最新2018年重庆中考数学模拟试卷一(含答案)

合集下载

重庆市初三中考数学第一次模拟试卷

重庆市初三中考数学第一次模拟试卷

重庆市初三中考数学第一次模拟试卷一、选择题(本大题共12小题,共36.0分)1.下列各组数中结果相同的是()A. 与B. 与C. 与D. 与2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个5.某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A. 平均数是58B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月6.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.下列命题错误的是()A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形B. 矩形一定有外接圆C. 对角线相等的菱形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形8.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.9.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A. B. C. D.10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A. 1B. 2C. 3D. 411.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形=2S△BGE.ECFGA. 4B. 3C. 2D. 1二、填空题(本大题共4小题,共12.0分)13.分解因式:4ax2-ay2=______.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______.15.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,cos A=,则k的值为______.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:(-)÷,其中a=.18.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.四、解答题(本大题共5小题,共40.0分)19.计算:+tan30°+|1-|-(-)-2.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E 组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?22.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为______;(2)求证:EF为⊙P的切线;(3)若点H是上一动点,连接OH、FH,当点P在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.答案和解析1.【答案】D【解析】解:A、32=9,23=8,故不相等;B、|-3|3=27(-3)3=-27,故不相等;C、(-3)2=9,-32=-9,故不相等;D、(-3)3=-27,-33=-27,故相等,故选:D.利用有理数乘方法则判定即可.本题主要考查了有理数乘方,解题的关键是注意符号.2.【答案】A【解析】解:14420000=1.442×107,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【答案】D【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;B、(-a)2•a3=a5,正确,本选项不符合题意;C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意;D、2m•3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.4.【答案】C【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.【答案】C【解析】解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D【解析】解:由题意这个正n边形的中心角=60°,∴n==6,∴这个多边形是正六边形,故选:D.求出正多边形的中心角即可解决问题.本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.8.【答案】A【解析】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.9.【答案】B【解析】解:画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】D【解析】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选:D.根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.11.【答案】C【解析】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12.【答案】B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x-k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.13.【答案】a(2x+y)(2x-y)【解析】解:原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为:a(2x+y)(2x-y).首先提取公因式a,再利用平方差进行分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】+【解析】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2×(-)+=+.故答案为:+.设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.15.【答案】-4【解析】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,cosA=,∴∠BOD+∠AOC=90°,tanA=,∴∠BOD=∠OAC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-4.故答案为:-4.作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.16.【答案】2+或4+2【解析】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.17.【答案】解:原式=[-]÷=•=,当a=时,原式===5-2.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【解析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.19.【答案】解:原式=2+×+-1-4=2+1+-1-4=3-4.【解析】依据二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质进行化简,然后再进行计算即可.本题主要考查的是实数的运算,熟练掌握二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质是解题的关键.20.【答案】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50-5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:=.【解析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50-5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50-m)个地下停车位,根据题意,得:12<0.1m+0.5(50-m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.【解析】(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;(2)设建m个地上停车位,则建(50-m)个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法.在解答中要注意实际问题中未知数的取值范围的运用.22.【答案】5【解析】解:(1)连接PC,∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠PCA=∠PAC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴,∵A(-8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5;故答案为:5;(2)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(3)是定值,=,连接PH,由(1)得AP=PC=PH=5,∵A(-8,0),∴OA=8,∴OP=OA-AP=3,在Rt△POC中,OC===4,由射影定理可得OC2=OP•OF,∴OF=,∴PF=PO+OF=,∵=,==,∴,又∵∠HPO=∠FPH,∴△POH∽△PHF,∴,当H与D重合时,.(1)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论;(2)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(3)连接PH,由(1)得AP=PC=PH=5,根据勾股定理得到OC== =4,根据射影定理得到OF=,根据相似三角形的判定和性质即可得到结论.本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,射影定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)由题意可得,解得a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.则,∵MQ=,∴NQ=2,B(,);∴ ,解得,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2-5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,-1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2-5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,-1),G(,).(3)由题意可知:k+m=1,∴m=1-k,∴y l=kx+1-k,∴kx+1-k=x2-5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4-)(),∵k>0,∴k==-1+.【解析】(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别分析出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.此题主要考查二次函数的综合问题,会中学数学一模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDEADEF第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠55.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;。

沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)

沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)一、选择题1. (2018·宜昌)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100 m,∠PCA=35°,则P,A两点的距离为()A. 100 sin 35° mB. 100 sin 55° mC. 100 tan 35° mD. 100 tan 55° m第1题第2题2. (2018·金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD 的长度之比为()A. tan αtan β B.sin βsin α C.sin αsin β D.cos βcos α3. (2018·益阳)如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300 m到达点B,则小刚上升的高度为()A. 300 sin α mB. 300 cos α mC. 300 tan α mD. 300 tan αm第3题第4题4. (2018·长春)如图,某地修建高速公路,要从A地向B地修一条隧道(点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地出发,垂直上升800 m到达C处,在C处观察B地的俯角为α,则A,B两地之间的距离为()A. 800 sin α mB. 800 tan α mC. 800sin αm D.800tan αm5. (2018·淄博)一辆小车沿着如图所示的斜坡向上行了100米,其铅直高度上升了15米. 在用科学计算器求坡角α的度数时,具体按键顺序是()第5题A. 2ndF sin0.15)=B. sin0.15)2ndF=C. 2ndF cos0.15)=D. tan0.15)2ndF=6. (2018·苏州)如图,某海监船以20海里/时的速度在某海域执行巡航任务.当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A. 40海里B. 60海里C. 203海里D. 403海里第6题 第8题7. (2018·绵阳)一艘在南北航线上的测量船,于点A 处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达点C 时,测得海岛B 在点C 的北偏东15°方向,则海岛B 离此航线的最近距离是(结果精确到0.01海里,参考数据:3≈1.732,2≈1.414)( )A. 4.64海里B. 5.49海里C. 6.12海里D. 6.21海里8. (2018·重庆)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部点E 处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7 m ,升旗台坡面CD 的坡度i =1∶0.75,坡长CD =2 m .若旗杆底部到坡面CD 的水平距离BC =1 m ,则旗杆AB 的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6) ( )A. 12.6 mB. 13.1 mC. 14.7 mD. 16.3 m9. (2018·重庆)如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20 m 到达点C ,再经过一段坡度为i =1∶0.75、坡长为10 m 的斜坡CD 到达点D ,然后沿水平方向向右行走40 m 到达点E (点A ,B ,C ,D ,E 在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45)( )A. 21.7 mB. 22.4 mC. 27.4 mD. 28.8 m第9题 第10题10. (2018·威海)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( ) A. 当小球抛出高度达到7.5 m 时,小球距点O 水平距离为3 mB. 小球距点O 水平距离超过4 m 呈下降趋势C. 小球落地点距点O 的水平距离为7 mD. 斜坡的坡度为1∶2二、 填空题11. (2018·广州)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C 的值为________.第11题 第12题12. (2018·枣庄)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12 m ,则大厅两层之间的高度BC 为________m .(结果精确到0.1 m ,参考数据:sin 31°≈0.515,cos 31°≈0.857,tan31°≈0.60)13. (2018·阜新)如图,在点B 处测得塔顶A 的仰角为30°,点B 到塔底C 的水平距离BC 是30 m ,那么塔AC 的高度为________m .(结果保留根号)第13题 第14题14. (2018·大连)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 6 m 的位置,在D处测得旗杆顶端A的仰角为53°.若测角仪的高度是1.5 m,则旗杆AB的高度约为________m.(结果精确到0.1 m,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)15. (2018·广西)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB是120 m,则乙楼的高CD是________m.(结果保留根号)第15题第16题16. (2018·荆州)如图,荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7 m,某校学生测得古塔的整体高度约为40 m.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a m后到达B处,在B处测得塔顶的仰角为45°,那么a的值约为________.(结果精确到0.1,参考数据:3≈1.73)17. (2018·黄石)如图,无人机在空中C处测得地面A,B两点的俯角分别为60°,45°.如果无人机距地面高度CD为100 3 m,点A,D,B在同一水平直线上,那么A,B两点间的距离是________m.(结果保留根号)第17题第18题18. (2018·葫芦岛)如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内.当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100 m,则两景点A,B间的距离为________m.(结果保留根号)19. (2018·咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110 m,那么该建筑物的高度BC约为________m.(结果保留整数,3≈1.73)第19题第20题20. (2018·宁夏)如图,一艘货轮以18 2 km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30 min后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.21. (2018·济宁)如图,在笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是________km.(结果保留根号)第21题第22题第23题22. (2018·天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C 恰好位于渔船B的正北方向18(1+3)n mile处,则海岛A,C之间的距离为________n mile.(结果保留根号)23. (2018·潍坊)如图,一艘渔船以60海里/时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/时的速度继续航行________小时即可到达.(结果保留根号)三、解答题24. (2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5 m.(计算结果精确到0.1 m,参考数据:sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1) 当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为________m;(2) 如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)第24题25.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A,B和点C,D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB =30°,∠DBA=60°,求该段运河的河宽(即CH的长).第25题26. (2018·长沙)为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线A-C-B行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80 km,∠A=45°,∠B=30°.(结果精确到0.1 km,参考数据:2≈1.41,3≈1.73)(1) 开通隧道前,汽车从A地到B地大约要走多少千米?(2) 开通隧道后,汽车从A地到B地大约可以少走多少千米?第26题27.(2018·常德)如图①是一商场的推拉门,已知门的宽度AD=2 m,且两扇门的大小相同(即AB=CD).将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图②,求此时B与C之间的距离.(结果精确到0.1 m,参考数据:sin 37°≈0.6,cos 37°≈0.8,2≈1.4)28. (2018·徐州)如图,1号楼在2号楼的南侧,两楼高度均为90 m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42 m.(参考数据:sin 32.3°≈0.53,cos 32.3°≈0.85,tan 32.3°≈0.63,sin 55.7°≈0.83,cos 55.7°≈0.56,tan 55.7°≈1.47)(1) 求楼间距AB;(2) 若2号楼共30层,层高均为3 m,则点C位于第几层?第28题29. (2018·泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90 m,且乙建筑物的高度是甲建筑物高度的6倍,从点E(点A,E,B在同一水平线上)测得点D的仰角为30°,测得点C的仰角为60°,求这两座建筑物顶端C,D间的距离.第29题30. (2018·郴州)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控无人机指令测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC =30 m,求无人机飞行的高度AD.(精确到0.01 m.参考数据:2≈1.414,3≈1.732)第30题31.(2018·宜宾)某游乐场一转角滑梯如图所示,滑梯立柱AB,CD均垂直于地面,点E在线段BD上,在点C测得点A的仰角为30°,点E的俯角也为30°,测得点B,E间距离为10 m,立柱AB高30 m.求立柱CD的高.(结果保留根号)第31题32. (2018·宿迁)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10 m到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.求:(1) ∠BPQ的度数;(2) 树PQ的高度.(结果精确到0.1 m,3≈1.73)第32题33. (2018·镇江)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24 m,小明在点E(点B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8 m到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6 m,求教学楼AB的高度.(精确到0.1 m,参考数据:2≈1.41,3≈1.73)第33题34. (2018·黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60 m,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一条直线上.求:(1) 斜坡下的点C处到大楼的距离;(2) 斜坡CD的长度第34题35. (2018·大庆)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)第35题36. (2018·桂林)如图,在某海域,一艘指挥船在C处收到渔船在B处发出的求救信号.经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60 n mile;经指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30 n mile/h,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:2≈1.41,3≈1.73,6≈2.45,结果精确到0.1 h)第36题37. (2018·淮安)如图,某数学兴趣小组为了计算湖中小岛上凉亭P到岸边公路l的距离,在公路l上的点A 处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)第37题38. (2018·青岛)如图是某区域平面示意图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°,乙勘测员在B 处测得点O 位于南偏西73.7°,测得AC =840 m ,BC =500 m .请求出点O 到BC 的距离.(参考数据:sin 73.7°≈2425,cos 73.7°≈725,tan 73.7°≈247)第38题39. (2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 地表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13 km ,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B ,C 两地的距离.(结果保留根号,参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)第39题40. (2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L ∶(H -H 1),其中L 为楼间水平距离,H 为南侧楼房高度,H 1为北侧楼房底层窗台至地面高度.如图②,山坡EF 朝北,EF 长为15 m ,坡度为i =1∶0.75,山坡顶部平地EM 上有一高为22.5 m 的楼房AB ,底部A 到E 处的距离为4 m.(1) 求山坡EF 的水平宽度FH ;(2) 欲在AB 楼正北侧山脚的平地FN 上建一楼房CD ,已知该楼底层窗台P 处至地面C 处的高度为0.9 m ,要使该楼的日照间距系数不低于1.25,底部C 距F 处至少多远?第40题41. (2018·遂宁)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角为45°,然后沿着坡度为1∶3的坡面AD走了200 m达到D处,此时在D处测得山顶B的仰角为60°,求山BC的高度.第41题42. (2018·连云港)如图①,水坝的横截面是梯形ABCD(DC∥AB),∠ABC=37°,坝顶DC=3 m,背水坡AD的坡度i为1∶0.5,坝底AB=14 m.(1) 求坝高;(2) 如图②,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34)第42题参考答案一、1.C 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.A 10.A二、11.1212.6.2 13.103 14.9.5 15.403 16.24.1 17.100(1+3) 18.100(1+3) 19.300 20.18 21.3 22.182 23.18+635三、24. (1) 11.4 点拨:∵在Rt △ABC 中,∠BAC =64°,AC =5m ,∴AB =AC cos64°≈50.44≈11.4(m). (2) 如图,过点D 作DH ⊥地面于点H ,交水平线AC 于点E ,则EH =1.5m ,DE ⊥AE .∵在Rt △ADE 中,AD =20m ,∠DAE =64°,∴DE =AD ·sin64°≈20×0.90=18.0(m).∴DH =DE +EH =18.0+1.5=19.5(m).答:如果该吊车吊臂的最大长度AD 为20m ,那么从地面上吊起货物的最大高度是19.5m第24题 第25题25.如图,过点D 作DE ⊥AB 于点E ,则易得四边形CHED 为矩形.∴HE =CD =40m .设CH =DE =x m .∵在Rt △BDE 中,∠DBA =60°,∴BE =DE tan60°=33x m .∵在Rt △ACH 中,∠BAC =30°,∴AH =CH tan30°=3x m .又∵AH +HE +EB =AB =160m ,∴3x +40+33x =160,解得x =30 3.∴CH =303m .答:该段运河的河宽为303m 26. (1) 如图,过点C 作CD ⊥AB ,垂足为D.∵在Rt △BDC 中,sin B =CD BC,BC =80km ,∴CD =BC ·sin30°=80×12=40(km).∵在Rt △ADC 中,sin A =CD AC ,∴AC =CD sin45°=40÷22=402(km).此时AC +BC =402+80≈40×1.41+80=136.4(km).答:开通隧道前,汽车从A 地到B 地大约要走136.4km(2) ∵在Rt △BDC 中,cos B =BD BC ,BC =80km ,∴BD =BC ·cos30°=80×32=403(km).∵在Rt △ADC 中,tan A =CD AD ,CD =40km ,∴AD =CD tan45°=401=40(km).∴AB =AD +BD =40+403≈40+40×1.73=109.2(km).∴AC +BC -AB =136.4-109.2=27.2(km).答:汽车从A 地到B 地大约可以少走27.2km第26题第27题 27.如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得CM =BE ,连接BC ,EM.∵在题图①中,AB =CD ,AB +CD =AD =2m ,∴AB =CD =1m .在Rt △ABE 中,∵AB =1m ,∠A =37°,∴BE =AB ·sin A ≈0.6m ,AE =AB ·cos A ≈0.8m .在Rt △CDF 中,∵CD =1m ,∠D =45°,∴CF =CD ·sin D ≈0.7m ,DF =CD ·cos D ≈0.7m .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM .又∵BE =CM ,∴四边形BEMC 为平行四边形.∴BC =EM .在Rt △MEF 中,∵EF =AD -AE -DF =0.5m ,FM =CF +CM =CF +BE =1.3m ,∴EM =EF 2+FM 2≈1.4m .答:B 与C 之间的距离约为1.4m28. (1) 如图,过点C 作CE ⊥PB ,垂足为E ,过点D 作DF ⊥PB ,垂足为F ,则∠CEP =∠PFD =90°,CE =DF =AB ,CD =EF =42m .设AB =x m .∵在Rt △PCE 中,tan32.3°=PE x,∴PE =x ·tan32.3°m .∵在Rt △PDF 中,tan55.7°=PF x,∴PF =x ·tan55.7°m .由PF -PE =EF ,得x ·tan55.7°-x ·tan32.3°=42,解得x ≈50.答:楼间距AB 为50m (2) 由(1),得PE =50×tan32.3°≈31.5(m),∴CA =EB =90-31.5=58.5(m).由于2号楼层高均为3m ,且3×19<58.5<3×20,∴点C 位于第20层第28题29.由题意,得∠DAB =∠ABC =90°,BC =6AD ,AE +BE =AB =90m .设AD =x m ,则BC =6x m .∵在Rt △ADE 中,tan30°=AD AE ,sin30°=AD DE ,∴AE =3x m ,DE =2x m .∵在Rt △BCE 中,tan60°=BC BE,sin60°=BC CE,∴BE =23x m ,CE =43x m .由AE +BE =90m ,得3x +23x =90,解得x =103,∴DE =203m ,CE =120m .∵∠DEA +∠DEC +∠CEB =180°,∠DEA =30°,∠CEB =60°,∴∠DEC =90°.∴CD =DE 2+CE 2=(203)2+1202=15600=2039(m).答:这两座建筑物顶端C ,D 间的距离为2039m 30.∵∠EAB =60°,∠EAC =30°,∴∠CAD =60°,∠BAD =30°.∴在Rt △ADC 中,CD =AD ·tan ∠CAD =3AD ;在Rt △ADB 中,BD =AD ·tan ∠BAD =33AD .∵BC =CD -BD =30m ,∴3AD -33AD =30m ,解得AD =153≈25.98(m).答:无人机飞行的高度AD 为25.98m31.如图,过点C 作CH ⊥AB 于点H ,易得四边形HBDC 为矩形.∴BH =CD ,BD =CH ,BD ∥CH.∴∠HCE =∠CED.由题意,得∠ACH =30°,∠HCE =30°,∴∠CED =30°.设CD =x m ,则AH =AB -BH =AB -CD=(30-x )m.∵在Rt △AHC 中,tan ∠ACH =AH HC ,∴HC =30-x tan30°=3(30-x )m.∴BD =3(30-x )m.∵在Rt △CDE 中,tan ∠CED =CD DE ,∴DE =x tan30°=3x m .∵BE =BD -DE =10m ,∴3(30-x )-3x =10,解得x =15-53 3.答:立柱CD 的高为(15-533)m 第31题 第33题32. (1) 由题意,得PC ⊥AC ,∠PBC =60°,∴在Rt △PCB 中,∠BPQ =90°-60°=30° (2) 由题意,得∠P AC =45°,∠QBC =30°,AB =10m .设CQ =x m .在Rt △QCB 中,BQ =CQ sin30°=2x m ,BC =CQ tan30°=3x m .∵∠PBQ =∠PBC -∠QBC =30°,∠BPQ =30°,∴∠PBQ =∠BPQ .∴PQ =BQ =2x m .∴PC =PQ +CQ =3x m .在Rt △PCA 中,AC =PC tan45°=PC =3x m .由AC -BC =AB ,得3x -3x =10,解得x =(5+533)m ,∴PQ =2x =10+1033≈15.8(m).答:树PQ 的高度约为15.8m 33.如图,延长HF 交CD 于点N ,延长FH 交AB 于点M.由题意,得MB =HG =FE =ND =1.6m ,HF =GE=8m ,MF =BE ,HN =GD ,MN =BD =24m .设AM =x m ,则CN =x m .在Rt △AMF 中,MF =AM tan45°=x m ,在Rt △CNH 中,HN =CN tan30°=3x m .由HF =MF +HN -MN ,得8=x +3x -24,解得x =163-16,∴AB =AM +BM =163-16+1.6≈13.3(m).答:教学楼AB 的高度为13.3m34. (1) ∵在Rt △ABC 中,∠BAC =90°,∠BCA =60°,AB =60m ,∴AC =AB tan60°=603=203(m).答:斜坡下的点C 处到大楼的距离是203m (2) 如图,过点D 作DF ⊥AB 于点F ,易得四边形AEDF 为矩形.∴DF=AE ,DE =AF .设CD =2x m.∵在Rt △CED 中,∠DCE =30°,∴DE =12CD =x m ,CE =CD ·cos30°=3x m .∴BF =AB -AF =AB -DE =(60-x )m.∵在Rt △BFD 中,∠FDB =45°,∴DF =BF tan45°=(60-x )m.由DF =AE ,得60-x =203+3x ,解得x =403-60,∴CD =(803-120)m.答:斜坡CD 的长度为(803-120)m第34题第35题 35.由题意,得PA =80海里.如图,过点P 作PC ⊥AB 于点C ,则∠APC =90°-60°=30°,∠BPC =90°-45°=45°.∵在Rt △ACP 中,cos ∠APC =PC P A,∴PC =P A ·cos ∠APC =80×cos30°=403(海里).∵在Rt △PCB 中,cos ∠BPC =PC PB ,∴PB =PC cos ∠BPC =403cos45°=406≈98(海里).答:此时轮船所在的B 处与灯塔P 的距离是98海里36.由题意,得点A 在点B 的正西方,∴如图,延长AB 交南北轴于点D ,则AB ⊥CD.∵∠BCD =45°,∴∠CBD=45°=∠BCD .∴BD =CD .在Rt △BDC 中,由sin ∠BCD =BD BC,BC =60nmile ,得BD =60×sin45°=302(nmile),CD =BD =302nmile.在Rt △ADC 中,由tan ∠ACD =AD CD,得AD =302×tan60°=306(nmile).∴AB =AD -BD =(306-302)nmile.∵海监船A 的航行速度为30nmile/h ,∴渔船在B 处需要等待的时间为AB 30=6-2≈2.45-1.41≈1.0(h).答:渔船在B 处需要等待1.0h 才能得到海监船A 的救援 第36题第38题 37.过点P 作PD ⊥l ,垂足为D.设BD =x 米,则AD =(x +200)米.由题意,得∠PAB =90°-60°=30°,∠PBD=90°-45°=45°.在Rt △ADP 中,tan30°=PD AD ,∴PD =AD ·tan30°=33(x +200)米.在Rt △PDB 中,tan45°=PD BD ,∴PD =BD ·tan45°=x 米.∴33(200+x )=x ,解得x =2003-1≈273.∴PD =273米.答:凉亭P 到公路l 的距离为273米38.如图,过点O 分别作OM ⊥BC 于点M ,ON ⊥AC 于点N ,易得四边形ONCM 为矩形.∴ON =MC ,OM =NC.设OM =xm ,则NC =x m ,AN =(840-x )m.在Rt △ANO 中,∵∠OAN =45°,∴易得ON =AN =(840-x )m.∴MC =ON =(840-x )m.在Rt △BOM 中,BM =OM tan ∠OBM ≈x 247=724x (m),由BM +MC =BC =500m ,得724x +840-x =500,解得x =480.答:点O 到BC 的距离为480m 39.如图,过点B 作BD ⊥AC 于点D ,则∠BAD =60°,∠DBC =90°-37°=53°.设AD =x km.在Rt △ADB中,BD =AD ·tan60°=3x km ,在Rt △BDC 中,CD =BD ·tan53°≈3x ·43=433x (km).由AC =AD +CD ,可得x +433x =13,解得x =43-3,此时BD =3x =(12-33)km.∴在Rt △BDC 中,BC =BD cos53°≈(12-33)×53=(20-53)km.答:B ,C 两地的距离为(20-53)km 第39题第41题40. (1) ∵在Rt △EFH 中,∠H =90°,∴tan ∠EFH =i =1∶0.75=43=EH FH.∴设EH =4x (x >0)m.则FH =3x m ,EF =EH 2+FH 2=5x m .∵EF =15m ,∴5x =15,解得x =3.∴FH =9m .答:山坡EF 的水平宽度FH 为9m (2) 由(1),得EH =12m .设CF =y m .∵L =CF +FH +EA =y +9+4=(y +13)m ,H =AB +EH =22.5+12=34.5(m),H 1=0.9m ,∴日照间距系数=L ∶(H -H 1)=y +1334.5-0.9=y +1333.6.∵该楼的日照间距系数不低于1.25,∴y +1333.6≥1.25,∴y ≥29,即CF ≥29m .答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少29m 远41.根据题意,得AC ⊥BC ,DE ⊥BC ,∠BAC =45°,AD =200m ,∠BDE =60°.如图,过点D 作DF ⊥AC ,垂足为F .∵i AD =1∶3,∴在Rt △ADF 中DF ∶AF =1∶3,即tan ∠DAF =33.∴∠DAF =30°.∴∠BAD =∠BAC -∠DAF =45°-30°=15°.∵在Rt △AFD 中,AD =200m ,∴DF =12AD =100m .∵AC ⊥BC ,DE ⊥BC ,DF ⊥AC ,∴∠DEC =∠BCA =∠DFC =90°,∴四边形DECF 是矩形.∴EC =DF =100m .∵在Rt △DEB 中,∠DBE =90°-∠BDE =30°,在Rt △ACB 中,∠ABC =90°-∠BAC =45°,∴∠ABD =∠ABC -∠DBE=45°-30°=15°.∴∠ABD =∠BAD .∴AD =BD =200m .∵在Rt △BDE 中,sin ∠BDE =BE BD,∴BE =BD ·sin60°=200×32=1003(m).∴BC =BE +EC =(100+1003)m.答:山BC 的高度为(100+1003)m 42. (1) 如图①,分别过点D ,C 作DM ⊥AB ,CN ⊥AB ,垂足分别为M ,N.∵背水坡AD 的坡度i 为1∶0.5,∴在Rt △ADM 中,tan ∠DAB =DM AM=2.∴设AM =x (x >0)m ,则DM =2x m .根据题意,易得四边形DMNC 是矩形,∴DC =MN =3m ,DM =CN =2x m .∵在Rt △BNC 中,tan ∠ABC =CN BN ,即tan37°=2x BN ≈34,∴BN ≈2x ·43=83x m .由x +3+83x =14,得x =3,∴DM =6m .答:坝高为6m (2) 如图②,过点F 作FH ⊥AB ,垂足为H ,DM ⊥AB ,垂足为M .由(1),得FH =DM =6m ,FD =HM .设FD =y m ,则AE =2y m .∵AM =3m ,∴EH =3+2y -y =(3+y )m ,BH =14+2y -(3+y )=(11+y )m.由EF ⊥BF ,FH ⊥AB ,得∠EHF =∠FHB =90°,∴∠E +∠EFH =∠EFH +∠HFB =90°.∴∠E =∠HFB .∴△EFH ∽△FBH .∴FH BH =EH FH,即FH 2=BH ·EH .∴62=(11+y )(3+y ),即y 2+14y -3=0.解得y 1=-7+213,y 2=-7-213(不合题意,舍去).∴DF =(213-7)m.答:DF 的长为(213-7)m第42题 一天,毕达哥拉斯应邀到朋友家做客。

2018年重庆市中考数学试卷(a卷)(答案+解析)

2018年重庆市中考数学试卷(a卷)(答案+解析)

2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。

都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(4分)2的相反数是()A.﹣2 B.﹣12C.12D.22.(4分)下列图形中一定是轴对称图形的是()A.B.C.D.直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若⊙O 的半径为4,BC =6,则P A 的长为( )A .4B .2√3C .3D .2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1:0.75,坡长CD =2米,若旗杆底部到坡面CD 的水平距离BC =1米,则旗杆AB 的高度约为( )(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)A .12.6米B .13.1米C .14.7米D .16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.(4分)若数a 使关于x 的不等式组{x−12<1+x35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。

北师大版2018-2019学年重庆市重庆一中七年级(下)期末数学试卷含解析

北师大版2018-2019学年重庆市重庆一中七年级(下)期末数学试卷含解析

2018-2019学年重庆一中七年级(下)期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡中对应的位置.1.(4分)的相反数是()A.﹣B.C.﹣2D.2.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(4分)计算:(a2b)3的结果是()A.a6b B.a6b3C.a5b3D.a2b34.(4分)下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.打开电视正在播放甲型H1N1流感的相关知识C.某射击运动员射击一次,命中靶心D.在只装有5个红球的袋中摸出1球,是红球5.(4分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间6.(4分)下列长度的三根木棒首尾相接,能做成三角形框架的是()A.13cm、7cm、5cm B.5cm、7cm、3cmC.7cm、5cm、12cm D.5cm、15cm、9cm7.(4分)要使函数y=有意义,自变量x的取值范围是()A.x≥1B.x≤1C.x>1D.x<18.(4分)如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定9.(4分)已知:(x+y)2=12,(x﹣y)2=4,则x2+3xy+y2的值为()A.8B.10C.12D.1410.(4分)如图是由一些长度相等的小木棍组成的图形,图(1)(2)(3)需要的小木棍数量分别为3根、7根、15根,按照这种方式摆下去,第(6)个图形需要的木棍数量为()A.60根B.63根C.127根D.130根11.(4分)如图,∠A=∠EGF,点F为BE、CG的中点,DB=4,DE=7,则EG长为()A.1.5B.2C.3D.5.512.(4分)当x=2+时,代数式x3﹣4x2+4x的值为()A.0B.4+2C.4+4D.2二、填空题:(本题共6个小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.(4分)计算:+(3﹣π)0=.14.(4分)前不久我市共有319000人参加了中考,数据319000用科学记数法表示为.15.(4分)如图,随机向“4×5”的长方形内丢一粒豆子(将豆子看做点),那么这粒豆子落入阴影部分的概率为.16.(4分)如图,在△ABC中,DE垂直平分BC,交BC、AB分别于D、E,连接CE,BF 平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB=度.17.(4分)如图,在△ABC中,D是AC上一点,AD=3CD,将△BCD沿BD翻折,得到△BFD,BF交AC于E,连接AF,若BE=2FE,△ABC的面积为2,则△AEF的面积为.18.(4分)如图,Rt△ABC中,AB=10,AC=8,BC=6,∠C=90°,AD平分∠BAC,点E为AC上一点,且AE=3CE,在AC上找一点F,AD上找一点P,连接EP、FP,则EP+FP的最小值为.三、解答题;(本大题共3个小题,每小题8分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.(8分)计算:(1)(﹣)×2(2)[(x﹣y)2﹣3y(y﹣x)﹣(x+y)(x﹣y)].20.(8分)如图,AB∥CD,GE=GF,∠NFG=110°,EG平分∠BEF,求∠DFG的度数.21.(8分)重庆一中初一年级在“六一儿童节”举行了“礼成人生,礼达天下”的成长仪式,随后在本年级学生中进行了满意度调查,采取随机抽样的调查方式进行问卷调查,问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D;并根据调查结果绘制如图两幅不完整统计图:(1)这次一共调查了名学生,并将条形统计图补充完整;(2)请在参与调查的这些学生中,随机抽取一名学生,求抽取到的学生对这次成长仪式满意度是“比较喜欢”或“感觉一般”的概率.四、解答题:(本大题共3个小题,每小题10分,共30分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.22.(10分)如图,点A,C,D在同一条直线上,BC与AF交于点E,AF=AC,AD=BC,AE=EC.(1)求证:FD=AB(2)若∠B=50°,∠F=110°,求∠BCD的度数.23.(10分)甲从A地出发,匀速步行到B地,同时,乙从B地出发,匀速步行到A地,甲乙两人与A地的距离S(米)与出发时间t(分钟)的关系如图:(1)直接写出甲、乙两人与A地距离S(米)与出发时间t(分钟)的关系式;(2)当两人相距2500米时,t为多少分钟?24.(10分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB 上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC 于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17“明三礼”数(填“是”或“不是”);721是“明礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.26.(12分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D、E在边BC 上,连接AD、AE,且∠DAE=45°.(1)如图1,若∠BAD=20°,求∠AED的度数;(2)如图2,若∠BAD=15°,证明:DE=2BD;(3)如图3,过点C作CF⊥AC交AE延长线于点F,再过点F作MF⊥CF交BC于点M,证明:BD=MD.2018-2019学年重庆一中七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡中对应的位置.1.(4分)的相反数是()A.﹣B.C.﹣2D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得的相反数是﹣.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4分)计算:(a2b)3的结果是()A.a6b B.a6b3C.a5b3D.a2b3【分析】根据幂的乘方和积的乘方,即可解答.【解答】解:(a2b)3=a6b3,故选:B.【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方.4.(4分)下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.打开电视正在播放甲型H1N1流感的相关知识C.某射击运动员射击一次,命中靶心D.在只装有5个红球的袋中摸出1球,是红球【分析】找到一定会发生的事件的选项即可.【解答】解:A、任意掷一枚均匀的硬币,可能正面朝上,也可能反面朝上,是随机事件;B、打开电视,可能正在播放甲型H1N1流感的相关知识,也可能正在播放其它内容,是随机事件;C、某射击运动员射击一次,可能命中靶心,也可能脱靶,是随机事件;D、在只装有5个红球的袋中摸出1球,是红球,是必然事件.故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.①必然事件指在一定条件下一定发生的事件;②不可能事件是指在一定条件下,一定不发生的事件;③不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.6.(4分)下列长度的三根木棒首尾相接,能做成三角形框架的是()A.13cm、7cm、5cm B.5cm、7cm、3cmC.7cm、5cm、12cm D.5cm、15cm、9cm【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A、5+7<13,不能组成三角形,故本选项错误;B、5+3>7,能组成三角形,故本选项正确;C、5+7=12,不能能组成三角形,故本选项错误;D、5+9<15,不能能组成三角形,故本选项错误.故选:B.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.7.(4分)要使函数y=有意义,自变量x的取值范围是()A.x≥1B.x≤1C.x>1D.x<1【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x﹣1≥0,解得,x≥1,故选:A.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.8.(4分)如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定【分析】先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.【解答】解:∵∠A=80°,∠1=15°,∠2=40°,∴∠OBC+∠OCB=180°﹣∠A﹣∠1﹣∠2=180°﹣80°﹣15°﹣40°=45°,∵∠BOC+(∠OBC+∠OCB)=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°.故选:C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.9.(4分)已知:(x+y)2=12,(x﹣y)2=4,则x2+3xy+y2的值为()A.8B.10C.12D.14【分析】由于(x+y)2=12,(x﹣y)2=4,两式相加可得x2+y2的值,两式相减可得xy 的值,再整体代入计算即可求解.【解答】解:∵(x+y)2=12①,(x﹣y)2=4②,∴①+②得2(x2+y2)=16,解得x2+y2=8,①﹣②得4xy=8,解得xy=2,∴x2+3xy+y2=8+3×2=14.故选:D.【点评】考查了完全平方公式.关键是根据已知条件两式相加求得x2+y2的值,两式相减得xy的值.10.(4分)如图是由一些长度相等的小木棍组成的图形,图(1)(2)(3)需要的小木棍数量分别为3根、7根、15根,按照这种方式摆下去,第(6)个图形需要的木棍数量为()A.60根B.63根C.127根D.130根【分析】由图(1)中木棍数3=1+2,图(2)中木棍数7=1+2+2×2,图(3)中木棍数15=1+2+2×2+2×2×2,得出图(6)中木棍数为1+2+22+23+24+25+26=127.【解答】解:∵图(1)中木棍数3=1+2,图(2)中木棍数7=1+2+2×2,图(3)中木棍数15=1+2+2×2+2×2×2,……∴图(6)中木棍数为1+2+22+23+24+25+26=127,故选:C.【点评】此题考查图形的变化规律,从简单入手,找出图形蕴含的规律,利用规律解决问题.11.(4分)如图,∠A=∠EGF,点F为BE、CG的中点,DB=4,DE=7,则EG长为()A.1.5B.2C.3D.5.5【分析】先证明△ADG和△ABC是等腰三角形,再证明△EGF≌△BCF(SAS),设AD =x,则DG=x,根据DE=7,列方程可得结论.【解答】解:∵∠A=∠EGF,∠AGD=∠EGF,∴∠A=∠AGD,∴AD=DG,设AD=x,则DG=x,在△EGF和△BCF中,∵,∴△EGF≌△BCF(SAS),∴BC=EG,∠E=∠EBC,∴EG∥BC,∴∠AGD=∠C=∠A,∴BC=AB=x+4=EG,∵DE=7,∴x+x+4=7,x=,∴EG=x+4==5.5.故选:D.【点评】本题考查全等三角形的判定和性质、等腰三角形的判定,熟练掌握全等三角形的判定方法是解决问题的关键.12.(4分)当x=2+时,代数式x3﹣4x2+4x的值为()A.0B.4+2C.4+4D.2【分析】根据题目中的x的值,可以求得所求代数式的值.【解答】解:∵x=2+,∴x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2=(2+)×(2+﹣2)2=(2+)×2=4+2,故选:B.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.二、填空题:(本题共6个小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.(4分)计算:+(3﹣π)0=3.【分析】直接利用立方根的性质和零指数幂的性质化简得出答案.【解答】解:原式=2+1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(4分)前不久我市共有319000人参加了中考,数据319000用科学记数法表示为 3.19×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据319000用科学记数法表示为3.19×105.故答案为:3.19×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)如图,随机向“4×5”的长方形内丢一粒豆子(将豆子看做点),那么这粒豆子落入阴影部分的概率为.【分析】根据题意,判断概率类型,分别算出长方形面积和阴影面积,再利用几何概型公式加以计算,即可得到所求概率.【解答】解:阴影面积=,长方形面积=4×5=20,这粒豆子落入阴影部分的概率为,故答案为:【点评】本题给出丢豆子的事件,求豆子落入指定区域的概率.着重考查了长方形、三角形面积公式和几何概型的计算等知识,属于基础题.16.(4分)如图,在△ABC中,DE垂直平分BC,交BC、AB分别于D、E,连接CE,BF 平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB=60度.【分析】根据等腰三角形的性质和三角形内角和解答即可.【解答】解:∵DE垂直平分BC,∴BE=EC,∵BE=AC,∴CE=AC,∴△ACE是等腰三角形,∵∠ACE=20°,∴∠AEC=∠A=80°,∵BE=CE,∴∠EBC=∠ECB=,∵BF平分∠ABC,∴∠EBF=,∴∠EFB=∠AEC﹣∠EBF=80°﹣20°=60°,故答案为:60【点评】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和三角形内角和解答.17.(4分)如图,在△ABC中,D是AC上一点,AD=3CD,将△BCD沿BD翻折,得到△BFD,BF交AC于E,连接AF,若BE=2FE,△ABC的面积为2,则△AEF的面积为.【分析】依据AD=3CD,△ABC的面积为2,可得S△BFD=S△DBC=,依据BE=2FE,可得S△BDE=S△BFD=,S△BCE=,S△ABE=2﹣=,再根据BE=2FE,即可得到S△AEF=S△ABE=.【解答】解:∵AD=3CD,△ABC的面积为2,∴S△BCD=S△ABC=×2=,由折叠可得,S△BFD=S△DBC=,又∵BE=2FE,∴S△BDE=S△BFD=×=,∴S△BCE=,∴S△ABE=2﹣=,又∵BE=2FE,∴S△AEF=S△ABE=×=,故答案为:.【点评】本题主要考查了折叠问题,翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.(4分)如图,Rt△ABC中,AB=10,AC=8,BC=6,∠C=90°,AD平分∠BAC,点E为AC上一点,且AE=3CE,在AC上找一点F,AD上找一点P,连接EP、FP,则EP+FP的最小值为 3.6.【分析】如图,作EH⊥AB于H,交AD于G,作F关于AD的对称点F′,连接PF′.因为PF+PE=PE+PF′,根据垂线段最短可知,当F′与H重合,P与G重合时,PE+PF′最短.【解答】解:如图,作EH⊥AB于H,交AD于G,作F关于AD的对称点F′,连接PF′.∵PF+PE=PE+PF′,根据垂线段最短可知,当F′与H重合,P与G重合时,PE+PF′最短.在Rt△ABC中,AC===8,∵AE=3EC,∴AE=6,∵∠EAH=∠BAC,∠EHA=∠C=90°,∴△AEH∽△ABC,∴=,∴=,∴EH=3.6,∴PF+PE的最小值为3.6.故答案为3.6.【点评】本题考查轴对称﹣最短问题,角平分线的性质、垂线段最短、相似三角形的判定和性质等知识,解题的关键是学会利用对称,根据垂线段最短解决最值问题,属于中考常考题型.三、解答题;(本大题共3个小题,每小题8分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.(8分)计算:(1)(﹣)×2(2)[(x﹣y)2﹣3y(y﹣x)﹣(x+y)(x﹣y)].【分析】(1)先把二次根式化为最简二次根式,然后根据二次根式的乘除法则计算;(2)先利用乘法公式计算,然后把括号内合并后进行整式的除法运算.【解答】解:(1)原式=(4﹣3)÷+2=÷+2=1+2;(2)原式=(x2﹣2xy+y2﹣3y2+3xy﹣x2+y2)÷=(﹣y2+xy)÷=﹣2y+2x.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了整式的混合运算.20.(8分)如图,AB∥CD,GE=GF,∠NFG=110°,EG平分∠BEF,求∠DFG的度数.【分析】先根据等腰三角形的性质,得到∠EFG=70°=∠FEG,再根据EG平分∠BEF,即可得出∠BEM=40°,再根据AB∥CD,可得∠DFE=∠BEM=40°,最后根据∠DFG =180°﹣∠DFE﹣∠NFG进行计算即可.【解答】解:∵GE=GF,∠NFG=110°,∴∠EFG=70°=∠FEG,又∵EG平分∠BEF,∴∠BEF=2∠FEG=140°,∴∠BEM=40°,∵AB∥CD,∴∠DFE=∠BEM=40°,∴∠DFG=180°﹣∠DFE﹣∠NFG=180°﹣40°﹣110°=30°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,解题时注意:两直线平行,同位角相等.21.(8分)重庆一中初一年级在“六一儿童节”举行了“礼成人生,礼达天下”的成长仪式,随后在本年级学生中进行了满意度调查,采取随机抽样的调查方式进行问卷调查,问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D;并根据调查结果绘制如图两幅不完整统计图:(1)这次一共调查了50名学生,并将条形统计图补充完整;(2)请在参与调查的这些学生中,随机抽取一名学生,求抽取到的学生对这次成长仪式满意度是“比较喜欢”或“感觉一般”的概率.【分析】(1)根据统计图中的数据可以求得本次调查的学生数,计算出选择C的学生数,从而可以将统计图补充完整;(2)根据统计图中的数据可以分别求得抽取到的学生对这次成长仪式满意度是“比较喜欢”或“感觉一般”的概率.【解答】解:(1)由题意可得,本次调查的学生是:15÷30%=50(名),故答案为:50,选择C的学生有:50﹣15﹣20﹣5=10,补全的条形统计图如右图所示;(2)由题意可得,比较喜欢的概率是:,感觉一般的概率是:,答:抽取到的学生对这次成长仪式满意度是“比较喜欢”的概率是0.4,“感觉一般”的概率是0.2.【点评】本题考查概率公式、全面调查与抽样调查、扇形统计图、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.四、解答题:(本大题共3个小题,每小题10分,共30分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.22.(10分)如图,点A,C,D在同一条直线上,BC与AF交于点E,AF=AC,AD=BC,AE=EC.(1)求证:FD=AB(2)若∠B=50°,∠F=110°,求∠BCD的度数.【分析】(1)根据SAS即可证明;(2)利用全等三角形的性质,求出∠BAC,根据∠BCD=∠B+∠BAC即可解决问题;【解答】(1)证明:∵EA=EC,∴∠EAC=∠ECA,在△AFD和△CAB中,,∴△AFD≌△CAB,∴FD=AB.(2)解:∵△AFD≌△CAB,∴∠BAC=∠F=110°,∴∠BCD=∠B+∠BAC=50°+110°=160°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.(10分)甲从A地出发,匀速步行到B地,同时,乙从B地出发,匀速步行到A地,甲乙两人与A地的距离S(米)与出发时间t(分钟)的关系如图:(1)直接写出甲、乙两人与A地距离S(米)与出发时间t(分钟)的关系式;(2)当两人相距2500米时,t为多少分钟?【分析】(1)根据题意和函数图象中的数据可以分别求出甲、乙两人与A地距离S(米)与出发时间t(分钟)的关系式;(2)根据题意可以得到相应的方程,从而可以解答本题.【解答】解:(1)设甲与A地距离S(米)与出发时间t(分钟)的关系式是S=kt,20k=3000,得k=150,即甲与A地距离S(米)与出发时间t(分钟)的关系式是S=150t,设乙与A地距离S(米)与出发时间t(分钟)的关系式是S=at+b,,得,即乙与A地距离S(米)与出发时间t(分钟)的关系式是S=﹣100t+3000;(2)由题意可得,|150t﹣(﹣100t+3000)|=2500,解得,t1=2,t2=22,∵当t=20时,甲到达A地,∴将S=500代入S=﹣100t+3000,得t=25,答:当两人相距2500米时,t为2分钟或25分钟.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质和数形结合的思想解答.24.(10分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB 上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC 于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.【分析】(1)在Rt△ACD中,求出CD即可解决问题;(2)在EF上取一点M,使得EM=DF,只要证明△MCF是等边三角形即可解决问题.【解答】(1)解:在Rt△ADC中,∵AD=2,∠ADC=60°,∴∠ACD=30°,∴CD=CE=2AD=4,∵EC⊥CD,∴∠ECD=90°,∴S△ECD=•CD•CE=×4×4=8.(2)证明:在EF上取一点M,使得EM=DF,∵EC=CD,∠E=∠CDF=45°,∴△ECM≌△DCF,∴CM=CF,∵∠ADC=60°,∠FDB=180°﹣60°﹣45°=75°,∴∠DFB=∠CFM=180°﹣75°﹣45°=60°,∴△CFM是等边三角形,∴CF=MF,∴EF=EM+MF=DF+CF.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17不是“明三礼”数(填“是”或“不是”);721是“明六礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.【分析】本题是一道材料阅读题,解答时只需紧扣材料中“明N礼”数的定义和表示方法即可.【解答】解:(1)17÷3=5余2,故不是“明三礼”数.721÷2=360余1,721÷3=240余1,721÷4=180余1,721÷5=144余1,721÷6=120余1,721÷7=103,故721是“明六礼”数.(2)可知3和2的最小公倍数是6,故设此“明三礼”数为6n+1,其中n是正整数.当它是最小的三位数时,则满足:6n+1≥100,从而可得:n≥16.5,∴满足上述条件的最小正整数是17.所以,最小的三位“明三礼”数是6×17+1=103.(3)3和2的最小公倍数是6,3、2的最小公倍数是12,故设这个“明三礼”数为6m+1,“明四礼”数为12n+1,其中m,n为正整数.∵它们的和是32,∴6m+1+12n+1=32,∴m+2n=5,又∵m和n是正整数,∴m=1,n=2或m=3,n=1,∴这个“明三礼”数为7,“明四礼”数为25 或“明三礼”数为19,“明四礼”数为13.【点评】本题重点考查学生对阅读材料的理解和运用,只要把握“明N礼”数的定义和表示方法,便可解决问题.26.(12分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D、E在边BC 上,连接AD、AE,且∠DAE=45°.(1)如图1,若∠BAD=20°,求∠AED的度数;(2)如图2,若∠BAD=15°,证明:DE=2BD;(3)如图3,过点C作CF⊥AC交AE延长线于点F,再过点F作MF⊥CF交BC于点M,证明:BD=MD.【分析】(1)求出∠EAC,根据∠AED=∠C+∠EAC计算即可;(2)如图2中,将△AEC绕点A顺时针旋转90°得到△ABK,连接DK.由△DAK≌△DAE,推出∠ADE=∠ADK=∠ABD+∠BAD=60°,DK=DE,推出∠KDB=60°,由∠ABK=∠ABC=45°,推出∠KBD=90°,推出∠BKD=30°,可得DK=2BD,由此即可解决问题;(3)延长FM交AB于H,连接DF、DH.只要证明△AHD≌△FMD即可解决问题;【解答】(1)解:如图1中,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠DAE=45°,∠BAD=20°,∴∠EAC=90°﹣20°﹣45°=25°,∴∠AED=∠C+∠EAC=25°+45°=70°.(2)证明:如图2中,将△AEC绕点A顺时针旋转90°得到△ABK,连接DK.∵∠BAK+∠BAD=∠BAD+∠EAC=90°﹣45°=45°,∴∠DAK=∠DAE,∵AD=AD,AK=AE,∴△DAK≌△DAE,∴∠ADE=∠ADK=∠ABD+∠BAD=60°,DK=DE,∴∠KDB=60°,∵∠ABK=∠ABC=45°,∴∠KBD=90°,∴∠BKD=30°,∴DK=2BD,∵DK=DE,∴DE=2BD.(3)证明:如图3中,延长FM交AB于H,连接DF、DH.∵CF⊥AC,∴∠ACF=90°,∴∠ACB=∠FCE=45°,∵∠DAE=45°,∴∠DAE=∠FCE,∵∠AED=∠CEF,∴△AED∽△CEF,∴=,∴=,∵∠AEC=∠DEF,∴△AEC∽△DEF,∴∠DFE=∠ACE=45°,∴∠DAF=∠DFE=45°,∴△ADF是等腰直角三角形,∴∠ADF=90°,AD=DF,∵FM⊥CF,易证四边形AHCF是矩形,∴AH=CF=FM,∠AHF=∠ADF,易证∠HAD=∠DFM,∴△AHD≌△FMD,∴DH=DM,∵∠DMH=∠FMC=45°,∴△DHM是等腰直角三角形,∴HD⊥BM,∵∠B=45°,∴BD=DH=DM,【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质和判定,矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

中考数学模拟试题含答案(精选5套)

中考数学模拟试题含答案(精选5套)

2017年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1 B.23 C. 2 D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个 3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( ) 7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为( )A. (x + 2)2 = 9B. (x - 2)2= 9 C. (x + 2)2 = 1 D. (x - 2)2 =19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )圆弧 角 扇形 菱形A. B. C.(第7题A. 1∶2B. 1∶4C. 1∶ 3D. 2∶3 10. 下列各因式分解正确的是( )A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x + 1 11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( ) A. 一直增大 B. 一直减小 C. 先减小后增大 D. 先增大后减小 二、填空题(本大题满分18分,每小题3分,)13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 .(第11题(第12题(第17题三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 -n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;3121--+x x ≤1, ……① 解不等式组: 3(x - 1)<2 x + 1. ……② (第21题图)°(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N.(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元? (2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本(第23题(第24题图)次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2017年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个(第26题特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S△MPQ=21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC=41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+= 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分 ∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9-x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. …………… 1分∴4x + 5(x + 40)=1820. (2)分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴…………… 4分180 a + 220(200-a)≤40880.解得78≤a≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、 选择题 1、数2-中最大的数是( )A 、1- B、0 D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +)A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( )A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( )A 、20°B 、80°C 、60°D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( ) A 、0个 B 、5个 C 、6个 D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若x DE则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点 B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

人教版数学八年级上册期中考试模拟试卷(一)(前3章)含答案

人教版数学八年级上册期中考试模拟试卷(一)(前3章)含答案

八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)(满分120分,考试时间100分钟)(附答案)学校____________ 班级________ 姓名___________一、选择题(每小题3分,共30分)1.如图分别是贵州、旅游、河北、黑龙江卫视的图标,其中属于轴对称图形的是()A.B.C.D.2.下列条件:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°-∠B;④∠A=∠B-∠C,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.有长为2 cm,3 cm,4 cm,5 cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是()A.1个B.2个C.3个D.4个4.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B.有一腰和底边对应相等的两个等腰三角形C.周长相等的两个三角形D.斜边和直角边对应相等的两个等腰直角三角形5.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O,C为圆心,大于1OC的长为半径画弧,两弧相交于E,F,画直线EF,分别交OA于点D,交OB2于点G,那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形6.若等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数是()A.65° B.55° C.125°或55° D.65°或115°7. 图中有三个正方形,其中构成的三角形中全等三角形的对数有( )A .2对B .3对C .4对D .5对8. 如图,将△ABC 纸片沿DE 折叠,使点A 落在点A '处,且A 'B 平分∠ABC ,A 'C 平分∠ACB .若∠BA 'C =110°,则∠1+∠2的度数为( ) A .80°B .90°C .100°D .110°9. 如图,在△ABC 中,点D 在BC 边上,过D 作DE ⊥BC 交AB 于点E ,P 为DC 上的一个动点,连接PA ,PE ,若PA +PE 最小,则点P 应该满足( ) A .PA =PCB .PA =PEC .∠APE =90°D .∠APC =∠DPE10. 如图所示,△ABC 的两条外角平分线AP ,CP 相交于点P ,PH ⊥AC 于H .若∠ABC =60°,则下面的结论:①∠ABP =30°;②∠APC =60°;③△ABC ≌△APC ;④P A ∥BC ;⑤∠APH =∠BPC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个A'21E D CBAAB CD EP二、填空题(每小题3分,共15分)11. 一个多边形的每一个外角都等于36°,则该多边形的内角和等于_______度.12. 已知点P (1,a )与点Q (b ,2)关于x 轴对称,点Q (b ,2)与点M (m ,n )关于y 轴对称,则m -n 的值为___________.13. 已知△ABC 三内角满足:3∠A >5∠B ,2∠B ≥3∠C ,则按角分类,△ABC 是__________三角形.14. 若满足∠AOB =30°,OA =4,AB =k 的△AOB 的形状与大小是唯一的,则k 的取值范围是_________.15. 如图,等边△ABC 的边长为2,CD 为AB 边上的中线,E 为线段CD 上的动点,以BE 为边,在BE 左侧作等边△BEF ,连接DF ,则DF 的最小值为_________.三、解答题(本大题共8个小题,满分75分)16. (8分)如图所示,两条笔直的公路AO 与BO 相交于点O ,村庄D 和E 在公路AO 的两侧,现要在公路AO 和BO 之间修一个供水站P 向D ,E 两村供水,使供水站P 到两公路的距离相等,且到D ,E 两村的距离也相等.请你在图中画出点P 的位置.(要求:尺规作图,不写作法,保留作图痕迹.)A B C D EPHA BCDEF17. (9分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出点B 1的坐标; (2)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.18. (9分)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=40°,求∠BDE 的度数.BOABCDEO1219. (9分)如图,在△ABC 中,∠BAC =120°,BC =26,AB ,AC 的垂直平分线分别交BC 于点E ,F ,与AB ,AC 分别交于点D ,G . (1)求∠EAF 的度数; (2)求△AEF 的周长.20. (9分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF =AC ;DGABCEF(2)求证:CE=12BF .21. (10分)已知:如图,AF 平分∠BAC ,BC ⊥AF ,垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于点P ,M . (1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.H A BCD EFGPMFE D CBA22. (10分)如图,在等边△ABC 中,AB =BC =AC =12 cm ,∠B =∠C =60°,现有M ,N 两点分别从点A ,B 同时出发,沿△ABC 的边运动,已知点M 的速度为1 cm/s ,点N 的速度为2 cm/s ,当点N 第一次到达B 点时,M ,N 同时停止运动,设运动时间为t (s ). (1)当t 为何值时,M ,N 两点重合?两点重合在什么位置?(2)当点M ,N 在BC 边上运动时,是否存在使AM =AN 的位置?若存在,请求出此时点M ,N 运动的时间;若不存在,请说明理由.23. (11分)如图1,点C 在线段AB 上(点C 不与A ,B 重合),分别以AC ,BC 为边在AB同侧作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点P .N M(1)观察猜想:①AE 与BD 的数量关系为____________; ②∠APD 的度数为____________. (2)数学思考:如图2,当点C 在线段AB 外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展应用:如图3,点E 为四边形ABCD 内一点,且满足∠AED =∠BEC =90°,AE =DE ,BE =CE ,对角线AC ,BD 交于点P ,AC =10,则四边形ABCD 的面积为_________.图1A BC DEP图2DAC P EB图3ABP DCE八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)【参考答案】一、选择题二、填空题11.1440.12.-3.13.钝角.14.k=2或k≥4.15.12.三、解答题16.如图,点P即为所求.17.(1)作图略,B1(-4,2);(2)P(2,0).18.(1)证明略;(2)70°.19.(1)∠EAF=60°;(2)△AEF的周长为26.20.(1)证明略;(2)证明略.21.(1)证明略;(2)∠F=∠MCD,理由略.22.(1)12 s,两点重合在C点;(2)存在,t=16 s.23.(1)①AE=BD;②60°;(2)成立,证明略;(3)50.。

重庆中考数学模拟试卷一(含答案)

重庆中考数学模拟试卷一(含答案)

最新2021年重庆中考数学模拟试卷一〔含答案〕一、选择题1. ﹣2021的相反数是〔〕 A. ﹣2021 B. 2021 C. ﹣ D.2. 在以下奢侈品牌的标志中,是轴对称图形的是〔〕A. B. C. D.3. 〔a2〕3÷a4的计算结果是〔〕 A. a B. a2 C. a4 D. a54. 以下调查中不适合抽样调查的是〔〕A. 调查“华为P10〞的待机时间B. 了解初三〔10〕班同学对“EXO〞的喜欢程度C. 调查重庆市面上“奶牛梦工场〞皇室尊品酸奶的质量D. 了解重庆市初三学生中考后毕业旅游方案5. 估算的运算结果应在〔〕A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间6. 假设代数式有意义,则x的取值范围是〔〕A. x>1且x≠2B. x≥1C. x≠2D. x≥1且x≠27. 如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为〔〕A. 44°B. 34°C. 46°D. 56°8. △ABC∽△DEF,S△ABC:S△DEF=1:9,假设BC=1,则EF的长为〔〕A. 1B. 2C. 3D. 99. 假设〔x﹣1〕2=2,则代数式2x2﹣4x+5的值为〔〕 A. 11 B. 6 C. 7 D. 810. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有〔〕和黑子.A. 37B. 42C. 73D. 121 11. “星光隧道〞是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带,估计2021年底竣工通车,图中线段AB表示该工程的局部隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米,则隧道BC段的长度约为〔〕米.〔参考数据:tan12°≈0.2,cos12°≈0.98〕A. 2100B. 1600C. 1500D. 154012. 假设数a使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a的值之积为〔〕 A. 28 B. ﹣4 C. 4 D. ﹣2二、填空题13. 截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000次,请将6820 000 000用科学记数法表示为________.14. 计算:=________.15. 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,假设OA=4,则阴影局部的面积为________.16. “一带一路〞国际合作顶峰论坛于5月14日在北京开幕,学校在初三年级随机抽取了50名同学进行“一带一路〞知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是________分.17. 5月13日,周杰伦2021“地表最强〞世界巡回演唱会在奥体中心壮大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发觉对讲机遗忘在出发地,便马上返回出发地,拿到对讲机后〔取对讲机时间不计〕马上再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x〔min〕,两人之间的距离为y〔m〕,y与x的函数图象如下图,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是________米.18. 正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM =,AE=8,则S四边形EFMG=________.三、解答题19. 如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度数.20. 巴蜀中学2021春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A文艺范、B动漫潮、C学院派、D民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一局部学生进行调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:〔1〕请补全折线统计图,并求出“动漫潮〞所在扇形的圆心角度数.〔2〕据统计,在被调查的学生中,喜欢“文艺范〞类型的仅有2名住读生,其余均为走读生,初二年级欲从喜欢“文艺范〞的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛〞视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.21. 化简以下各式:〔1〕〔b+2a〕〔2a﹣b〕﹣3〔2a﹣b〕2;〔2〕.四、解答题22. 如图,在平面直角坐标系xOy中,一次函数y=kx+b 的图象与反比例函数〔m≠0〕的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为〔12,n〕,OA=10,E为x轴负半轴上一点,且tan∠AOE =.〔1〕求该反比例函数和一次函数的解析式;〔2〕延长AO交双曲线于点D,连接CD,求△ACD的面积.23. “父母恩深重,恩怜无歇时〞,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会方案采购一批鲜花礼盒赠送给妈妈们.〔1〕经过和花店卖家议价,可在原标价的根底上打八折购进,假设在花店购置80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;〔用不等式解答〕〔2〕后来学生会了解到通过“群众点评〞或“美团〞同城配送会在〔1〕中花店最高售价的根底上降价25%,学生会方案在这两个网站上分别购置相同数量的礼盒,但实际购置过程中,“群众点评〞网上的购置价格比原有价格上涨m%,购置数量和原方案一样:“美团〞网上的购置价格比原有价格下降了m 元,购置数量在原方案根底上增加15m%,最终,在两个网站的实际消费总额比原方案的预算总额增加了m%,求出m的值.24. 如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M 为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.〔1〕假设AB=3,AD =,求△BMC的面积;〔2〕点E为AD的中点时,求证:AD =BN.25. 对于一个三位正整数t,将各数位上的数字重新排序后〔包含本身〕,得到一个新的三位数〔a≤c〕,在全部重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t的“最优组合〞,并规定F〔t〕=|a ﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合〞,此时F〔124〕=﹣1.〔1〕三位正整数t中,有一个数位上的数字是其它两数位上的数字的平均数,求证:F〔t〕=0;〔2〕一个正整数,由N个数字组成,假设从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数〞.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数〞.假设三位“善雅数〞m=200+10x+y〔0≤x≤9,0≤y≤9,x、y为整数〕,m的各位数字之和为一个完全平方数,求出全部符合条件的“善雅数〞中F〔m〕的最大值.26. 如图1,在平面直角坐标系中,抛物线与x轴交于点A、B两点〔点A在点B 的左侧〕,与y轴交于点C,过点C作CD∥x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.〔1〕求S△ABD的值;〔2〕如图2,假设点P是直线AD下方抛物线上一动点,过点P作PF∥y轴交直线AD于点F,作PG ∥AC交直线AD于点G,当△PGF的周长最大时,在线段DE上取一点Q,当PQ +QE的值最小时,求此时PQ + QE的值;〔3〕如图3,M是BC的中点,以CM为斜边作直角△CMN,使CN∥x轴,MN∥y轴,将△CMN沿射线CB平移,记平移后的三角形为△C′M′N′,当点N′落在x轴上即停止运动,将此时的△C′M′N′绕点C′逆时针旋转〔旋转度数不超过180°〕,旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x 轴交于点W,请问△CST是否能为等腰三角形?假设能,请求出全部符合条件的WN′的长度;假设不能,请说明理由.二圣学校2021年中考数学模拟试卷一〔第三周〕一、选择题1. ﹣2021的相反数是〔B 〕A. ﹣2021B. 2021C. ﹣D.2. 在以下奢侈品牌的标志中,是轴对称图形的是〔C 〕A. B. C. D. 3. 〔a2〕3÷a4的计算结果是〔B 〕A. aB. a2C. a4D. a54. 以下调查中不适合抽样调查的是〔B 〕A. 调查“华为P10〞的待机时间B. 了解初三〔10〕班同学对“EXO〞的喜欢程度C. 调查重庆市面上“奶牛梦工场〞皇室尊品酸奶的质量D. 了解重庆市初三学生中考后毕业旅游方案5. 估算的运算结果应在〔D 〕A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间6. 假设代数式有意义,则x的取值范围是〔D 〕A. x>1且x≠2B. x≥1C. x≠2D. x≥1且x≠27. 如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为〔B〕A. 44°B. 34°C. 46°D. 56°8. △ABC∽△DEF,S△ABC:S△DEF=1:9,假设BC=1,则EF的长为〔C 〕A. 1B. 2C. 3D. 99. 假设〔x﹣1〕2=2,则代数式2x2﹣4x+5的值为〔C 〕A. 11B. 6C. 7D. 810. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有〔C 〕和黑子.A. 37B. 42C. 73D. 121解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.11. “星光隧道〞是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带,估计2021年底竣工通车,图中线段AB表示该工程的局部隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米,则隧道BC段的长度约为〔C 〕米.〔参考数据:tan12°≈0.2,cos12°≈0.98〕A. 2100 B. 1600 C. 1500 D. 1540解:由题意得,∠EBF=45°,EF=700米,∴BF=EF=700米,∵AE的坡度为1:2,∴AF=2EF=1400米,∴AB=1400+700=2100米,设CD=x米,∵AE的坡度为1:2,∴AC=2CD=2x米,∵∠DBC=12°,tan12°≈0.2=,∴BC=5CD=5x米,则7x=2100,解得,x=300米,∴AC=600米,BC=1500米;12. 假设数a使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a的值之积为〔B 〕A. 28B. ﹣4C. 4D. ﹣2解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即〔a+3〕x=10,由分式方程有正整数解,得到x =,即a+3=1,2,10,解得:a=﹣2,2,7.综上,满足条件a的为﹣2,2,之积为﹣4,二、填空题13. 截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000次,请将6820 000 000用科学记数法表示为_6.82×10914. 计算:=__﹣5______.15. 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,假设OA=4,则阴影局部的面积为__连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE =∴S阴影=S扇形AOB-S扇形COD-〔S扇形AOE-S△COE〕===.16. “一带一路〞国际合作顶峰论坛于5月14日在北京开幕,学校在初三年级随机抽取了50名同学进行“一带一路〞知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是___47.5_____分.17. 5月13日,周杰伦2021“地表最强〞世界巡回演唱会在奥体中心壮大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发觉对讲机遗忘在出发地,便马上返回出发地,拿到对讲机后〔取对讲机时间不计〕马上再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x〔min〕,两人之间的距离为y〔m〕,y与x的函数图象如下图,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是________米.解:由图象可得2号巡逻员的速度为1000÷12.5=80m/min,1号巡逻员的速度为〔1000﹣800〕÷1﹣80=200﹣80=120m/min,设两车相遇时的时间为x min,可得方程:80x+120〔x﹣2〕=800+200,解得:x=6.2,∴x =6.2,∴2号巡逻员的路程为6.2×80=496m,1号巡逻员到达看台时,还需要=min,∴2号巡逻员离舞台的距离是1000﹣80×〔6.2+〕=m,18. 正方形ABCD 中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=,AE=8,则S四边形EFMG=________.解:过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°,∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°,∵∠EGB=∠CGB,BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP,∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE〔HL〕,∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP =∠ABC=45°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM =,∴BN=NM ==,∴BE =,∵AE=8,∴DE=12﹣8=4,由勾股定理得:AB ===12,设BF=x,则EF=x,AF=12﹣x,由勾股定理得:x2=82+〔12﹣x〕2,x =,∴BF=EF =,∵△ABE≌△PBE,∴EP=AE=8,BP=AB=12,同理可得:PG =,Rt△EFN中,FN ==,∴S四边形EFMG=S△EFN+S△EBG﹣S△BNM =FN•EN +EG•BP ﹣BN•NM =××+〔8+〕×12﹣××=..19. 如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度数.解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥DG〔内错角相等,两直线平行〕,∴∠BAC+∠AGD=180°〔两直线平行,同旁内角互补〕,∵∠BAC=87°,∴∠AGD=93°.20. 巴蜀中学2021春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A文艺范、B动漫潮、C学院派、D民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一局部学生进行调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:〔1〕请补全折线统计图,并求出“动漫潮〞所在扇形的圆心角度数.〔2〕据统计,在被调查的学生中,喜欢“文艺范〞类型的仅有2名住读生,其余均为走读生,初二年级欲从喜欢“文艺范〞的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛〞视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.解:〔1〕被调查的学生数为;20÷50%=40人,A文艺范人数=40×12.5%=5人,B动漫潮人数=40﹣5﹣5﹣20=10人,补全折线统计图如下图,“动漫潮〞所在扇形的圆心角度数=360°×=90°;〔2〕设2名住读生为A1,A2,走读生为B1,B2,B3画树状图如下图,由树状图得知,全部等可能的情况有20种,其中所选两位同学恰好都是都是走读生的情况有6种,∴所选的两名同学都是走读生的概率==.21.〔1〕〔b+2a〕〔2a﹣b〕﹣3〔2a﹣b〕2;〔2〕.解:〔1〕原式=4a2﹣b2﹣12a2+12ab﹣3b2=﹣8a2+12ab﹣4b2;〔2〕原式====.22. 如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数〔m≠0〕的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为〔12,n〕,OA=10,E为x轴负半轴上一点,且tan∠AOE =.〔1〕求该反比例函数和一次函数的解析式;〔2〕延长AO交双曲线于点D,连接CD,求△ACD的面积.解:〔1〕如图,过A作AF⊥x轴于F,∵OA=10,tan∠AOE =,∴可设AF=4a,OF=3a,则由勾股定理可得:〔3a〕2+〔4a〕2=102,解得a=2,∴AF=8,OF=6,∴A〔﹣6,8〕,代入反比例函数,可得m=﹣48,∴反比例函数解析式为:,把点B〔12,n〕代入,可得n=﹣4,∴B〔12,﹣4〕,设一次函数的解析式为y=kx+b ,则,解得:,∴一次函数的解析式为;〔2〕在一次函数中,令y=0,则x=6,即C〔6,0〕,∵A〔﹣6,8〕与点D关于原点成中心对称,∴D〔6,﹣8〕,∴CD⊥x轴,∴S△ACD=S△ACO+S△CDO=CO×AF +CO×CD =×6×8+×6×8=48.23. “父母恩深重,恩怜无歇时〞,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会方案采购一批鲜花礼盒赠送给妈妈们.〔1〕经过和花店卖家议价,可在原标价的根底上打八折购进,假设在花店购置80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;〔用不等式解答〕〔2〕后来学生会了解到通过“群众点评〞或“美团〞同城配送会在〔1〕中花店最高售价的根底上降价25%,学生会方案在这两个网站上分别购置相同数量的礼盒,但实际购置过程中,“群众点评〞网上的购置价格比原有价格上涨m%,购置数量和原方案一样:“美团〞网上的购置价格比原有价格下降了m 元,购置数量在原方案根底上增加15m%,最终,在两个网站的实际消费总额比原方案的预算总额增加了m%,求出m的值.解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;〔2〕先假设学生会方案在这两个网站上分别购置的礼盒数为a个礼盒,表示在“群众点评〞网上的购置实际消费总额:120a〔1﹣25%〕〔1+m%〕,在“美团〞网上的购置实际消费总额:a[120〔1﹣25%〕﹣m]〔1+15m%〕;根据“在两个网站的实际消费总额比原方案的预算总额增加了m%〞列方程解出即可.试题解析:〔1〕解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120〔元〕.答:每个礼盒在花店的最高标价是120元;〔2〕解:假设学生会方案在这两个网站上分别购置的礼盒数为a个礼盒,由题意得:120×0.8a〔1﹣25%〕〔1+m%〕+a[120×0.8〔1﹣25%〕﹣m]〔1+15m%〕=120×0.8a〔1﹣25%〕×2〔1+ m%〕,即72a 〔1+ m%〕+a〔72﹣m〕〔1+15m%〕=144a〔1+ m%〕,整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0〔舍〕,m2=20.答:m的值是20.24. 如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.〔1〕假设AB=3,AD =,求△BMC的面积;〔2〕点E为AD的中点时,求证:AD =BN.解:〔1〕如图1中,在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,∴BM=AD =,∴AM ==1,∴CM=CA﹣AM=2,∴S△BCM =•CM•BA =×23=3.〔2〕如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,∵△ABM∽△ECM ,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EP A≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC =EC,∴AD=2EC,∴2NC =AD,∴AD =NC,∵BN=NC,∴AD =BN.25. 对于一个三位正整数t,将各数位上的数字重新排序后〔包含本身〕,得到一个新的三位数〔a≤c〕,在全部重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t的“最优组合〞,并规定F〔t〕=|a ﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合〞,此时F〔124〕=﹣1.〔1〕三位正整数t中,有一个数位上的数字是其它两数位上的数字的平均数,求证:F〔t〕=0;〔2〕一个正整数,由N个数字组成,假设从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数〞.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数〞.假设三位“善雅数〞m=200+10x+y〔0≤x≤9,0≤y≤9,x、y为整数〕,m的各位数字之和为一个完全平方数,求出全部符合条件的“善雅数〞中F〔m〕的最大值.〔1〕证明:∵三位正整数t中,有一个数位上的数字是其它两数位上的数字的平均数,∴重新排序后:其中两个数位上数字的和是一个数位上的数字的2倍,∴a+c﹣2b=0,即〔a﹣b〕﹣〔b﹣c〕=0,∴F 〔t〕=0;∵〔2〕∵m=200+10x+y是“善雅数〞,∴x为偶数,且2+x+y是3的倍数,∵x<10,y<10,∴2+x+y <30,∵m的各位数字之和为一个完全平方数,∴2+x+y=32=9,∴当x=0时,y=7,当x=2时,y=5,当x=4时,y=3,当x=6时,y=1,∴全部符合条件的“善雅数〞有:207,225,243,261,∴全部符合条件的“善雅数〞中F〔m〕的最大值是=|2﹣3|﹣|3﹣4|=0.26. 如图1,在平面直角坐标系中,抛物线与x轴交于点A、B两点〔点A在点B的左侧〕,与y轴交于点C,过点C作CD∥x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.〔1〕求S△ABD的值;〔2〕如图2,假设点P是直线AD下方抛物线上一动点,过点P作PF∥y轴交直线AD于点F,作PG ∥AC交直线AD于点G,当△PGF的周长最大时,在线段DE上取一点Q,当PQ +QE的值最小时,求此时PQ + QE的值;〔3〕如图3,M是BC的中点,以CM为斜边作直角△CMN,使CN∥x轴,MN∥y轴,将△CMN沿射线CB平移,记平移后的三角形为△C′M′N′,当点N′落在x轴上即停止运动,将此时的△C′M′N′绕点C′逆时针旋转〔旋转度数不超过180°〕,旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x 轴交于点W,请问△CST是否能为等腰三角形?假设能,请求出全部符合条件的WN′的长度;假设不能,请说明理由.解:〔1〕令y=0,则,解得x =或,∴A 〔,0〕,B 〔,0〕,C〔0,〕,∵CD∥AB,∴S△DAB=S△ABC =•AB•OC =××=.〔2〕如图2中,设P〔m ,〕.∵A 〔,0〕,D 〔,〕,∴直线AD 的解析式为,∵PF∥y轴,∴F〔m ,〕,∵PG⊥DE,∴△PGF的形状是相似的,∴PF的值最大时,△PFG的周长最大,∵PF =﹣〔〕=,∴当m ==时,PF的值最大,此时P 〔,〕,作P 关于直线DE的对称点P′,连接P′Q,PQ,作EN∥x轴,QM⊥EN于M,∵△QEM∽△EAO,∴=,∴QM =QE,∴PQ +EQ=PQ+QM=P′Q+QM,∴当P′、Q、M共线时,PQ +EQ的值最小,易知直线PP′的解析式为,由,可得G 〔,〕,∵PG=GP′,∴P′〔,〕,∴P′M ==,∴PQ +EQ 的最小值为.〔3〕①如图3中,当CS=CT时,作CK平分∠OCA,作KG⊥AC于G.易知KO=KG ,∵====,∴OK ==,易证∠BWN′=∠OCK,∴tan∠BWN′=tan∠OCK ==,∵BN ′=,∴WN ′=.②如图4中,当TC=TS时,易证∠BWN′=∠OAC,∴tan∠BWN′=tan∠OAC ==,∴WN ′=;③如图5中,当TS=TC时,延长N′B交直线AC于Q,作BG⊥AQ于G,QR⊥AB于R.∵TS=TC,∴∠TSC=∠TCS=∠ACO,∵∠TSC+∠SQN′=90°,∠ACO+∠OAC=90°,∴∠BQA=∠OAC=∠BAQ,∴BA=BQ,∴AG=GQ,设AQ=a,则易知BG=a,BQ=AB=a,∵•AQ•BG=•AB•QR,∴QR=a,BR=a,∴tan∠WBN′=tan∠QBR==,∴WN′=.④如图6中,当CS=CT时,由①可知,在Rt△BN′W中,tan∠N′BW==,∴N′W=.综上所述,满足条件的WN′的长为或或或.。

2018高考数学(理科)模拟考试题一含答案及解析

2018高考数学(理科)模拟考试题一含答案及解析

2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B. 5 C.4 D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i, 其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B. 2 C. 3 D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2= 3.故选C.图D1884.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π24.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.5.设x ∈R ,[x ]表示不超过x 的最大整数. 若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立,则正整数n 的最大值是( )A .3B .4C .5D .65.B 解析:因为[x ]表示不超过x 的最大整数.由[t ]=1,得1≤t <2,由[t 2]=2,得2≤t 2<3.由[t 3]=3,得3≤t 3<4.由[t 4]=4,得4≤t 4<5.所以2≤t 2< 5.所以6≤t 5<4 5.由[t 5]=5,得5≤t 5<6,与6≤t 5<4 5矛盾,故正整数n 的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a 值为1,则输出的k 值为( )图M1-2A .1B .2C .3D .46.B 解析:输入a =1,则k =0,b =1;进入循环体,a =-12,否,k =1,a =-2,否,k =2,a =1,此时a =b =1,输出k ,则k =2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m +n 的值是( )图M1-3A .10B .11C .12D .137.C 解析:由题意,得78+88+84+86+92+90+m +957=88,n =9.所以m +n =12.故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16C .17万元 D .18万元8.D 解析:设该企业每天生产甲、乙两种产品分别为x 吨、y 吨,则利润z =3x +4y .由题意可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0.其表示如图D189阴影部分区域:图D189当直线3x +4y -z =0过点A (2,3)时,z 取得最大值,所以z max =3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个9.C 解析:由题意,必有a 1=0,a 8=1,则具体的排法列表如下:10.(2016年天津)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎝⎛⎦⎤0,18B.⎝⎛⎦⎤0,14∪⎣⎡⎭⎫58,1 C.⎝⎛⎦⎤0,58 D.⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58 10.D 解析:f (x )=1-cos ωx 2+sin ωx 2-12=22sin ⎝⎛⎭⎫ωx -π4,f (x )=0⇒sin ⎝⎛⎭⎫ωx -π4=0, 所以x =k π+π4ω(π,2π),(k ∈Z ).因此ω⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,54∪⎝⎛⎭⎫98,94∪…=⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,+∞⇒ω∈⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58.故选D.11.四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为243π16的同一球面上,则P A =( )A .3 B.72C .2 3 D.9211.B 解析:如图D190,连接AC ,BD 交于点E ,取PC 的中点O ,连接OE ,则OE∥P A ,所以OE ⊥底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O 为球心,12PC =12P A 2+AC 2=12P A 2+8,所以由球的体积可得43π⎝⎛⎭⎫12P A 2+83=243π16,解得P A =72.故选B.图D19012.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若OA →·OB →=6(O 为坐标原点),则△ABO 与△AOF 面积之和的最小值为( )A .4 B.3 132 C.17 24D.1012.B 解析:设直线AB 的方程为x =ty +m ,点A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m,0),将直线方程与抛物线方程联立,可得y 2-ty -m =0,根据韦达定理有y 1·y 2=-m ,因为OA →·OB →=6,所以x 1·x 2+y 1·y 2=6,从而(y 1·y 2)2+y 1·y 2-6=0,因为点A ,B 位于x 轴的两侧,所以y 1·y 2=-3,故m =3,不妨令点A 在x 轴上方,则y 1>0,又F ⎝⎛⎭⎫14,0,所以S △ABO +S △AFO =12×3×(y 1-y 2)+12×14y 1=138y 1+92y 1≥2138·y 1·92·1y 1=3132,当且仅当13y 18=92y 1,即y 1=6 1313时取等号,故其最小值为3 132.故选B.第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则c =m a +b =(m +4,2m +2),|a |=5,|b |=2 5,a ·c =5m +8,b ·c =8m +20.∵c 与a 的夹角等于c 与b 的夹角,∴c·a |c|·|a|=c·b |c|·|b|.∴5m +85=8m +202 5.解得m =2.14.设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.14.5 解析:根据双曲线的对称性,不妨设F (c,0),虚轴端点为(0,b ),从而可知点(-c,2b )在双曲线上,有c 2a 2-4b 2b2=1,则e 2=5,e = 5.15.(2016年北京)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式T r +1=C r 6·(-2)r x r 可知,x 2的系数为C 26(-2)2=60,故填60.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤12”发生的概率为________.16.13 解析:由正弦函数的图象与性质知,当x ∈⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π时,sin x ≤12. 所以所求概率为⎝⎛⎭⎫π6-0+⎝⎛⎭⎫π-5π6π=13.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.17.解:(1)设{a n }的公比为q ,{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10.消去d ,得q 4-2q 2-8=0.解得q =2,d =2.所以{a n }的通项公式为a n =2n -1,n ∈N *, {b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)2n -1,设{c n }的前n 项和为S n , 则S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以S n =(2n -3)·2n +3,n ∈N *.18.(本小题满分12分)(2014年大纲)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠P AB=90°,BC=CD=12AD,E为边AD的中点,异面直线P A与CD所成的角为90°.(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB ⊂平面PBE ,CM 平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 从而CD ⊥PD .所以∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.设BC =1,则在Rt △P AD 中,P A =AD =2.如图D191,过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 易知P A ⊥平面ABCD , 从而P A ⊥CE . 于是CE ⊥平面P AH . 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE . 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=3 22, 所以sin ∠APH =AH PH =13.图D191 图D192方法二,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.由P A ⊥AB ,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD → ,AP →的方向分别为x 轴,z 轴的正方向,建立如图D192所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2)设平面PCE 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0, 得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13 .所以直线P A 与平面PCE 所成角的正弦值为13.20.(本小题满分12分)(2016年新课标Ⅲ)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .20.解:(1)由题设,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减.(2)由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)由题设c >1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c . 令g ′(x )=0,解得x 0=lnc -1ln cln c .当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减. 由(2)知,1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以x ∈(0,1)时,1+(c -1)x >c x .21.(本小题满分12分)(2016年广东广州综合测试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2, 0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为椭圆的左焦点为F 1(-2,0),所以a 2-b 2=4.①因为点B (2,2)在椭圆C 上,所以4a 2+2b 2=1.②由①②,解得a =2 2,b =2.所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A ,则点A 的坐标为(-2 2,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于两点E ,F ,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).联立方程组⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2. 所以x 0=2 21+2k2,则y 0=2 2k 1+2k2.所以直线AE 的方程为y =k1+1+2k2(x +2 2).因为直线AE ,AF 分别与y 轴交于点M ,N ,令x =0得y = 2 2k1+1+2k2,即点M ⎝ ⎛⎭⎪⎫0, 2 2k 1+1+2k 2. 同理可得点N ⎝ ⎛⎭⎪⎫0, 2 2k 1-1+2k 2. 所以|MN |=⎪⎪⎪⎪⎪⎪2 2k 1+1+2k 2- 2 2k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k .则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+2 2k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A (2,π)、B ⎝⎛⎭⎫2,4π3. (1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.22.解:(1)将A 、B 化为直角坐标为A (2cos π,2sin π),B ⎝⎛⎭⎫2cos 4π3,2sin 4π3,即A ,B 的直角坐标分别为A (-2,0),B (-1,-3),k AB =-3-0-1+2=-3,∴直线AB 的方程为y -0=-3(x +2),即直线AB 的方程为3x +y +2 3=0.(2)设M (2cos θ,sin θ),它到直线AB 的距离d =|2 3cos θ+sin θ+2 3|2=|13sin (θ+φ)+2 3|2, ∴d max =13+2 32.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -2|-|2x -a |,a ∈R .(1)当a =3时,解不等式f (x )>0;(2)当x ∈(-∞,2)时,f (x )<0恒成立,求a 的取值范围.23.解:(1)当a =3时,f (x )>0,即|x -2|-|2x -3|>0,等价于⎩⎪⎨⎪⎧ x ≤32,x -1>0,或⎩⎪⎨⎪⎧ 32<x <2,-3x +5>0,或⎩⎪⎨⎪⎧x ≥2,-x +1>0. 解得1<x ≤32,或32<x <53. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <53. (2)f (x )=2-x -|2x -a |,所以f (x )<0可化为|2x -a |>2-x , ①即2x -a >2-x ,或2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a ,∵x ∈(-∞,2),∴a ≥4.。

各地2018年中考数学试卷等腰三角形(word,含解析)

各地2018年中考数学试卷等腰三角形(word,含解析)

等腰三角形一、选择题1.(2018•ft东枣庄•3 分)如图是由 8 个全等的矩形组成的大正方形,线段 AB 的端点都在小矩形的顶点上,如果点 P 是某个小矩形的顶点,连接 PA、PB,那么使△ABP 为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点 P 的个数是 3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点 P 是解题的关键. 2 (2018•ft东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD 于点E,交CB 于点F.若AC=3,AB=5,则CE 的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠C FA=90°,∠FAD+∠AE D=90°,根据角平分线和对顶角相等得出∠CE F=∠CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE 的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠C EF=∠CF E.3.(2018•ft东淄博•4 分)如图,P 为等边三角形 ABC 内的一点,且 P 到三个顶点 A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B 逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到 PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长 BP,作AF⊥BP 于点 FAP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得 AF 和 PF 的长,则在直角△ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B 逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF AP=,PF=AP=.∴在直角△ABF)2+()2=25+12 .则△ABC •AB2=•(25+12 .故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4.(2018•江苏扬州•3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD 与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③【分析】(1)由等腰Rt△ABC 和等腰Rt△ADE 三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2 转化为A C2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3 分)如图,已知BD 是△A BC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3,则CE 的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠A BD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形 ABC 中,BC>AB>AC,甲、乙两人想找一点 P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A 为圆心,AC 长为半径画弧交AB 于P 点,则P 即为所求;(乙)作过 B 点且与AB 垂直的直线l,作过C 点且与 AC 垂直的直线,交l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得 AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3 分)如图,等腰Rt△ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ⊥OP交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点 C 时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接 OC,作PE⊥AB 于 E,MH⊥AB 于 H,QF⊥AB 于 F,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到AP=CQ,QF=BQ,所以BC=1,然后证明MH 为梯形PEFQ 的中位线得到,即可判定点M 到AB 的距离为,从而得到点 M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点 M 所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB= ,∠A=∠B=45°,∵O为AB 的中点,∴OC⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ 的中点,∴MH为梯形PEFQ 的中位线,∴MH=(PE+QF)=,即点M到AB ,而 CO=1,∴点M 的运动路线为△ABC的中位线,∴当点P 从点A 运动到点C 时,点M AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018•河北•3分)已知:如图 4,点P在线段AB外,且PA =PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC ⊥AB于点C且AC =BCC.取AB中点C,连接PCD.过点P作PC ⊥AB,垂足为C9.(2018 四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作C H⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠C AB=45°,即∠A CD+∠DCB=∠A CD+∠A CE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA=,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE=+1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH== ,∴= AD·CH=×× = ,∴=(4-2 )×=3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接 BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由 SAS 得△DCB≌△ECA,根据全等三角形的性质知 DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.二.填空题1.(2018 四川省泸州市 3 分)如图,等腰△A BC 的底边 BC=20,面积为 120,点 F 在边BC上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为 18 .【分析】如图作A H⊥BC 于H,连接AD.由EG 垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF 周长的最小值为 13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018•广西桂林•3 分)如图,在Δ ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD 平分∠ABC交AC 于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO 为等边三角形,根据等边三角形的性质结合 OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6× × ×1=2 ., ,故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3 分)如图,在边长为 4 中,,分别为的中点 于点,为的中点,连接,则的长为.【答案】【解析】分析:连接 DE ,根据题意可得 Δ DEG 是直角三角形,然后根据勾股定理即可求解 DG 的长. 详解:连接 DE ,∵D、E 分别是 AB 、BC 的中点, ∴DE∥AC,DE=AC∵Δ ABC 是等边三角形,且 BC=4 ∴∠DEB=60°,DE=2 ∵EF⊥AC,∠C=60°,EC=2 ∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF 的中点,∴EG=.在RtΔ DEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3 分)如图.在△A BC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 的长是.【分析】延长 BC 至 M,使 CM=CA,连接 AM,作CN⊥AM 于 N,根据题意得到 ME=EB,根据三角形中位线定理得到AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出 AN,计算即可.【解答】解:延长BC 至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=A C•s in∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2 分) 右图所示的网格是正方形网格,∠BAC∠DAE .(填“ >”,“ =”或“ <”) 【答案】>【解析】如下图所示,△AFG 是等腰直角三角形,∴ ∠FAG = ∠BAC = 45︒,∴ ∠BAC >∠DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3 分)如图,在直角 中,,,,、分别为边 、上的两个动点,若要使 是等腰三角形且是直角三角形,则.16.【答案】 或G EBD FCAEBDCA【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ 是直角三角形时,有两种情况:∠B PQ=90 度,∠BQP=90 度。

最新重庆市2018年中考数学一轮复习第四章三角形数学文化讲堂四练习_75含答案

最新重庆市2018年中考数学一轮复习第四章三角形数学文化讲堂四练习_75含答案

数学文化讲堂(四)一海伦——秦九韶公式古希腊的几何学家海伦,约公元50年,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边分别为a,b,c,记p=12(a+b+c),那么三角形的面积为:S△ABC=p(p-a)(p-b)(p-c)(海伦公式).我国南宋时期数学家秦九韶(约1202~约1261),曾提出利用三角形的三边求面积的秦九韶公式:S△ABC=1 4[a2b2-(a2+b2-c22)2].海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦——秦九韶公式.(人教八下P16,北师八上P51)1. 若△ABC的三边长为5,6,7,△DEF的三边长为5,6,7,请利用上面的两个公式分别求出△ABC和△DEF的面积.2. 如图,在△ABC中,BC=5,AC=6,AB=9,求△ABC的内切圆半径.第2题图二赵爽弦图赵爽,三国吴人,是三国到南宋时期三百多年间中国杰出的数学家之一.他在注解《周髀算经》中给出的“赵爽弦图”证明了勾股定理的准确性,如图所示,四个全等的直角三角形可以围成一个大的正方形,中间空的是一个小正方形.通过对这个图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.证明方法如下:设直角三角形的三边中较短的直角边为a,另一直角边为b,斜边为c,朱实面积=2ab,黄实面积=(b-a)2=b2-2ab+a2,朱实面积+黄实面积=a2+b2=大正方形面积=c2.(人教八下P30,北师八下P16)3. 如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为________.第3题图第4题图4. 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________.三泰勒斯——全等泰勒斯,公元前7至6世纪的古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人.泰勒斯是古希腊及西方第一个有记载有名字留下来的自然科学家和哲学家.5. 相传泰勒斯利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过点B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是( )第5题图A. SASB. ASAC. AASD. SSS四 《海岛算经》《海岛算经》是中国最早的一部测量数学专著,也是中国古代高度发达的地图学的数学基础.由刘徽于三国魏景元四年所撰,《海岛算经》共九问,都是用表尺重复从不同位置测望,取测量所得的差数,进行计算从而求得山高或谷深.(北师九上P 104)6. 该书中提出九个测量问题,其中一个为:有望深谷,偃矩岸上,令勾高六尺.从勾端望谷底,入下股九尺一寸.又设重矩于上,其矩间相去三丈.更从勾端望谷底,入上股八尺五寸.问谷深几何?题目的大意是:测量一个山谷AE 的深度,拿一个高AB 为6尺的矩尺△ABD 放在岸上,从B 端看谷底EG(D 在BG 上),下股AD 为9尺1寸,向上平移矩尺3丈,现从B ′端看谷底EG ,上股A ′D ′为8尺5寸,试求谷深AE.(一丈=10尺=100寸)第6题图7. 某校王老师根据《海岛算经》中的问题,编了这样一道题:如图,甲、乙两船同时由港口A 出发开往海岛B ,甲船沿北偏东60°方向向海岛B 航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,在C 港口停留0.5小时后再沿东北方向开往B 岛,B 岛建有一座灯塔,在灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔,两船看到灯塔的时间相差多少?(精确到分钟,3≈1.73,2≈1.41)第7题图答案1. 解: 当△ABC 的三边长为5,6,7时,则p =12×(5+6+7)=9,∴S △ABC =9×(9-5)×(9-6)×(9-7)=66,当△DEF 的三边长为5,6,7时,S △DEF =14[(5)2×(6)2-(5+6-72)2]=262. 2. 解:由题意得p =12×(5+6+9)=10,则 S =10×(10-5)×(10-6)×(10-9)=10 2.∵S =12r(AC +BC +AB), ∴102=12r(5+6+9), 解得r =2,故△ABC 的内切圆半径为 2.3. 1或4 【解析】分两种情况:①5为斜边时,由勾股定理得,另一直角边长=52-32=4,∴小正方形的边长=4-3=1,∴小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积=22=4;综上所述,小正方形的面积为1或4.4. 6 【解析】设AH =x ,则AE =x +2,由四个全等的直角三角形可得DE =AH =x ,在Rt △DAE 中,由勾股定理得:AD 2=AE 2+DE 2,即102=(x +2)2+x 2,解得x =6或x =-8(舍去).5. B6. 解:∵AD ∥EG ,∴△BAD ∽△BEG ,∴BA BE =AD EG, ∴66+AE =9.1EG , ∵A ′D ′∥EG ,∴△B ′A ′D ′∽△B ′EG ,∴B ′A ′B ′E =A ′D ′EG, ∴66+30+AE =8.5EG , ∴9.1(6+AE)=8.5(36+AE),∴解得AE =419(尺),∴谷深AE 为41丈9尺.7. 解:如解图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,设BD =x , 在Rt △BCD 中,第7题解图∵∠BCD =45°,∴BC =BD sin 45°=2x , 在Rt △ABD 中,∵∠ABD =60°,∴AD =BD ·tan 60°=3x ,AB =BD cos 60°=2x , ∵AC =20×1=20(海里),AC +CD =AD ,∴20+x = 3 x ,解得x =10(3+1)海里,∴AB =2x =20(3+1)海里,BC =2x =102(3+1)海里,∴t 甲=(AB -5)÷15×60=(203+20-5)÷15×60≈198.4(分钟),t乙=(AC+BC-5)÷20×60+0.5×60=[20+102(3+1)-5]÷20×60+30 ≈190.5(分钟).∵t甲>t乙,t甲-t乙≈8(分钟),∴乙船先看到灯塔,两艘船看到灯塔的时间相差约8分钟.。

2018年中考数学真题知识分类练习试卷:代数式(有答案)

2018年中考数学真题知识分类练习试卷:代数式(有答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。

2018年重庆市中考数学试卷(A卷)含答案

2018年重庆市中考数学试卷(A卷)含答案

2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。

都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(4分)2的相反数是()A.﹣2 B.﹣C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 9.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B 在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(

A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(

A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?

重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷(含答案)

重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷(含答案)

重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,既是中心对称图形又是轴对称图形的为( )A.B.C.D.2.(4分)下列方程中,有两个相等实数根的是( )A.x2=x B.C.x2﹣4=0D.x2+2x+4=03.(4分)在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k<3D.k<04.(4分)如图,在平面直角坐标系中,△ABC与△ADE是以点A为位似中心的位似图形,相似比为1:3,点A 在x轴上,点A的坐标是(﹣1,0),点B的坐标是(﹣2,2),则点D的坐标是( )A.(﹣3,4)B.(﹣4,6)C.(﹣4,5)D.(﹣3,5)5.(4分)某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)26.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间7.(4分)若,则的值为( )A.B.1C.1.5D.38.(4分)下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,…….按此规律,图形⑩中共有n个小三角形,这里的n=( )A.87B.74C.62D.539.(4分)如图,正方形ABCD的对角线AC与BD的交于点O,点E为边AB上一动点,连接DE,作CF⊥DE 于点F,连接OF,若∠BDE=α,则∠DOF的度数为( )A.2αB.30°+αC.45°﹣αD.60°﹣2α10.(4分)给定一列数,我们把这列数中第一个数记为a1,第二个数记为a2,第三个数记为a3,以此类推,第n 个数记为a n(n为正整数),已知a1=x.并规定:a n+1=,T n=a1•a2•a3…a n,S n=a1+a2+a3+…+a n.则:①a2=a5;②T1+T2+T3+…+T1000=;③对于任意正整数k,T3k+3(S3k﹣S3k+2)=T3k﹣T3k﹣1﹣T3k﹣2成立,以上结论中正确的有( )A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:()﹣1+(π﹣2)0= .12.(4分)已知关于x的一元二次方程x2﹣x+2m=0的一个根是2,则m2= .13.(4分)一个不透明的箱子里装有a个球,其中红球有5个,这些球除颜色外都相同.每次将箱子里的球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出a的值为 .14.(4分)若一个多边形的内角和为720°,则从该多边形一个顶点出发可画的对角线条数是 .15.(4分)如图,矩形ABCD的顶点A、B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,点C、D在x轴上,AB、BD分别交y轴于点E、F,则阴影部分的面积为 .16.(4分)若关于x的不等式组的解集为x>0,且关于y的分式方程有非负整数解,则所有满足条件的整数m的值的和是 .17.(4分)如图,菱形ABCD的边长为4,∠BAD=60°,过点B作BE⊥AB交CD于点E,连接AE,F为AE 的中点,H为BE的中点,连接FH和CF,CF交BE于点G,则GF的长为 .18.(4分)若一个四位自然数A,满足百位数字与千位数字的平方差恰好是A去掉千位与百位数字后得的两位数,则称这个四位数A为“活泼数”,例如A=2521,因为52﹣22=21,故2521是一个“活泼数”;若一个四位自然数B,各个数位上的数字互不相等且满足十位数字比千位数字大1,个位数字比百位数字大1,则称这个四位数B为“可爱数”,例如1425,因为2﹣1=1,5﹣4=1,故1425是一个“可爱数”,对于一个“活次数”,规定:,对于一个“可爱数”B=,规定:G(B)=p﹣n,则F(5611)×G(3142)= ;当B的百位数字为4时,若是整数,则所有满足条件的奇数四位数A 的和是 .三.解答题(共8小题,满分78分)19.(8分)(1)解方程:(2)解不等式组:.20.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=0.21.(10分)学习了平行四边形的知识后,同学们进行了拓展性研究.他们发现作平行四边形一组对角的角平分线与另一组对角的顶点所连对角线相交,则这两个交点与这条对角线两侧的对角顶点的连线所围成的封闭图形是一个特殊四边形.他的解决思路是通过证明对应线段平行且相等得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规,过点B作∠ABC的角平分线,交AC于点F,连接BE、DF.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,DE平分∠ADC,交AC于点E.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD=CB,① ,∴∠DAC=∠BCA.∵DE平分∠ADC,BF平分∠CBA,∴,.∵∠ADC=∠CBA,∴② ,∴△ADE≌△CBF(ASA).∴DE=BF,∠DEA=∠BFC.∴③ ,∴四边形BEDF是平行四边形.同学们再进一步研究发现,过平行四边形任意一组对角的顶点作平行线与另一组对角顶点所连对角线相交,均具有此特征.请你依照题意完成下面命题:过平行四边形一组对角的顶点作平行线与另一组对角顶点所连对角线相交,则④ .22.(10分)教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:0≤x<60),将数据进行分析,得到如下统计:①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.②八年级100名学生上周劳动时间频数分布统计表:分组A B C D E频数14b28136③七、八年级各100名学生上周带动时间的平均数、中位数、众数如表:年级平均数中位数众数七年级81.379.582八年级81.3c83请你根据以上信息,回答下列问题:(1)a= ,b= ,c= ;(2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条理由即可)(3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?23.(10分)四边形ABCD中,AB∥CD,BC⊥AB,AB=12,DC=6,BC=8.动点P从A点出发,沿A→B方向以每秒1个单位的速度运动,同时,动点Q从点A出发,沿折线A→D→C方向以每秒2个单位的速度运动,当Q点到达C点时,P、Q两点都停止运动.设动点P运动的时间为x秒,y1=AP+DQ.(1)请直接写出y1关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出函数y1的图象,并写出函数y1的一条性质;(3)若函数y2=x+b的图象跟函数y1的图象有两个交点,请直接写出b的取值范围.24.(10分)新学期学校门口开了一家文具店,为了更好的迎接同学们,商家购进了一批笔记本和签字笔.商家用1600元购买笔记本,800元购买签字笔,每本笔记本比每支签字笔的进价贵6元,且购进签字笔的数量是笔记本的2倍.(1)求商家购买每本笔记本和每支签字笔的进价?(2)商家在销售过程中发现,当笔记本的售价为每本14元,签字笔的售价为每支5元时,平均每天可售出20本笔记本,40支签字笔.据调查,笔记本的售价每降低0.5元平均每天可多售出5本,且开学活动力度大,降价幅度不低于10%.商家在保证签字笔的售价和销量不变且不考虑其他因素的情况下,想使笔记本和签字笔平均每天的总获利为270元,则每本笔记本的售价为多少元?25.(10分)如图,直线y=x+2分别与x轴,y轴交于点A,点C,点P是反比例函数y=(k≠0)图象与直线AC在第一象限内的交点,过点P作PB⊥x轴于点B,且AB=6.(1)求反比例函数的表达式;(2)点D是直线PB右侧反比例函数图象上一点,且S△APD=,直线PD交y轴于点E,点M,N是直线AC 上两点,点M在点N的左侧且MN=AP,求EM+DN的最小值及此时点N的坐标;(3)在(2)的条件下,点F为反比例函数图象上一点,若∠PEF﹣∠PAB=45°,请直接写出所有符合条件的点F的横坐标.26.(10分)在△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点(点D不与B,C重合),连接AD.(1)如图1,∠ADB=105°,CD=,求BD的长度;(2)如图2,D为BC中点,E为平面内一点,连接DE,CE,AE,BE,将线段DE绕D顺时针旋转90°得到线段DF,连接AF,∠FAC+∠ECB=90°,G为线段EC上一点,AG⊥CE,求证:CE=AF+2AG;(3)如图3,P,H为射线AD上两个点,∠BHA=90°,AP=2BH,将△BNP沿直线BP翻折至△BHP所在平面内得到△BKP,直线PK与直线AB交于点T.若,当线段BP取得最小值时,请直接写出△APT的面积.重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,既是中心对称图形又是轴对称图形的为( )A.B.C.D.【答案】D2.(4分)下列方程中,有两个相等实数根的是( )A.x2=x B.C.x2﹣4=0D.x2+2x+4=0【答案】B3.(4分)在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k<3D.k<0【答案】A4.(4分)如图,在平面直角坐标系中,△ABC与△ADE是以点A为位似中心的位似图形,相似比为1:3,点A 在x轴上,点A的坐标是(﹣1,0),点B的坐标是(﹣2,2),则点D的坐标是( )A.(﹣3,4)B.(﹣4,6)C.(﹣4,5)D.(﹣3,5)【答案】B5.(4分)某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)2【答案】B6.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】B7.(4分)若,则的值为( )A.B.1C.1.5D.3【答案】A8.(4分)下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,…….按此规律,图形⑩中共有n个小三角形,这里的n=( )A.87B.74C.62D.53【答案】B9.(4分)如图,正方形ABCD的对角线AC与BD的交于点O,点E为边AB上一动点,连接DE,作CF⊥DE 于点F,连接OF,若∠BDE=α,则∠DOF的度数为( )A.2αB.30°+αC.45°﹣αD.60°﹣2α【答案】C10.(4分)给定一列数,我们把这列数中第一个数记为a1,第二个数记为a2,第三个数记为a3,以此类推,第n 个数记为a n(n为正整数),已知a1=x.并规定:a n+1=,T n=a1•a2•a3…a n,S n=a1+a2+a3+…+a n.则:①a2=a5;②T1+T2+T3+…+T1000=;③对于任意正整数k,T3k+3(S3k﹣S3k+2)=T3k﹣T3k﹣1﹣T3k﹣2成立,以上结论中正确的有( )A.0个B.1个C.2个D.3个【答案】D二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:()﹣1+(π﹣2)0= 3 .【答案】3.12.(4分)已知关于x的一元二次方程x2﹣x+2m=0的一个根是2,则m2= 1 .【答案】1.13.(4分)一个不透明的箱子里装有a个球,其中红球有5个,这些球除颜色外都相同.每次将箱子里的球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出a的值为 20 .【答案】20.14.(4分)若一个多边形的内角和为720°,则从该多边形一个顶点出发可画的对角线条数是 3 .【答案】3.15.(4分)如图,矩形ABCD的顶点A、B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,点C、D在x轴上,AB、BD分别交y轴于点E、F,则阴影部分的面积为 .【答案】.16.(4分)若关于x的不等式组的解集为x>0,且关于y的分式方程有非负整数解,则所有满足条件的整数m的值的和是 ﹣8 .【答案】﹣8.17.(4分)如图,菱形ABCD的边长为4,∠BAD=60°,过点B作BE⊥AB交CD于点E,连接AE,F为AE 的中点,H为BE的中点,连接FH和CF,CF交BE于点G,则GF的长为 .【答案】.18.(4分)若一个四位自然数A,满足百位数字与千位数字的平方差恰好是A去掉千位与百位数字后得的两位数,则称这个四位数A为“活泼数”,例如A=2521,因为52﹣22=21,故2521是一个“活泼数”;若一个四位自然数B,各个数位上的数字互不相等且满足十位数字比千位数字大1,个位数字比百位数字大1,则称这个四位数B为“可爱数”,例如1425,因为2﹣1=1,5﹣4=1,故1425是一个“可爱数”,对于一个“活次数”,规定:,对于一个“可爱数”B=,规定:G(B)=p﹣n,则F(5611)×G(3142)= ;当B的百位数字为4时,若是整数,则所有满足条件的奇数四位数A的和是 83600 .【答案】;83600.三.解答题(共8小题,满分78分)19.(8分)(1)解方程:(2)解不等式组:.【答案】见试题解答内容20.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=0.【答案】,1.21.(10分)学习了平行四边形的知识后,同学们进行了拓展性研究.他们发现作平行四边形一组对角的角平分线与另一组对角的顶点所连对角线相交,则这两个交点与这条对角线两侧的对角顶点的连线所围成的封闭图形是一个特殊四边形.他的解决思路是通过证明对应线段平行且相等得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规,过点B作∠ABC的角平分线,交AC于点F,连接BE、DF.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,DE平分∠ADC,交AC于点E.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD=CB,① AD∥BC ,∴∠DAC=∠BCA.∵DE平分∠ADC,BF平分∠CBA,∴,.∵∠ADC=∠CBA,∴② ∠ADE=∠CBF ,∴△ADE≌△CBF(ASA).∴DE=BF,∠DEA=∠BFC.∴③ ∠DEA=∠BFC ,∴四边形BEDF是平行四边形.同学们再进一步研究发现,过平行四边形任意一组对角的顶点作平行线与另一组对角顶点所连对角线相交,均具有此特征.请你依照题意完成下面命题:过平行四边形一组对角的顶点作平行线与另一组对角顶点所连对角线相交,则④ 这两个交点与这条对角线两侧的对角顶点的连线所围成的四边形是平行四边形 .【答案】AD∥BC,∠ADE=∠CBF,∠DEA=∠BFC;这两个交点与这条对角线两侧的对角顶点的连线所围成的四边形是平行四边形.22.(10分)教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:0≤x<60),将数据进行分析,得到如下统计:①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.②八年级100名学生上周劳动时间频数分布统计表:分组A B C D E频数14b28136③七、八年级各100名学生上周带动时间的平均数、中位数、众数如表:年级平均数中位数众数七年级81.379.582八年级81.3c83请你根据以上信息,回答下列问题:(1)a= 10 ,b= 39 ,c= 80 ;(2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条理由即可)(3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?【答案】(1)10,39,80;(2)八年级的较好,理由:八年级学生参加劳动的时间的中位数、众数均比七年级的大;(3)七、八年级上周劳动时间在80分钟以上(含80分钟)的学生大约有718人.23.(10分)四边形ABCD中,AB∥CD,BC⊥AB,AB=12,DC=6,BC=8.动点P从A点出发,沿A→B方向以每秒1个单位的速度运动,同时,动点Q从点A出发,沿折线A→D→C方向以每秒2个单位的速度运动,当Q点到达C点时,P、Q两点都停止运动.设动点P运动的时间为x秒,y1=AP+DQ.(1)请直接写出y1关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出函数y1的图象,并写出函数y1的一条性质;(3)若函数y2=x+b的图象跟函数y1的图象有两个交点,请直接写出b的取值范围.【答案】(1)y1=;(2)作图见解答过程;当0≤x≤5时,函数值随x的增大而减小;当5<x≤8时,函数值随x的增大而增大(答案不唯一);(3)0<b≤6.24.(10分)新学期学校门口开了一家文具店,为了更好的迎接同学们,商家购进了一批笔记本和签字笔.商家用1600元购买笔记本,800元购买签字笔,每本笔记本比每支签字笔的进价贵6元,且购进签字笔的数量是笔记本的2倍.(1)求商家购买每本笔记本和每支签字笔的进价?(2)商家在销售过程中发现,当笔记本的售价为每本14元,签字笔的售价为每支5元时,平均每天可售出20本笔记本,40支签字笔.据调查,笔记本的售价每降低0.5元平均每天可多售出5本,且开学活动力度大,降价幅度不低于10%.商家在保证签字笔的售价和销量不变且不考虑其他因素的情况下,想使笔记本和签字笔平均每天的总获利为270元,则每本笔记本的售价为多少元?【答案】(1)商家购买每本笔记本的进价是8元,每支签字笔的进价是2元;(2)每本笔记本的售价为11元.25.(10分)如图,直线y=x+2分别与x轴,y轴交于点A,点C,点P是反比例函数y=(k≠0)图象与直线AC在第一象限内的交点,过点P作PB⊥x轴于点B,且AB=6.(1)求反比例函数的表达式;(2)点D是直线PB右侧反比例函数图象上一点,且S△APD=,直线PD交y轴于点E,点M,N是直线AC 上两点,点M在点N的左侧且MN=AP,求EM+DN的最小值及此时点N的坐标;(3)在(2)的条件下,点F为反比例函数图象上一点,若∠PEF﹣∠PAB=45°,请直接写出所有符合条件的点F的横坐标.【答案】(1)反比例函数解析式为y=;(2)EM+DN的最小值为3,此时N(4,4);(3)符合条件的点F的横坐标为或﹣5+.26.(10分)在△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点(点D不与B,C重合),连接AD.(1)如图1,∠ADB=105°,CD=,求BD的长度;(2)如图2,D为BC中点,E为平面内一点,连接DE,CE,AE,BE,将线段DE绕D顺时针旋转90°得到线段DF,连接AF,∠FAC+∠ECB=90°,G为线段EC上一点,AG⊥CE,求证:CE=AF+2AG;(3)如图3,P,H为射线AD上两个点,∠BHA=90°,AP=2BH,将△BNP沿直线BP翻折至△BHP所在平面内得到△BKP,直线PK与直线AB交于点T.若,当线段BP取得最小值时,请直接写出△APT的面积.【答案】(1);(2)证明过程详见解答;(3).。

2018年重庆市中考数学试卷-答案

2018年重庆市中考数学试卷-答案

重庆市2018年初中学业水平暨高中招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据题意,2(2)0+-=,∴2的相反数是-2,故选A. 【考点】相反数的概念. 2.【答案】D【解析】A 中的直角三角形不是轴对称图形;B 中的直角梯形不是轴对称图形;C 中的平行四边形是中心对称图形,不是轴对称图形;D 中的矩形是轴对称图形,故选D.【提示】判断一个图形是不是轴对称图形,要将这个图形沿某条直线对折,对折的两部分能完全重合,则这个图形是轴对称图形,常见的轴对称图形有线段、角、等腰三角形、菱形、矩形、正方形、圆、正多边形等。

【考点】轴对称图形的概念. 3.【答案】C【解析】根据题意,采取随机抽取的方法进行调查比较全面,结果也会比较真实有效,故选C. 【提示】选择抽取样本的恰当的方法是解答本题的关键. 【考点】调查中的样本选择. 4.【答案】C【解析】由题可知,每增加一个图案则增加2个三角形,∴第○n 个图案中有42(1)n +-个三角形,∴第⑦个图案中有16个三角形,故选C. 【考点】探索规律. 5.【答案】C【解析】根据题意可知两个三角形相似,设最长边为x cm ,则592.5x=,解得 4.5x =,即这个三角形的最长边为4.5 cm ,故选C .【提示】理解相似三角形的性质是解答本题的关键. 【考点】相似三角形的性质. 6.【答案】D【解析】Q 平行四边形的对角线互相平分而不垂直,∴命题A 不正确;Q 矩形的对角线相等且互相平分而不垂直,∴命题B 不正确;Q 菱形的对角线互相垂直平分而不相等,∴命题C 不正确;Q 正方形的对角线互相垂直平分且相等,∴命题D 正确,故选D.【提示】掌握特殊四边形的对角线的性质是解答本题的关键. 【考点】命题的判断. 7.【答案】B【解析】245223==<∴<<Q ,,,即在2和3之间,故选B .【考点】二次根式的运算、估算无理数. 8.【答案】C【解析】根据题意,当输入33x y ==,时,2021512y x y ∴+=≥,≠;当输入42x y =-=-,时,20,22012y x y ∴-=<≠;当输入24x y ==,时,20,212y x y ∴+=≥;当输入42x y ==,时,20,22012y x y ∴+=≥≠,故选C.【提示】根据y 的范围分情况求值是解答本题的关键。

【3套试卷】中考数学免费试题及答案

【3套试卷】中考数学免费试题及答案

中考一模数学试卷及答案一、选择题(共10 题,每小题3分,共30分)1. 由5a=6b(a≠0,b≠0),可得比例式( )A.B.C.D.2.若△ABC∽△DEF,相似比为3∶2,则对应面积的比为( )A.3∶2 B.3∶5 C.4∶9 D.9∶43.如图是由几个大小相同的小立方块所搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.如图,下列条件中,可以判定△ACD和△ABC相似的是( )A.B.C.AC2=AD·AB D.CD2=AD·BD 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A.B.C.D.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠BDE=55°,使A、C、E在一条直线上,那么点E与D的距离是( )A.500cos55°米B.500cos35°米C.500sin55°米D.500tan55°米7.已知反比例函数,则下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )A.210x+90(18-x)<2.1B.210x+90(18-x)≥2100C.210x+90(18-x)≤2100D.210x+90(18-x)≥2.19.如图所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5 m,则坡面AB的长是( )A.10 m B.m C.15 m D.m10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是( )A.B.C.D.二、填空题(共6 题,每小题3分,共18分)11. 已知反比例函数的图像经过点(-3,-1),则k= .12.已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.13.如图,路灯距离地面8 m,身高1.6 m的小明站在距离灯的底部(点O)20 m的A处,则小明的影子AM的长为 m.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为.16.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图象分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.三、解答题(共9 题,72分)17.(4分)计算:.18.(4分)如图已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1.19.(4分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.20.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m3)21.(8分)如图:直线y=x与反比例函数(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式.22.(10 分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设.(1)求证:AE=BF;(2)连接BE,DF,设∠EDF=α,∠EBF=β.求证:23.(10 分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若,求tan∠BDC的值.24.(12 分)已知:A(a,y1),B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.25.(14 分)在平面直角坐标系中,点A(m,m+1)在反比例函数的图象上.(1)求点A的坐标;(2)若直角∠NAM绕点A旋转,射线AN分别交x轴、y轴于点B、N,射线AM交x轴于点M,连接MN.①当点B和点N分别在x轴的负半轴和y轴的正半轴时,若△BAM∽△MON,求点N的坐标;②在直角∠NAM绕点A旋转的过程中,∠AMN的大小是否会发生变化?请说明理由.答案:1-5 BDCCB6-10 ADBAC11.312.13.514. 915.16.817.解:原式.18.解:(1)如图所示,点C1的坐标是(2,﹣2);(2)如图所示.19.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴,.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴∠ACD=∠CAD=45°∴DC=AD=4,∴.20.解:(1)设,由题意知,所以k=96,故该函数的解析式为;(2)当P=140 kPa时,(m3).所以为了安全起见,气体的体积应不少于0.69 m3.21.解:(1)∵直线y=x经过点A(2,m),∴m=2,∴A(2,2),∵A在的图象上,∴k=4.(2)设B(0,n),由题意:,∴n=﹣2,∴B(0,﹣2),设AB所在直线的解析式为y=k′x+b,则有,∴,∴AB所在直线的解析式为y=2x﹣2.22.解:(1)∵四边形ABCD是正方形,∴∠BAF+∠EAD=90°,又∵DE⊥AG,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF⊥AG,∴∠DEA=∠AFB=90°,又∵AD=AB∴Rt△DAE≌Rt△ABF,∴AE=BF(2)易知Rt△BFG∽Rt△DEA,所以,在Rt△DEF和Rt△BEF中,,∴∴23.(1)证明:∵DC是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)解:设线段AD与⊙O相交于点M如图,连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,由(1)知AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,由垂径定理可知MN=BN∵OC=OB,∴∠OCB=∠OBC,∴,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴.24.解:(1)∵A、B是反比例函数(k>0)图象上的两点,∴a≠0,当a>0时,A、B在第一象限,由a<2a可知,y1>y2,同理,a<0时,y1<y2;(2)∵A(a,y1)、B(2a,y2)在反比例函数(k>0)的图象上,∴,,∴y1=2y2.又∵点A(a,y1)、B(2a,y2)在一次函数的图象上,∴,,∴,∴b=4a,∵又∵∴∴,∴a2=4,∵a>0,∴a=2.(3)由(2)得,A(2,),B(4,),将A,B两点代入得解得∴一次函数的解析式为,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,∵3m=﹣4x+24,,∴、,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出2<x<4或x<0.25.解:(1)∵点A(m,m+1)在反比例函数的图象上.∴;解得m1=3,m2=-4∵m>0,∴m=3,∴点A的坐标是(3,4).(2)①如图,过点A作AC⊥y轴于C,作AD⊥x轴于D,则AC=3,AD=4,∠ACN=∠ADM=90°,设ON=x,则CN=4﹣x,∵△BAM∽△MON,∴∠ABM=∠NMO∴NB=NM,∵NO⊥BM,∴OB=OM=OA=5∵CA∥BO,∴△CAN∽△OBN,∴∴,解得∴点N的坐标为(0,);②在直角∠NAM绕点A旋转的过程中,∠AMN的大小不会发生变化.理由:当点B和点N分别在x轴的负半轴和y轴的正半轴时,∵∠CAD=∠NAM=90°,∴∠CAN=∠DAM,∴△CAN∽△DAM,∴∴∴∠AMN的大小不会发生变化.当点B和点N分别在x轴的非负半轴和y轴的非正半轴时,同理可证∠AMN的大小不会发生变化.中考第一次模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共40 分)1、(4分) 点关于原点对称的点的坐标是()A. B. C. D.2、(4分) 下列事件中,属于随机事件的是()B.某篮球运动员投篮一次,命中.A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7C.在只装了红球的袋子中摸到黑球D.在三张分别标有数字2,4,6,的卡片中摸两球,数字和是偶数3、(4分) 如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.和B.C.D.4、(4分) 下列事件中,最适合采用全面调查的是()A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查5、(4分) 对于的图象,下列叙述正确的是()B.开口向下A.顶点坐标为C.当,y随x的增大而增大D.对称轴是直线6、(4分) 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是()A. B. C. D.7、(4分) 如图,正六边形中,分别是的中点,绕正六边形的中心经逆时针旋转后与重合,则旋转角度是()A.60°B.90°C.120°D.180°8、(4分) 已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.9、(4分) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变10、(4分) 已知(其中为常数,且),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()A. B.一元二次方程没有实数根C.当时D.一元二次方程有一根比3大二、填空题(本大题共 6 小题,共24 分)11、(4分) 计算:=12、(4分) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为13、(4分) 方程的根是14、(4分) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是15、(4分) 已知,计算16、(4分) 如图,在菱形中,分别是边的中点,于点P,,则的度数是三、解答题(本大题共9 小题,共86 分)17、(8分) (1)不等式组的解集.(2)先化简,再求值:其中18、(8分) 画出函数的图象19、(8分) 在两个不透明的袋子中分别装入一些相同的纸牌,甲袋内的4张牌分别标记数字1、2、3、4:乙袋内的3张牌分别标记数字2、3、4.从甲、乙两个袋子里分别随机摸出一张牌,求两张牌上的标数相同的概率.20、(8分) 如图,在,以为直径的分别交于点,点F在的延长线上,且.(1)求证:直线是的切线。

人教版中考数学模拟试卷(含答案)

人教版中考数学模拟试卷(含答案)

人教版中考数学模拟试卷(含答案) 中考数学模拟试卷(1)一、选择题(共10小题)1.下列说法中,正确的是()A。

最小的整数B。

最大的负整数是-1C。

有理数包括正有理数和负有理数D。

一个有理数的平方总是正数2.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A。

140元B。

135元C。

125元D。

120元3.若=0无解,则m的值是()A。

-2B。

2C。

3D。

-34.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)人数(单位:人)1 42 63 24 3A。

中位数是2B。

平均数是2C。

众数是2D。

极差是25.下列各式中能用完全平方公式分解因式的是()A。

x^2 + x + 1B。

x^2 + 2x + 1C。

x^2 + 2x - 1D。

x^2 - 2x - 16.如图所示,扇形AOB的圆心角120°,半径为2,则图中阴影部分的面积为()A。

-2B。

-√3C。

-π/3D。

-π/67.若方程组的解x,y满足<x+y<1,则k的取值范围是()A。

-4 < k <B。

-1 < k <C。

< k < 8D。

k。

-48.将一个四边形纸片依次按图示①、②的方式对折,然后沿图③中的虚线裁剪成④样式。

将纸片展开铺平,所得到的图形是图中的()A.B.C.D.9.若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5的图像不经过第三象限,则符合题意的整数k 有()个。

A。

4B。

3C。

2D。

110.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A。

第504个正方形的左下角B。

第504个正方形的右下角C。

第505个正方形的左上角D。

第505个正方形的右下角二、填空题(共8小题)11.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新2018年重庆中考数学模拟试卷一(含答案)一、选择题1. ﹣2017的相反数是() A. ﹣2017 B. 2017 C. ﹣ D.2. 在以下奢侈品牌的标志中,是轴对称图形的是()A. B. C. D.3. (a2)3÷a4的计算结果是() A. a B. a2 C. a4 D. a54. 下列调查中不适合抽样调查的是()A. 调查“华为P10”手机的待机时间B. 了解初三(10)班同学对“EXO”的喜爱程度C. 调查重庆市面上“奶牛梦工场”皇室尊品酸奶的质量D. 了解重庆市初三学生中考后毕业旅行计划5. 估算的运算结果应在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间6. 若代数式有意义,则x的取值范围是()A. x>1且x≠2B. x≥1C. x≠2D. x≥1且x≠27. 如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为()A. 44°B. 34°C. 46°D. 56°8. 已知△ABC∽△DEF,S△ABC:S△DEF=1:9,若BC=1,则EF的长为()A. 1B. 2C. 3D. 99. 若(x﹣1)2=2,则代数式2x2﹣4x+5的值为() A. 11 B. 6 C. 7 D. 8 10. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()和黑子.A. 37B. 42C. 73D. 12111. “星光隧道”是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带,预计2017年底竣工通车,图中线段AB表示该工程的部分隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米,则隧道BC段的长度约为()米.(参考数据:tan12°≈0.2,cos12°≈0.98)A. 2100B. 1600C. 1500D. 154012. 若数a使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a的值之积为() A. 28 B. ﹣4 C. 4 D. ﹣2二、填空题13. 截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000次,请将6820 000 000用科学记数法表示为________.14. 计算:=________.15. 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=4,则阴影部分的面积为________.16. “一带一路”国际合作高峰论坛于5月14日在北京开幕,学校在初三年级随机抽取了50名同学进行“一带一路”知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是________分.17. 5月13日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y与x的函数图象如图所示,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是________米.18. 正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM =,AE=8,则S四边形EFMG=________.三、解答题19. 如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度数.20. 巴蜀中学2017春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A文艺范、B动漫潮、C学院派、D民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一部分学生进行调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:(1)请补全折线统计图,并求出“动漫潮”所在扇形的圆心角度数.(2)据统计,在被调查的学生中,喜欢“文艺范”类型的仅有2名住读生,其余均为走读生,初二年级欲从喜欢“文艺范”的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛”视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.21. 化简下列各式:(1)(b+2a)(2a﹣b)﹣3(2a﹣b)2;(2).四、解答题22. 如图,在平面直角坐标系xOy中,一次函数y=kx+b 的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(12,n),OA=10,E为x轴负半轴上一点,且tan∠AOE =.(1)求该反比例函数和一次函数的解析式;(2)延长AO交双曲线于点D,连接CD,求△ACD的面积.23. “父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m的值.24. 如图,在△ABC 中,AB =AC ,∠BAC =90°,AH ⊥BC 于点H ,过点C 作CD ⊥AC ,连接AD ,点M 为AC 上一点,且AM =CD ,连接BM 交AH 于点N ,交AD 于点E . (1)若AB =3,AD =,求△BMC 的面积;(2)点E 为AD 的中点时,求证:AD =BN .25. 对于一个三位正整数t ,将各数位上的数字重新排序后(包括本身),得到一个新的三位数 (a ≤c ),在所有重新排列的三位数中,当|a +c ﹣2b |最小时,称此时的为t 的“最优组合”,并规定F (t )=|a ﹣b |﹣|b ﹣c |,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合”,此时F (124)=﹣1.(1)三位正整数t 中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F (t )=0;(2)一个正整数,由N 个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.26. 如图1,在平面直角坐标系中,抛物线与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,过点C作CD∥x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.(1)求S△ABD的值;(2)如图2,若点P是直线AD下方抛物线上一动点,过点P作PF∥y轴交直线AD于点F,作PG∥AC交直线AD于点G,当△PGF的周长最大时,在线段DE上取一点Q,当PQ +QE的值最小时,求此时PQ + QE的值;(3)如图3,M是BC的中点,以CM为斜边作直角△CMN,使CN∥x轴,MN∥y轴,将△CMN沿射线CB平移,记平移后的三角形为△C′M′N′,当点N′落在x轴上即停止运动,将此时的△C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x 轴交于点W,请问△CST是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.二圣学校2018年中考数学模拟试卷一(第三周)一、选择题1. ﹣2017的相反数是(B )A. ﹣2017B. 2017C. ﹣D.2. 在以下奢侈品牌的标志中,是轴对称图形的是(C )A. B. C. D.3. (a2)3÷a4的计算结果是(B )A. aB. a2C. a4D. a54. 下列调查中不适合抽样调查的是(B )A. 调查“华为P10”手机的待机时间B. 了解初三(10)班同学对“EXO”的喜爱程度C. 调查重庆市面上“奶牛梦工场”皇室尊品酸奶的质量D. 了解重庆市初三学生中考后毕业旅行计划5. 估算的运算结果应在(D )A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间6. 若代数式有意义,则x的取值范围是(D )A. x>1且x≠2B. x≥1C. x≠2D. x≥1且x≠27. 如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为(B)A. 44°B. 34°C. 46°D. 56°8. 已知△ABC∽△DEF,S△ABC:S△DEF=1:9,若BC=1,则EF的长为(C )A. 1B. 2C. 3D. 99. 若(x﹣1)2=2,则代数式2x2﹣4x+5的值为(C )A. 11B. 6C. 7D. 810. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有(C )和黑子.A. 37B. 42C. 73D. 121解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.11. “星光隧道”是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带,预计2017年底竣工通车,图中线段AB表示该工程的部分隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米,则隧道BC段的长度约为(C )米.(参考数据:tan12°≈0.2,cos12°≈0.98)A. 2100 B. 1600 C. 1500 D. 1540解:由题意得,∠EBF=45°,EF=700米,∴BF=EF=700米,∵AE的坡度为1:2,∴AF=2EF=1400米,∴AB=1400+700=2100米,设CD=x米,∵AE的坡度为1:2,∴AC=2CD=2x米,∵∠DBC=12°,tan12°≈0.2=,∴BC=5CD=5x米,则7x=2100,解得,x=300米,∴AC=600米,BC=1500米;12. 若数a使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a的值之积为(B )A. 28B. ﹣4C. 4D. ﹣2解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x =,即a+3=1,2,10,解得:a=﹣2,2,7.综上,满足条件a的为﹣2,2,之积为﹣4,二、填空题13. 截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000次,请将6820 000 000用科学记数法表示为_6.82×10914. 计算:=__﹣5______.15. 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=4,则阴影部分的面积为__连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE =∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.16. “一带一路”国际合作高峰论坛于5月14日在北京开幕,学校在初三年级随机抽取了50名同学进行“一带一路”知识竞答,并将他们的竞答成绩绘制成如图的条形统计图,本次知识竞答成绩的中位数是___47.5_____分.17. 5月13日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y与x的函数图象如图所示,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是________米.解:由图象可得2号巡逻员的速度为1000÷12.5=80m/min,1号巡逻员的速度为(1000﹣800)÷1﹣80=200﹣80=120m/min,设两车相遇时的时间为x min,可得方程:80x+120(x﹣2)=800+200,解得:x=6.2,∴x =6.2,∴2号巡逻员的路程为6.2×80=496m,1号巡逻员到达看台时,还需要=min,∴2号巡逻员离舞台的距离是1000﹣80×(6.2+)=m,18. 正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM =,AE=8,则S四边形EFMG=________.解:过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°,∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°,∵∠EGB=∠CGB,BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP,∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP =∠ABC=45°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM =,∴BN=NM ==,∴BE =,∵AE=8,∴DE=12﹣8=4,由勾股定理得:AB ===12,设BF=x,则EF=x,AF=12﹣x,由勾股定理得:x2=82+(12﹣x)2,x =,∴BF=EF =,∵△ABE≌△PBE,∴EP=AE=8,BP=AB=12,同理可得:PG =,Rt△EFN中,FN ==,∴S四边形EFMG=S△EFN+S△EBG﹣S△BNM =FN•EN +EG•BP ﹣BN•NM =××+(8+)×12﹣××=..19. 如图,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度数.解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=87°,∴∠AGD=93°.20. 巴蜀中学2017春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A文艺范、B动漫潮、C学院派、D民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一部分学生进行调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:(1)请补全折线统计图,并求出“动漫潮”所在扇形的圆心角度数.(2)据统计,在被调查的学生中,喜欢“文艺范”类型的仅有2名住读生,其余均为走读生,初二年级欲从喜欢“文艺范”的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛”视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.解:(1)被调查的学生数为;20÷50%=40人,A文艺范人数=40×12.5%=5人,B动漫潮人数=40﹣5﹣5﹣20=10人,补全折线统计图如图所示,“动漫潮”所在扇形的圆心角度数=360°×=90°;(2)设2名住读生为A1,A2,走读生为B1,B2,B3画树状图如图所示,由树状图得知,所有等可能的情况有20种,其中所选两位同学恰好都是都是走读生的情况有6种,∴所选的两名同学都是走读生的概率==.21.(1)(b+2a)(2a﹣b)﹣3(2a﹣b)2;(2).解:(1)原式=4a2﹣b2﹣12a2+12ab﹣3b2=﹣8a2+12ab﹣4b2;(2)原式====.22. 如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(12,n),OA=10,E为x轴负半轴上一点,且tan∠AOE =.(1)求该反比例函数和一次函数的解析式;(2)延长AO交双曲线于点D,连接CD,求△ACD的面积.解:(1)如图,过A作AF⊥x轴于F,∵OA=10,tan∠AOE =,∴可设AF=4a,OF=3a,则由勾股定理可得:(3a)2+(4a)2=102,解得a=2,∴AF=8,OF=6,∴A(﹣6,8),代入反比例函数,可得m=﹣48,∴反比例函数解析式为:,把点B(12,n )代入,可得n=﹣4,∴B(12,﹣4),设一次函数的解析式为y=kx+b ,则,解得:,∴一次函数的解析式为;(2)在一次函数中,令y=0,则x=6,即C(6,0),∵A (﹣6,8)与点D关于原点成中心对称,∴D(6,﹣8),∴CD⊥x轴,∴S△ACD=S△ACO+S△CDO=CO×AF +CO×CD =×6×8+×6×8=48.23. “父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m的值.解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+m%)+a[120×0.8(1﹣25%)﹣m](1+15m%)=120×0.8a(1﹣25%)×2(1+ m%),即72a(1+ m%)+a(72﹣m)(1+15m%)=144a(1+ m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.24. 如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M 为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.(1)若AB=3,AD =,求△BMC的面积;(2)点E为AD的中点时,求证:AD =BN.解:(1)如图1中,在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,∴BM=AD =,∴AM ==1,∴CM=CA﹣AM=2,∴S△BCM =•CM•BA =×23=3.(2)如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,∵△ABM∽△ECM ,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EP A≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC =EC,∴AD=2EC,∴2NC =AD,∴AD =NC,∵BN=NC,∴AD =BN.25. 对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数(a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t的“最优组合”,并规定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合”,此时F(124)=﹣1.(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0;(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.(1)证明:∵三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,∴重新排序后:其中两个数位上数字的和是一个数位上的数字的2倍,∴a+c﹣2b=0,即(a﹣b)﹣(b﹣c)=0,∴F (t)=0;∵(2)∵m=200+10x+y是“善雅数”,∴x为偶数,且2+x+y是3的倍数,∵x<10,y<10,∴2+x+y<30,∵m的各位数字之和为一个完全平方数,∴2+x+y=32=9,∴当x=0时,y=7,当x=2时,y=5,当x=4时,y=3,当x=6时,y=1,∴所有符合条件的“善雅数”有:207,225,243,261,∴所有符合条件的“善雅数”中F(m)的最大值是=|2﹣3|﹣|3﹣4|=0.26. 如图1,在平面直角坐标系中,抛物线与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,过点C作CD∥x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.(1)求S △ABD 的值;(2)如图2,若点P 是直线AD 下方抛物线上一动点,过点P 作PF ∥y 轴交直线AD 于点F ,作PG ∥AC 交直线AD 于点G ,当△PGF 的周长最大时,在线段DE 上取一点Q ,当PQ +QE 的值最小时,求此时PQ + QE 的值;(3)如图3,M 是BC 的中点,以CM 为斜边作直角△CMN ,使CN ∥x 轴,MN ∥y 轴,将△CMN 沿射线CB 平移,记平移后的三角形为△C ′M ′N ′,当点N ′落在x 轴上即停止运动,将此时的△C ′M ′N ′绕点C ′逆时针旋转(旋转度数不超过180°),旋转过程中直线M ′N ′与直线CA 交于点S ,与y 轴交于点T ,与x 轴交于点W ,请问△CST 是否能为等腰三角形?若能,请求出所有符合条件的WN ′的长度;若不能,请说明理由.解:(1)令y =0,则,解得x =或,∴A (,0),B (,0),C (0,),∵CD ∥AB ,∴S △DAB =S △ABC =•AB •OC =××=.(2)如图2中,设P (m ,).∵A (,0),D (,),∴直线AD 的解析式为,∵PF ∥y 轴,∴F (m ,),∵PG ⊥DE ,∴△PGF 的形状是相似的,∴PF 的值最大时,△PFG 的周长最大,∵PF =﹣()=,∴当m ==时,PF 的值最大,此时P (,),作P关于直线DE 的对称点P ′,连接P ′Q ,PQ ,作EN ∥x 轴,QM ⊥EN 于M ,∵△QEM ∽△EAO ,∴=,∴QM =QE ,∴PQ +EQ =PQ +QM =P ′Q +QM ,∴当P ′、Q 、M 共线时,PQ +EQ 的值最小,易知直线PP ′的解析式为,由,可得G (,),∵PG =GP ′,∴P ′(,),∴P ′M ==,∴PQ +EQ 的最小值为.(3)①如图3中,当CS =CT 时,作CK 平分∠OCA ,作KG ⊥AC 于G .易知KO =KG ,∵====,∴OK ==,易证∠BWN ′=∠OCK ,∴tan ∠BWN ′=tan ∠OCK ==,∵BN ′=,∴WN ′=.②如图4中,当TC =TS 时,易证∠BWN ′=∠OAC ,∴tan ∠BWN ′=tan ∠OAC == ,∴WN ′=;③如图5中,当TS =TC 时,延长N ′B 交直线AC 于Q ,作BG ⊥AQ 于G ,QR ⊥AB 于R .综上所述,满足条件的WN′的长为或或或.∵TS=TC,∴∠TSC=∠TCS=∠ACO,∵∠TSC+∠SQN′=90°,∠ACO+∠OAC=90°,∴∠BQA=∠OAC=∠BAQ,∴BA=BQ,∴AG=GQ,设AQ=a,则易知BG=a,BQ=AB =a,∵•AQ•BG =•AB•QR,∴QR =a,BR =a,∴tan∠WBN′=tan∠QBR ==,∴WN ′=.④如图6中,当CS=CT时,由①可知,在Rt△BN′W中,tan∠N′BW ==,∴N′W =.。

相关文档
最新文档