2020年全国高中数学联合竞赛一试B卷

合集下载

2020全国高中数学联赛B卷答案及评分标准

2020全国高中数学联赛B卷答案及评分标准

2020年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数x 满足()()248log log 2log 4x x x =+,则x = . 答案:128. 解:由条件知24488221121log log 2+log log 4log +log log 2233x x x x x =++=++,解得2log 7x =,故128x =.2. 在平面直角坐标系xOy 中,圆经过点(0,0),(2,4),(3,3),则圆上的点到原点的距离的最大值为 .答案:解:记(2,4),(3,3)A B ,圆经过点,,O A B .注意到90OBA (直线OB与AB 的斜率分别为1和1),故OA 为圆的直径.从而圆上的点到原点O 的距离的最大值为25OA .3. 设集合{}1,2,,20X =,A 是X 的子集,A 的元素个数至少是2,且A 的所有元素可排成连续的正整数,则这样的集合A 的个数为 .答案:190.解:每个满足条件的集合A 可由其最小元素a 与最大元素b 唯一确定,其中,,a b X a b ,这样的(,)a b 的取法共有220C 190种,所以这样的集合A 的个数为190.4. 在三角形ABC 中,4,5,6BC CA AB ,则66sin cos 22AA= .答案:4364. 解:由余弦定理得2222225643cos 22564CA AB BC A CA AB ,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A =22222sincos3sin cos 2222A A A A231sin 4A 21343cos 4464A. 5. 设9元集合{}{}i ,1,2,3A a b a b =+∈,i 是虚数单位.()129,,,z z z α=是A 中所有元素的一个排列,满足129z z z ≤≤≤,则这样的排列α的个数为 .答案:8. 解:由于1i 2i 12i 22i 3i 13i 32i 23i 33i +<+=+<+<+=+<+=+<+, 故 {}{}{}{}1234561i,,2i,12i ,22i,,3i,13i z z z z z z =+=++=+=++,{}{}789,32i,23i ,33i z z z =++=+,由乘法原理知,满足条件的排列α的个数为328=.6. 已知一个正三棱柱的各条棱长均为3,则其外接球的体积为 .答案:2π. 解:如图,设面ABC 和面111A B C 的中心分别为O 和1O ,记线段1OO 的中点为P ,由对称性知,P 为正三棱柱外接球的球心,PA 为外接球的半径.易知POAO ⊥,所以2PA ===,故外接球的体积为34=322⎛⎫ππ ⎪ ⎪⎝⎭.7. 在凸四边形ABCD 中,2BC AD .点P 是四边形ABCD 所在平面上一点,满足202020200PA PB PC PD .设,s t 分别为四边形ABCD 与PAB 的面积,则t s. 答案:3372021. 解:不妨假设2,4AD BC .记,,,M N X Y 分别是,,,AB CD BD AC 的中点,则,,,M X Y N 顺次共线并且1MX XY YN .由于2PAPC PY ,2PBPD PX ,O 1O PC 1B A 1C B 1A故结合条件可知20200PY PX.故点P 在线段XY 上且12021PX.设A 到MN 的距离为h ,由面积公式可知 22PAB ABCD S t PM h PMs S MN h MN113372021232021. 8. 已知首项系数为1的五次多项式()f x 满足:()8,1,2,,5f n n n ==,则()f x 的一次项系数为 .答案:282.解:令()()8g x f x x =−,则()g x 也是一个首项系数为1的五次多项式,且()()80,1,2,,5g n f n n n =−==,故()g x 有5个实数根1,2,,5,所以()(1)(2)(5)g x x x x =−−−,于是()(1)(2)(5)8f x x x x x =−−−+,所以()f x 的一次项系数等于111115!82822345⎛⎫++++⋅+= ⎪⎝⎭.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分) 在椭圆中,A 为长轴的一个端点,B 为短轴的一个端点,12,F F 为两个焦点.若12120AF AF BF BF ,求12tan tan ABF ABF 的值.解:由对称性,设椭圆的方程为22221(0)x y a b a b ,(,0),(0,)A a B b ,12(,0),(,0)F c F c ,其中22ca b .由条件知222221212()()()20AF AF BF BF c a c a c b a b c .…………………4分所以22222230a b c a b ,故3a b ,2cb . …………………8分记O 为坐标原点,则tan 3aABO b,12tan tan 2c OBF OBF b . …………………12分 所以1211tan tan tan ()tan ()ABF ABF ABO OBF ABO OBF323215132132. …………………16分10. (本题满分20分)设正实数,,a b c 满足222494122a b c b c ++=+−,求123a b c++的最小值. 解:由题设条件得 ()()22221323a b c +−+−=, …………………5分 由柯西不等式得()()()2222321322132a b c a b c ⎡⎤+−+−≥+−+−⎣⎦, 即()22339a b c ++−≤,故236a b c ++≤. …………………10分又由柯西不等式得()()212323123a b c a b c ⎛⎫++++≥++ ⎪⎝⎭, 所以12336623a b c a b c++≥≥++, …………………15分当1a b c ===时等号成立.故123a b c++的最小值是6. …………………20分11. (本题满分20分)设数列n a 的通项公式为11515,1,2,225nnna n .证明:存在无穷多个正整数m ,使得41m m a a 是完全平方数. 证明:记121515,22q q ,则12121,1q q q q ,于是121,1,2,5n n na q q n . 所以121,1a a ==.又注意到21(1,2)i i q q i ,有11112121155n n n nn n a a q q q q11221115n nq q q q 221215n n q q , 即21,1,2,n n n a a a n , …………………5分由此易知,数列n a 的每一项都是正整数. 由计算易得44127q q ,故 2323212123211212111155n n nn n na a q q q q212142424412121122115n n n n q q q q q q q q4242441212115nn q q q q4242121715n n q q424212125nn q q221212122115n n n q q a , …………………15分 所以,对任意正整数n ,23211n n a a 都是完全平方数.于是对于正奇数m ,41m m a a 均为完全平方数. …………………20分2020年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分) 如图,,,,,A B C D E是圆上顺次的五点,满足ABC BCD CDE ,点,P Q 分别在线段,AD BE 上,且P 在线段CQ 上.证明:PAQ PEQ .证明:记S 为AD 与BE 的交点,T 为CQ 延长线与圆的交点.注意到ABC BCD CDE ,可设,AB CD所对的圆周角均为,,BC DE 所对的圆周角均为.于是ATQ ATC ,PTE CTE ,PSQ BDA DBE. ……………20分由ATQPSQ 得,,,S A T Q 四点共圆,又由PTE PSQ 得,,,P S T E 四点共圆.所以PAQPTS PEQ . ……………40分 二、(本题满分40分)设集合{}1,2,,19A =.是否存在集合A 的非空子集12,S S ,满足(1)12S S ,12S S A ;(2)12,S S 都至少有4个元素;(3)1S 的所有元素的和等于2S 的所有元素的乘积? 证明你的结论.解:答案是肯定的. 设21,2,,219S x y x y ,, ……………10分 则1219122x y xy +++−−−−=,所以2187xy x y ++=, ……………20分故()()21213751525x y ++==⨯,所以7,12x y是一组解.……………30分 故取123,4,5,6,7,8,10,11,13,14,15,16,17,18,19,1,2,7,12S S ,则这样的12,S S 满足条件. ……………40分注:直接给出例子并验证给40分.三、(本题满分50分) 给定整数2n .设1212,,,,,,,0n na a ab b b ,满足1212n n a a a b b b , 且对任意,(1)i j ijn ,均有i jij a a b b .求12n a a a 的最小值.解:记1212nn Sa a ab b b .由条件知11()(1)i jij i j ni j na ab b n S . ……………10分又222111122n i ji ji i j ni j ni a a n a a a , ……………20分于是222111122221nn ii i ji ji i i j ni j nSa a a a a a nS n .……………40分 注意0S ,故2S n .另一方面,当2(1,2,,)i i a b i n 时,条件满足,且2S n .综上,12n Sa a a 的最小值为2n . ……………50分四、(本题满分50分)设,a b 为不超过12的正整数,满足:存在常数C ,使得9(mod13)nn a b C 对任意正整数n 成立.求所有满足条件的有序数对(,)a b . 解法1:由条件知,对任意正整数n ,有9312(mod13)n n n n a b a b . ①注意到13为素数,,a b 均与13互素,由费马小定理知12121(mod13)a b .因此在①中取12n ,化简得9311(mod13)b a ,故93(mod13)b a . 代入①,得33123(mod13)nn nnnn a a b a b a b ,即3()(1)0(mod13)n n a b a . ②……………20分分两种情况讨论.(i) 若31(mod13)a ,则333121(mod13)b a b b ,又,{1,2,,12}a b ,经检验可知,{1,3,9}a b .此时9(mod13)n n n n a b a b .由条件知332(mod13)a b a b ,从而只能是1a b .经检验,当(,)(1,1)a b 时,对任意正整数n ,9n n a b 模13余2为常数,满足条件. ……………30分(ii) 若31(mod13)a ,则由②知,对任意正整数n ,有(mod13)n n a b .特别地,(mod13)a b ,故ab .所以399(mod13)a b a ,即333(1)(1)0(mod13)a a a ,故31(mod13)a .通过检验1,2,,6(mod13)a ,可知4,10,12a . 经检验,当(,)(4,4),(10,10),(12,12)a b 时,对任意正整数n ,有9933(1())0(mod13)n n n n n a b a a a a ,满足条件.综合(i)、(ii),所求的有序数对(,)a b 为(1,1),(4,4),(10,10),(12,12).……………50分 解法2:由条件知,对任意正整数n ,有92111102()()()(mod13)n n n n n n a b a b a b ,……………10分 化简得11291102(mod13)n n n n n n a b a b a b ,即92()0(mod13)n n a b a b .由于13为素数,,{1,2,,12}a b ,故213()a b ,进而ab .……………20分 因此,当n 变化时,99(1)n n n a b a a 模13的余数为常数. 当910(mod13)a 时,由上式知,n a 模13的余数为常数,特别地,有2(mod13)a a ,故1a . ……………30分当910(mod13)a 时,由费马小定理得121(mod13)a ,故33912()1(mod13)a a a a .通过检验1,2,,6(mod13)a,可知4,10,12a . 综上,所求的有序数对(,)a b 为(1,1),(4,4),(10,10),(12,12). …………50分。

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

2020年全国高中数学联合竞赛一试B卷

2020年全国高中数学联合竞赛一试B卷

2020年全国高中数学联合竞赛一试B 卷试题参考答案及评分标准〔B 卷〕讲明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.假如考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题〔此题总分值36分,每题6分〕1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 〔 B 〕A .3B .2C .1D .0[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,假设B A ⊆,那么实数a 的取值范畴为 〔 A 〕A .[0,3)B .[0,3]C .[1,2)-D .[1,2]- [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a , 解之得03a ≤<.3.甲乙两人进行乒乓球竞赛,约定每局胜者得1分,负者得0分,竞赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,那么竞赛停止时已打局数ξ的期望E ξ为 〔 C 〕A.670243 B. 27481 C. 26681D. 24181 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局竞赛为一轮,那么该轮终止时竞赛停止的概率为22215()()339+=.假设该轮终止时竞赛还将连续,那么甲、乙在该轮中必是各得一分,现在,该轮竞赛结果对下轮竞赛是否停止没有阻碍.从而有5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局竞赛中获胜,那么k A 表示乙在第k 局竞赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.假设三个棱长均为整数〔单位:cm 〕的正方体的表面积之和为564 cm 2,那么这三个正方体的体积之和为〔 D 〕A. 586 cm 3B. 586 cm 3或564 cm 3C. 764 cm 3D. 764 cm 3或586 cm 3[解] 设这三个正方体的棱长分不为,,a b c ,那么有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.假设9c =,那么22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 假设8c =,那么22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.假设5b =,那么25a =无解,假设4b =,那么214a =无解.现在无解.假设7c =,那么22944945a b +=-=,有唯独解3a =,6b =.假设6c =,那么22943658a b +=-=,现在222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,现在2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 〔 C 〕 A. 4 B. 3 C. 2 D. 1[解] 假设0z =,那么00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,假设0z ≠,那么由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,那么sin cot cos sin cot cos A C AB C B++的取值范畴是〔 B 〕A. )+∞B.C. D. (0,)+∞[解] 设,,a b c 的公比为q ,那么2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范畴.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩q <<,因此所求的取值范畴是. 二、填空题〔此题总分值54分,每题9分〕7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,假设7()128381f x x =+,那么2(2)f = 17 . [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =.因此 2222121(2)28317121a f ab a --=+⋅=+⋅=--. 8.设()cos 22(1cos )f x x a x =-+的最小值为12-,那么a=2-.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-+2a =-舍去).9.将24个理想者名额分配给3个学校,那么每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的间隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分不有4,18,2个名额.假设把每个〝*〞与每个〝|〞都视为一个位置,由于左右两端必须是〝|〞,故不同的分配方法相当于24226+=个位置〔两端不在内〕被2个〝|〞占据的一种〝占位法〞.〝每校至少有一个名额的分法〞相当于在24个〝*〞之间的23个间隙中选出2个间隙插入〝|〞,故有223C 253=种. 又在〝每校至少有一个名额的分法〞中〝至少有两个学校的名额数相同〞的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分不为123,,x x x ,那么每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在〝每校至少有一个名额的分法〞中〝至少有两个学校的名额数相同〞的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,那么n S =1112nn -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),答12图1有112n n b b +=,故12n n b =,因此)1(121+-=n n a n n . 因此 11111()(1)2(1)12n n n n S n n n n n -=--=-+++.11.设()f x 是定义在R 上的函数,假设(0)2009f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,那么)2008(f =200822008+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822008=+. [解法二] 令()()2x g x f x =-,那么2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,因此200820082008(2008)(2008)2(0)222008f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为46那么该小球永久不可能接触到的容器内壁的面积是723.[解] 如答12图1,考虑小球挤在一个角时的情形,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,那么小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅答13图答12图 2111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记现在小球与面PAB 的切点为1P ,连接1OP ,那么222211(3)22PP PO OP r r r=--=. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情形,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 226PM PP MPP r r =⋅==,故小三角形的边长1226PE PA PM a r =-=-. 小球与面PAB 不能接触到的部分的面积为〔如答12图2中阴影部分〕1PAB P EF S S ∆∆-223(26))a a r =--23263ar r =-. 又1r =,46a =124363183PAB PEF S S ∆∆-= 由对称性,且正四面体共4个面,因此小球不能接触到的容器内壁的面积共为723 三、解答题〔此题总分值60分,每题20分〕13.函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,因此sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+.即 1210864353210x x x x x +++--<. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++-<,864242(241)(1)0x x x x x x +++++-<, …10分因此 4210x x +->,22(0x x -<. …15分因此2x <,即x <<故原不等式解集为(. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+. …5分即题15图6422232262133122(1)2(1)x x x x x x x x+>+++++=+++, 32322211()2()(1)2(1)x x x x+>+++, …10分 令3()2g t t t =+,那么不等式为221()(1)g g x x>+, 明显3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x>+, …15分 即222()10x x +-<,解得251x -<, 故原不等式解集为5151(,)22---. …20分 15.如题15图,P 是抛物线22210y x y -+-=上的动点,点B C ,在直线1x =-上,圆22(1)1x y ++=内切于PBC ∆,求PBC ∆面积的最小值. [解] 设00(,),(1,),(1,)P x y B b C c --,不妨设b c >.直线PB 的方程:00(1)1y by b x x --=++, 化简得 0000()(1)0y b x x y x b y --+++=.又圆心(0,1)-到PB 的距离为1,000220011()(1)x x b y y b x +++=-++ , …5分故222200000000()(1)(1)()2(1)()y b x x x b y x x b y -++=++++++,展开得22000000(1)2(1)()2(1)0x b x x y b y x -+++++=,易知01x >,故20000(1)2()20x b x y b y -+++=,同理有20000(1)2()20x c x y c y -+++=. …10分 因此0002()1x y b c x -++=-,0021y bc x =-,2222000000022004()8(1)448()(1)(1)x y y x x y y b c x x +--++-==--.因00(,)P x y 是抛物线上的点,有20002210y x y -+-=,即2000221y y x +=+,那么222200000044844(21)4(1)x y y x x x ++=++=+,故220204(1)()(1)x b c x +-=-,0002(1)4211x b c x x +-==+--. …15分 因此0000002(1)12()(1)(1)(1)1211PBC x S b c x x x x x ∆+=-+=++=++--0000443(1)44811x x x x =++=-++≥=--. 当20(1)4x -=时,上式取等号,现在003,1x y ==±.因此PBC S ∆的最小值为8. …20分。

2020全国高中数学联赛B卷题目

2020全国高中数学联赛B卷题目

2020年全国高中数学联合竞赛一试(B 卷)1. 若实数x 满足()()248log log 2log 4x x x =+,则x = .2. 在平面直角坐标系xOy中,圆经过点(0,0),(2,4),(3,3),则圆上的点到原点的距离的最大值为 .3. 设集合{}1,2,,20X =,A 是X 的子集,A 的元素个数至少是2,且A 的所有元素可排成连续的正整数,则这样的集合A 的个数为 .4. 在三角形ABC 中,4,5,6BCCA AB ,则66sin cos 22A A= .5. 设9元集合{}{}i ,1,2,3A a b a b =+∈,i 是虚数单位.()129,,,z z z α=是A 中所有元素的一个排列,满足129z z z ≤≤≤,则这样的排列α的个数为 .6. 已知一个正三棱柱的各条棱长均为3,则其外接球的体积为 .7. 在凸四边形ABCD 中,2BC AD .点P 是四边形ABCD 所在平面上一点,满足202020200PA PB PC PD .设,s t 分别为四边形ABCD 与PAB 的面积,则t s.8. 已知首项系数为1的五次多项式()f x 满足:()8,1,2,,5f n n n ==,则()f x 的一次项系数为 .9.(本题满分16分) 在椭圆中,A 为长轴的一个端点,B 为短轴的一个端点,12,F F 为两个焦点.若12120AF AF BF BF ,求12tan tan ABF ABF 的值.10. (本题满分20分)设正实数,,a b c 满足222494122a b c b c ++=+−,求123a b c++的最小值. 11. (本题满分20分)设数列n a 的通项公式为11515,1,2,225nnna n .证明:存在无穷多个正整数m ,使得41m m a a 是完全平方数.2020年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分) 如图,,,,,A B C D E是圆上顺次的五点,满足ABC BCD CDE ,点,P Q 分别在线段,AD BE 上,且P 在线段CQ 上.证明:PAQ PEQ .二、(本题满分40分)设集合{}1,2,,19A =.是否存在集合A 的非空子集12,S S ,满足(1)12S S ,12S S A ;(2)12,S S 都至少有4个元素;(3)1S 的所有元素的和等于2S 的所有元素的乘积? 证明你的结论.三、(本题满分50分) 给定整数2n.设1212,,,,,,,0n na a ab b b ,满足1212n n a a a b b b , 且对任意,(1)i j ijn ,均有i jij a a b b .求12n a a a 的最小值.四、(本题满分50分)设,a b 为不超过12的正整数,满足:存在常数C ,使得9(mod13)nna b C 对任意正整数n 成立.求所有满足条件的有序数对(,)a b .。

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析一、选择题(本题满分36分,每小题6分)1. 已知△ABC,若对任意t R,BA t BC AC,则△ABC一定为A.锐角三角形 B.钝角三角形 C.直角三角形 D.答案不确定【答案】()2. 设log(2xx 2x 1)log21,则x的取值范围为xA.12x 1B.x12,且x 1C.x 1D.0x 1【答案】()5. 设f(x)x3log2x x21,则对任意实数a,b,a b 0是f(a)f(b)0的A. 充分必要条件B.充分而不必要条件C. 必要而不充分条件D.既不充分也不必要条件【答案】()6.数码a,a,a,L,a1232006中有奇数个9的2020位十进制数2a a a L a1232006的个数为A.11(10200682006) B.22(10200682006)C.10200682006D.10200682006【答案】()二、填空题(本题满分54分,每小题9分)7. 设f(x)sin4x sin x cos x cos4x,则f(x)的值域是。

8. 若对一切R,复数z (a cos )(2a sin )i的模不超过2,则实数a的取值范围为.9. 已知椭圆x2y21164的左右焦点分别为F与F ,点P在直线l:x 3y 823012上. 当F PF 12取最大值时,比PF 1 PF2的值为 .10. 底面半径为 1cm 的圆柱形容器里放有四个半径为 1 2cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注 水 cm 3.11. 方程( x20061)(1x2x4L x2004) 2006 x2005 的实数解的个数为.12. 袋内有 8 个白球和 2 个红球,每 次从中随机取出一个球,然后放回 1 个白球,则第 4次恰好取完所有红球的概率为 . 三、解答题(本题满分 60 分,每小题 20 分)15.设f ( x ) x 2a .记f 1( x ) f ( x ),f n ( x ) f ( f n 1( x )) ,n 2,3, L,n .证明:1M2,4.2020 年全国高中数学联合竞赛加试试卷(考试时间:上午 10:00—12:00)一、以 B 和 B 为焦点的椭圆 △与AB B 的边 AB 交于 C (i =0,0 1 0 1 i i1)。

2020年全国高中数学联赛试题及详细解析.docx

2020年全国高中数学联赛试题及详细解析.docx

2020 年全国高中数学联赛试题及详细解析说明:1. 评阅试卷时,请依据本评分标准。

选择题只设6 分和 0 分两档,填空题只设9 分和 0 分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。

2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分, 5 分为一个档次,不要再增加其他中间档次。

一、选择题(本题满分36 分,每小题 6 分)本题共有 6 小题,每小题均给出 A , B ,C ,D 四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得 6 分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得 0 分。

1.使关于 x 的不等式 x 36 x k 有解的实数 k 的最大值是()A . 63B. 3C. 63D . 62.空间四点 A 、 B 、 C 、 D 满足 | AB | 3, | BC | 7 , | CD | 11 , | DA | 9 , 则 AC BD 的取值()A .只有一个B .有二个C .有四个D .有无穷多个a 1 a 2 a 3a 4| a iT , i 1,2,3,4}, 将 M 中的元素按从大到小的6. 记集合 T { 0,1,2,3,4,5,6}, M {7 27 3747序排列, 第2020 个数是()A . 5 5 6 3B . 55 6 2 7 7273 74 772 73 7 4 C .11 0 4 D .11 0 3 7 72737477273 7 4二、填空 (本 分54 分,每小 9 分) 本 共有 6 小 ,要求直接将答案写在横 上。

7. 将关于 x 的多 式 f ( x)1 x x2 x 3x 19x 20 表 关于 y 的多 式 g( y)a 0 a 1 y a 2 y 2 a 19 y 19 a 20 y 20, 其中 y x 4. a 0a 1a20.8. 已知 f (x) 是定 在 ( 0,) 上的减函数, 若 f (2a 2a1) f (3a 24a 1) 成立, a 的取 范是。

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析2020年全国高中数学联赛试题及详细解析说明:1.评阅试卷时,请依据本评分标准。

选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

2.如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。

一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A、B、C、D四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。

1.使关于 x 的不等式 x - 3 + 6 - x ≥ k 有解的实数 k 的最大值是()。

A。

6 - 3B。

3C。

6 + 3D。

62.空间四点 A、B、C、D 满足 |AB| = 3,|BC| = 7,|CD| = 11,|DA| = 9,则 AC·BD 的取值()。

A。

只有一个B。

有两个C。

有四个D。

有无穷多个6.记集合 T = {1.2.3.4.5.6},M = {ai | ai ∈ T。

i = 1.2.3.4.},将 M 中的元素按从大到小的顺序排列,则第 2020 个数是()。

A。

2 + 3 + 4 +。

+ 5563B。

2 + 3 + 4 +。

+ xxxxxxxC。

2 + 3 + 4 +。

+ xxxxxxxx7D。

2 + 3 + 4 +。

+二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。

7.将关于 x 的多项式 f(x) = 1 - x + x^2 - x^3 +。

- x^2319 + x^20 表为关于 y 的多项式 g(y) = a + a1y + a2y^2 +。

+ a19y^19 + a20y^20,其中 y = x - 4,则 a + a1 +。

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年全国高中数学联合竞赛一试B 卷试题参考答案及评分标准〔B 卷〕讲明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.假如考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题〔此题总分值36分,每题6分〕1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 〔 B 〕A .3B .2C .1D .0[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,假设B A ⊆,那么实数a 的取值范畴为 〔 A 〕A .[0,3)B .[0,3]C .[1,2)-D .[1,2]- [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a , 解之得03a ≤<.3.甲乙两人进行乒乓球竞赛,约定每局胜者得1分,负者得0分,竞赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,那么竞赛停止时已打局数ξ的期望E ξ为 〔 C 〕A.670243 B. 27481 C. 26681D. 24181 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局竞赛为一轮,那么该轮终止时竞赛停止的概率为22215()()339+=.假设该轮终止时竞赛还将连续,那么甲、乙在该轮中必是各得一分,现在,该轮竞赛结果对下轮竞赛是否停止没有阻碍.从而有5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局竞赛中获胜,那么k A 表示乙在第k 局竞赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.假设三个棱长均为整数〔单位:cm 〕的正方体的表面积之和为564 cm 2,那么这三个正方体的体积之和为〔 D 〕A. 586 cm 3B. 586 cm 3或564 cm 3C. 764 cm 3D. 764 cm 3或586 cm 3[解] 设这三个正方体的棱长分不为,,a b c ,那么有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.假设9c =,那么22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 假设8c =,那么22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.假设5b =,那么25a =无解,假设4b =,那么214a =无解.现在无解.假设7c =,那么22944945a b +=-=,有唯独解3a =,6b =.假设6c =,那么22943658a b +=-=,现在222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,现在2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 〔 C 〕 A. 4 B. 3 C. 2 D. 1[解] 假设0z =,那么00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,假设0z ≠,那么由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,那么sin cot cos sin cot cos A C AB C B++的取值范畴是〔 B 〕A. )+∞B.C. D. (0,)+∞[解] 设,,a b c 的公比为q ,那么2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范畴.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩q <<,因此所求的取值范畴是. 二、填空题〔此题总分值54分,每题9分〕7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,假设7()128381f x x =+,那么2(2)f = 17 . [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =.因此 2222121(2)28317121a f ab a --=+⋅=+⋅=--. 8.设()cos 22(1cos )f x x a x =-+的最小值为12-,那么a=2-.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-+2a =-舍去).9.将24个理想者名额分配给3个学校,那么每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的间隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分不有4,18,2个名额.假设把每个〝*〞与每个〝|〞都视为一个位置,由于左右两端必须是〝|〞,故不同的分配方法相当于24226+=个位置〔两端不在内〕被2个〝|〞占据的一种〝占位法〞.〝每校至少有一个名额的分法〞相当于在24个〝*〞之间的23个间隙中选出2个间隙插入〝|〞,故有223C 253=种. 又在〝每校至少有一个名额的分法〞中〝至少有两个学校的名额数相同〞的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分不为123,,x x x ,那么每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在〝每校至少有一个名额的分法〞中〝至少有两个学校的名额数相同〞的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,那么n S =1112nn -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),答12图1有112n n b b +=,故12n n b =,因此)1(121+-=n n a n n . 因此 11111()(1)2(1)12n n n n S n n n n n -=--=-+++.11.设()f x 是定义在R 上的函数,假设(0)2009f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,那么)2008(f =200822008+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822008=+. [解法二] 令()()2x g x f x =-,那么2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,因此200820082008(2008)(2008)2(0)222008f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为46那么该小球永久不可能接触到的容器内壁的面积是723.[解] 如答12图1,考虑小球挤在一个角时的情形,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,那么小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅答13图答12图 2111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记现在小球与面PAB 的切点为1P ,连接1OP ,那么222211(3)22PP PO OP r r r=--=. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情形,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 226PM PP MPP r r =⋅==,故小三角形的边长1226PE PA PM a r =-=-. 小球与面PAB 不能接触到的部分的面积为〔如答12图2中阴影部分〕1PAB P EF S S ∆∆-223(26))a a r =--23263ar r =-. 又1r =,46a =124363183PAB PEF S S ∆∆-= 由对称性,且正四面体共4个面,因此小球不能接触到的容器内壁的面积共为723 三、解答题〔此题总分值60分,每题20分〕13.函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,因此sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+.即 1210864353210x x x x x +++--<. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++-<,864242(241)(1)0x x x x x x +++++-<, …10分因此 4210x x +->,22(0x x -<. …15分因此2x <,即x <<故原不等式解集为(. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+. …5分即题15图6422232262133122(1)2(1)x x x x x x x x+>+++++=+++, 32322211()2()(1)2(1)x x x x+>+++, …10分 令3()2g t t t =+,那么不等式为221()(1)g g x x>+, 明显3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x>+, …15分 即222()10x x +-<,解得251x -<, 故原不等式解集为5151(,)22---. …20分 15.如题15图,P 是抛物线22210y x y -+-=上的动点,点B C ,在直线1x =-上,圆22(1)1x y ++=内切于PBC ∆,求PBC ∆面积的最小值. [解] 设00(,),(1,),(1,)P x y B b C c --,不妨设b c >.直线PB 的方程:00(1)1y by b x x --=++, 化简得 0000()(1)0y b x x y x b y --+++=.又圆心(0,1)-到PB 的距离为1,000220011()(1)x x b y y b x +++=-++ , …5分故222200000000()(1)(1)()2(1)()y b x x x b y x x b y -++=++++++,展开得22000000(1)2(1)()2(1)0x b x x y b y x -+++++=,易知01x >,故20000(1)2()20x b x y b y -+++=,同理有20000(1)2()20x c x y c y -+++=. …10分 因此0002()1x y b c x -++=-,0021y bc x =-,2222000000022004()8(1)448()(1)(1)x y y x x y y b c x x +--++-==--.因00(,)P x y 是抛物线上的点,有20002210y x y -+-=,即2000221y y x +=+,那么222200000044844(21)4(1)x y y x x x ++=++=+,故220204(1)()(1)x b c x +-=-,0002(1)4211x b c x x +-==+--. …15分 因此0000002(1)12()(1)(1)(1)1211PBC x S b c x x x x x ∆+=-+=++=++--0000443(1)44811x x x x =++=-++≥=--. 当20(1)4x -=时,上式取等号,现在003,1x y ==±.因此PBC S ∆的最小值为8. …20分。

相关文档
最新文档