点坐标分别为A(1, 0, 0),B(-1, 0, 0),C(0, 1, 0),D(0, -1, √3)。
求此正四面体的体积。
答案:首先,我们可以计算出正四面体的边长。
由于A和B的坐标只在一个轴上不同,它们之间的距离是2。
同理,C和D,以及B和D之间的距离也是2。
接下来,我们可以利用四面体的高来计算体积。
高h可以通过向量\( \vec{AB} \)和\( \vec{CD} \)的点积来求得,因为\( \vec{AB} \)和\( \vec{CD} \)垂直。
计算得到:\[ h = \frac{|\vec{AB} \cdot \vec{CD}|}{|\vec{AB}|} =\frac{|-1 - 0 + 0 - 0|}{\sqrt{1^2 + 0^2 + 0^2}} = \sqrt{3} \]正四面体的体积V可以通过公式V = \(\frac{1}{3}\) * 底面积 * 高来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章第3节一、选择题1.(2010·深圳市调研)已知E、F、G、H是空间内四个点,条件甲:E、F、G、H四点不共面,条件乙:直线EF和GH不相交,则甲是乙成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]点E、F、G、H四点不共面可以推出直线EF和GH不相交;但由直线EF和GH不相交不一定能推出E、F、G、H四点不共面,例如:EF和GH平行,这也是直线EF和GH不相交的一种情况,但E、F、G、H四点共面.故甲是乙成立的充分不必要条件.2.(文)设a、b是两条不同的直线,α、β是两个不同的平面,给出下列结论:①a∥b,b⊂α⇒a∥α;②α∥β,a∥β,a⊄α⇒a∥α;③α∩β=a,b∥α,b∥β⇒b∥a;④a∥α,b⊂α⇒a∥b.其中正确的有()A.1个B.2个C.3个D.4个[答案] B[解析]①可能有a⊂α;④可能有a与b异面,故只有②③正确.(理)已知直线m、l,平面α、β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l; ②若α⊥β,则m∥l;③若m⊥l,则α∥β;④若m∥l,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4[答案] B[解析](1)中,若α∥β,且m⊥α⇒m⊥β,又l⊂β⇒m⊥l,所以①正确.(2)中,若α⊥β,且m⊥α⇒m∥β或m⊂β,又l⊂β,则m与l可能平行,可能异面,所以②不正确.(3)如图,α∩β=a,m⊥α,l⊂β,l ∥a,满足m⊥l,但得不出α∥β.(4)中,若m⊥l,且m⊥α⇒l⊥α,又l⊂β⇒α⊥β,∴④正确.故选B.3.(2010·湖北文,4)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④[答案] C[解析]①平行关系的传递性.②举反例:在同一平面α内,a⊥b,b⊥c,有a∥c.③举反例:如图的长方体中,a∥γ,b∥γ,但a与b相交.④垂直于同一平面的两直线互相平行.故①,④正确.4.(文)α、β是相异平面,a、b、c是相异直线,A、B是相异点,则在下列命题中错误的是()A.α∩β=a,b⊂α,c⊂β,b∩c=A⇒A∈aB.α∥β,a⊂α,b⊂β,P∈a⇒P∉bC.α∩β=a,β∩γ=b,γ∩α=c,a∩b=A⇒b∩c=AD.a⊄α,b⊄α,a⊂β,b⊂β,a∩b=A⇒α∥β[答案] D[解析]∵a⊄α可能是a∥α,也可能是a与α相交,当a与α相交时,∵a⊂β,∴交点在β内,故D错.(理)(2010·东北四市联考)两个平面α与β相交但不垂直,直线m在平面α内,则在平面β内()A.一定存在直线与m平行,也一定存在直线与m垂直B.一定存在直线与m平行,但不一定存在直线与m垂直C.不一定存在直线与m平行,但一定存在直线与m垂直D.不一定存在直线与m平行,也不一定存在直线与m垂直[答案] C[解析]直线m在平面α内,直线m与平面α、β的交线的位置关系有两种可能:平行或相交,当平行时,在平面β内一定存在直线与m平行,也一定存在直线与m垂直,当相交时,在平面β内不存在直线与m 平行,但一定存在直线与m垂直,故选C.[点评]当m与平面α、β的交线l相交时,若在平面β内存在直线a∥m,则由线面平行的判定定理知a ∥α,再由性质定理知a∥l,∴m∥l,这与m和l相交矛盾.5.(2010·济南模拟)给出下列命题:①若平面α内的直线m与平面β内的直线n为异面直线,直线l是α与β的交线,那么l至多与m、n中一条相交;②若直线m与n异面,直线n与l异面,则直线m与l异面;③一定存在平面γ同时和异面直线m、n都相交.其中正确的命题是()A.①B.②C.③D.①③[答案] C[解析]①错误,l可能与m,n两条都相交;②错误,直线m与l亦可共面;③正确.在m、n上分别取点M、N,则经过直线MN可以作出平面与m、n都相交.6.已知不重合的平面α、β和不重合的直线m、n,给出下列命题:①m⊂α,n⊂β,α⊥β⇒m⊥n②m⊥α,n⊥β,α与β相交⇒m与n相交③m⊥n,n⊂β,m⊄β⇒m⊥β④m∥α,n∥β,m∥n⇒α∥β其中正确命题的个数为()A.0 B.1C.2 D.3[答案] A[解析]四个命题全错,图(1)中α∩β=l,m∥l∥n,知①错;图(2)中取n上一点P,过P作m′⊥α,当m ∥m′时满足②的条件,但m与n不相交;③、④显然错误,故选A.7.正方体的棱长为1,C 、D 、M 分别为三条棱的中点,A 、B 是顶点,那么点M 到截面ABCD 的距离是( )A.23 B.63 C.13D.62[答案] C[解析] 设点M 到ABCD 的距离为h ,连结AC ,作CF ⊥AB ,垂足为F ,则BF =24,BC =52,∴CF =324,连CM ,则VC -ABM =VM -ABC. VC -ABM =13S △ABM×CM =13×14×1=112,又VM -ABC =13×12×AB×CF×h=13×12×2×324×h =h 4, 则由h 4=112得h =13,故选C.8.(2010·淄博一中)已知直线l ⊥平面α,直线m ⊂平面β,则α∥β是l ⊥m 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [答案] A[解析] 若α∥β,则由l ⊥α知l ⊥β,又m ⊂β,可得l ⊥m ;若α与β相交(如图),设α∩β=n ,当m ∥n 时,由l ⊥α可得l ⊥m ,而此时α与β不平行.于是α∥β是l ⊥m 的充分不必要条件.故选A.9.(2010·襄樊测试)设m、n是平面α内的两条不同直线,l1、l2是平面β内的两条相交直线,则α⊥β的一个充分不必要条件是()A.l1⊥m,l1⊥n B.m⊥l1,m⊥l2C.m⊥l1,n⊥l2 D.m∥n,l1⊥n[答案] B[解析]由m⊥l1,m⊥l2,l1、l2是平面β内两条相交直线,知m⊥β,又m⊂α,所以α⊥β;若α⊥β,m⊂α,则未必有m⊥β,未必有m⊥l1,m⊥l2,故选B.10.(2010·江西理)过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作()A.1条B.2条C.3条D.4条[答案] D面直线所成角的定义知,分别过点B、C、D的体对角线BD1、CA1、DB1与三棱AB、AD、AA1成的角也都相等,故过点A作与BD1,CA1,DB1平行的直线也满足直线l的要求,故这样的直线可作4条.二、填空题11.(文)(2010·江苏盐城调研)已知l是一条直线,α,β是两个不同的平面.若从“①l⊥α;②l∥β;③α⊥β”中选取两个作为条件,另一个作为结论,试写出一个你认为正确的命题________.(请用代号表示)[答案]①②⇒③[解析]在β内任取一点P,P与l确定一个平面γ,则γ与β相交于过P点的一条直线l′,∵l∥β,∴l∥l′,∵l⊥α,∴l′⊥α,∴β⊥α.(理)(2010·哈三中)已知α,β,γ是三个不同的平面,m,n是两条不同的直线,有下列三个条件①m∥γ,n⊂β;②m∥γ,n∥β;③m⊂γ,n∥β要使命题“若α∩β=m,n⊂γ,且________,则m∥n”为真命题,则可以在横线处填入的条件是________(把你认为正确条件的序号填上)[答案]①或③②如图,正方体ABC D-A1B1C1D1中,α、β、γ分别为平面ADD1A1、平面ABCD、平面A1B1C1D1,m为AD,n为A1B1,满足α∩β=m,n⊂γ,m∥γ,n∥β,但m与n显然不平行.]12.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN与直线PB的位置关系为________.(从相交、平行、异面、重合中选填)[答案]异面[解析]将表面展开图折起还原为正方体如图,故MN与PB异面.13.(2010·东北师大附中等三校)一个几何体的三视图如图所示:其中,正(主)视图中大三角形是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为________.[答案] 32[解析] 由三视图可知,该几何体是正六棱锥,底面边长为1,侧棱长为2,如图设底面中心为O ,易知OD =1,又PD =2,∴PO =3, ∴体积V =13×⎝⎛⎭⎫6×34×12×3=32. 14.(2010·上海大同中学模拟)给出如下四个命题:①有三个角是直角的四边形一定是矩形;②不共面的四点可以确定四个平面;③空间四点不共面的充要条件是其中任意三点不共线;④若点A 、B 、C ∈平面M ,且点A 、B 、C ∈平面N ,则平面M 与平面N 重合.其中真命题的序号是________. [答案] ②[解析] 如图(1),平面α内∠ABC 为直角,P ∉α,过P 作PD ⊥AB ,PE ⊥BC ,则四边形PDBE 有三个直角,故①假;在图②的平面α内,四边形ABCD 中任意三点不共线,知③假;图③中,M∩N =l ,A 、B 、C 都在l 上,知④假,只有②真.三、解答题15.(文)(2010·江苏通州调研)如图,在四棱锥P -ABCD 中,ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =1,AB =3,点E 在CD 上移动. (1)求三棱锥E -PAB 的体积;(2)试在PD 上找一点F ,使得PE ⊥AF ,并证明你的结论. [解析] (1)∵PA ⊥平面ABCD ,∴VE -PAB =VP -ABE =13S △ABE·PA=13×12×1×3×1=36.(2)F 是PD 的中点∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴CD ⊥PA ∵ABCD 是矩形,∴CD ⊥AD ∵PA∩AD =A ,∴CD ⊥平面PAD∵F 是PD 上的点,AF ⊂平面PAD ,∴AF ⊥DC ∵PA =AD ,点F 是PD 的中点,∴AF ⊥PD 又CD∩PD =D ,∴AF ⊥平面PDC ∵PE ⊂平面PDC ,∴PE ⊥AF.(理)(2010·黑龙江哈三中)如图,矩形ABCD 中,AB =6,BC =23,沿对角线BD 将△ABD 向上折起,使点A 移至点P ,且点P 在平面BCD 内的投影O 在CD 上.(1)求证:PD ⊥BC ;(2)求二面角P -DB -C 的正弦值; (3)求点C 到平面PBD 的距离.[解析] (1)∵BC ⊥CD ,BC ⊥OP ,∴BC ⊥平面PCD ,∴PD ⊥BC ; (2)过O 作OE ⊥BD 于点E ,连接PE ∵BD ⊥OP ,∴BD ⊥平面OPE ,∴BD ⊥PE , ∴∠PEO 为二面角P -BD -C 的平面角, 在△POE 中,PE =3,OE =1,PO =22,则 sin ∠PEO =223;(3)VC -PBD =VP -BCD , ∴13×⎝⎛⎭⎫12×6×23×h =13×⎝⎛⎭⎫12×6×23×22,解得h =2 2. 16.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,E 是SD 的中点. (1)求证:SB ∥平面EAC ; (2)求证:AC ⊥BE.(3)(理)若SD=2,AD=2,求二面角C-AS-D的余弦值.[解析](1)证明:连结BD交AC于点O,连结EO.因为底面ABCD是正方形,所以O是BD的中点.又因为E是SD的中点,所以EO∥SB.又因为E O⊂平面EAC,SB⊄平面EAC,所以SB∥平面EAC.(2)因为底面ABCD是正方形,所以AC⊥BD.因为SD⊥平面ABCD,AC⊂平面ABCD,所以AC⊥SD.又因为SD∩BD=D,所以AC⊥平面BDS.因为BE⊂平面BDS,所以AC⊥BE.(3)(理)解法1:因为SD⊥平面ABCD,所以SD⊥CD.因为底面ABCD 是正方形,所以AD ⊥CD. 又因为SD∩AD =D ,所以CD ⊥平面SAD ,所以CD ⊥AS.过点D 在平面SAD 内作DF ⊥AS 于F ,连结CF. 由于DF∩CD =D , 所以AS ⊥平面DCF. 所以AS ⊥CF.故∠CFD 是二面角C -AS -D 的平面角. 在Rt △ADS 中,SD =2,AD =2,可求得DF =233. 在Rt △CFD 中,DF =233,CD =2,可求得CF =303. 所以cos ∠CFD =DF CF =105.即二面角C -AS -D 的余弦值为105. 解法2:如图,以D 为原点建立空间直角坐标系D -xyz.则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),E(0,0,2),S(0,0,2), SA →=(2,0,-2),SC →=(0,2,-2). 设平面ACE 的法向量为n =(x ,y ,z),则由 n ⊥SA →,n ⊥SC →得,⎩⎪⎨⎪⎧n·SA →=0n·SC →=0,即⎩⎨⎧2x -2z =02y -2z =0, 取z =2,得n =(2,2,2).易知平面ASD 的一个法向量为DC →=(0,2,0). 设二面角C -AS -D 的平面角为θ.则cosθ=|n·DC →||n||DC →|=105. 即二面角C -AE -D 的余弦值为105. 17.(文)(2010·东北师大附中月考)如图,在几何体P -ABCD 中,四边形ABCD 为矩形,PA ⊥平面ABCD ,AB=PA =2.(1)当AD =2时,求证:平面PBD ⊥平面PAC ; (2)若P C 与AD 所成角为45°,求几何体P -ABCD 的体积.[解析] (1)当AD =2时,四边形ABCD 是正方形,则BD ⊥AC ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又PA∩AC =A ,∴BD ⊥平面PAC ,∵BD ⊂平面PBD ,∴平面PB D ⊥平面PAC.(2)若PC 与AD 成45°角,∵AD ∥BC ,∴∠PCB =45°.∵BC ⊥AB ,BC ⊥PA ,AB∩PA =A ,∴BC ⊥平面PAB ,PB ⊂平面PAB ,∴BC ⊥PB ,∴∠CPB =90°-45°=45°,∴BC =PB =22,∴几何体P -ABCD 的体积V =13×(2×22)×2 =823. (理)(2010·湖南文)如图所示,在长方体ABCD -A1B1C1D1中,AB =AD =1,AA1=2,M 是棱CC1的中点.(1)求异面直线A1M 和C1D1所成的角的正切值;(2)证明:平面ABM ⊥平面A1B1M.[解析] 方法1:(1)如图,因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M 与C1D1所成的角. 因为A1B1⊥平面BCC1B1,所以∠A1B1M =90°,而A1B1=1,B1M =B1C12+MC12=2,故tan ∠MA1B1=B1M A1B1= 2. 即异面直线A1M 和C1D1所成的角的正切值为 2.(2)由A1B1⊥平面BCC1B1,BM ⊂平面平面BCC1B1,得A1B1⊥BM ①由(1)知,B1M =2,又BM =BC2+CM2=2,B1B =2,所以B1M2+BM2=B1B2,从而BM ⊥B1M ②又A1B1∩B1M =B1,∴BM ⊥平面A1B1M ,而BM ⊂平面ABM ,因此平面ABM ⊥平面A1B1M.方法2:以A 为原点,AB →,AD →,AA1→的方向分别作为x 、y 、z 轴的正方向,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),A1(0,0,2),B1(1,0,2),C1(1,1,2),D1(0,1,2),M(1,1,1).(1)A1M →=(1,1,-1),C1D1→=(-1,0,0),cos 〈A1M →,C1D1→〉=-13×1=-33. 设异面直线A1M 与C1D1所成角为α,则cosα=33,∴tanα= 2.即异面直线A1M 和C1D1所成的角的正切值是 2.(2)A1B1→=(1,0,0),BM →=(0,1,1),B1M →=(0,1,-1),A1B1→·BM →=0,BM →·B1M →=0,∴A1B1→⊥BM →,BM →⊥B1M →,即BM ⊥A1B1,BM ⊥B1M , 又B1M∩A1B1=B1,∴BM ⊥平面A1B1M ,而BM ⊂平面ABM ,因此ABM ⊥平面A1B1M.。