【精品】2018年山东省济宁市鱼台县八年级上学期期中数学试卷带解析答案

合集下载

山东省济宁市 八年级(上)期中数学试卷-(含答案)

山东省济宁市 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A. 两点之间,线段最短B. 垂线段最短C. 三角形具有稳定性D. 两直线平行,内错角相等2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A. B.C. D.3.在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A. B. C. D.4.若一个三角形三个内角度数的比为l:2:3,那么这个三角形是()A. 锐角三角形B. 等边三角形C. 钝角三角形D. 直角三角形5.多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A. 8条B. 9条C. 10条D. 11条6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则么∠B的度数为()A. B. C. D.7.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A. B. C. D.8.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A. B. C. D.9.如图,已知在△ABC中,艘上AB于R,PS上AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;(A)BP=CP.其中结论正确的有()A. 全部正确B. 仅①②③正确C. 仅①②正确D. 仅① 正确10.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共15.0分)11.已知等腰三角形的一个角为80°,则顶角为______ .12.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件______,使得△EAB≌△BCD.13.如图,在△ABC中,AB=AC,AD BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为______ cm2.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=______.15.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为______.三、解答题(本大题共7小题,共55.0分)16.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.17.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.18.如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.19.如图,已知:E是∠AOB的平分线上一点,EC OB,ED OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.20.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.21.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图l),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段(不需要添加辅助线),并说明理由.22.如图,CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠a.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图l,若∠BCA=90°,∠a=90°,则BE______CF;EF______|BE-AF|(填“>”,“<”或“=”);②如图(2),若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件______,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).答案和解析1.【答案】C【解析】解:这样做的道理是三角形具有稳定性.故选:C.三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.数学要学以致用,会对生活中的一些现象用数学知识解释.2.【答案】C【解析】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选:C.从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.3.【答案】A【解析】解:点P(-1,2)关于x轴对称的点的坐标为(-1,-2).故选:A.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】D【解析】解:设一份为k°,则三个内角的度数分别为k°,2k°,3k°.则k°+2k°+3k°=180°,解得k°=30°,∴k°=30°,2k°=60°,3k°=90°,所以这个三角形是直角三角形.故选D.已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.5.【答案】B【解析】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,∴对角线条数=12-3=9.故选B.先求出多边形的外角度数,然后即可求出边数,再利用公式(n-3)代入数据计算即可.本题主要考查了多边形的外角与对角线的性质,求出边数是解题的关键,另外熟记从多边形的一个顶点出发可作的对角线的条数公式也很重要.6.【答案】C【解析】解:∵CD=AD,AB=BD,∴∠B=∠C=∠CAD,∠ADB=∠BAD,故选C.根据等腰三角形的性质和三角形的内角和即可得到结论.此题考查了等腰三角形的性质与三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.7.【答案】D【解析】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选D.由作法易得OD=O′D′,OC=O′C′,CD=C′D′,利用SSS得到三角形全等,由全等三角形的对应角相等.本题考查的是作图-基本作图,全等三角形的判定与性质等知识,熟练掌握三角形全等的性质是正确解答本题的关键.8.【答案】D【解析】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(-1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化-平移,解题的关键是明确题意,找出所求点需要的条件.9.【答案】C解:∵PR AB,PS AC,∴∠PRA=∠PSA=90°,在Rt△APR和Rt△APS中,,∴Rt△APR≌Rt△APS(HL),∴AR=AS,∠PAR=∠PAS,∵∠1=∠2,∴∠PAR=∠2,∴PQ∥AB,当BP=CP时,△BPR≌△CPS,∴①②正确,③④不正确;故选:B.由HL证明Rt△APR≌Rt△APS,得出AR=AS,∠PAR=∠PAS,由已知得出∠PAR=∠2,得出PQ∥AB,当BP=CP时,△BPR≌△CPS,得出①②正确,③④不正确即可.本题考查了全等三角形的判定与性质、平行线的判定;证明三角形全等是解决问题的关键.10.【答案】B【解析】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选B.根据全等三角形的判定定理,可以推出①②③为条件,④为结论,依据是“SAS”;①②④为条件,③为结论,依据是“SSS”.本题主要考查全等三角形的判定定理,关键在于熟练掌握全等三角形的判定11.【答案】80°或20°【解析】解:(1)当80°角为顶角时,其顶角为80°(2)当80°为底角时,得顶角=180°-2×80°=20°;故填80°或20°.等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.12.【答案】AE=CB【解析】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.可以根据全等三角形的不同的判定方法添加不同的条件.本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.13.【答案】9【解析】解:∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2.故答案为:9.由图,根据等腰三角形是轴对称图形知,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△CEF和△BEF的面积相等是正确解答本题的关键.14.【答案】55°【解析】解:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.15.【答案】6【解析】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6,故答案为:6设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.此题主要考查轴对称--最短路线问题,关键是根据当点M、N在CD上时,△PMN的周长最小解答.16.【答案】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【解析】(1)延长BC,作AD BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.17.【答案】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【解析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.【答案】解:(1)所作图形如图所示:A′(-4,6),B′(-5,2),C′(-2,1);(2)S△ABC=3×5-×1×3-×1×4-×2×5=6.5.【解析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接,并写出A′,B′,C′的坐标;(2)用△ABC所在的矩形的面积减去三个小三角形的面积即可求解.本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.19.【答案】解:(1)∵E是∠AOB的平分线上一点,EC OB,ED OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC OB,ED OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.【解析】(1)先根据E是∠AOB的平分线上一点,EC OB,ED OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.20.【答案】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B;(3)∵由(2)知△BDE≌△CEF,∴∠BDE=∠CEF,∴∠CEF+∠DEF=∠BDE+∠B,∴∠DEF=∠B,∴AB=AC,∠A=40°,∴∠DEF=∠B==70°.【解析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B即可得出结论;(3)由(2)知∠DEF=∠B,再根据等腰三角形的性质即可得出∠DEF的度数.本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.21.【答案】解:(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,,∴△AEC≌△CGB(ASA),∴AE=CG;(2)BE=CM.理由:∵CH HM,CD ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【解析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,熟练掌握全等三角形的判定方法是解决问题的关键.22.【答案】=;=;∠α+∠BCA=180°【解析】解:(1)①如图1中,E点在F点的左侧,∵BE CD,AF CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF-CE=BE-AF,当E在F的右侧时,同理可证EF=AF-BE,∴EF=|BE-AF|;故答案为=,=.②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF-CE=BE-AF,当E在F的右侧时,同理可证EF=AF-BE,∴EF=|BE-AF|;故答案为∠α+∠ACB=180°.(2)EF=BE+AF.理由是:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.。

2018-2019(含答案)八年级(上)期中数学试卷 (14)

2018-2019(含答案)八年级(上)期中数学试卷 (14)

2018-2019(含答案)八年级(上)期中数学试卷 (14).................................................................................................................................................................2018.10.22一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列四个等式从左到右的变形,是多项式因式分解的是()A.B.C.D.3.下列运算正确的是()A. B.C. ∙D.4.分解因式结果正确的是()A. B.C. D.5.长方形的面积为,若它的一边长为,则它的周长为()A. B.C. D.6.如图,有、、三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在,两边高线的交点处B.在,两边中线的交点处C.在,两边垂直平分线的交点处D.在,两内角平分线的交点处7.若,,则和的值分别为()A.,B.,C.,D.,8.的值为()A. B. C. D.9.根据下列已知条件,能唯一画出的是()A.,,B.,,C.,,D.,10.如图,已知中,,,是高和的交点,则线段的长度为()A. B. C. D.11.如图,中,,是的中点,的垂直平分线分别交、、于点、、,则图中全等三角形的对数是()A.对B.对C.对D.对12.如图,和分别沿着边、翻折形成的,若,与交于点,则的度数为()A. B. C. D.二、填空题(每小题3分,共18分)13.如果点和点关于轴对称,则的值是________.14.如图,的周长为,的垂直平分线交于点,为垂足,,则的周长为________.15.如图,,,不再添加辅助线和字母,要使,需添加的一个条件是________(只写一个条件即可)16.点是内一点,且点到三边的距离相等,,则________.17.若是一个完全平方式,则的值为________.18.阅读下文,寻找规律.计算:,,….观察上式,并猜想:________.根据你的猜想,计算:________.(其中是正整数)三、解答题:19.在平面直角坐标系中,,,.在平面直角坐标系中,,,.在图中作出关于轴的对称;写出关于轴对称的各顶点坐标:________;________;________.20.化简求值:,其中.21.因式分解:.22.如图,是中点,,.证明:.23.已知:如图,的角平分线与的垂直平分线交于点,,,垂足分别为,.①求证:;②若,,求的周长.24.阅读理解:如图①,在中,若,,求边上的中线的取值范围.解决此问题可以用如下方法:延长到点使,再连接(或将绕着点逆时针旋转得到),把、,集中在中,利用三角形三边的关系即可判断.中线的取值范围是________;24.问题解决:如图②,在中,是边上的中点,于点,交于点,交于点,连接,求证:;24.问题拓展:如图③,在四边形中,,,,以为顶点作一个角,角的两边分别交,于、两点,连接,探索线段,,之间的数量关系,并加以证明.答案1. 【答案】A【解析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:、是轴对称图形,故符合题意;、不是轴对称图形,故不符合题意;、不是轴对称图形,故不符合题意;、不是轴对称图形,故不符合题意.故选:.2. 【答案】D【解析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:、是整式的乘法,故错误;、没把一个多项式化为几个整式的积的形式,故错误;、没把一个多项式化为几个整式的积的形式,故错误;、把一个多项式化为几个整式的积的形式,故正确;故选:.3. 【答案】C【解析】原式各项计算得到结果,即可作出判断.【解答】解:、原式,错误;、原式,错误;、原式,正确;、原式,错误,故选4. 【答案】D【解析】首先提取公因式,进而利用平方差公式进行分解即可.【解答】解:.故选:.5. 【答案】D【解析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:,则周长是:.故选.6. 【答案】C【解析】要求到三小区的距离相等,首先思考到小区、小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段的垂直平分线上,同理到小区、小区的距离相等的点在线段的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在,两边垂直平分线的交点处.故选.7. 【答案】C【解析】已知等式利用完全平方公式化简,整理即可求出所求式子的值.【解答】解:已知等式整理得: ①,②,①-②得:,即;① ②得:,即,故选8. 【答案】D【解析】应用乘法分配律,求出算式的值为多少即可.【解答】解:故选:.9. 【答案】C【解析】要满足唯一画出,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有选项符合,是满足题目要求的,于是答案可得.【解答】解:、因为,所以这三边不能构成三角形;、因为不是已知两边的夹角,无法确定其他角的度数与边的长度;、已知两角可得到第三个角的度数,已知一边,则可以根据来画一个三角形;、只有一个角和一个边无法根据此作出一个三角形.故选.10. 【答案】B【解析】易证后就可以得出,进而可求出线段的长度.【解答】解:∵ ,∴ ,∴ ,,∴ ,在和中,,∴ ,∴ ,故选.11. 【答案】D【解析】根据线段垂直平分线上的点到线段两端点的距离相等可得,然后判断出和全等,再根据等腰三角形三线合一的性质可得,从而得到关于直线轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵ 是的垂直平分线,∴ ,又∵ ,∴ ,∵ ,是的中点,∴ ,∴ 关于直线轴对称,∴ ,,,综上所述,全等三角形共有对.故选.12. 【答案】B【解析】根据,三角形的内角和定理分别求得,,的度数,然后根据折叠的性质求出、、的度数,在中,根据三角形的内角和定理求出的度数,继而可求得的度数,最后根据三角形的外角定理求出的度数.【解答】解:在中,∵ ,∴设为,为,为,则,解得:,则,,,由折叠的性质可得:,,,在中,,∴ ,∴ .故选.13. 【答案】【解析】结合关于轴、轴对称的点的坐标的特点:关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点关于轴的对称点的坐标是;关于轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点关于轴的对称点的坐标是.求解即可.【解答】解:∵点和点关于轴对称,∴ ,,∴ .故答案为:.14. 【答案】【解析】根据垂直平分线的性质计算.的周长.【解答】解:∵ 的垂直平分线交于,为垂足∴ ,,∵ 的周长为,∴∴ 的周长.故答案为:.15. 【答案】或【解析】添加条件可证明,然后再根据,可得,再利用定理证明即可,或利用定理证明.【解答】解:添加,理由如下:∵ ,∴ ,∵ ,∴ ,在和中,,∴ .故答案是:.当添加时,利用即可证得.故答案是:或.16. 【答案】【解析】根据三角形内角和定理求出,再根据角平分线上的点到角的两边的距离相等判断出点是角平分线的交点,再根据角平分线的定义求出的度数,然后在中,利用三角形内角和定理列式进行计算即可得解.【解答】解:如图,∵ ,∴ ,∵点到三边的距离相等,∴点是角平分线的交点,∴,在中,.故答案为:.17. 【答案】或【解析】利用完全平方公式的结构特征判断即可得到的值.【解答】解:∵ 是一个完全平方式,∴ ,故的值为或,故答案为:或18. 【答案】,; .【解析】归纳总结得到一般性规律,写出即可;; 原式变形后,利用得出的规律计算即可得到结果.【解答】解:解:;;.19. 【答案】,,【解析】先连接、,于,,是梯形易证四边等腰梯形,从有,而、分是四边中点,用角形中定理有且且,可证四边形是菱形,再利,易求,可是含有角的直角三形,再利股定理求,即求边形的周长.【解答】解:连接、,如图所示,∴ 边形是平四边形,,∴,又∵ ,∴ 形,∴ ,∵ ,形,∴ ,∴ ,∵、、分别是四边中点,同理有,且,,∴ ,,∴四边是腰梯形,∴四边形的周长.20. 【答案】解:原式当时,原式.【解析】对先去括号,再合并同类项,化简后将代入化简后的式子,即可求得值.其中利用完全平方公式去括号,利用平方差公式去括号.【解答】解:原式当时,原式.21. 【答案】解:;;;;.【解析】首先提取公因式,进而利用完全平方公式分解因式得出答案;; 直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;; 首先提取公因式,进而利用平方差公式分解因式得出答案.【解答】解:;;;;.22. 【答案】证明:∵ 是中点,∴ ,∵ ,∴ ,即,在与中,,,∴ .【解析】根据全等三角形的判定和性质即可得到结论.【解答】证明:∵ 是中点,∴ ,∵ ,∴ ,即,在与中,,,∴ .23. 【答案】①证明:连结,∵ 在的中垂线上∴∵ ,平分∴在和中,,∴ ,∴ ;②解:由可得,,∴ ,∴ 的周长,.【解析】①连接,根据垂直平分线性质可得,可证,可得;②根据得出解答即可.【解答】①证明:连结,∵ 在的中垂线上∴∵ ,平分∴在和中,,∴ ,∴ ;②解:由可得,,∴ ,∴ 的周长,.24. 【答案】;; 证明:延长至点,使,连接、,如图②所示:同得:,∴ ,∵ ,,∴ ,在中,由三角形的三边关系得:,∴ ;; 解:;理由如下:延长至点,使,连接,如图所示:∵ ,,∴ ,在和中,,∴ ,∴ ,,∵ ,,∴ ,∴ ,在和中,,∴ ,∴ ,∵ ,∴ .【解析】延长至,使,由证明,得出,在中,由三角形的三边关系求出的取值范围,即可得出的取值范围;; 延长至点,使,连接、,同得,得出,由线段垂直平分线的性质得出,在中,由三角形的三边关系得出即可得出结论;; 延长至点,使,连接,证出,由证明,得出,,证出,再由证明,得出,即可得出结论.【解答】解:延长至,使,连接,如图①所示:∵ 是边上的中线,∴ ,在和中,,∴ ,∴ ,在中,由三角形的三边关系得:,∴ ,即,∴ ;; 证明:延长至点,使,连接、,如图②所示:同得:,∴ ,∵ ,,∴ ,在中,由三角形的三边关系得:,∴ ;; 解:;理由如下:延长至点,使,连接,如图所示:∵ ,,∴ ,在和中,,∴ ,∴ ,,∵ ,,∴ ,∴ ,在和中,,∴ ,∴ ,∵ ,∴ .。

山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷及参考答案

山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷及参考答案
21. 如图所示,在△ABC中,∠ABC=∠C,BD⊥AC交AC于D. 求证:∠DBC= ∠A.
22. 为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务.实际平均每月的绿化面积是原 计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.
23. 如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.
12. 计算:
=________
13. 点P(2,-5)关于x轴对称的点的坐标为________
14. 化简
得________
15. 已知10m=3,10n=2,则102m-n的值为________.
三、计算题
16. (1) 计算: (-1)0-|-3|+( )-2-(-1)2012
(2) ( a2b)3(-9ab3)÷(- a5b3)
(1) 求证:∠ABC=∠EDC; (2) 求证:△ABC≌△EDC. 24. 如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直
线交射线AM于点N.
(1) 当A,B,C三点在同一直线上时(如图l),求证:M为AN的中点; (2) 将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形; (3) 将图1中ABCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
17. 解方程:
(1)
=1
(2)

18. 先化简,再请你用喜爱的数代入求值

2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。

山东省上学期初中八年级期中学业水平质量调研考试数学试卷(附解析答案)

山东省上学期初中八年级期中学业水平质量调研考试数学试卷(附解析答案)

山东省上学期初中八年级期中学业水平质量调研考试数学试卷(时间:90分钟总分120分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个图案中,轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个2.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.下列图形具有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形4.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10 B.11 C.13 D.11或135.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.顶角和底边对应相等的两个等腰三角形全等D.两个等边三角形全等6.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B=()A.40°B.36°C.80°D.25°7.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条8. 如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20° B.30° C.40° D.50°9.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或30° B.75° C.15° D.75°或15°10. 如图,D是△ABC的角平分线BD和CD的交点,若∠A=50°,则∠BDC=()A.120° B.130° C.115° D.110°11.如图,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,...,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米12. 如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1二、填空题(本题1大题,8小题,每小题3分,共24分)13.(1)点P(﹣1,2)关于x轴对称点P1的坐标为(2)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是(3)如图,在△ABC中,BC的垂直平分线交AB于点E,若△ABC的周长为10,BC=4,则△ACE 的周长是(4)已知等腰三角形的周长为20,腰长为x,则x的取值范围是(5)在Rt△ABC中,已知∠C=90°,∠B=60°,BC=3,那么AB=(6)等腰三角形的一个外角等于70°,则它的底角是(7)如图,将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于(8)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是三、解答题(本大题共6小题,共60分)14.(本小题满分9)如图,∠A=∠B,CE∥DA,CE交AB于E.求证:△CEB是等腰三角形.15.(本小题满分9)如图,在平面直角坐标系中,(1)描出A(- 4,3)B(-1,0)C(-2,3)三点.(2)△ABC的面积是(3)作出△ABC关于x轴的对称图形.16.(本小题满分9分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.17.(本小题满分10分)如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.18.(本小题满分11分)如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.19.(本小题满分12分)已知点O是等腰直角三角形ABC斜边上的中点,AB=BC,E是AC上一点,连结EB.(1)如图19-1,若点E在线段AC上,过点A作AM⊥BE,垂足为M,交BO于点F.求证:OE=OF;(2)如图19-2,若点E在AC的延长线上,AM⊥BE于点M,交OB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.八年级数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)1—5 CDCDC 6—10 BCADC 11—12 BB二、填空题(本题1大题,8小题,每小题3分,共24分)13(1)(-1,-2)(2)∠A BC=∠A DC 或∠A=∠C(只需要一个)(3)6 (4)5<x<10 (5) 6 (6)35° (7)10°(8)30三、解答题(本大题共6小题,共60分)14.(本小题满分9)证明:∵CE∥DA,∴∠A=∠CEB.又∵∠A=∠B,∴∠CEB=∠B.∴CE=CB.∴△CEB是等腰三角形.……………9分15.(本小题满分9)(1)如图所示;……………3分(2)3;……………6分(3)如图所示……………9分16.(本小题满分9分)(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;……………5分(2)证明:∵△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°……………9分17.(本小题满分10分)解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=9,∠B=30°,∴AD=92,∴DF=92……………10分18.(本小题满分11分)证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.……………11分19.(本小题满分12分)(1)证明:∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO,∴Rt△BOE≌Rt△AOF,∴OE=OF;………………………6分(2)OE=OF成立;证明:∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠F+∠MBF=90°=∠B+∠OBE,又∵∠MBF=∠O BE,∴∠F=∠E,∴Rt△BOE≌Rt△AOF,∴OE=OF………………………12分。

山东省济宁市鱼台县2017-2018学年八年级数学上学期期中试题(扫描版)新人教版

山东省济宁市鱼台县2017-2018学年八年级数学上学期期中试题(扫描版)新人教版

山东省济宁市鱼台县2017-2018学年八年级数学上学期期中试题2°1^2018学年度第一学期教学质量监测考试八年级数学试题第一卷(选择题)一■选择题(本大题共10个小题,每小題3分,满分孔分,每小題给出的四个选项中’只有_个展正确,请将正确选项填在逵择题的答题栏内)】•下列图形中,不是轴对称图形的是()® A中BXBfttr 比■亠■ tv中国規行2,点M(2,3)关于y轴对称的点的塑标为()C(-2.3)B.(2r 3)0.(3,- 2)3.如图,工人师傅砌门时,常用木条EF固定氏方理门框ABCD,便其不变形,这样做的根据是()A E DF/~T" 1 11 1 1A.两点之间的线段*短氐三甫啓有稳定性C.长方形的四牛角都是直角D.长方形犀轴对称国形4*已知二角形两边的栓分别是4和5侧此三角形第三边的长可能是(). A” B.5C.6D.115.如图’在MM 和ADEF 中也B"DEF,A"DE 縻加下列哪-牛条件后,仍然无 鴨证明△ABCmZkDEF,这个条件是()6•—个多边形的内角和等于1080° -这个多边形的边数为( A.67 一个等腰三角形两边枚分别为20和则周长为()/.A- Z.D B.BC=EFC,AC = DF D*上 AC2EFD.9B.50C.4Q 或刘D.不能确定A.4O&風正方形、长方形舟腰梯形中有唯一条对称轴的是(5C.长方形 P 等腰梯形A.圆9r 等腰三角形的角是80匕则它的底角是()B s0o C. 50°或 D.2『或眇;口如图所示,某同学把-块三角形血不小心唤了三如现审酬聃 一块完全一样的玻璃,那么最省事的办法是带()去.B.正方形扎50°扎③D.①和②八年级数学试题共颁第颁第二卷(非选择題)〜、选择题(本大题共W个小题,每小题3分,满分3Q分,毎小题给出的四个选项中,只有一个是正确,请将正确选项填在选择题的答题栏内)题号12345678910选项f二、填空题(本大题共5个小题|每小题3分,满分15分)11._______________________________________________________ 在平面直角坐标系中,点P(-1,2)关于x轴对称点的坐标为_____________________________ .—- 12.--------------------------------------------------------------------------------------------------- 如果一个多边形的一个内角等于1440。

2017-2018学年鲁教版数学八年级第一学期期中测试题及答案

2017-2018学年鲁教版数学八年级第一学期期中测试题及答案

2017--2018学年度第一学期期中质量检测八年级数学试题注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题60分,非选择题60分,满分120分,考试时间120分钟;2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,请将答题纸和答题卡一并交回。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共20个小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求。

)1.下列各式从左到右的变形中,是因式分解的是( ) A.()()2339a a a +-=- B.()()22a b a b a b -=+-C.()24545a a a a --=--D.23232m m m m m ⎛⎫--=-- ⎪⎝⎭2.无论x 取什么数时,总是有意义的分式是( )A.122+x x B.12+x x C.133+x x D.25x x -3.若2231a (91ma a -=++,则m 的值为( )A. 2B.3C.32-D.324.若已知分式96122+---x x x 的值为0,则x -2的值为 ( )A.91或-1 B.91或1 C.-1 D.15.下列各式是完全平方式的是( )A.412+-x x B.241x + C.22b ab a ++ D.122-+x x6.下列运动属于旋转的是( )A.滚动过程中篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折过程7.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么A D ′为( )A.10B.8C.7D.128.如图将△ABC 绕着点C 按顺时针旋转20°,B 点落在B ′的位置,A 点落在A ′的位置,若AC ⊥A ′B ′,则∠BAC 的度数是( ) A.50° B.60° C.70° D.80°9.分式方程31329122+=---x x x 的解为( ) A.3 B.-3 C.无解 D.3或-310.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为( ) A.100米 B.99米 C.98米 D.74米11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( )A.15°B.20°C.25°D.30°12.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则(第8题)′BACA ′(第10题)可列方程为( ) A . B.C .D .13.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是 ( )A.aB.bC.2b a + D.ba 2ab+14.把多项式)2()2(2a m a m -+-分解因式等于( ) A.))(2(2m m a +- B.))(2(2m m a --C.m(a-2)(m-1)D.m(a-2)(m+1)15.若关于x 的方程222-=-+x m x x 有增根,则m 的值与增根x 的值分别是( )A.m=-4,x=2B.m=4,x=2C.m=-4,x=-2D.m=4,x=-216.下列分式是最简分式的是( )A.x x x --21 B.11+-x x C.112--x x D.x 4417.下列等式成立的是( )A.b a b a +=+321 B.b a b a +=+122 C.ba ab ab ab -=-2 D.b a ab a a +-=+-18.某校八年级(1)班全体学生2016年体育测试考试成绩统计如下:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误的是( ) A.该班一共有40名同学;B.该班学生这次考试成绩的众数是45分;C.该班学生这次考试成绩的中位数是45分;D.该班学生这次考试成绩的平均数是45分. 19.下列不是表示数据离散程度的量是( ) A.方差 B.极差 C.平均数 D.标准差20.如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC =5.EC =3,那么平移的距离为( ) A.2B.3C.5D.7第Ⅱ卷(非选择题 共60分)题号 二 三 总分25 26 27 28 29 得分注意事项: 1.第Ⅱ卷共4页,用蓝黑钢笔或圆珠笔直接答在答题纸上;2.答卷前将密封线内的项目填写清楚。

山东省济宁市鱼台县2017-2018学年八年级(下)期中考试数学试题(含解析)

山东省济宁市鱼台县2017-2018学年八年级(下)期中考试数学试题(含解析)

2017-2018学年山东省济宁市鱼台县八年级(下)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一项符合题目要求1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若代数式有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x>0D.x≥0且x≠13.下列各组数中,能成为直角三角形的三条边长的是()A.3,5,7B.5,7,8C.4,6,7D.1,,24.一个直角三角形的两条直角边分别为5、12,则斜边上的中线为()A.B.C.D.5.若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°6.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm7.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A.5B.10C.15D.208.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10B.8C.6D.49.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.610.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2B.cm2C.cm2D.()n cm2二、填空题(每小题3分,共15分;只要求填写最后结果)11.比较大小:4(填“>”或“<”)12.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.13.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:,使得▱ABCD 为正方形.14.如图,等边△BCP在正方形ABCD内,则∠APD=度.15.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.三、解答题16.(8分)计算:(1)(+)﹣(﹣);(2)(+)÷+17.(6分)如图,在▱ABCD中,已知AB=8,周长等于24,求其余三边的长.18.(7分)如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m;求图中阴影部分的面积.19.(8分)如图,已知菱形ABCD的边AB长5cm,一条对角线AC长6cm,求这个菱形的周长和它的面积.20.(8分)已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.21.(8分)阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下:===﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.22.(10分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.2017-2018学年山东省济宁市鱼台县八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一项符合题目要求1.下列式子中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义即可判断.【解答】解:A、原式=3,故A不是最简二次根式,B、原式=2,故B不是最简二次根式,C、原式=,故C不是最简二次根式,故选:D.【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.2.若代数式有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x>0D.x≥0且x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:,解得:x≥0且x≠1.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.下列各组数中,能成为直角三角形的三条边长的是()A.3,5,7B.5,7,8C.4,6,7D.1,,2【分析】分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.【解答】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+()2=22,能构成直角三角形,此选项正确.故选:D.【点评】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.4.一个直角三角形的两条直角边分别为5、12,则斜边上的中线为()A.B.C.D.【分析】由勾股定理可以求出斜边,再根据直角三角形中斜边上的中线等于斜边的一半可以求出斜边中线的长.【解答】解:由勾股定理知,斜边c==13,∵直角三角形中斜边上的中线等于斜边的一半知,∴斜边中线的长=,故选:C.【点评】本题考查了勾股定理和直角三角形的性质:斜边上的中线等于斜边的一半.5.若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°【分析】首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x =180,继而求得答案.【解答】解:设平行四边形中两个内角分别为x°,3x°,则x+3x=180,解得:x=45°,∴其中较小的内角是45°.故选:B.【点评】此题考查了平行四边形的性质.注意平行四边形的邻角互补.6.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选:D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.7.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A.5B.10C.15D.20【分析】根据题意可得出∠B=60°,结合菱形的性质可得BA=BC,判断出△ABC是等边三角形即可得到AC的长.【解答】解:∵四边形ABCD是菱形,∴∠B+∠BCD=180°,AB=BC,∵∠B:∠BCD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=5.故选:A.【点评】此题考查了菱形的性质及等边三角形的判定与性质,根据菱形的性质判断出△ABC是等边三角形是解答本题的关键,难度一般.8.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10B.8C.6D.4【分析】根据x=+1,y=﹣1,可以求得x+y和xy的值,从而可以求得所求式子的值.【解答】解:∵x=+1,y=﹣1,∴x+y=2,xy=2,∴x2+xy+y2=(x+y)2﹣xy==12﹣2=10,故选:A.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.9.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6【分析】先根据矩形的性质求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点评】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.10.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2B.cm2C.cm2D.()n cm2【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n﹣1阴影部分的和.【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=.故选:B.【点评】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.二、填空题(每小题3分,共15分;只要求填写最后结果)11.比较大小:4>(填“>”或“<”)【分析】根据二次根式的性质求出=4,比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.【点评】本题考查了二次根式的性质和实数的大小比较等知识点,关键是知道4=,题目较好,难度也不大.12.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=15度.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.13.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:∠BAD=90°,使得▱ABCD为正方形.【分析】根据正方形的判定定理添加条件即可.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形.故答案为:∠BAD=90°.【点评】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.14.如图,等边△BCP在正方形ABCD内,则∠APD=150度.【分析】由正方形的性质和等边三角形的性质得出AB=BP=CP=CD,∠ABP=∠DCP=30°,由三角形内角和定理求出∠BAP=∠BPA=∠CDP=∠CPD=75°,再求出∠PAD=∠PDA=15°,然后由三角形内角和定理求出∠APD即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAD=∠ABC=∠BCD=∠CDA=90°,∵△BCP是等边三角形,∴BP=CP=BC,∠PBC=∠BCP=∠BPC=60°,∴AB=BP=CP=CD,∠ABP=∠DCP=90°﹣60°=30°,∴∠BAP=∠BPA=∠CDP=∠CPD=(180°﹣30°)=75°,∴∠PAD=∠PDA=90°﹣75°=15°,∴∠APD=180°﹣15°﹣15°=150°;故答案为:150.【点评】本题考查了正方形的性质、等边三角形的性质、三角形内角和定理、等腰三角形的性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.15.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.【分析】根据平行四边形的性质得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根据相似得出CH=1,EH=,根据三角形的面积公式求△DFH的面积,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B =60°,EF ⊥AB ,∴∠FEB =30°,∴BF =1,由勾股定理得:EF =, ∵AB ∥CD ,∴△BFE ∽△CHE ,∴====1,∴EF =EH =,CH =BF =1,∵S △DHF =DH •FH =×(1+3)×2=4,∴S △DEF =S △DHF =2,故答案为:2. 【点评】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.三、解答题16.(8分)计算:(1)(+)﹣(﹣);(2)(+)÷+【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先计算除法、化简二次根式,再计算乘法和加法可得.【解答】解:(1)原式=3+3﹣2+5=8+;(2)原式=++2=+•+2=+. 【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.17.(6分)如图,在▱ABCD中,已知AB=8,周长等于24,求其余三边的长.【分析】由在▱ABCD中,AB=8,▱ABCD的周长等于24,根据平行四边形的对边相等,即可求得CD=AB=8,AB+BC=12,继而求得答案.【解答】解:∵▱ABCD的周长等于24,∴AB=CD,AD=BC,∴AB+BC=12,∵AB=8,∴CD=AB=8,AD=BC=4.【点评】此题考查了平行四边形的性质.注意平行四边形的对边相等,即可求得AB+BC=12.18.(7分)如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m;求图中阴影部分的面积.【分析】先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB为直角三角形,=AC×BC﹣AD×CD即可得出结论.再根据S阴影【解答】解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10米(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).阴影答:图中阴影部分的面积为96米2.【点评】本题考查的是勾股定理的运用和勾股定理的逆定理运用,解题的关键是根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB为直角三角形.19.(8分)如图,已知菱形ABCD的边AB长5cm,一条对角线AC长6cm,求这个菱形的周长和它的面积.【分析】根据菱形的性质和勾股定理可以求得BD的长,从而可以求得这个菱形的周长和它的面积.【解答】解:设BD与AC交于点O,∵四边形ABCD是菱形,AB=5cm,AC=6cm,∴AO=3cm,AC⊥BD,∴∠AOB=90°,∴BO=,∴BD=8,∴这个菱形的周长是:5×4=20cm,面积是:=24cm2,即这个菱形的周长是20cm,面积是24cm2.【点评】本题考查菱形的性质、勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(8分)已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠1=∠2,∵点E是BC的中点,∴BE=CE.在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.【点评】本题考查了平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定等知识点的应用,本题主要考查学生运用定理进行推理的能力.21.(8分)阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下:===﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.【分析】(1)利用二次根式的性质对他们的化简结果进行判断;(2)利用完全平方公式把原式变形为,然后根据二次根式的性质化简即可.【解答】解:(1)小李化简正确,小张的化简结果错误.因为=|﹣|=﹣;(2)原式===﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(10分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.。

2017-2018年山东省济宁市鱼台县八年级上学期期中数学试卷和答案

2017-2018年山东省济宁市鱼台县八年级上学期期中数学试卷和答案

2017-2018学年山东省济宁市鱼台县八年级(上)期中数学试卷一、选择题((每小题3分,共30分)1.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.2.(3分)点M(2,3)关于y轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(3,﹣2)3.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角4.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.165.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F6.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.(3分)一个等腰三角形两边长分别为20和10,则周长为()A.40 B.50 C.40或50 D.不能确定8.(3分)圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A.圆B.正方形C.长方形D.等腰梯形9.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°10.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②二、填空题(每小题3分,共15分)11.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为.12.(3分)如果一个多边形的一个内角和等于1440°,则这个正多边形一共有条对角线.13.(3分)若正n边形的一个外角为45°,则n=.14.(3分)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.15.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高.若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.三、简答题(共55分)16.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.17.(6分)尺规作图(保留作图痕迹,不写作法)已知:线段a,∠α求作:△ABC,使AB=AC=a,∠B=∠α.18.(6分)如图,已知BA∥CD,AD和BC相交于点O,∠AOC=86°,∠B=55°,求:∠C和∠D的度数.19.(6分)如图,△ABC中,AC=AD=BD,∠DAC=80°.求:∠B的度数.20.(6分)已知:如图,AB=CD,AE=CF,DE⊥AC,BF⊥AC,E,F是垂足.问:(1)AF与CE相等吗?(2)AB与DC平行吗?请说明你的理由.21.(8分)已知:如图所示.(1)作出△ABC关于x轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在y轴上画出点P,使PA+PC最小,写出作法.22.(8分)如图,已知:EC⊥OB,ED⊥OA,C、D是垂足,DE=EC,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.23.(9分)如图,△ABC是等腰直角三角形,且∠C=90°,直线l过C点.(1)如图1,过A点、B点作直线l的垂线段AD、BE,垂足为D、E,请你探究AD、BE、DE满足的数量关系,并进行证明;(2)当直线l绕点C旋转到如图2所示的位置时,请直接写出AD、BE和DE的数量关系(不用证明)2017-2018学年山东省济宁市鱼台县八年级(上)期中数学试卷参考答案与试题解析一、选择题((每小题3分,共30分)1.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.(3分)点M(2,3)关于y轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(3,﹣2)【解答】解:点M(2,3)关于y轴对称的点的坐标为(﹣2,3).故选:C.3.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角【解答】解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故选:B.4.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.5.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:C.6.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选:C.7.(3分)一个等腰三角形两边长分别为20和10,则周长为()A.40 B.50 C.40或50 D.不能确定【解答】解:①当10为腰时,10+10=20,故此种情况不存在;②当20为腰时,20﹣10<20<20+10,符合题意.故此三角形的周长=10+20+20=50.故选:B.8.(3分)圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A.圆B.正方形C.长方形D.等腰梯形【解答】解:A、圆有无数条对称轴,错误;B、正方形有4条对称轴,错误;C、长方形有2条对称轴,错误;D、等腰梯形有1条对称轴,正确.故选:D.9.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.10.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.二、填空题(每小题3分,共15分)11.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为(﹣1,﹣2).【解答】解:∵两点关于x轴对称,∴对应点的横坐标为﹣1,纵坐标为﹣2.故答案为:(﹣1,﹣2).12.(3分)如果一个多边形的一个内角和等于1440°,则这个正多边形一共有35条对角线.【解答】解:∵其内角和为(n﹣2)•180°=1440,解得:n=10∴这个多边形所有对角线的条数是:n(n﹣3)÷2=10×(10﹣3)÷2=35.故答案为35.13.(3分)若正n边形的一个外角为45°,则n=8.【解答】解:n=360°÷45°=8.所以n的值为8.故答案为:8.14.(3分)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB,使得△EAB≌△BCD.【解答】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.15.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高.若△ABC的面积为18cm2,则图中阴影部分的面积是9cm2.【解答】解:∵AB=AC,AD是BC边上的高,∴BD=CD,∵点E、F是AD的三等分点,∴阴影部分的面积等于△ABC的面积的一半,∵△ABC的面积18cm2,∴阴影部分的面积=9cm2.故答案为:9.三、简答题(共55分)16.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.【解答】解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30,4x=120;因此等腰三角形的顶角度数为20°或120°.17.(6分)尺规作图(保留作图痕迹,不写作法)已知:线段a,∠α求作:△ABC,使AB=AC=a,∠B=∠α.【解答】解:如图,△ABC为所作.18.(6分)如图,已知BA∥CD,AD和BC相交于点O,∠AOC=86°,∠B=55°,求:∠C和∠D的度数.【解答】解:∵BA∥CD,∴∠C=∠B=55°,∠D=∠AOC﹣∠C=31°.19.(6分)如图,△ABC中,AC=AD=BD,∠DAC=80°.求:∠B的度数.【解答】解:设∠B=x∵AC=AD=BD,∴∠B=∠BAD=x∴∠ADC=∠C=2x,∴2x+2x+80°=180°∴x=25°∴∠B=25°20.(6分)已知:如图,AB=CD,AE=CF,DE⊥AC,BF⊥AC,E,F是垂足.问:(1)AF与CE相等吗?(2)AB与DC平行吗?请说明你的理由.【解答】(1)解:结论:AF=CE.理由:∵AE=CF,∴AF+EF=CF+EF,即AF=CE.(2)解:结论:AB∥CD,理由:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°,在Rt△ABF和Rt△CDE中,,∴△ABF≌△CDE(HL);∴∠A=∠C,∴CD∥AB.21.(8分)已知:如图所示.(1)作出△ABC关于x轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在y轴上画出点P,使PA+PC最小,写出作法.【解答】解:(1)如图所示,△A′B′C′即为所求,A′(1,﹣2)、B′(3,﹣1)、C′(4,﹣3);(2)①作点A关于y轴的对称点A″(﹣1,2);②连接A″C交y轴于点P,点P即为所求点.22.(8分)如图,已知:EC⊥OB,ED⊥OA,C、D是垂足,DE=EC,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.【解答】证明:(1)∵DE=EC,EC⊥OB,ED⊥OA,∴在Rt△ODE与Rt△OCE中,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF23.(9分)如图,△ABC是等腰直角三角形,且∠C=90°,直线l过C点.(1)如图1,过A点、B点作直线l的垂线段AD、BE,垂足为D、E,请你探究AD、BE、DE满足的数量关系,并进行证明;(2)当直线l绕点C旋转到如图2所示的位置时,请直接写出AD、BE和DE的数量关系(不用证明)【解答】解:(1)DE=AD+BE.证明:∵△ABC是等腰直角三角形,且∠ACB=90°,∴AC=BC.∵AD⊥直线l,∠ACD+∠ACB+∠BCE=180°,∴∠ACD+∠CAD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴DC=EB,AD=CE,∴DE=DC+CE=AD+BE.(2)DE=BE﹣AD.证明:同(1)可证出△ACD≌△CBE(AAS),∴DC=EB,AD=CE,∴DE=DC﹣CE=BE﹣AD.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2018-2019学年八年级数学上学期期中卷2(山东)(考试版)

2018-2019学年八年级数学上学期期中卷2(山东)(考试版)

C.1 D.–1第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若正多边形的一个外角是40°,则这个正多边形的边数是__________.14.如图,已知△ABC≌△BAD,若∠DAC=20°,∠C=88°,则∠DBA=__________度.15.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为__________.16.在△ABC中,∠A=45°,∠B=30°,AD为△ABC的中线,则∠ADC=__________.17.如图,在△ABC中,AE是∠BAC的外角的平分线,D是AE上任意一点,则AB+AC__________DB+DC.(用“>”、“<”、“=”号连接)18.如图,在△ABC中,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,依此类推….已知∠A=α,则∠A n的度数为__________(用含n、α的代数式表示).三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.20.(本小题满分6分)如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的平分线,DF∥AB交AE的延长线于点F,求DF的长.21.(本小题满分6分)如图所示,已知△ABC为等边三角形,点D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE是等边三角形.22.(本小题满分8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形格点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)23.(本小题满分8分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)如果AB=8,AC=6,求AE、BE的长.数学试题第3页(共6页)数学试题第4页(共6页)AE⊥AB,AF⊥AC,AE=AB。

鲁教版五四制八年级上册期中考试数学试题及答案

鲁教版五四制八年级上册期中考试数学试题及答案

2018—2019学年度第一学期期中考试八年级数学试题一、选择题(本题有12小题,每小题4分,共48分,每小题只有一个选项是正确的,不选、多选、错选,均不得分)某同学根据上表分析得出如下结论:①甲,乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是A.①②③B.①②C.①③D.②③11.若分式方程x-ax+1=a无解,则a的值为A.0 B.-1 C.0或-1 D.1或-112.“五一”节即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%.那么乙种商品单价是A.5元B.3元C.2.5元D.2元二、填空题(共5小题,每小题4分,满分20分)13.因式分解:-2x2y+8xy-6y= .14.化简1x+1+2x2-1结果是.15.某住宅小区四月份1日至5日,每天用水量变化情况如图所示,那么这5天每天用水量的中位数是吨.16.若分式 |a|―3(a+2)(a-3)的值为0,则a= .17.已知正数a,b,c是△ABC三边的长,而且使等式a2-c2+ab-bc=0成立,则△ABC 是三角形.三、解答题(共7小题,共52分)18.分解因式:(1)x2-7x-18 (2)x3-2x2y+xy2;(3)9a2(x-y)+4b2(y-x)19.解方程:(1)3x-1-2x= 0;(2)x-4x-3+2 =13-x.21.随着移动互联网的快速发展,基于互联网的共享单车应运而生,为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周\24.已知下面一列等式:1×12=1-12;12×13=12-13;13×14=13-14; 14×15=14-15;…2018—2019学年度第一学期期中考试八年级数学参考答案三、解答题:18.(每小题4分,共12分)解:(1)x2-7x-18=(x-9)(x+2);(2)x3-2x2y+xy2,=x(x2-2xy+y2)=x(x﹣y)2;(3)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).24.解:(1)1n ·1 n +1=1n -1n +1………………………………………………2分(2)1n -1 n +1=n +1 n (n +1)-n n (n +1)=1 n (n +1)=1n ·1 n +1……………………………4分(3)原式=(1x -1 x +1)+(1 x +1-1x +2)+(1x +2-1 x +3)+(1 x +3-1x +4)=1x -1x +4=1x 2+4 x…………………………………………………………………………6分。

2018-2019学年八年级上册期中数学试卷含答案(人教版)

2018-2019学年八年级上册期中数学试卷含答案(人教版)

2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为x cm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为x cm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出△Rt ARP≌△Rt ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故(△3)正确,又可推出BRP≌△QSP,故(4)正确.【解答】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴△Rt ARP≌△Rt ASP∴AR=AS,故(2)正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故(1)正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故(3)正确∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP∴△BRP≌△QSP,故(4)正确∴全部正确.故选:D.【点评】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质求解.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5),故答案为:(﹣3,﹣5).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,=×4×2+AC•2=7,∴S△ABC解得AC=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为128.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=16,A4B4=8B1A2=32,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=4,∴A2B1=4,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=16=24,A4B4=8B1A2=32=25,A5B5=16B1A2=64=26,以此类推:△A n B n A n+1的边长为2n+1,∴△A6B6A7的边长为:26+1=128.故答案为:128.【点评】此题主要考查了等边三角形的性质以及直角三角形30度角的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.【分析】分别作∠BAC的平分线和线段AB的中垂线,它们的交点即为所求点P.【解答】解:如图所示,点P即为所求.【点评】此题主要考查了线段垂直平分线的性质与作法以及角平分线的性质与作法,正确掌握相关性质是解题关键.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作A点关于x轴的对应点A″,连接A″C交x轴于点P,利用两点之间线段最短可判断此时P A+PC 最小.【解答】解:(△1)如图,A′B′△C′为所作,A′B′C′三个顶点的坐标分别为A'(4,1),B'(3,3),C'(1,2);(2)如图,点P为所作..【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.【分析】先由三角形外角的性质,求出∠BAC的度数,然后由角平分线的定义即可求出∠BAE的度数,然后再根据外角的性质,即可求∠AEC的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC,∵∠B=40°,∠ACD=106°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠BAC=33°,∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=73°.【点评】此题考查了三角形外角的性质及角平分线的定义,熟记三角形的外角等于与它不相邻的两个内角之和.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.【分析】(1)根据已知条件,用HL公理证:△Rt ABC≌△Rt DCB,从而得证;(2)利用△Rt ABC≌△Rt DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在△Rt ABC与△Rt DCB中,∠A=∠D=90°,,∴△Rt ABC≌△Rt DCB(HL),∴AB=CD;(2)△OBC是等腰三角形,理由如下:∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【分析】(1)根据题意得到∠CAB=∠B,根据等腰三角形的性质得到CB=CA=80,得到答案;(2)作BD⊥CD于点D,求出∠BCD=30°,根据直角三角形的性质计算即可.【解答】解:(1)由题意得,∠CAB=90°﹣40°﹣10°=40°,∠ACB=40°+60°=100°,∴∠B=180°﹣100°﹣40°=40°,∴∠CAB=∠B,∴CB=CA=80(海里),答:此时货轮到小岛B的距离为80海里;(2)轮船向正东方向航行没有触礁危险.理由如下:如图,作BD⊥CD于点D,∵∠BCD=90°﹣60°=30°,∴BD=BC=40,∵40>36,∴轮船向正东方向航行没有触礁危险.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握直角三角形的性质、方向角的概念是解题的关键.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=△CD,只要证明ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE ﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②△S ABE=理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,△S CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设△①成立,则ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(△1)利用等边三角形的性质可证明APC≌△BQA,则可求得∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(2)可用t分别表示出BP和BQ,分∠BPQ=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值;(3)同(△1)可证得PBC≌△QCA,再利用三角形外角的性质可求得∠CMQ=120°.【解答】解:(△1)∵ABC为等边三角形,∴AB=AC,∠B=∠P AC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中,∴△APC≌△BQA(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,∴在P、Q运动的过程中,∠CMQ不变,∠CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,∴4﹣t=2t,解得t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2PB,∴t=2(4﹣t),解得t=,∴当t为s或s时,△PBQ为直角三角形;(3)在等边三角形ABC中,AC=BC,∠ABC=∠BCA=60°,∴∠PBC=∠QCA=120°,且BP=CQ,在△PBC和△QCA中,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=120°,∴在P、Q运动的过程中,∠CMQ的大小不变,∠CMQ=120°.【点评】本题为三角形的综合应用、等边三角形的性质、直角三角形的性质、勾股定理、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

初中数学八年级上册期中测试题

初中数学八年级上册期中测试题

山东省济宁地区2018—2018学年度第一学期期中考试八年级数学试题(四年制)一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.在式子:a1,πx2,ba a+2,2x ,x x+2,1-a a ,xyy x 332中,分式的个数是A .2B .3C .4D .5 2.下列各分式中,当x =-1时,分式有意义的是 A .121x + B .12+-x x C .1322--xx D .xx+213.计算11-+x x -11+-x x 的结果是A .1B .142-xx C .12+-x x D .xx 1-4.下列结论不正确的是A .两角对应相等的两个三角形相似B .两边对应成比例的两个三角形相似C .相似三角形对应中线的比等于相似比D .两相似三角形面积的比等于相似比的平方 5.如图,已知D ,E 分别是AB ,AC 上的点,且 DE ∥BC ,AE =2k ,EC =k ,DE =4,那么BC 等于A .4B .5C .6D .8 八年级数学试题(四年制)第1页(共8页)(第5题图)ABCD E6.如图,正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是7.方程x2=21+x 的解是A .2B .-2C .4D .-4 8.如图,已知四边形ABCD 与四边形EFGH 是位似图形,位似中心是O ,若四边形ABCD 的面积是18,四边形EFGH 的面积是8,则EF ︰AB 等于 A .2︰3 B .4︰9C .3︰2D .9︰49.某质检部门从甲、乙两厂各抽取了相同数量的产品x 件进行质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,已知甲厂的合格率比乙厂高5%,则x 等于 A .50 B .55 C .60 D .6510.如图,在△ABC 中,D 是边AB 上的一点, ∠1=∠ACB ,则下列结论中不正确的是 A .CD AC =BC AB B .BDBC =CDACC .CD 2=AB ·BD D .BC 2=AB ·BD二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.计算:221xx-·12+x x=12.已知yx =41,那么yy x +=13.如图,已知四边形ABCD 与四边形AEFB 相似,相似比等于3︰2,如果AB =6,那么AE = .八年级数学试题(四年制)第2页(共8页)14.如图,正方形OEFG 和正方形ABCD 是位似图形,点F 的坐标为(1,1),点C 的坐(第8题图)A BCDE F GH O(第10题图)CABD1.. ABCDEF(第13题图)(第6题图)BA .B .C .D .标为(4,2),则这两个正方形位似中心的坐标是 .15.如图,小明同学在夜晚由路灯AB 走向路灯CD ,当他走到点E 时,发现身后他头顶部F 的影子刚好接触到路灯AB 的底部A 处,当他向前再步行18 m 到达G 点时,发现身前他头顶部H 的影子刚好接触到路灯CD 的底部C 处,已知小明同学的身高是1.6 m ,两个路灯的高度相等,两个路灯之间的距离AC =30m . 则路灯的高度是 m .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分,每小题3分)计算下列各题: (1)3524xa yb ÷2232⎪⎪⎭⎫⎝⎛xa yb . (2)yxy x x2442+++·42-x y.八年级数学试题(四年制)第3页(共8页)17.(本题满分4分)(第15题图)D(第14题图)解方程:12+x =123-x .18.(本题满分4分)如图,△ABC 三边长分别为AB =3 cm ,BC =3.5 cm ,CA =2.5 cm ;△DEF 三边长分别为DE =3.6 cm ,EF =4.2 cm ,FD =3 cm .△ABC 与△DEF 是否相似?为什么?19.(本题满分4分)如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高,若AD =9 cm ,BD =4 cm ,求CD 的长.八年级数学试题(四年制)第4页(共8页)(第18题图)3.54.2cm B DE (第19题图)A DBC先化简,再求值: (x xx 222-+-4412+--x xx )÷xx 4-,其中x =3.21.(本题满分5分)列方程解应用题:某车间加工600个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用5小时.采用新工艺前、后每小时分别加工多少个零件?八年级数学试题(四年制)第5页(共8页)如图,有一块三角形铁皮余料ABC ,∠C =90°,BC =60 cm ,AC =40 cm ,现要在这块三角形铁皮余料截出一个最大的正方形PQCR ,正方形PQCR 的边长是多少?23.(本题满分7分)列方程解应用题:某商厦用4万元购进一批某种衬衫,面市后供不应求,商厦又用8.8万元购进了第二批这样的衬衫,所购件数是第一批购进量的2倍,但单价贵了4元.商厦均按每件60元的售价出售,最后剩下100件按八折售完. (1)商厦第一批购进衬衫多少件?(2)商厦销售这两批衬衫共盈利多少元?八年级数学试题(四年制)第6页(共8页)24.(本题满分8分)(第22题图) A B CPQ R秋高气爽,菊花芬芳,艳阳高照,群情昂扬.某校八年级数学兴趣小组运用相似三角形的有关知识,并用两种方法测量学校操场南侧旗杆AB 的高度.(1)如图①,小丽同学站在旗杆顶端A 在地面上的影子C 处,此时小丽同学头顶D 在地面上的影子E 处.若小丽同学身高(CD )1.65 m ,小丽同学的影长CE =1.1 m ,旗杆的影长BC =12 m .利用得到的数据,请你帮助数学兴趣小组求出旗杆AB 的高度;(2)如图②,小亮同学在旗杆AB 与他之间的地面上平放一面小镜子,在镜子的C 处做上一个标记,BC =15 m ,小亮同学看着镜子前后移动,直到看到旗杆顶端A 在镜子中的像与镜子上的标记C 重合,停止移动.此时小亮同学站在E 处,CE =1.4 m ,眼睛D 观察镜子时距离地面的高度DE =1.68 m .利用得到的数据,请你帮助数学兴趣小组求出旗杆AB 的高度.(友情提示:将两图中的人物看作垂直地面的线段,不用再画线作图)八年级数学试题(四年制)第7页(共8页)25.(本题满分7分)A (第22题图①)(第22题图②)A阅读理解、探究与迁移运用: 已知在Rt △ABC 中,∠ABC =90°,∠A =30°,点P 在AC 上,且∠MPN =90°. 当点P 为线段AC 的中点,点M ,N 分别在线段AB ,BC 上时(如图①),过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,可证△PME ∽△PNF ,得出PN =3PM .(不需证明)当PC =2P A ,点M ,N 分别在线段AB ,BC 上,如图②的情况时,请你探求线段PN ,PM 之间的数量关系?并说明理由?八年级数学试题(四年制)第8页(共8页)2018—2018学年度第一学期期中考试(第25题图①) A B C P MN E F(第25题图②)ABCPMN八年级数学试题(四年制)评分标准与参考答案一、选择题1.D 2.A 3.B 4.B 5.C 6.A 7.D 8.A 9.C 10.C二、填空题11.x -1 12.45 13.4 14.(-2,0) 15.8三、解答题16.(1)解:原式=3524xa yb ÷4624xa yb =3524x a y b ·2446yb xa =ax .………………… 3分(2)解:原式=)2()2(2++x y x ·)2)(2(-+x x y=21-x . ………………… 3分17.解:将分式方程化为整式方程,得 4x -2=3x +3. ………………… 1分解这个方程,得 x =5. ………………………………………………… 2分检验:将代入原方程,得 左边=31=右边. ………………………… 3分所以, x =5是原方程的根. …………………………………………… 4分18.解:△ABC ∽△DEF . ………………………………………………………… 1分理由如下:∵ DE AB =6.33=65,EFBC =2.45.3=65,FDCA =35.2=65,……………… 2分∴DEAB =EFBC =FDCA .………………………………………………………… 3分∴ △ABC ∽△DEF . …………………………………………………………… 4分 19.解:∵ CD ⊥AB , ∴ ∠ADC =∠CDB =90°,∠A +∠1=90°.∵ ∠ACB =90°, ∴ ∠A +∠B =90°. ∴ ∠1=∠B .∴ Rt △ADC ∽Rt △CDB . …………………… 2分∴BDCD =CDAD .∴ CD 2=AD ·BD =9×4=36. ……………… 3分 ∴ CD =6(cm ).故 所求高CD =6 cm . ………………………… 4分 20.解:原式=()2(2-+x x x -2)2(1--x x )÷xx 4-=2)2()1()2)(2(----+x x x x x x ÷xx 4- …………………………… 2分八年级数学答案(四年制)第1页(共3页)=2)2(4--x x x ·4-x xADBC21(第19题解答图)=2)2(1-x .………………………………………………………… 3分当x =3时,原式=2)23(1-=1.………………………………… 4分21.解:设采用新工艺前每小时加工x 个零件,则采用新工艺后每小时加工1.5x 个零件.根据题意,得x600-x5.1600=5. ………………………………………… 2分解这个方程,得 x =40.经检验,x =40是所列方程的解.1.5x =1.5×40=60. ………………………………………………………… 4分 答:采用新工艺前、后每小时分别加工40个、60个零件. ……………… 5分22.解:设正方形PQCR 的边长是x cm .∴ BQ =(60-x ) cm . …………………… 1分∵ 四边形PQCR 是正方形,∴ PQ ∥AC .∴ ∠BPQ =∠A ,∠BQP =∠C .∴ △PBQ ∽△ABC .………………………………………………………………… 3分∴ACPQ =BCBQ . ∴40x =6060x -.…………………………………………… 4分解得 x =24.…………………………………………………………………………… 5分 答:正方形PQCR 的边长为24 cm . ………………………………………………… 6分 23.解:(1)设商厦第一批购进衬衫x 件,则第二批购进衬衫2x 件.依题意,得x288000-x40000=4.………………………………………… 2分解得 x =1000.经检验,x =1000是所列方程的解.答:商厦第一批购进衬衫1000件.…………………………………………… 4分 (2)第二批购进衬衫件数:2x =2×1000=2000(件). 60(1000+2000)-60×0.2×100-(40000+88000)=180000―1200―128000=50800(元). ……………………………………… 6分 答:商厦销售这两批衬衫共盈利50800元.…………………………………… 7分 24.解:(1)在Rt △ABC 和Rt △DCE 中,∵ ∠ABC =∠DCE =90°,∠ACB =∠DEC ,∴ △ABC ∽△DCE . ∴ CDAB =CEBC .……………………………………… 2分∴65.1AB =1.112. ∴ AB =18 (m ).答:旗杆AB 的高度是18 m . ………………………………………………… 4分 (2)在Rt △ABC 和Rt △DEC 中,∵ ∠ABC =∠DEC =90°,∠ACB =∠DCE , ∴ △ABC ∽△DEC . ∴ DEAB =CEBC .……………………………………… 6分八年级数学答案(四年制)第2页(共3页)∴68.1AB =4.115. ∴ AB =18 (m ).答:旗杆AB 的高度是18 m .……………………………………………………… 8分25.解:图②中线段PN ,PM 之间的数量关系是:PN =6PM . …………………… 1分 理由如下:在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F .∴ 四边形BFPE 是矩形, ∴ ∠EPF =90º.∵ ∠1+∠3=∠2+∠3=90º, ∴ ∠1=∠2.∴ △PFN ∽△PEM . …………………………… 3分∴ PF PE =PN PM . ………………………………… 4分 在Rt △AEP 和Rt △PFC 中,∠A =30º,∠C =60º,∴ PF =23PC ,PE =21PA .…………………… 5分 ∴ PN PM =PF PE =3PC P A. ……………………………………………………… 6分 ∵ PC =2PA , ∴PN PM =6. 即 PN =6PM . ……………………… 7分注:解答题若有其他解法,请按步计分!EF A B CP M N 123(第25题解答图)。

2018-2019(含答案)八年级(上)期中数学试卷 (3)

2018-2019(含答案)八年级(上)期中数学试卷 (3)

2018-2019(含答案)八年级(上)期中数学试卷 (3).................................................................................................................................................................2018.10.22一、选择题(本大题共16个小题,共42分)1.在,,,,,,分式的个数是()A.个B.个C.、个D.个2.的平方根为()A.和B.和C. D.3.已知,,,则A. B. C. D.4.若分式无意义,那么的取值为()A. B. C. D.5.分式约分的结果是()A. B. C. D.6.的相反数为()A. B. C. D.7.如图,下列条件中,不能证明的是()A.,B.,C.,D.,8.分式,,的最简公分母是()A. B. C. D.9.如图,在方格纸中,以为一边作,使之与全等,从,,,四个点中找出符合条件的点,则点的个数为()A. B. C. D.10.计算:A. B. C. D.11.若有平方根,则的取值范围是()A. B. C. D.12.若,,则分式的值是()A. B. C. D.13.的整数部分是()A. B. C. D.14.如图,小敏做了一个角平分仪,其中,.将仪器上的点与的顶点重合,调整和,使它们分别落在角的两边上,过点,画一条射线,就是的平分线.此角平分仪的画图原理是:根据仪器结构,可得,这样就有.则说明这两个三角形全等的依据是()A. B. C. D.15.一个水塘里放养了鲤鱼和草鱼,草鱼的数量占总数的,现又放进了条鲤鱼,这时草鱼的数量占总数的,则这个水塘里草鱼的数量是()A. B. C. D.16.下列命题中:①已知两数,,如果,那么;②同旁内角互补,两直线平行;③全等三角形的对应角相等,对应边相等;④对顶角相等;其逆命题是真命题的是()A.①②B.②③C.③④D.①④二、填空题(本大题有3个小题,共10分)17.的平方根是________.18.若分式的值为,则的值为________.19.若关于的分式方程有增根,则的值是________;若分式方程无解,则的值为________.三、解答题(本大题共7个小题,共68分)20.把下列各数分别填入相应的大括号中:,, . ,,,,,,, . ,,整数: ...分数: ...负实数: ...无理数: ....21.如图,点,,,在同一条直线上,,,.与相等吗?说说你的理由;与平行吗?说说你的理由.22.化简并求值:,其中,.22.解分式方程:.23.如图,已知线段及,只用直尺和圆规,求作,使,,(保留作图痕迹,不写作法)24.某公司接到一份合同,要生产部新型手机,有,两个车间接受此任务,车间每天的综合费用为万元,车间每天加工的数量为车间的 . 倍,若,两车间共同完成一半,剩余的由车间单独完成,则共需要天完成.求,两车间每天分别能加工多少部?25.如图,在中,,,过点的直线交于点,过点作,垂足为,过点作,垂足为,请你在图中找出一对全等三角形,并说明理由.26.阅读:例:若,求,因为,所以.探究:填空:①若,则________;②若,则________;③若,则________;规定:若,用符号“ ”表示,即填空:① ________;② ________;③ ________;应用:________;________;________;举例说明,,之间的关系.答案1. 【答案】B【解析】根据分式的定义,可得答案.【解答】解:,,是分式,故选:.2. 【答案】A【解析】根据平方根的定义即可得.【解答】解:的平方根为,故选:.3. 【答案】D【解析】根据全等三角形的性质即可求出的度数.【解答】解:∵ ,∴ ,∵∴故选4. 【答案】C【解析】根据分式无意义,分母等于列方程求解即可.【解答】解:由题意得,,解得.故选.5. 【答案】B【解析】先对分子、分母找出公约式,再约分即可.【解答】解:,故选.6. 【答案】D【解析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:的相反数为,故选:.7. 【答案】C【解析】全等三角形的判定定理有,,,,根据定理逐个判断即可.【解答】解:、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,不能推出,不符合全等三角形的判定定理,故本选项符合题意;、∵ ,∴ ,∵ ,∴根据三角形内角和定理得出,,,,符合全等三角形的判定定理,能推出,故本选项不符合题意.故选.8. 【答案】A【解析】确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的最简公分母是;故选9. 【答案】B【解析】根据全等三角形的判定定理进行分析即可.【解答】解:符合条件的点的个数为个,分别是,,故选:.10. 【答案】A【解析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式,故选11. 【答案】D【解析】根据非负数有平方根列式求解即可.【解答】解:根据题意得,解得.故选:.12. 【答案】B【解析】先算除法,再算减法,最后把,的值代入进行计算即可.【解答】解:原式,当,时,原式.故选.13. 【答案】C【解析】由被开方数的范围确定出所求无理数的整数部分即可.【解答】解:∵ ,∴,则的整数部分为,故选14. 【答案】D【解析】在和中,由于为公共边,,,利用定理可判定,进而得到,即.【解答】解:在和中,,∴ ,∴ ,即.故选:.15. 【答案】A【解析】设这个水塘里草鱼的数量是,根据题意列出方程解答即可.【解答】解:这个水塘里草鱼的数量是,可得:,解得:,经检验是原方程的解,故选16. 【答案】B【解析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①已知两数,,如果,那么的逆命题是:已知两数,,如果,那么,错误,如,都是负数时;②同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,正确;③全等三角形的对应角相等,对应边相等的逆命题是对应角相等,对应边相等的三角形是全等三角形,正确;④对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故本选项错误;其逆命题是真命题的是②③;故选.17. 【答案】【解析】根据平方根的定义,求数的平方根,也就是求一个数,使得,则就是的平方根,由此即可解决问题.【解答】解:的平方根.故答案为:.18. 【答案】【解析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得且,解得,故答案为:.19. 【答案】,或【解析】根据分式方程的增根,可得关于的整式方程,根据解方程,可得答案.【解答】解:两边都乘以,得,将代入,得,故答案为:;两边都乘以,得,将代入,得,时,,故答案为:或.20. 【答案】,,,,,, . , . ,,,, . ,,,,,,【解析】根据实数的分类即可求出答案.【解答】解:整数:...分数: . . ...负实数:...无理数:....21. 【答案】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .【解析】利用“边角边”证明和全等,根据全等三角形对应边相等可得,再求解即可;; 根据全等三角形对应角相等可得,再根据同位角相等,两直线平行证明即可.【解答】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .22. 【答案】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.【解析】原式去括号合并得到最简结果,把的值代入计算即可求出值;; 首先方程的两边同乘以最简公分母,把分式方程转化为整式方程,再求解即可,最后要把求得的的值代入到最简公分母进行检验.【解答】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.23. 【答案】解:如图,①作线段.②作,,与交于点.即为所求.【解析】①作线段.②作,,与交于点.即为所求.【解答】解:如图,①作线段.②作,,与交于点.即为所求.24. 【答案】,两车间每天分别能加工和部.【解析】关键描述语是:“ 车间每天加工的数量为车间的 . 倍”;等量关系为:共需要天完成,根据等量关系列式.,【解答】解:设两车间每天能加工部,根据题意可得:.解得:,经检验是原方程的解,. ,25. 【答案】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .【解析】根据余角的性质得到,根据全等三角形的判定即可得到结论.【解答】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .26. 【答案】,,; ; ,,; ,,; 设,,则,而,故即,,之间的关系是.【解析】根据题目中的例子可以解答本题;; ; 根据中的规定和中的结果可以解答本题;; 根据前面的问题解答可以解答本题;; 列出具体的数据加以说明,,之间的关系即可.【解答】解: ①∵ ,,∴ ,②∵ ,,∴ ,③∵ ,,∴ ,; ; 由可得,① ,② ,③ ,; ∵∴ ,∵,∴,∵ ,∴ ,; 设,,则,而,故即,,之间的关系是.。

2018年山东省济宁市鱼台县中考数学模拟试卷(解析版)

2018年山东省济宁市鱼台县中考数学模拟试卷(解析版)

2018年山东省济宁市鱼台县中考数学模拟试卷(4月份)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,无理数为()A. 0.2B.C.D. 2【答案】C【解析】分析:根据无理数就是无限不循环小数,可得答案.详解:A.是有限小数,是有理数,选项错误;B.是分数、是有理数,选项错误;C.正确;D.是整数,是有理数,选项错误.故选:C.点睛:此题考查无理数,正确理解无理数的概念是解决问题的关键.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.2. 下列计算结果是x5的为()A. x10÷x2B. x6﹣xC. x2•x3D. (x3)2【答案】C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.3. 如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()A. 20°B. 30°C. 40°D. 50°【答案】B【解析】分析:根据平行线的性质,得出∠BCD=∠B=50°,再根据∠BCD是△CDE的外角,即可得出∠E.详解:∵AB∥CD,∴∠BCD=∠B=50°,又∵∠BCD是△CDE的外角,∴∠E=∠BCD−∠D=50°−20°=30°.故选:B.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用.解题时注意:两直线平行,内错角相等.4. 如图是某个几何体的展开图,该几何体是()A. 三棱柱B. 圆锥C. 四棱柱D. 圆柱【答案】A【解析】试题解析:侧面为三个长方形,底边为三角形,故原几何体为三棱柱.故选A.5. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A. |a|<|b|B. a>﹣bC. b>aD. a>﹣2【答案】C【解析】分析:根据数轴上点的位置,利用相反数,绝对值的性质判断即可.详解:根据数轴上点的位置得:−3<a<−2,1<b<2,∴|a|>|b|,a<−b,b>a,a<−2,故选:C点睛:此题考查了实数与数轴,弄清楚实数a、b在数轴上的对应点的位置是解本题的关键.6. 某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A. 1.2,1.3B. 1.3,1.3C. 1.4,1.35D. 1.4,1.3【答案】D【解析】根据众数与中位数的定义,易得C.7. 关于x的一元二次方程kx2+2x﹣1=0有两个不相等实数根,则k 的取值范围是()A. k>﹣1B. k≥﹣1C. k≠0D. k>﹣1且k≠0【答案】D【解析】试题分析:方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后可以求出k的取值范围.解:由题意知k≠0,△=4+4k>0解得k>﹣1且k≠0.故选D.考点:根的判别式.8. 如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为16m.若小明的眼睛与地面距离为1.5m,则旗杆的高度为(单位:m)()A. B. 9 C. 12 D.【答案】C【解析】分析:根据题意容易得到△CDE∽△AEB,再根据相似三角形的性质解答即可.详解:如图:∵根据入射角与反射角相等可知,∠CED=∠AEB,故Rt△CDE∽Rt△AEB,∴,即,解得AB=12m.故选:C...... .........................9. 已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是()A. y=﹣x+8B. y=﹣x+8C. y=﹣x+3D. y=﹣x+3【答案】C【解析】分析:由题意,可求得点A与B的坐标,由勾股定理,可求得AB的值,又由折叠的性质,可求得AB′与OB′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,即可得方程,继而求得M的坐标,然后利用待定系数法即可求得答案.详解:令y=0得x=6,令x=0得y=8,∴点A的坐标为:(6,0),点B坐标为:(0,8),∵∠AOB=90°,∴AB==10,由折叠的性质,得:AB=AB′=10,∴OB′=AB′−OA=10−6=4,设MO=x,则MB=MB′=8−x,在Rt△OMB′中,OM2+OB′2=B′M2,即x2+42=(8−x)2,解得:x=3,∴M(0,3),设直线AM的解析式为y=kx+b,代入A(6,0),M(0,3)得:,解得:,∴直线AM的解析式为:y=−x+3.故选:C.点睛:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.10. 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A. (﹣6,24)B. (﹣6,25)C. (﹣5,24)D. (﹣5,25)【答案】B【解析】分析:观察图象,推出P9的位置,即可解决问题.详解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(−6,25),故选:B.点睛:本题考查规律型;点的坐标等知识,解题的关键是理解题意,确定点P9的坐标.二、填空题(本大题共5小题,每小题3分,共15分)11. 不等式2x+1>0的解集是_____.【答案】x>﹣.【解析】试题分析:利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣..考点:一元一次不等式的解法.12. 已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为_____.【答案】m<n.【解析】根据反比例函数的性质,得,当k<0时,在每个象限内,y随着x的增大而增大,得:n>m.故答案:.13. 如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:_____.【答案】△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.【解析】解:△OCD绕C点旋转90°,并向左平移2个单位得到△AOB(答案不唯一).故答案为:答案不唯一,如:△OCD绕C点旋转90°,并向左平移2个单位得到△AOB.14. 如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为_____.【答案】.【解析】分析:如图,连接DO,首先根据切线的性质可以得到∠ODC=90°,又AC=3BC,O为AB的中点,由此可以得到∠C=30°,接着利用30°的直角所对的直角边是斜边的一半和勾股定理即可求解.详解:如图,连接DO,∵CD是O切线,∴OD⊥CD,∴∠ODC=90°,而AB是O的一条直径,AC=3BC,∴AB=2BC=OC=2OD,∴∠C=30°,∴∠AOD=120°∴OD=CD,∵CD=,∴OD=BC=1,∴劣弧AD1的长度==,故答案为:.点睛:本题考查了圆的切线性质以及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.15. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是_____.【答案】①②③【解析】分析:由抛物线开口方向得到a>0,由抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时,y>0,即a-b+c>0,则可对④进行判断.详解:∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2−4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=−=1,∴b=−2a,而x=−1时,y>0,即a−b+c>0,∴a+2a+c>0,所以④错误.故答案为:①②③.点睛:本题考查的是二次函数的性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共7小题,共55分)16. 先化简,再求值:()÷﹣,其中a=2+.【答案】原式==﹣=﹣.【解析】分析:先把括号中的分母进行通分,再把除法转化成乘法,然后分子与分母进行约分,再进行同分母分式的减法,最后把a的值代入即可.详解:原式=[+]•﹣=[+]•﹣=•﹣=﹣=﹣,当a=2+时,原式=﹣=﹣=﹣.点睛:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是约分的找公因式,约分时分式的分子出现多项式,应先将多项式分解因式后再约分,此外化简求值题要先将原式化为最简式再代值.17. 如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交A D的延长线于G,当FG=1时,求AD的长.【答案】(1)证明见解析;(2)AD=.【解析】试题分析:(1)根据平行四边形的性质得出∠OBE =∠ODF,从而得出△OBE和△ODF全等,从而得出答案;(2)根据EF⊥AB,AB ∥DC得出∠GEA=∠GFD=90°,根据∠A的度数得出AE=GE,根据垂直得出OF=FG=1,根据三角形全等得出OE=OF=1,从而根据GE=OE+OF+FG得出答案.试题解析:(1)∵四边形ABCD是平行四边形,∴DC∥AB ∴∠OBE =∠ODF.在△OBE与△ODF中,∵∴△OBE≌△ODF(AAS)∴BO=DO(2)∵EF⊥AB,AB ∥DC,∴∠GEA=∠GFD=90°∵∠A=45°,∴∠G=∠A=45°∴AE=GE ∵BD⊥AD,∴∠ADB=∠GDO=90°∴∠GOD=∠G=45°∴DG=DO∴OF="FG=" 1 由(1)可知,OE=OF=1 ∴GE=OE+OF+FG=3 ∴AE=3考点:(1)平行四边形的性质;(2)三角形例行的判定;(3)两直线平行的性质视频18. 初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m= ,n= ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【答案】(1)8,3;(2)144;(3)P( 1名男生、1名女生)=.【解析】分析:(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.详解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴∴故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P( 1名男生、1名女生)点睛:本题主要考查统计表和扇形统计图列表法求概率,找出统计表和扇形统计图之间的关系是解题的关键.19. 如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.【答案】BP的长为153海里和BA的长为161海里.【解析】试题分析:如图作PC⊥AB于C.分别在Rt△APC,Rt△PCB中求解即可解决问题.试题解析:解:如图作PC⊥AB于C.由题意∠A=64°,∠B=45°,P A=120,在Rt△APC中,sin A=,cos A=,∴PC=P A•sin A=120sin64°,AC=P A•cos A=120cos64°,在Rt△PCB中,∵∠B=45°,∴PC=BC,∴PB==≈153,∴AB=AC+BC=120cos64°+120sin64°≈120×0.90+120×0.44≈161.答:BP的长为153海里和BA的长为161海里.20. 2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(2)至少销售甲种商品2万件.【解析】分析:(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.详解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有:900a+600(8﹣a)≥5400,解得:a≥2.答:至少销售甲种商品2万件.点睛:本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.21. 【阅读学习】刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.小娟是这样解决的:如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .【问题解决】已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ=,求sin2β的值.【答案】【阅读学习】x,;【问题解决】sin2β=.【解析】试题分析:(1)、根据题意的方法得出CD和sin2α的值;(2)、连接NO,并延长交⊙O于Q,连接MQ,MO,作MH⊥NO于H,设MN=k,则MQ=2k,NQ=k,OM=k,根据等面积法求出MH的长度,然后根据Rt△MHO计算三角函数的值.试题解析:(1)、.sin2α==.(2)、如图,连接NO,并延长交⊙O于Q,连接MQ,MO,作MH⊥NO于H.在⊙O中,∠NMQ=90°.∵∠Q=∠P=β,OM=ON,∴∠MON=2∠Q=2β∵ tanβ=,∴设MN=k,则MQ=2k,∴NQ=.∴OM=NQ=.∵,∴.∴ MH=.在Rt△MHO中,sin2β=sin∠MON =.考点:(1)、圆的基本性质;(2)、三角函数的计算.22. 如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连接BC,点P 为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.(1)求抛物线的解析式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F 为顶点的三角形与△OBC相似?并求出此时点P的坐标;(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连接PC,PB,△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标;若不能,请说明理由.【答案】(1)抛物线的解析式为y=﹣x2+3x+4;(2)点P的坐标为(2,6)或(4,0);(3)P(2,6),△PBC的面积的最大值为8.【解析】试题分析:(1)将点A(-1,0),B(4,0)的坐标代入抛物线的解析式,求得b、c的值即可;(2)先由函数解析式求得点C的坐标,从而得到△OBC为等腰直角三角形,故此当CF=PF时,以P,C,F 为顶点的三角形与△OBC相似.设点P的坐标为(a,-a2+3a+4).则CF=a,PF=-a2+3a,接下来列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;试题解析:(1)将点A(-1,0),B(4,0)的坐标代入函数的表达式得:,解得:b=3,c=4.抛物线的解析式为y=-x2+3x+4.(2)如图1所示:∵令x=0得y=4,∴OC=4.∴OC=OB.∵∠CFP=∠COB=90°,∴FC=PF时,以P,C,F为顶点的三角形与△OBC相似.设点P的坐标为(a,-a2+3a+4)(a>0).则CF=a,PF=|-a2+3a+4-4|=|a2-3a|.∴|a2-3a|=a.解得:a=2,a=4.∴点P的坐标为(2,6)或(4,0).(3)如图2所示:连接EC.设点P的坐标为(a,-a2+3a+4).则OE=a,PE=-a2+3a+4,EB=4-a.∵S四边形PCEB=OB•PE=×4(-a2+3a+4),S△CEB=EB•OC=×4×(4-a),∴S△PBC=S四边形PCEB-S△CEB=2(-a2+3a+4)-2(4-a)=-2a2+8a.∵a=-2<0,∴当a=2时,△PBC的面积S有最大值.∴P(2,6),△PBC的面积的最大值为8.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的判定,用含a的式子表示相关线段的长度,然后列出△PBC的面积与a的函数关系式是解题的关键.。

山东省2018-2019学年八年级上学期数学期中考试试卷

山东省2018-2019学年八年级上学期数学期中考试试卷

第1页,总18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………山东省2018-2019学年八年级上学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)△B ,△C 的平分线BE ,CD 相交于点F ,△ABC=42°,△A=60°,则△BFC=( )A . 118°B . 119°C . 120°D . 121°2. 如图所示4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .3. 下列各组数可能是一个三角形的边长的是( )A . 1,2,4B . 4,5,9C . 4,6,8D . 5,5,114. 下列长度的三条线段,能组成三角形的是( )A . 1,1,2B . 2,3,7C . 1,4,6D . 3,4,55. 三角形的一个外角是锐角,则此三角形的形状是( )A . 锐角三角形B . 钝角三角形C . 直角三角形D . 无法确定6. 等腰三角形有一个角等于70°,则它的底角是( ) A . 70° B . 55° C . 60° D . 70°或55°答案第2页,总18页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………7. 正六边形的每个内角都是( )A . 120°B . 100°C . 80°D . 60°8. 等腰三角形的底角为15°,腰长为2a ,则腰上的高为( ) A . B . 2a C . 2a -1 D . a9. 如图,在△ABC 中,△C=90°,BD 平分△ABC ,交AC 于点D ;若DC=3,AB=8则△ABD 的面积是( )A . 8B . 12C . 16D . 2410. 如果等腰三角形两边长是6cm 和3cm ,那么它的周长是( ) A . 15cm B . 12cm C . 15cm 或12cm D . 9cm第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共5题)50°,则它的底角等于 .2. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的 带去,就能配一块大小和形状与原来都一样的三角形。

(完整)2018人教版八年级数学(上)期中测试题及答案,推荐文档

(完整)2018人教版八年级数学(上)期中测试题及答案,推荐文档

AB D第9 题图C2018--2019(上)八年级数学期中考试卷(考试用时:100 分钟; 满分: 120 分)班级:姓名:分数:一、选择题(共 12 小题,每小题 3 分,共 36 分.请将正确答案的序号填入对应题目后的括号内)1.下列图形分别是桂林、湖南、甘肃、佛ft电视台的台徽,其中为轴对称图形的是().第 1 题图2.对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部3.一个三角形的两边长为3 和8,第三边长为奇数,则第三边长为()A. 5 或7B. 7 或9C. 7D. 94.等腰三角形的一个角是80°,则它的底角是()A. 50°B. 80°C. 50°或80°D. 20°或80°5.点M(3,2)关于y 轴对称的点的坐标为()。

A.(—3,2)B.(-3,-2)C. (3,-2)D. (2,-3)6. 如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()。

A.30° B. 40° C. 50° D. 60°7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm.从中任取三根木棒,能组成三角形的个数为()A.1 个B.2 个C.3 个D.4 个8.如图,△ABC 中,AB=AC,D 为BC 的中点,以下结论:(1)△ABD≌△ACD ;(2)AD⊥BC;(3)∠B=∠C ;(4)AD 是△ABC 的角平分线。

其中正确的有()。

A.1 个 B. 2 个 C. 3 个 D. 4 个9.如图,△ABC 中,AC=AD=BD,∠DAC=80º,则∠B 的度数是()A.40ºB.35ºC.25ºD.20ºB D C 第8 题图10.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是()A.30ºB.36ºC.60ºD.72º11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带(①)去.①A.①B.②C.③D.①和②①第11 题图Ab B aCcOAGFDE…第一个图案 第二个图案第三个图案12. 用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多 4 个.则第 n 个图案中正三角形的个数为() (用含 n 的代数式表示).第 12 题图A .2n +1B. 3n +2C. 4n +2D. 4n -2二、填空题(本大题共 6 小题,每小题 4 分,共 24 分.请把答案填写在相应题目后的横线上) 13. 若 A (x ,3)关于 y 轴的对称点是 B (-2,y ),则 x = 点 A 关于 x 轴的对称点的坐标是 。

2018届山东省八年级上数学期中试题A卷

2018届山东省八年级上数学期中试题A卷

2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版第11~13章。

第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D .4.如果正多边形的一个内角是140°,则这个多边形是A .正十边形B .正九边形C .正八边形D .正七边形5.下列说法不正确的是A .三角形的一个外角等于两个内角的和B .三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A.AB A B AC A C B B =''=''∠=∠',,B .AB A B BC B C A A =''=''∠=∠',, C.AC A C BC B C C C =''=''∠=∠',,D .AC A C BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C .CFG △为等边三角形 D . FG ∥BC 第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________. 20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE . (1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N 在AC 上移动,且AN=BM . (1)证明:OM = ON ;(2)在点M ,N 运动的过程中,四边形AMON 的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON 的面积.△边AB上一动点(不与A,B重合)分别过点28.(本小题满分9分)已知点D是ABCA,B向直线CD作垂线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)。

山东省济宁市 八年级(上)期中数学试卷(含答案)

山东省济宁市 八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A. 1个B. 2个C. 3个D. 4个2.下列图形中,不是轴对称图形的是()A. B. C. D.3.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A. 1个B. 2个C. 3个D. 4个4.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A. SASB. SSSC. AASD. ASA5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A. B. C. D. 和6.如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A. B. C. D.7.下列结论正确的是()A. 有两个锐角相等的两个直角三角形全等B. 一条斜边对应相等的两个直角三角形全等C. 顶角和底边对应相等的两个等腰三角形全等D. 两个等边三角形全等8.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A. 5或7B. 7或9C. 7D. 99.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A. 1个B. 2个C. 3个D. 4个10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为()(用含n的代数式表示).A. B. C. D.二、填空题(本大题共5小题,共15.0分)11.一个多边形的内角和是1980°,则它的边数是______ .12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是______ .13.△ABC中,若∠A=∠C=∠B,则∠A= ______ ,∠B= ______ .14.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为______ .15.已知点M(x,3)与点N(-2,y)关于x轴对称,则3x+2y=______.三、解答题(本大题共8小题,共55.0分)16.如图所示,107国道OA和320国道OB在某巿相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹,写出结论)17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.19.已知:如图,A、B、C、D四点在同一直线上,AB=CD,AE∥BF且AE=BF.求证:EC=FD.20.如图坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1______ ;B1______ ;C1______ ;(3)求出△A1B1C1的面积.21.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.22.如图,△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且∠B=∠DEF,BD=CE,求证:ED=EF.23.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.答案和解析1.【答案】C【解析】解:共有4种方案:①取4cm,6cm,8cm;由于8-4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10-4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10-4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10-6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.【答案】A【解析】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是正确找出对称轴.3.【答案】D【解析】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选:D.由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.4.【答案】B【解析】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.5.【答案】C【解析】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA 判定,所以应该拿这块去.故选C.此题可以采用排除法进行分析从而确定最后的答案.此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.6.【答案】A【解析】解:设这个多边形是n边形,根据题意得:(n-2)•180°=1800,解得n=12;那么这个多边形的一个外角是360÷12=30度,即这个多边形的一个外角是30度.故本题选A.设这个多边形是n边形,它的内角和可以表示成(n-2)•180°,就得到关于n的方程,求出边数n.然后根据多边形的外角和是360°,多边形的每个内角都相等即每个外角也相等,这样就能求出多边形的一个外角.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.同时考查了多边形内角与外角的关系.7.【答案】C【解析】解:A、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;B、一条斜边对应相等的两个直角三角形,只有两个元素对应相等,不能判断全等,故选项错误;C、顶角和底边对应相等的两个等腰三角形,确定了顶角及底边,即两个等腰三角形确定了,可判定全等,故选项正确;D、两个等边三角形,三个角对应相等,但边长不一定相等,故选项错误.故选C.熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【答案】B【解析】解:根据三角形的三边关系,得第三边大于8-3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.9.【答案】C【解析】解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.故选C.先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.10.【答案】C【解析】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n-1)×4+4=2+4n=4n+2.故选:C.由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.此题考查图形的变化规律,找出图形之间的数字运算规律,得出规律,解决问题.11.【答案】13【解析】解:设这个多边形的边数是n,由题意得,(n-2)×180°=1980°,解得,n=13,故答案为:13.根据多边形的内角和定理计算即可.本题考查的是多边形的内角与外角的计算,掌握n边形的内角和等于(n-2)×180°是解题的关键.12.【答案】19cm【解析】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.【答案】36°;108°【解析】解:∵△ABC中,∠A=∠C=∠B,∴∠A=x,则∠C=x,∠B=3x.∵∠A+∠B+∠C=180,即x+3x+x=180°,解得x=36°,∴∠A=36°,∠B=3×36°=108°.故答案为:36°,108°.设∠A=x,则∠C=x,∠B=3x,再由三角形内角和定理求出x的值即可.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.14.【答案】5或6或7【解析】解:设内角和为720°的多边形的边数是n,则(n-2)•180=720,解得:n=6.∵截去一个角后边数可能增加1,不变或减少1,∴原多边形的边数为5或6或7.故答案为:5或6或7.首先求得内角和为720°的多边形的边数,再根据截去一个角后边数增加1,不变,减少1,即可确定原多边形的边数.本题考查了多边形的内角和定理,解题时注意:一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.15.【答案】-12【解析】解:∵点M(x,3)与点N(-2,y)关于x轴对称,∴x=-2,y=-3,∴3x+2y=3×(-2)+2×(-3)=-6-6=-12.故答案为:-12.根据关于x轴对称的点,横坐标相同,纵坐标互为相反数分别求出x、y的值,然后代入代数式进行计算即可求解.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.【答案】解:如图:【解析】做出CD的垂直平分线和∠AOB的平分线,其交点P或P′即为所求.本题考查了作图--应用与设计作图,熟悉角平分线和线段垂直平分线的作法是解题的关键.17.【答案】解:如图所示:【解析】如图,在四个图形中分别将两个小正方形涂黑,并使阴影部分成为轴对称图形.本题考查了轴对称的性质和图案设计,熟练掌握轴对称的定义是关键,涂黑二个小正方形后,以是否沿一条直线折叠后能重合,作为依据,能则组成轴对称图形,反之则不能.18.【答案】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【解析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用19.【答案】解:∵AE∥BF,∴∠A=∠FBD,又∵AB=CD,∴AB+BC=CD+BC.即AC=BD,在△AEC和△BFD中,∴△AEC≌△BFD(SAS),∴EC=FD.【解析】根据平行线的性质得到∠A=∠FBD,由AB=CD可得到AC=BD,然后根据三角形全等的判定方法可证出△AEC≌△BFD,再根据全等的性质即可得到结论.本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角对应相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等.20.【答案】(3,2);(4,-3);(1,-1)【解析】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).故答案为:(3,2),(4,-3),(1,-1).(3)△A1B1C1的面积为:3×5-×2×3-×1×5-×2×3=6.5.(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)利用长方形的面积减去三个顶点上三角形的面积即可.本题考查的是作图-轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.【答案】解:∵AD是△ABC的角平分线,∠BAC=60°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-30°-50°=100°.【解析】根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.此题主要考查了角平分线的性质以及高线的性质和三角形内角和定理,根据已知得出∠B的度数是解题关键.22.【答案】证明:∵∠CED是△BDE的外角,∴∠CED=∠B+∠BDE,又∠DEF=∠B,∴∠CEF=∠BDE,在△BDE和△CEF中,,∴△BDE≌△CEF(ASA)∴DE=EF.【解析】先根据∠CED=∠B+∠BDE,且∠DEF=∠B,得到∠CEF=∠BDE,再根据ASA判定△BDE≌△CEF,即可得出DE=EF.本题主要考查了全等三角形的判定与性质,解决问题的关键是掌握两角及其夹边分别对应相等的两个三角形全等.23.【答案】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°-90°=90°,∴BD⊥AC;(2)不发生变化.如图2,令AC、DE交点为O理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°-90°=90°,∴BD⊥AC;(3)BD=AC;夹角为60°或120°.【解析】【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.(1)见答案;(2)见答案;(3)①BD=AC;证明:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC.②夹角为60°.解:如图3,令AC、BD交点为F,由①知△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°,即BD与AC所成的角的度数为60°或120°。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年山东省济宁市鱼台县八年级(上)期中数学试卷一、选择题((每小题3分,共30分)1.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.2.(3分)点M(2,3)关于y轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(3,﹣2)3.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角4.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.165.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F6.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.(3分)一个等腰三角形两边长分别为20和10,则周长为()A.40 B.50 C.40或50 D.不能确定8.(3分)圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A.圆B.正方形C.长方形D.等腰梯形9.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°10.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②二、填空题(每小题3分,共15分)11.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为.12.(3分)如果一个多边形的一个内角和等于1440°,则这个正多边形一共有条对角线.13.(3分)若正n边形的一个外角为45°,则n=.14.(3分)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.15.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高.若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.三、简答题(共55分)16.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.17.(6分)尺规作图(保留作图痕迹,不写作法)已知:线段a,∠α求作:△ABC,使AB=AC=a,∠B=∠α.18.(6分)如图,已知BA∥CD,AD和BC相交于点O,∠AOC=86°,∠B=55°,求:∠C和∠D的度数.19.(6分)如图,△ABC中,AC=AD=BD,∠DAC=80°.求:∠B的度数.20.(6分)已知:如图,AB=CD,AE=CF,DE⊥AC,BF⊥AC,E,F是垂足.问:(1)AF与CE相等吗?(2)AB与DC平行吗?请说明你的理由.21.(8分)已知:如图所示.(1)作出△ABC关于x轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在y轴上画出点P,使PA+PC最小,写出作法.22.(8分)如图,已知:EC⊥OB,ED⊥OA,C、D是垂足,DE=EC,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.23.(9分)如图,△ABC是等腰直角三角形,且∠C=90°,直线l过C点.(1)如图1,过A点、B点作直线l的垂线段AD、BE,垂足为D、E,请你探究AD、BE、DE满足的数量关系,并进行证明;(2)当直线l绕点C旋转到如图2所示的位置时,请直接写出AD、BE和DE的数量关系(不用证明)2017-2018学年山东省济宁市鱼台县八年级(上)期中数学试卷参考答案与试题解析一、选择题((每小题3分,共30分)1.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.(3分)点M(2,3)关于y轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(3,﹣2)【解答】解:点M(2,3)关于y轴对称的点的坐标为(﹣2,3).故选:C.3.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角【解答】解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故选:B.4.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.5.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:C.6.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选:C.7.(3分)一个等腰三角形两边长分别为20和10,则周长为()A.40 B.50 C.40或50 D.不能确定【解答】解:①当10为腰时,10+10=20,故此种情况不存在;②当20为腰时,20﹣10<20<20+10,符合题意.故此三角形的周长=10+20+20=50.故选:B.8.(3分)圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A.圆B.正方形C.长方形D.等腰梯形【解答】解:A、圆有无数条对称轴,错误;B、正方形有4条对称轴,错误;C、长方形有2条对称轴,错误;D、等腰梯形有1条对称轴,正确.故选:D.9.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.10.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.二、填空题(每小题3分,共15分)11.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为(﹣1,﹣2).【解答】解:∵两点关于x轴对称,∴对应点的横坐标为﹣1,纵坐标为﹣2.故答案为:(﹣1,﹣2).12.(3分)如果一个多边形的一个内角和等于1440°,则这个正多边形一共有35条对角线.【解答】解:∵其内角和为(n﹣2)•180°=1440,解得:n=10∴这个多边形所有对角线的条数是:n(n﹣3)÷2=10×(10﹣3)÷2=35.故答案为35.13.(3分)若正n边形的一个外角为45°,则n=8.【解答】解:n=360°÷45°=8.所以n的值为8.故答案为:8.14.(3分)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB,使得△EAB≌△BCD.【解答】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.15.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高.若△ABC的面积为18cm2,则图中阴影部分的面积是9cm2.【解答】解:∵AB=AC,AD是BC边上的高,∴BD=CD,∵点E、F是AD的三等分点,∴阴影部分的面积等于△ABC的面积的一半,∵△ABC的面积18cm2,∴阴影部分的面积=9cm2.故答案为:9.三、简答题(共55分)16.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.【解答】解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30,4x=120;因此等腰三角形的顶角度数为20°或120°.17.(6分)尺规作图(保留作图痕迹,不写作法)已知:线段a,∠α求作:△ABC,使AB=AC=a,∠B=∠α.【解答】解:如图,△ABC为所作.18.(6分)如图,已知BA∥CD,AD和BC相交于点O,∠AOC=86°,∠B=55°,求:∠C和∠D的度数.【解答】解:∵BA∥CD,∴∠C=∠B=55°,∠D=∠AOC﹣∠C=31°.19.(6分)如图,△ABC中,AC=AD=BD,∠DAC=80°.求:∠B的度数.【解答】解:设∠B=x∵AC=AD=BD,∴∠B=∠BAD=x∴∠ADC=∠C=2x,∴2x+2x+80°=180°∴x=25°∴∠B=25°20.(6分)已知:如图,AB=CD,AE=CF,DE⊥AC,BF⊥AC,E,F是垂足.问:(1)AF与CE相等吗?(2)AB与DC平行吗?请说明你的理由.【解答】(1)解:结论:AF=CE.理由:∵AE=CF,∴AF+EF=CF+EF,即AF=CE.(2)解:结论:AB∥CD,理由:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°,在Rt△ABF和Rt△CDE中,,∴△ABF≌△CDE(HL);∴∠A=∠C,∴CD∥AB.21.(8分)已知:如图所示.(1)作出△ABC关于x轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在y轴上画出点P,使PA+PC最小,写出作法.【解答】解:(1)如图所示,△A′B′C′即为所求,A′(1,﹣2)、B′(3,﹣1)、C′(4,﹣3);(2)①作点A关于y轴的对称点A″(﹣1,2);②连接A″C交y轴于点P,点P即为所求点.22.(8分)如图,已知:EC⊥OB,ED⊥OA,C、D是垂足,DE=EC,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.【解答】证明:(1)∵DE=EC,EC⊥OB,ED⊥OA,∴在Rt△ODE与Rt△OCE中,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF23.(9分)如图,△ABC是等腰直角三角形,且∠C=90°,直线l过C点.(1)如图1,过A点、B点作直线l的垂线段AD、BE,垂足为D、E,请你探究AD、BE、DE满足的数量关系,并进行证明;(2)当直线l绕点C旋转到如图2所示的位置时,请直接写出AD、BE和DE的数量关系(不用证明)【解答】解:(1)DE=AD+BE.证明:∵△ABC是等腰直角三角形,且∠ACB=90°,∴AC=BC.∵AD⊥直线l,∠ACD+∠ACB+∠BCE=180°,∴∠ACD+∠CAD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴DC=EB,AD=CE,∴DE=DC+CE=AD+BE.(2)DE=BE﹣AD.证明:同(1)可证出△ACD≌△CBE(AAS),∴DC=EB,AD=CE,∴DE=DC﹣CE=BE﹣AD.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档