毕节地区金沙县2012-2013年九年级上期末数学试卷(解析版)

合集下载

2012--2013学年度上学期期末考试九年级数学试题(附答案)

2012--2013学年度上学期期末考试九年级数学试题(附答案)

2012--2013学年度上学期期末考试九年级数学(满分:120分 考试时间:100分钟)第Ⅰ卷(选择题 共45分)一、选择题(每小题3分,共45分)1、若43=x ,79=y,则y x 23-的值为A .74B .47C .3-D .722、随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是 (A )41 (B )21 (C )43(D )1 3、方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是 A . k ≥1 B . k ≤1 C . k >1D . k <14、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是A B C5、如图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为(A )62° (B )56° (C )60° (D )28°6、若所求的二次函数图象与抛物线y =2x 2-4x -1有相同的顶点,并且在对称轴的左侧,y随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小,则所求二次函数的解析式为( )(A )y =-x 2+2x +4 (B )y =-ax 2-2ax -3(a >0) (C )y =-2x 2-4x -5 (D )y =ax 2-2ax +a -3(a <0)7、已知⊙O 1和⊙O 2的半径是一元二次方程x 2-5x+6=0的两根,若圆心距O 1O 2=5,则⊙O 1和⊙O 2的位置关系是A 、外离B 、外切C 、相交D 、内切8、已知⊙0的半径为3cm ,点O 到直线l 的距离为4cm ,则l 与⊙0的位置关系是 A 、 相离 B 、相切 C 、相交 D 、不能确定 9、抛物线y=(x-2)2+3的顶点坐标是DA 、 (-2,3)B 、 (2,3)C 、 (3,2)D 、 (3,-2); 10、给出下列函数:①y=2x ②y=-2x+1 ③y=x2 (x>0)④y=x 2(x<-1)其中 ,y 随x 的增大而减小的函数有 A 、① ② B 、① ③ C 、② ④ D 、②③④ 11、一次函数y=kx+b 的图象如图所示,则方程kx+b=0的解为A 、x=2B 、y=2C 、x =-1D 、y =- 1第11题图NMDCBA第13题图O12、如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于(02)M ,,(08)N ,两点,则点P 的坐标是 A、(53),B、(35),C、(54),D、(45),13、如图,∠MON=900,矩形ABCD 的顶点A ,B 分别在OM 、ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1。

2012-2013九年级上学期期末试题

2012-2013九年级上学期期末试题

2012-2013学年度上学期期末考试题九年级数学、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题 3分,共5. 如图,O O 是厶ABC 的外接圆,/ BAC=60,若O O 的半径OC 为2,则 弦BC 的长为 A . 1B .、、3C. 2D. 2、36. 已知OA 平分/ BOC P 是OA 上任意一点,如果以 P 为圆心的圆与 OC 相 切,那么O P 与OB 的位置关系是( )A ・相离B •相切C •相交D •不能确定36 分.)1.下列各式中,正确的是( A ( 3)23 B •、. ( 3)22. 一兀一次方 程 x(x 2)2 A .— 1B . 2 3.关于x 的元- 一次方程x则m 的值是() A . 0B . 8)3 C •323 D . 32 3x 的根是()C . 1 和 2D . — 1 和 2(m 2)x m 1 0有两个相等的实数根,4.平面直角坐标系内一点M (-2A.(3,-2)B. (2,-3) CC • 4 .2D • 0 和 83)关于原点对称点的坐标是()• (-2,-3) D • (2,3)7. 以半径为2的圆内接正三角形、 正方形、正六边形的边心距为三边作三角 形,则( )8. 如图,在 Rt △ ABC 中,/ ACB=90,/ BAC=60 .把厶ABC 绕点A 按顺时 针方向旋转60°后得到△ ABC ,,若AB=4,则线段BC 在上述旋转过程中所 扫过部分(阴影部分)的面积是( )52A. 2 nB.n C.nD. 4n339. 已知三角形的两条边长分别是 7和3,第三边长为整数,则这个三角形的程x 2 6x n 0的一个解为洛1,则另一个解X 2=( )A.3B.4C.5D.612. 已知:M N 两点关于y 轴对称,且点 M 在双曲线尸占上,点N 在直线__ 2y=x+3上,设点 M 的坐标为(a , b ),则二次函数 y= - abx + (a+b ) x ( )A .有最大值,最大值为 -gB .有最大值,最大值为 書周长是偶数的概率是()A 1 m23 4 A .B .C.-555710.若二次函数y (x m)21 .当x w l 时, y 随x 的增大而减小,则m的取值是()A . m =l Bm >l CA.不能构成三角形B.这个三角形是等腰三角形 C.这个三角形是直角三角形D.这个三角形是钝角三角形m w l D . m > l C'11.二次函数y x 2 6x n 的部分图像如图所示,若关于 x 的一元二次方第5题图C.有最小值,最小值为2D.有最小值,最小值为-9冈1二、填空题(本题有6个小题,每小题3分,计15)13. 已知x =- 2是方程x2-ax + 6 = 0的一个根,则a = _____________ ,另一个根为_______ .14. (2,48 3.27).6= ________ .15. 如图,C是线段BD上一点,分别以BC CD为边在BD同侧作等边△ ABC和等边△ CDE,AD交CE于F, BE交AC于G,则图中可通过旋转而相互得到的三角形对数有____ 对.16. 如图,在Rt△ ABC中,/ C=90,/ A=60°, BC=4cm 以点C为圆心,以3cm长为半径作圆,则OC0 :②c>1;③2a- b<0 :④a+b+c<0.其中正确的命题是___________ .(只要求填写正确命题的序号)三、解答题(本题有9个小题,计69分.)其中x 3.F面四条信息:①b2 4ac18.(本题满分6分)先化简,再求值:1 x2 x 22 2x x x 2x 1 x 1与AB的位置关系是第15题图17.如图所示的二次函数19.(本题满分6分)一张桌子的桌面长6m宽4m台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽•20.(本题满分6分)一个不透明的布袋里装有3个球,其中2个红球,1 个白球,它们除颜色外其余都相同.⑴求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);⑶现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为 -,7 求n的值.21.(本题满分7分)如图,O 0的直径AB=10cm分线交O 0于D. (1 )求BC ADD BD的长; 弦AC=6cm / ACB的平(2 )求CD的长22.(本题满分7分)已知:关于x的方程ax2(1 )当a取何值时,二次函数y ax2 (1 3a)x(2)求证:a取任何实数时,方程ax2(1 3a)x (1 3a)x 2a 1 0 2a 1的对称轴是x=-2 ;2a 1 0总有实数根.23.(本题满分8分)某网店以每件60元的价格购进一批商品,若以单价80元销售.每月可售出300件调查表明:单价每上涨I元,该商品每月的销量就减少I0件。

2012-2013年度九年数学期末考卷(含答案)

2012-2013年度九年数学期末考卷(含答案)

20122013年度九年数学期末考卷(含答案)一、选择题(每题4分,共40分)1. 下列选项中,既是有理数又是无理数的是()A. 0B. πC.D. 1.52. 已知等差数列的前三项分别为a1,a+1,2a+1,则数列的公差为()A. 2B. 3C. 4D. 53. 下列函数中,奇函数是()A. y = x²B. y = |x|C. y = x³D. y = x² + 14. 已知三角形ABC的三边长分别为3、4、5,则三角形ABC的面积是()A. 6B. 8C. 10D. 125. 方程x² + 2x + 1 = 0的解是()A. x = 1B. x = 0C. x = 1D. x = 1和x = 16. 下列各数中,是无理数的是()A.B.C.D.7. 下列各式中,正确的是()A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a b)² = a² 2ab + b²D. a² b² = (a + b)(a b)8. 已知平行四边形的两条邻边长分别为6cm和8cm,则平行四边形的面积是()A. 48cm²B. 52cm²C. 56cm²D. 64cm²9. 下列函数中,单调递增的是()A. y = x²B. y = x²C. y = 2xD. y = 2x10. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 6C. 9D. 12二、填空题(每题4分,共40分)11. 已知a、b互为相反数,且a + b = 5,则a的值为______。

12. 已知函数f(x) = 2x + 3,当x = 2时,f(x)的值为______。

毕节地区金沙县2012-2013年九年级上期末数学试卷(解析版)

毕节地区金沙县2012-2013年九年级上期末数学试卷(解析版)

4.方茴说:"可能人总有点什么事,是想忘也忘不了的。

"5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

"贵州省毕节地区金沙县2012-2013学年九年级(上)期末数学试卷一、单项选择题(本大题共10小题,每小题3分,共30分.)2.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。

而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

4.方茴说:"可能人总有点什么事,是想忘也忘不了的。

"5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

"3.(3分)(2008•宿迁)有一实物如图,那么它的主视图是()B1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。

而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

4.方茴说:"可能人总有点什么事,是想忘也忘不了的。

"5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

2013九年级数学上期期末试卷(含答案)

2013九年级数学上期期末试卷(含答案)

2013九年级数学上期期末试卷(含答案) 2012—2013学年度第一学期期末试卷九年级数学(满分:150分测试时间:120分钟)题号一二三总分合分人1-89-1819202122232425262728得分一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)题号12345678答案1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等边三角形C.等腰梯形D.正方形2.如右图,数轴上点表示的数可能是()A.B.C.D.3.给出下列四个结论,其中正确的结论为()A.等腰三角形底边上的中点到两腰的距离相等B.正多边形都是中心对称图形C.三角形的外心到三条边的距离相等D.对角线互相垂直且相等的四边形是正方形4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是()A.外切B.相交C.内切D.内含5.对任意实数,多项式的值是一个()A.正数B.负数C.非负数D.无法确定6.将抛物线先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2B.y=(x+2)2-2C.y=(x-2)2+2D.y=(x-2)2-2 7.已知一元二次方程的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13B.11C.11或13D.128.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是()A.①④B.①③C.②④D.①②二、填空题(本大题共10个小题,每小题3分,共30分.)9.在函数关系式中,的取值范围是.10.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.11.抛物线的顶点坐标是.12.平面直角坐标系内的三个点A(1,0)、B(0,-3)、C(2,-3)确定一个圆(填“能”或“不能”)。

贵州省金沙县2012-2013学年上学期初三数学期末测试卷

贵州省金沙县2012-2013学年上学期初三数学期末测试卷

金沙县2012—2013学年九年级上期末测试卷数 学(考试时间120分钟,满分100分)一、单项选择题(本大题共10小题,每小题3分,共30分。

) 1、下列方程是一元二次方程的是( )A 、)1(2)1(32+=+x xB 、02112=-+xx C 、02=++c bx ax D 、1222-=+x x x2、如图,△ABC 中,∠ACB=90°,∠B=30°,AD 是∠BAC 的角平分线,DE ⊥AB 于点E ,AD 、CE 相交于H ,则图中的等腰三角形共有几个( )A 、2个B 、3个C 、4个D 、5个 3、有一实物如下左图,那么它的主视图是( )4、一元二次方程052=-x 的解是( )A 、5=xB 、5-=xC 、5,521-==x xD 、5,521-==x x 5、下列命题中,不正确的是( )A 、顺次连接菱形各边中点所得的四边形是矩形。

B 、有一个角是直角的菱形是正方形。

C 、对角线相等且垂直的四边形是正方形。

D 、有一个角是60°的等腰三角形是正三角形。

6、电影院呈阶梯或下坡形状的主要原因是( )A 、为了美观B 、减少盲区C 、增大盲区D 、盲区不变 7、下列既是轴对称图形,又是中心对称图形的是( )A 、矩形B 、平行四边形C 、正三角形D 、等腰梯形A B C D第2题图乡镇 学校 班级 学号 姓名1 28、如图是一电线杆在一天中不同时刻的影长图,试按一天中发生的先后顺序排列,正确的是( )A 、①②③④B 、④①③②C 、④②③①D 、④③②①9、下列属于反比例函数的是( )A 、3x y =B 、xy 31= C 、x y 25-= D 、12+=x y 10、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )A B C D二、填空题(本大题共10小题,每小题3分,共30分)11、在直角三角形中,若两直角边的长分别是cm 6和cm 8,则斜边上的中线长为cm 。

2012-2013学年九年级上期末数学试题及答案(1)

2012-2013学年九年级上期末数学试题及答案(1)

C 1A 1CBA2011-2012学年上学期期末测试九年级数学试题一、选择题(本大题共有10个小题,每小题4分,共40分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内).2...,则x 的取值范围是( ) (A )2x ≥ (B )2x > (C )2x < (D )2x ≤ 3.下列说法中正确的是 ( ) A .“打开电视,正在播放《新闻联播》”是必然事件; B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .想了解台州市城镇居民人均年收入水平,宜采用抽样调查. D .我市未来三天内肯定下雪;4.若2(1)10x +-=,则x 的值等于 ( ) A .1± B .2± C .0或2 D .0或2- 5.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点 按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在 同一条直线上,那么这个角度等于 ( ).A .120°B .90°C .60°D .30°6.将方程2650x x --=化为()2x m n +=的形式,则m ,n 的值分别是 ( )(A )3和5 (B )3-和5 (C )3-和14 (D )3和147..如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是 ( )A.110°B.70°C.55°D.125°8.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 ( )A .6cm B.cm C .8cm D.9.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为( )(A )91 (B )365 (C )61 (D )36710.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是 一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂 上阴影,能构成这个正方体的表面展开图的概率是 A.74 B.73 C.72 D.71 二、填空题(本大题共有8小题,每小题4分,共32分.请把答案填在题中的横线上.)11.关于x 的方程210mx mx ++=有两个相等的实数根,那么m = .12. 当a _______ 时,二次根式a -3在实数范围内有意义.(10题图)第7题第8题OFEDCBA14.如图,在同心圆⊙O 中,AB 是大圆的直径,AC 是大圆的弦,AC 与小圆相切于点D ,若小圆的半径为3cm ,则BC=cm .15.在一元二次方程02=++c bx ax 中,若a 、b 、c满足关系式0=+-c b a ,则这个方程必有一个根值为 .16.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是 . 17.若两圆相切,圆心距为8cm ,其中一个圆的半径为12cm ,则另一个圆的半径为____ _. 18.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+ = 。

2012~2013学年度第一学期期末教学质量检测考试答案.doc

2012~2013学年度第一学期期末教学质量检测考试答案.doc

2012~2013学年度第一学期期末教学质量检测考试九年级化学试卷参考答案及评分标准一、选择题(每小题只有一个正确选项,3分×16=48分)二、填空题(25分)(说明:①每空1分;②方程2分,化学式写错无分;未配平或未注明反应条件或标“↑”“↓”或化学式书写不规范扣1分)1.(4分)Al2O3、+3Al2O3、 C 、Fe2+2.(6分)(1)氯、得、氟(或F);(2)质子数、10 ;(3)②3.(8分)(1)不可再生、液化石油气;(2)CH4+2O2点燃═══CO2+2H2O ;(3)煤、天然气;(4)增大与氧气(或空气)接触面积、吸收SO2,减少空气污染。

4.(7分)(1)汽水(2)还原性①C+O2点燃═══CO2、②C+2CuO高温═══2Cu+CO2↑(3)Na2CO3三、实验题及探究(20分)(说明:①每空1分;②方程2分,化学式写错无分;未配平或未注明反应条件或标“↑”“↓”或化学式书写不规范扣1分)1.(12分)(1)①②酒精灯、试管、长颈漏斗、锥形瓶、水槽、集气瓶等任选两种;(2)化学方程式:2KClO3MnO2═══△2KCl+3O2↑炸裂原因:灼热试管不小心接触冷水。

(其他合理答案均给分)(3) 稀盐酸 、 B 、 放在锥形瓶口,然后慢慢竖直容器,让石灰石轻慢滑到容器底部 、 用水湿润(4) A 、 E 、 b2. (8分)【实验探究】(1) CaC 2遇水发生反应且放出热量(2) 具有可燃性【得出结论】原因: 电石遇雨水发生反应生成可燃性气体,该气体又被反应放出的大量的热所引燃 。

【实验拓展】实验操作及现象:(1)水珠出现 (1分);(2)迅速把烧杯倒过来,向烧杯内注入少量的澄清石灰水,震荡,石灰水变浑浊(1分)【实验反思】(1) 防水密封保存(2) 吸 、 放四、计算题( 7分)(1)(1分) -1(2)(6分)解:设生成氢气的质量为xLiH + H 2O=LiOH + H 2↑ ………………………………(1分)8 280g x ………………………………(1分)xg 2808 ………………………………(2分) 解得x =20g ………………………………(2分)答:生成氢气的质量为20g。

2012-2013第一学期初三期末考试数学试题参考

2012-2013第一学期初三期末考试数学试题参考

第一学期初三期末考试数学试题一、精心填一填(每小题3分,共30分) 1.当=x时,分式112--x x 的值为0。

2.若3=yx ,则=+y yx 。

3.当3<m 时,=-2)3(m。

4.如图,直线AB ∥CD ,EF ⊥CD ,F 为垂足.如果︒=∠20GEF ,那么1∠等于 。

5.请你写出一个含字母x ,并且当2≤x 时在实数范围内有意义的二次根式。

6.比较大小:34257.图中数据的极差是。

8.在ABC ∆和C B A '''∆,中,32=''=''+''+C A AC C B B A BC AB 。

若ABC ∆的周长等于12,则C B A '''∆的周长等于。

9.有一块多边形草坪,在市政建设设计图纸上的面积为200cm 2,其中一条边的长度为5cm .经测量,这条边的实际长度为15m ,则这块草坪的实际面积是 m 2。

10.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到△DEF 。

如果AB=8cm ,BE =4cm ,DH =3cm ,则图中阴影部分面积为cm 2。

二、选择题(每小题3分,共30分) 11.下列计算正确的是( )A .)(818181y x y x +=+ B .xz y z y x y 2=+ C .y y x y x 21212=+- D .011=-+-xy y x 12.下列运算错误的是( )A .532=+ B .632=⨯ C .236=÷ D .2)2(2=-13.今年我市有9千名初三学生参加期末考试,为了解9千名学生的数学成绩,从中抽取1000名学生的数学成绩进行统计分析。

在这个问题中总体是( )A .9千名学生B .1000名学生C .9千名学生的数学成绩D .1000名学生的数学成绩 14.如图,已知△ABC 为直角三角形,︒=∠90C ,若沿图中虚线剪去C ∠,则21∠+∠等于( ) A .︒90 B .︒135 C .︒270D .︒31515.方程223-=x x 的解的情况是( ) A .2=x B .6=x C .6-=xD .无解16.设b a ==3,2,只用含a ,b 的式子表示54,则下列表示正确的是( )A .abB .22b aC .3abD .32b a17.下列根式中,与2是同类二次根式的是( )A .6 B .8 C .12 D .3118.已知:n 20是整数,则满足条件的最小正整数n 为( )A .2B .3C . 4D .519.如图,E ,F 分别在△ABC 的边上,且EF ∥BC ,D 是BC 延长线上一点.下列结论错误的是( )A .AEF ACD ∠>∠B .A AEF AFD ∠+∠>∠C .AFE ACD ∠>∠D .D CFD AFE ∠+∠=∠20.在一次射击练习中,甲、乙两人前5次射击的成绩分别为(单位:环)则这次练习中,甲、乙两人成绩方差的大小关系是( ) A .22乙甲S S >B .22乙甲S S <C .22乙甲S S =D .无法确定三、解答题(本大题共8个小题,满分60分,解答时要写出必要的文字说明或演算过程或证明步骤) 21.计算(第1小题3分,2,3小题各4分,满分11分) (1)6332y x (2))2233)(2233(+- (3)x xx36.042-22.(满分5分)化简求值:122)113(2+--÷---x x x x x ,其中2-=x 。

2012-2013学年上学期九年级期末数学考试试卷分析

2012-2013学年上学期九年级期末数学考试试卷分析

2012-2013学年上学期九年级期末数学考试试卷分析本次考试是对初中三年数学教学的一次阶段性评价.今年的试卷,试题既有亲和力,又新颖脱俗;既似曾相识,又改革创新;既注重基础,又突出能力;既背景新颖,又根植于课本;重视数学应用的考查,稳中求变,变中求新,导向明确。

充分体现了义务教育的普及性、基础性和发展性,贯彻了《数学课程标准》提出“人人学有价值的数学,人人能获得必要的数学,不同的学生在数学上得到不同的发展”的理念.今年数学试卷寓考查“知识与技能、过程与方法、情感态度价值观”三维目标于一身,在考查学生的数学素养、创新能力、实践能力等方面都做了有益的探索。

有利于指导初中数学教学,有利于推进新课程的实施,有利于促进学生的全面发展,有利于高一级学校选拔学生。

一、卷面分析1、试卷结构这次数学试卷满分120分,考试时间120分钟.共三大题,27个小题,分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题满分30分,占25%,答案填涂在答题卡上,第Ⅱ卷为非选择题,满分为90分,占75%,其中填空题30分,占25%,解答题共7题,共60分,占50%,第Ⅱ卷直接在试卷上作答.2、考查内容分布从知识点领域来看,本试卷涉及九年级数学上册的全部内容,以及下册二次函数的内容,其中“圆”、“一元二次方程和二次函数”两大内容是考查重点。

较多地考查学生对概念、法则及运算的理解和运用水平,杜绝了繁难偏旧的题目.二次根式合计5个题目,19分,占的比例较小,重点考察基本概念的理解,以及计算的基本功;一元二次方程有7个题目,合计46分,考察了概念、计算、应用,知识和能力都做了全面的涉及,是名符其实的重点内容;圆的题目有6个,合计26分,虽然分值不算太高,却是考察学生能力的重要内容;旋转的题目,一共2个,合计6分,虽然其他题目有所涉及,毕竟不是重点;概率的题目,2个,12分,与实际相联系,考察基本技能;二次函数,7个题目,35分,也是一项重点内容;另外,考察数学方法的题目有2个,6分。

2012-2013学年九年级上期末数学试卷

2012-2013学年九年级上期末数学试卷

A.
B.
C.
D.
考点: 简单组合体的三视图. 分析: 找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 解答: 解:先细心观察原立体图形的位置, 从正面看去,是一个矩形,矩形左上角缺一个角, 从左面看,是一个正方形, 从上面看,也是一个正方形, 故选 A. 点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.(3 分)如图,在平行四边形 ABCD 中,AB=2,BC=3,∠ABC、∠BCD 的平分线分别 交 AD 于点 E、F,则 EF 的长是( )
.
A. 3
B.2
C.1.5
D. 1
考点: 平行四边形的性质;角平分线的定义;等腰三角形的判定与性质. 专题: 数形结合. 分析: 根据平行四边形的性质可知∠DFC=∠FCB,又因为 CF 平分∠BCD,所以∠DCF=∠FCB ,则∠DFC=∠DCF,则 DF=DC,同理可证 AE=AB,那么 EF 就可表示为 AE+FD﹣BC=2AB﹣BC,继而可得出答案. 解答: 解:∵平行四边形 ABCD, ∴∠DFC=∠FCB, 又 CF 平分∠BCD, ∴∠DCF=∠FCB,
A.△ACE
B.△ADF
C.△ABD
D.四边形 BCED
考点: 视点、视角和盲区. 分析: 根据盲区的定义,视线覆盖不到的地方即为该视点的盲区,由图知,E 是视点,找到 在 E 点处看不到的区域即可. 解答: 解:由图片可知,E 视点的盲区应该在△ABD 的区域内. 故选:C. 点评: 此题主要考查了视点、视角和盲区,解答此类问题,首先要确定视点,然后再根据盲 区的定义进行判断. 8.(3 分)若反比例函数图象经过点(﹣1,6),则下列点也在此函数上的是( )

2012~2013学年度第一学期九年级期末考试试卷及答案

2012~2013学年度第一学期九年级期末考试试卷及答案

新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。

版权所有@新世纪教育网A 瓦特B 爱迪生C 哥伦布D 托尔斯2012~2013学年度第一学期九年级期末考试历 史 试 卷题号 一 二 三 四 五 六 总 分得分( 卷面总分:100分 答卷时间:60分钟 )一、单项选择题:(本大题共20小题,每小题2分,共40分,在每小题所列出的四个选项中,只有一项是正确的。

请将正确选项前的字母依次填在下面答题栏内)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 答案1.“起来,饥寒交迫的奴隶,起来,全世界受苦的人!……”这是在巴黎公社之后,国际 工人运动史上一首著名歌曲的歌词片断,该歌词的作者是 A .欧仁·鲍狄埃 B .比埃尔·狄盖特 C .马克思 D .恩格斯2.2010年世博会将在中国举办,其会徽(如右图)以中国汉字“世”字书法创意为形,寓意三人合臂相拥,状似美满幸福、相携同乐的家庭,彰显出世博会“以人为本”的理念。

这一理念源于下列哪一事件?A .文艺复兴B .新航路开辟C .启蒙运动D .宪章运动3.争取人权是人类社会进步的重要表现。

被马克思称为“第一个人权宣言”的是 A .《人权宣言》 B.《独立宣言》 C .《权利法案》 D .《宅地法》 4. 见图:51岁的民主党人奥巴马,成为美国历史上第一位蝉联总统的黑人,他即将开始新的四年总统任职生涯,美国形成总统制政体与以下哪部文献的规定有关A .《人民宪章》B .《权利法案》C .《独立宣言》D .1787年宪法5.“当革命风暴横扫整个法国的时候,英国正在进行一场比较平静的但是威力并不因此减弱的变革”,这次变革指的是 A .英国资产阶级革命 B .法国资产阶级革命 C .英国工业革命 D .“光荣革命” 6. 如果你参加当年英国宪章运动,你主要向资产阶级争取的权力是 A .反对封建专制 B .要求提高工人工资 C.要求改组议会 D.要求普选权 7.日本明治维新与俄国1861年改革的不同点是 A .都是自上而下的资产阶级性质改革 B .都保留了大量封建残余 C .都使本国走上了资本主义发展的道路 D .都开始了对外侵略扩张8.美国南北战争中,林肯政府所要解决的根本问题是 A .维护国家统一 B .争取民族独立 C .解决西部土地问题 D .解放黑人奴隶9.一天,数学老师从校园圆形花台经过,发现张刚正在看一本名为《南美的解放者》的书,你能从书名猜出它写的是哪位历史人物吗 A .圣马丁 B .玻利瓦尔 C .伊达尔哥 D .章西女王 10. 今天的法国巴黎是一座美丽的浪漫的现代化都市。

2012-2013学年度上学期期末考试九年级数学模拟试题(人教版含详细的答案)

2012-2013学年度上学期期末考试九年级数学模拟试题(人教版含详细的答案)

2012-2013学年度上学期期末考试九年级数学模拟试题B(人教版含答案)一、选择题(每题3分共36分)A.B.C.D.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON 上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.1B.C5D.527.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0B.x2﹣4x+4=0C.x2+4x+10=0D.x2+4x﹣5=0第8题图第10题图8.如图,⊙O 1,⊙O ,⊙O 2的半径均为2cm ,⊙O 3,⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为( )A .12cm 2B .24cm 2C .36cm 2D .48cm 29.已知m 、n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为【 】A .9B .±3C .3D .5 10.如图,在平面直角坐标系中,点P 坐标为(﹣2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( ) A .﹣4和﹣3之间B .3和4之间C .﹣5和﹣4之间D .4和5之间11. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmC . 8cmD . 2cm12.如图,该图形围绕点O 按下列角度旋转后, 不能..与其自身重合的是 A .72︒ B .108︒ C .144︒ D .216︒ 二、选择题(每题4分 共20分)215.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C ′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .16.如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 度(不取近似值)17.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为_______cm 2.OB(第11题图)5cm第12题图 (第17题图)第14题图三、解答题(共64分)18.(本题满分5分)观察下列各式:===1)请你写第四个式子:2)请你将发现的规律用含自然数n (n ≥的等式表示出来:19.(本题满分l0分)解方程3196332-=-++x x x20.(本题满分5分)黄金分割:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,称为黄金分割。

2013届九年级数学上册期末考试题(含答案)-数学试题

2013届九年级数学上册期末考试题(含答案)-数学试题

2013届九年级数学上册期末考试题(含答案)-数学试题2012-2013学年第一学期初三数学期末试卷(2013.1)考试时间:120分钟满分130分命题人:审核人:一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是()A.B.C.D.2.关于x的一元二次方程方程x2-2x+k =0有两个不相等的实数解,则k的范围是()A.k>0 B.k<1 C.k>1 D.k≤13.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角4.若两圆的半径分别是2和4,圆心距为2,则两圆的位置关系为()A.相交B.内切C.外切D.外离5.如图,是的外接圆,已知,则的大小为()A.60° B.50°C.55° D.40°6.对于二次函数,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y轴D.当x=1时,y有最小值7.将抛物线y=―x2向上平移2个单位,再向右平移3个单位,那么得到的抛物线的解析式为()A.B.C.D.8.为了准备体育中考,某班抽取6名同学参加30秒跳绳测试,成绩如下:90,100,85,85,90,90(单位:个).则下面关于这组成绩的说法中正确的是()A.平均数是92 B.中位数是85 C.极差是15 D.方差是209.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.148 (1+a%)2=200 B.200(1-a%)2=148C.200(1-2a%)=148 D.200(1-a2%)=14810.在矩形ABCD中,BC=6cm、DC=4cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒3cm的速度向B运动,F从点B出发以每秒2cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值为()A.B.0.5或1 C.D.1二、填空题(本大题共8小题,每空2分,共18分)11.当x 时,有意义.12.若最简二次根式与是同类二次根式,则.13.已知关于x的方程的一个根为2,则m=_______.14.某二次函数的图象的顶点坐标(2,-1),且它的形状、开口方向与抛物线y=―x2相同,则这个二次函数的解析式为.15.若一个扇形的半径为3cm,圆心角为60°,现将此扇形围成一个圆锥的侧面,则这个圆锥的底面积为cm2.16.如图,某中学准备在校园里利用围墙的一段,再砌三面围成一个矩形花坛ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的花坛的材料,若要使矩形花园的面积为300m2,则垂直墙的一边长为_________.17.如图,弦CD垂直于∠O的直径AB,垂足为H,CD=4,BD= ,则AB的长为_____.18.已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D 重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90&ordm;,∠E=∠ABC=30&ordm;,AB=DE=6.若纸片DEF不动,问∠ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)),此梯形的高为____________.三、解答题(本大题共10小题,共82分.解答时请写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1);(2).20.(本题满分8分)解下列方程:(1);(2).21.(本题满分6分)如图,在∠ABC中,D、E分别是AB、AC的中点,过C点作AB的平行线交DE的延长线于点F.(1)求证:DF=BC;(2)连结CD、AF,如果AC=BC,试判断四边形ADCF的形状,并证明你的结论.22.(本题满分8分)如图,每个小方格都是边长为1个单位的小正方形,B、C、D三点都是格点(每个小方格的顶点叫格点).(1)找出格点A,连接AB,AD使得四边形ABCD为菱形;(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求对角线AC在旋转的过程中扫过的面积.23.(本题满分8分)九年级(1)班数学活动选出甲、乙两组各10名学生,进行趣味数学答题比赛,共10题,答对题数统计如表一:答对题数5 6 7 8 9 10甲组1 0 1 5 2 1乙组0 0 4 3 2 1平均数众数中位数方差甲组8 8 8 1.6乙8(1)根据表一中统计的数据,完成表二;(2)请你从平均数和方差的角度分析,哪组的成绩更好些?24.(本题满分8分)已知二次函数.(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;(3)根据图象,求不等式的解集25.(本题满分8分)如图,点A、B、C分别是∠O上的点,CD是∠O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是∠O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE&#8226;AB的值.26.(本题满分8分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果多种5棵橙子树,计算每棵橙子树的产量;(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树?(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?27.(本题满分10分)如图,矩形ABCD,A(0,3)、B(6,0),点E在OB上,∠AEO= 30°,点从点Q(-4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t 秒.(1)求点E的坐标;(2)当∠PAE=15°时,求t的值;(3)以点P为圆心,PA为半径的随点P的运动而变化,当与四边形AEBC的边(或边所在的直线)相切时,求t的值.28.(本题满分10分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A 在x轴上,点B的横坐标为-8.点P是直线AB上方的抛物线上的一动点(不与点A、B重合).(1)求该抛物线的函数关系式;(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使∠PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;(3)过P作PD∠y轴交直线AB于点D,以PD为直径作∠E,求∠E在直线AB上截得的线段的最大长度.九年级第一学期期末数学试卷参考答案(2013.1)命题人:审核人:一、选择题(本大题共有10小题,每小题3分,共30分)1 2 3 4 5 6 7 8 9 10D B C B A D B C B A二.填空题(本大题有8小题,每空2分,共18分)11.12..1 13.1 14.,注意若写成也可以15.16.15 17.5 18.30,三.解答题:(本大题有10小题,共计82分)19.(1)原式=…………………………………………………… (3分)=……………………………………………………………… (4分)(2)原式=………………………………………………………… (2分)=………………………………………………………………(4分)20.(1). …………………………………………………………… (4分)(2)…………………………………………… (4分)21.证明:(1)∠DE是∠ABC的中位线,∠DE∠BC ……………………………………(1分)∠CF∠AB ∠四边形BCFD是平行四边形,……………………………(2分)∠DF=BC …………………………………………………………………(3分)(2)证四边形ADCF是平行四边形………………………………………(4分)∠BC=AC,点D是中点,∠CD∠AB ………………………………………(5分)∠四边形ADCF是矩形……………………………………………………………(6分)22.(1)画出格点A,连接AB,AD …………………………………………………(2分)(2)画出菱形AB1C1D1 ……………………………………………………………(4分)计算AC= ……………………………………………………………(6分)∠扫过的面积…………………………………………………………………(8分)23.解:(1)众数7,中位数8,方差1…………………………………………………(6分)(2)两组的平均数相同,乙组的方差小说明乙组的成绩更稳定.……………(8分)24.解:(1)M(1,4)…………………………………………………………………(2分)(2)A(-1,0)、B(3,0)、C(0,3)………………………………………………(5分)画图…………………………………………………………………………………(6分)(3)x&lt;-1或x&gt;3 …………………………………………………………………………(8分)25.解:(1)证明:连接OA∠∠B=60°,∠∠AOC=2∠B=120°,…………………………………………………(1分)∠OA=OC,∠∠ACP=∠CAO=30°………………………………………………………(2分)∠∠AOP=60°,∠AP=AC,∠∠P=∠ACP=30°,∠∠OAP=90°,…………………………………………………………(4分)∠OA∠AP,∠AP是∠O的切线.………………………………………………………(5分)(2)解:连接BD∠点B是弧CD的中点∠弧BC=弧BD ∠∠BAC=∠BCE∠∠EBC=∠CBA∠∠BCE∠∠BAC …………………………………………………………………(6分)∠∠BC2=BE&#8226;BA …………………………………………………………………(7分)∠CD是∠O的直径,弧BC=弧BD∠∠CBD=90°,BC=BD∠CD=4 ∠BC=∠BE&#8226;BA= BC2=8 ……………………………………………………………………(8分)26. 解:(1)每棵橙子树的产量:600-5×5=575(个)……………………………(1分)(2)解:设应该多种x棵橙子树.……………………………………………(3分)解得x1=5,x2=15(不符合题意,舍去)…………………………………………(4分)答:应该多种5棵橙子树.(3)解:设总产量为y个……………………………………………………(6分)……………………………………………………………(7分)答:增种10棵橙子树,可以使果园橙子的总产量最多,最多为60500个.…………(8分)27. 解:(1)点E的坐标为(,0)………………………………………(2分)(2)当点在点E左侧时,如图若,得故OP=OA=3,此时t=7………(2分)当点在点E右侧时,如图若,得故EP=AE=6,此时t= ………(2分)(3)由题意知,若与四边形AEBC的边相切,有以下三种情况:①当与AE相切于点A时,有,从而得到此时………………………………………………………………(7分)②当与AC相切于点A时,有,即点与点重合,此时. …………………………………………………………………(8分)③当与BC相切时,由题意,.于是.解处. …………………………………………(9分)的值为或4或. …………………………………………………………(10分)28.解:(1)A(2,0),B(―8,―5).……………………………………(1分)∠抛物线的函数关系式为……………………………………(3分)(2)当∠BPA=90&ordm;时,由PA=PB,构造两个全等的直角三角形,…………………(4分)根据全等得出P点为(),………………………………… …………………(6分)代入抛物线方程,显然不成立,∠点P不存在………… ……………………………(7分)∠不存在点P,使∠PAB恰好是一个等腰直角三角形.(3)设P(m,),则D(m,).∠PD= ―()== .…………………………(8分)∠当m=―3时,PD有最大值.此时∠E在直线AB上截得的线段的长度最大.………………………………(9分)过E作EF∠AB于点F,由∠DEF∠∠GAO可得:DF= ,所以截得的最长线段为.……………………………………(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省毕节地区金沙县2012-2013学年九年级(上)期末数学试卷一、单项选择题(本大题共10小题,每小题3分,共30分.) 1.(3分)下列方程中,关于x 的一元二次方程是( )A . 3(x+1)2=2(x+1)B .C . a x 2+bx+c=0D . x 2+2x=x 2﹣12.(3分)如图,△ABC 中,∠ACB=90°,∠B=30°,AD 是角平分线,DE ⊥AB 于E ,AD 、CE 相交于点H ,则图中的等腰三角形有( )A . 2个B . 3个C . 4个D . 5个3.(3分)(2008•宿迁)有一实物如图,那么它的主视图是( )A .B .C .D .4.(3分)一元二次方程x 2﹣5=0的解是( )A . x =5B . x =﹣5C . x 1=5,x 2=﹣5D . x 1=,x 2=考点: 解一元二次方程-直接开平方法.分析: 首先把﹣5移到方程右边,再两边直接开平方即可.解答: 解:x 2﹣5=0, 移项得:x 2=5,两边直接开平方得:x=±,,则x 1=,x 2=﹣,故选:D .点评: 此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.(3分)下列命题中,不正确的是()A.顺次连接菱形各边中点所得的四边形是矩形B.有一个角是直角的菱形是正方形C.对角线相等且垂直的四边形是正方形D.有一个角是60°的等腰三角形是等边三角形考点:命题与定理.分析:顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;既是矩形,又是菱形的四边形是正方形;有一个角是60°的等腰三角形是等边三角形.解答:解:A、根据菱形的性质和矩形的判定,知正确;B、根据正方形的判定,知正确;C、根据正方形的判定,知必须在平行四边形的基础上,故错误;D、根据等边三角形的判定,知正确.故选C.点评:本题考查了特殊四边形的判定、等边三角形的判定.6.(3分)(2006•常熟市一模)电影院呈阶梯或下坡形状的主要原因是()A.为了美观B.减小盲区C.增大盲区D.盲区不变考点:视点、视角和盲区.分析:电影院呈阶梯或下坡形状可以使后面的观众看到前面,避免盲区.解答:解:电影院呈阶梯或下坡形状是为了然后面的观众有更大的视角范围,减小盲区.故选B.点评:本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.7.(3分)既是轴对称,又是中心对称图形的是()A.矩形B.平行四边形C.正三角形D.等腰梯形考点:中心对称图形;轴对称图形.专题:几何图形问题.分析:根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、矩形是轴对称图形,也是中心对称图形,故本选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正三角形是轴对称图形,不是中心对称图形,故本选项错误;D、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.(3分)如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①考点:平行投影.专题:压轴题.分析:北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.解答:解:根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北﹣北﹣东北﹣东,故分析可得:先后顺序为④①③②.故选B.点评:本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.9.(3分)下列函数中,属于反比例函数的是()A.B.C.y=5﹣2x D.y=x2+1考点:反比例函数的定义;一次函数的定义;正比例函数的定义;二次函数的定义.专题:推理填空题.分析:根据反比例函数的解析式是y=(k是常数,k≠0),A是正比例函数;B、k=,是反比例函数;C、是一次函数;D、是二次函数,即可得到答案.解答:解:反比例函数的解析式是y=(k是常数,k≠0),A、是正比例函数,故本选项错误;B、k=,故本选项正确;C、是一次函数,故本选项错误;D、是二次函数,故本选项错误.故选B.点评:本题主要考查对反比例函数的定义,正比例函数的定义,一次函数的定义,二次函数的定义等知识点的理解和掌握,能根据定义区分各个函数是解此题的关键,题型较好,比较典型.10.(3分)如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.考点:反比例函数的应用.专题:应用题.分析:根据题意有:xy=6;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.解答:解:∵xy=6,∴y=(x>0,y>0).故选C.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为5 cm.考点:直角三角形斜边上的中线;勾股定理.专题:常规题型.分析:利用勾股定理求出斜边的长度,然后根据直角三角形斜边上的中线等于斜边的一半的性质解答.解答:解:根据勾股定理得,斜边==10cm,∴斜边上的中线=×斜边=×10=5cm.故答案为:5.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理,熟记性质是解题的关键.12.(3分)已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为96cm2.考点:菱形的性质.专题:计算题.分析:画出草图分析.因为周长是40,所以边长是10.根据对角线互相垂直平分得直角三角形,运用勾股定理求另一条对角线的长,最后根据菱形的面积等于对角线乘积的一半计算求解.解答:解:因为周长是40cm,所以边长是10cm.如图所示:AB=10cm,AC=16cm.根据菱形的性质,AC⊥BD,AO=8cm,∴BO=6cm,BD=12cm.∴面积S=×16×12=96(cm2).故答案为96.点评:此题考查了菱形的性质及其面积计算.主要利用菱形的对角线互相垂直平分及勾股定理来解决.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.具体用哪种方法要看已知条件来选择.13.(3分)双曲线y=经过点(2,﹣3),则k=﹣6.考点:待定系数法求反比例函数解析式.专题:计算题.分析:把x=2,y=﹣3代入双曲线解析式即可求得k的值.解答:解:∵双曲线y=经过点(2,﹣3),∴k=2×(﹣3)=﹣6,故答案为﹣6.点评:考查用待定系数法求反比例函数解析式;用到的知识点为:点在反比例函数解析式上,点的横纵坐标适合函数解析式.14.(3分)(2002•绍兴)若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为6,10,12.考点:解一元二次方程-因式分解法;三角形三边关系.专题:计算题;压轴题.分析:求△ABC的周长,即是确定等腰三角形的腰与底的长求周长.首先求出方程的根,根据三角形三边关系定理列出不等式,然后解不等式即可.解答:解:解方程x2﹣6x+8=0得x1=4,x2=2;当4为腰,2为底时,4﹣2<4<4+2,能构成等腰三角形,周长为4+2+4=10;当2为腰,4为底时4﹣2≠<2<4+2不能构成三角形,当等腰三角形的三边分别都为4,或者都为2时,构成等边三角形,周长分别为6,12,故△ABC的周长是6或10或12.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.15.(3分)如图,一个底角为70°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2= 220°.考点:多边形内角与外角;等腰三角形的性质.分析:首先看图,根据等腰三角形的性质可知两个底角的和,然后可得∠1+∠2=360°﹣(两个底角的和),易求解.解答:解:∵三角形是等腰三角形,∴两个底角的和为70°×2=140°,∴∠1+∠2=360°﹣140°=220°.故答案为:220°.点评:本题考查了等腰三角形的性质及三角形内角和定理和四边形的内角和为360°等知识.16.(3分)口袋中有2个白球,1个黑球,从中任取一个球,摸到白球的概率为.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:根据题意可得:口袋中有2个白球,1个黑球,共3个球,从中任取一个球,摸到白球的概率为.点评:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(3分)二次三项式为x2﹣4x+3,配方的结果是(x﹣2)2﹣1.考点:配方法的应用.专题:计算题.分析:原式前两项加上4再减去4变形后,利用完全平方公式化简即可得到结果.解答:解:x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1.故答案为:(x﹣2)2﹣1.点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.18.(3分)若关于x的方程3x2+mx+m﹣6=0有一根是0,则m=6.考点:一元二次方程的解.分析:本题根据一元二次方程的根的定义求解.把x=0代入方程求出m的值.解答:解:∵x=0是方程的根,由一元二次方程的根的定义,可得m﹣6=0,解此方程得到m=6.点评:本题逆用一元二次方程解的定义易得出m的值.19.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为 2.6cm.考点:角平分线的性质.分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D 到AB的距离的大小.解答:解:过点D作DE⊥AB于E,∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.故填2.6.点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.20.(3分)将正方形ABCD中的△ABP绕点B顺时针旋转能与△CBP′重合,若BP=4,则PP′=.考点:旋转的性质;等腰直角三角形;正方形的性质.分析:观察图形可知,旋转中心为点B,A点的对应点为C,P点的对应点为P′,故旋转角∠PBA′=∠ABC=90°,根据旋转性质可知BP=BP′,可根据勾股定理求PP′解答:解:由旋转的性质可知,旋转角∠PBP′=∠ABC=90°,BP=BP′=4,∴在Rt△BPP′中,由勾股定理得,PP′==4.故答案是:4.点评:本题考查了旋转性质的运用,根据旋转角判断三角形的形状,根据旋转的对应边相等及勾股定理求边长.三、解答及证明(本大题共5小题,各题分值见题号后,共40分)21.(5分)解方程:(x+3)2﹣x(x+3)=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:方程左边提取公因式变形后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(x+3)2﹣x(x+3)=0,分解因式得:(x+3)(x+3﹣x)=0,可得:x+3=0,解得:x=﹣3.点评:此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.22.(5分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)考点:中心投影.专题:作图题.分析:分别作过乙,丙的头的顶端和相应的影子的顶端的直线得到的交点就是点光源所在处,连接点光源和甲的头的顶端并延长交平面于一点,这点到甲的脚端的距离是就是甲的影长.解答:解:.点评:两个物高与影长的连线的交点是点光源;影长是点光源与物高的连线形成的在地面的阴影部分的长度.23.(10分)(2004•四川)已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.考点:等腰三角形的判定;正方形的判定.专题:几何综合题;压轴题.分析:先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.解答:(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵BD=CD,BF=CE,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.故△ABC是等腰三角形;(3分)(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.(8分)点评:此题主要考查学生对等腰三角形的判定及正方形的判定方法的掌握情况.24.(10分)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.要使这两个正方形的面积之和等于17cm2,那么这两个正方形的边长分别是多少?考点:一元二次方程的应用.分析:设其中一个正方形的边长为xcm,根据将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.要使这两个正方形的面积之和等于17cm2,可列方程求解.解答:解:设其中一个正方形的边长为xcm,则另一个正方形的边长为.依题意列方程得:x2+(5﹣x)2=17,解方程得:x1=1,x2=4,答:这两个小正方形的边长分别是1cm、4cm.点评:本题考查理解题意的能力,设出一个正方形的边长,表示出另一个,以面积相等做为等量关系列方程求解.25.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.考点:反比例函数综合题.专题:计算题;综合题;数形结合.分析:(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;(3)从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.解答:解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.点评:此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.。

相关文档
最新文档