八年级数学(上) 第十五章 整式的乘法 教学设计
整式的乘法教学设计(精选3篇)
整式的乘法教学设计(精选3篇)整式的乘法教学设计(精选3篇)作为一位杰出的老师,很有必要精心设计一份教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
那么应当如何写教学设计呢?下面是小编为大家整理的整式的乘法教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
整式的乘法教学设计1一、内容和内容解析1、内容:同底数幂的乘法。
2、内容解析同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。
在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。
同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。
同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。
基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。
二、目标和目标解析1、目标(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。
(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。
2、目标解析达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同底数幂的乘法运算。
达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用。
三、教学问题诊断分析在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。
幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。
教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。
初中数学《整式的乘除》大单元教学设计
● 专题问题设计:
● 1、什么叫做幂? ● 2、同底数幂相乘的意义是什么? ● 3、幂的乘方的意义是什么? ● 4、积的乘方的意义是什么?
九.专题教学设计
● 学习活动设计:第一课时同底数幂的乘法
活动一:试试看:(1)下面请同学们根据乘方的意义做下面一组题:① 2³×2⁵=(2×2×2)(2×2×2×2×2)②a³.a=(a.a.a).a =a( ) (2)根据上面的规律,请以幂的形式直接写出下列各题的结果10²×10³, 10×10⁵
●回顾小结:
1.同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字。 2.解题时要注意a的指数是1。 3.解题时,是什么运算就应用什么法则。同底数幂相乘,就应用同底数幂的 乘法法则;整式加减就要合并同类项,不能混淆。 4.-a²的底数a不是-a. 5.若底数是多项式时,要把底数看成一个整体进行计算。 ●
●3.进一步用科学记数法表示小于1的正数(包括在计算器上表 示),能用生活中的实例体会这些数的意义,发展数感。
四.单元学习目标
●4.能推导乘法公式:(a+b)(a-b)=a2-b2, (a±b)2=a2±2ab+b2,并能利用公式进行简单计算;了解公式 的几何背景,发展几何直观。
●5.进一步学习用类比、归纳、转化等方法进行思考与运算,发展 运算能力,并进一步体会字母表示数的意义,发展符号意识。
● 2幂的乘方与积的乘方
2课时
● 3同底数幂的除法
1课时
●4零指数幂与负整数指数幂 3课时
● 5整式的乘法
4课时
● 6平方差公式
2课时
● 7完全平方公式
八年级数学上册 15.1.4单项式乘以单项式教案 人教新课标版 教案
课题名称:整式的乘法(1)单项式乘以单项式一.内容解析1.内容:“整式的乘法”是新人教版教材第十五章“整式的乘除与因式分解”的教学内容,是继教材“整式的加减”之后,初中阶段对整式的第二次的研究,它与整式加减一样是整式运算的重要内容。
教材将单项式乘法安排在同底数幂乘法、幂的乘方、积的乘方之后,单项式的乘法包括单项式乘以单项式、单项式的乘方与乘法的混合运算等,内容较为充实、完整。
为学生综合运用多种运算法则拓宽了空间,有利于学生对双基的掌握。
单项式乘法运算的熟练程度得以提高。
在综合运用多种运算法则的过程中,逐渐形成运算能力,同时本节课的教学难度有所增加。
2.内容解析:本章的学习是进一步学习因式分解、方程、函数以及其它数学知识的基础,同时也是学习物理、化学等学科不可缺少的工具与其它数学知识一样,它在工业生产和实际生活中有着广泛的应用。
学习单项式的乘法并熟练地进行单项式的乘法运算是学好整式乘法的关键。
单项式的乘法既是有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算法则的综合运用,又是今后将要学习的单项式与多项式相乘、多项式乘法的基础。
同时,本课中由图形面积引入单项式乘以单项式的法则也渗透着数形结合的数学思想。
由此可以看出,单项式乘以单项式的学习既是前面学习的综合应用,又是后续学习的基础,本节课教学质量的好坏将直接影响着学生的后续学习。
本节教学重点是单项式乘法法则的导出及其应用。
这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一。
本节教学难点是多种运算法则的综合运用。
这是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误。
二.目标与目标解析1.目标:知识与能力学生通过自己的探索,得出单项式乘以单项式的法则,并会用它进行简单的计算。
整式的乘法 教学设计
整式的乘法【第一课时】【教学目标】知识与技能:1.会进行单项式与单项式的乘法运算。
2.灵活运用单项式相乘的运算法则。
过程与方法:1.经历探索乘法运算法则的过程,体会乘法分配律的作用和转化思想。
2.感受运算法则和相应的几何模型之间的联系,发展数形结合的思想。
情感、态度与价值观:在学习中获得成就感,增强学好数学的能力和信心。
【教学重难点】重点:熟练地进行单项式的乘法运算。
难点:单项式的乘方与乘法的混合运算。
【教学过程】一、情景引入教师引导学生复习整式的有关概念整式的乘法实际上就是单项式×单项式、单项式×多项式、多项式×多项式。
二、探索法则与应用1.组织讨论:完成课本“试着做做”的题目,引导学生分组讨论单项式×单项式的法则(组织学生积极讨论,教师应积极参与学生的讨论过程,并对不主动参与的同学进行指导。
)2.在学生发言的基础上,教师总结单项式的乘法法则并板书法则:系数与系数相同字母与相同字母单独存在的字母以上3点的处理办法,让学生归纳解题步骤。
(学生刚接触,故要求学生按步骤解题,且提醒学生不能漏项。
)3.例题讲解例1:计算:(1)4x·3xy ; (2)(-2x )·(-3x 2y ); (3)解:(1)(2)(3)例2:计算:(1); (2)解:(1) (2)(强调法则的运用)4.练习:课本“练习”第1题,学生口答,讲解错误的理由;第2题,学生板书,发现问题及时纠正,可让学生辨析、指出错误,巩固法则。
三、课堂总结指导学生总结本节课的知识点、学习过程等的自我评价。
2321abc b c 32⎛⎫⋅- ⎪⎝⎭y12χy χ)(χ3)(43χy 4χ2=⋅⋅⋅⨯=⋅[]y 3226χy )χ(χ3)(2)(y)3χ(2χ)(=⋅⋅⋅-⨯-=-⋅-23324321211abc (b c)a (b b )(c c)ab c .32323⎡⎤⎛⎫⋅-=⨯-⋅⋅⋅⋅⋅=- ⎪⎢⎥⎝⎭⎣⎦-⋅⋅2212ab 3a bc 2221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭2212a ab 3a bc 2-⋅⋅c )c b ()a a a (321)2(22⋅⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡⨯⨯-=cb 3a 34-=221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭)5abc ()b (a 212222-⋅⎪⎭⎫ ⎝⎛-=)5abc (b a 4142-⋅=c )b b ()a a ()5(4142⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡-⨯=c b a 4553-=(可畅所欲言,包括学习心得和困惑,互相帮助,互相促进。
初中数学八年级上册第十五章《整式的乘除与因式分解》简介
新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
初中数学_整式的乘法教学设计学情分析教材分析课后反思
( n 为正整数)运用幂的运算性质计算:(-2a 2)·(-3a 3)师生活动:师课件展示复习问题,学生讨论交流回答后,教师展示答案。
由此题引出本课课题,师板书课题:1.4.1整式的乘法(1)课件展示教材第14页问题:京京用两张同样大小的纸,精心制作了两幅画。
如下图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有 米的空白。
你能表示出两幅画的面积吗?第(1)幅图的话面面积是多少平方米,第二幅呢?你是怎样计算的?师生活动:引导学生认真读图分析后计算面积第一幅画的画面面积是: 平方米,n n n b a ab )(x 81第二幅图画面面积是: 平方米师生活动:教师请学生交流自己的思考过程,理解其中的算理,找一学生回答.单项式乘以单项式的运算,根据乘法的交换律、结合律,幂的运算性质,可以写成:师:我们知道整式包括单项式和多项式,从这节课起我们来研究整式的乘法,先来学习单项式乘以单项式。
二、教学新知1 探索单项式乘以单项式的运算法则课件展示教材第14页中的想一想:(1)3a 2b · 2ab 3 和 (xyz ) ·y 2z 又等于什么?你是怎样计算的?(2)如何进行单项式与单项式的运算?师生活动:组织学生先独立思考,再以四人为小组讨论,鼓励学生大胆发表自己的见解,全班共同交流问题的结果,找两生板演。
2()x mx x x m x m ⋅=⋅⋅=2333()()444mx x m x x mx ⋅=⋅⋅⋅=2332a b ab ⋅()()()2332a a b b =⋅⋅⋅⋅⋅21136a b ++=⋅⋅346a b =2()xyz y z ⋅()()2x y y z z =⋅⋅⋅⋅师;通过上面的计算,你能总结出单项式乘以单项式的运算法则吗/生:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(教师板书)2.单项式乘以单项式的运算法则的应用课件展示教材第14页例1计算:)31()2)(1(2xy xy ⋅ (2)(-2a 2b 3)·(-3a)(3)7xy 2z ·(2xyz)2 师生活动:教师讲解第一题,后两题安排学生让板演,让学生进行评价,发现自己或同伴出现的问题,教师带领学生进行订正及示范。
整式的乘法教案
整式的乘法教案数学与计算机科学学院 2011级 7班谢小英 1108080739 本节内容选自八年级上册第十五章第二节.一、教学目标:1、知识与技能目标:(1)理解掌握单项式与单项式相乘,单项式与多项式相乘,多项式与多项式相乘的乘法法则.(2)熟练运用法则进行相关计算.2、过程与方法目标:(1)学会将特殊性推广到一般.(2)培养学生的探究、类比与尝试归纳总结的能力3、情感态度与价值观目标:(1)培养学生认真细致的学习态度.(2)在小组合作中培养协作与探究精神,增加学生的学习兴趣,加强对学习的信心.(3)在积极在教学评价中促进师生情感.二、分析学生学生在学习整式的加减法的基础上,与学习了同底数幂乘法和幂的乘方,自然地引出整式的乘法,学生已经掌握了整式乘法中的基础知识.三、教学重点单项式的乘法,单项式与多项式的乘法和多项式与多项式的乘法法则的理解与掌握.四、教学难点熟练运用法则进行相关题型的计算,并达到举一反三的程度.五、教学关键:单项式与单项式的乘法法则.六、教法:合作探究法,教师精讲学生多练.七、教学过程1.新课导入,提出问题.问题:假如光速约为 3 x 108千米/秒,太阳光照射到地球上需要的时间大约是5x 102秒,你们可以计算出太阳与地球的距离约是多少千米吗?⑴由学生给出答案: 太阳与地球的距离约是(3x 108)x (5 x 102) 千米.⑵教师分析, 验证答案.⑶学习小组讨论:①怎样计算(3x 108)x(5x102)?②计算过程中用到哪些运算律及运算性质?③如果将上式中的数字改为字母,比如改为ac8 -bc2, 该怎样计算?1 、探究分析上述讨论⑴先由学习小组探究,得出讨论结果.⑵教师针对正确的分析给予相应的表扬与鼓励.⑶总结探究结果:I、(3 x 108) x (5 x 102)=(3 x 5) x ( 108x 102)=15 x 1010 千米, 用到了交换律和结合律.□ > ac8• be2是两个单项式ac8和be2相乘,也运用乘法交换律和结合律和同底数幂的乘法运算性质计算ae8• be2=(a • b) • (e8 -e2)=abe10山、观察总结规律:先由学生尝试总结,再有教师引导归纳(单项式相乘的乘法法则)单项式与单项式相乘,把他们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
人教版八年级数学上册教案第十五章整式的乘除与因式分解
人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.理解整式的乘法和除法运算的意义和性质;2.掌握整式的乘法和除法的计算方法;3.掌握整式的因式分解方法;4.能够应用所学知识解决相关问题。
二、教学重点1.整式的乘法和除法的计算方法;2.整式的因式分解方法。
三、教学难点整式的因式分解方法。
四、教学准备1.教材《人教版八年级数学上册》;2.录音机、磁带。
五、教学过程1. 导入通过以往学习知识的回顾,复习整式的基本概念和运算法则。
2. 整式的乘法(1) 同底数相乘两个整式的乘法,当因式中的字母及其指数相同时,可以进行相乘。
例如:(a+b)(a+b)=a2+2ab+b2(2) 不同底数相乘两个整式的乘法,当因式中的字母及其指数不同时,先用代数公式展开,再进行合并同类项。
例如:(a+b)(a+c)=a2+ac+ab+bc3. 整式的除法整式的除法是整式的乘法的逆运算。
通过列竖式进行计算,将被除式视作整式的公因式进行除法运算。
例如:(3x2+4x+5)÷(x+2)4. 整式的因式分解(1) 提取公因式法根据整式的乘法运算法则,将整式中所有的项进行拆分,提取公因式。
例如:6xy+9y=3y(2x+3)(2) 公式法利用一些公式和运算性质进行因式分解。
例如:x2+5x+6=(x+3)(x+2)(3) 分组法将待分解的整式中的项进行分组,然后对每个组进行公因式提取。
例如:2x3+xy+3x2y+3y=x(2x2+y)+3y(x2+1)=x(2x2+y)+3y(x2+1)5. 综合练习通过完成一些练习题,巩固和运用所学的整式的乘除和因式分解知识。
六、课堂小结1.整式的乘法和除法是根据乘法和除法的运算法则进行计算的;2.整式的因式分解可以通过提取公因式、使用公式和进行分组等方法进行。
七、课后作业1.完成课后习题;2.预习下一章节内容。
2019-2020学年八年级数学上册-第十五章整式学案人教新课标版
2019-2020学年八年级数学上册 第十五章整式学案人教新课标版会进行整式的乘法计算.课堂学习检测一、填空题 1.(1)单项式相乘,把它们的________分别相乘,对于只在一个单项式里含有的字母,则________.(2)单项式与多项式相乘,就是用单项式去乘________,再把所得的积________. (3)多项式与多项式相乘,先用________乘以________,再把所得的积________. 2.直接写出结果: (1)5y ·(-4xy 2)=________;(2)(-x 2y )3·(-3xy 2z )=________; (3)(-2a 2b )(ab 2-a 2b +a 2)=________;(4)=-⋅-+-)21()864(22x x x ________;(5)(3a +b )(a -2b )=________;(6)(x +5)(x -1)=________. 二、选择题3.下列算式中正确的是( ) A .3a 3·2a 2=6a 6 B .2x 3·4x 5=8x 8 C .3x ·3x 4=9x 4 D .5y 7·5y 3=10y 10 4.(-10)·(-0.3×102)·(0.4×105)等于( ) A .1.2×108 B .-0.12×107 C .1.2×107 D .-0.12×108 5.下面计算正确的是( ) A .(2a +b )(2a -b )=2a 2-b 2 B .(-a -b )(a +b )=a 2-b 2 C .(a -3b )(3a -b )=3a 2-10ab +3b 2 D .(a -b )(a 2-ab +b 2)=a 3-b 36.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m 三、计算题 7.)21).(43).(32(222z xy z yz x --8.[4(a -b )m -1]·[-3(a -b )2m ]9.2(a 2b 2-ab +1)+3ab (1-ab ) 10.2a 2-a (2a -5b )-b (5a -b )11.-(-x )2·(-2x 2y )3+2x 2(x 6y 3-1) 12.)214)(221(-+x x13.(0.1m -0.2n )(0.3m +0.4n ) 14.(x 2+xy +y 2)(x -y )四、解答题15.先化简,再求值.(1)),43253(4)12(562---+-+--n m m n m m m 其中m =-1,n =2;(2)(3a +1)(2a -3)-(4a -5)(a -4),其中a =-2.16.小明同学在长a cm ,宽cm 43a 的纸上作画,他在纸的四周各留了2cm 的空白,求小明同学作的画所占的面积.综合、运用、诊断一、填空题17.直接写出结果:(1)=⨯⨯⨯)1031()103(322______;(2)-2[(-x )2y ]2·(-3x m y n )=______; (3)(-x 2y m )2·(xy )3=______;(4)(-a 3-a 3-a 3)2=______;(5)(x +a )(x +b )=______;(6)=+-)31)(21(n m ______;(7)(-2y )3(4x 2y -2xy 2)=______; (8)(4xy 2-2x 2y )·(3xy )2=______. 二、选择题18.下列各题中,计算正确的是( )A .(-m 3)2(-n 2)3=m 6n 6B .[(-m 3)2(-n 2)3]3=-m 18n 18C .(-m 2n )2(-mn 2)3=-m 9n 8D .(-m 2n )3(-mn 2)3=-m 9n 919.若(8×106)(5×102)(2×10)=M ×10a ,则M 、a 的值为( )A .M =8,a =8B .M =8,a =10C .M =2,a =9D .M =5,a =10 20.设M =(x -3)(x -7),N =(x -2)(x -8),则M 与N 的关系为( )A .M <NB .M >NC .M =ND .不能确定21.如果x 2与-2y 2的和为m ,1+y 2与-2x 2的差为n ,那么2m -4n 化简后的结果为( )A .-6x 2-8y 2-4B .10x 2-8y 2-4C .-6x 2-8y 2+4D .10x 2-8y 2+4 22.如图,用代数式表示阴影部分面积为( )A .ac +bcB .ac +(b -c )C .ac +(b -c )cD .a +b +2c (a -c )+(b -c )三、计算题23.-(-2x 3y 2)2·(1.5x 2y 3)2 24.)250(241)2)(5(54423x .x x x x -⋅-⋅--25.4a -3[a -3(4-2a )+8]26.)3()]21(2)3([322b a b b a b ab -⋅---四、解答题27.在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数是-5,x 2项的系数是-6,求a 、b的值.拓展、探究、思考28.通过对代数式进行适当变形求出代数式的值. (1)若2x +y =0,求4x 3+2xy (x +y )+y 3的值;(2)若m 2+m -1=0,求m 3+2m 2+2008的值.29.若x =2m +1,y =3+4m ,请用含x 的代数式表示y .测试2 乘法公式学习要求会用平方差公式、完全平方公式进行计算,巩固乘法公式的使用.课堂学习检测一、填空题 1.计算题: (y +x )(x -y )=______;(x +y )(-y +x )=______; (-x -y )(-x +y )=______;(-y +x )(-x -y )=______; 2.直接写出结果: (1)(2x +5y )(2x -5y )=________; (2)(x -ab )(x +ab )=______; (3)(12+b 2)(b 2-12)=________; (4)(a m -b n )(b n +a m )=______; (5)(3m +2n )2=________; (6)=-2)32(ba ______;(7)( )2=m 2+8m +16;(8)2)325.1(b a -=______;3.在括号中填上适当的整式: (1)(m -n )( )=n 2-m 2; (2)(-1-3x )( )=1-9x 2. 4.多项式x 2-8x +k 是一个完全平方式,则k =______. 5.-+=+222)1(1x x x x ______=2)1(xx -+______. 二、选择题6.下列各多项式相乘,可以用平方差公式的有( ) ①(-2ab +5x )(5x +2ab ) ②(ax -y )(-ax -y ) ③(-ab -c )(ab -c ) ④(m +n )(-m -n ) A .4个 B .3个 C .2个 D .1个 7.下列计算正确的是( ) A .(5-m )(5+m )=m 2-25 B .(1-3m )(1+3m )=1-3m 2 C .(-4-3n )(-4+3n )=-9n 2+16 D .(2ab -n )(2ab +n )=2a 2b 2-n 2 8.下列等式能够成立的是( ) A .(a -b )2=(-a -b )2 B .(x -y )2=x 2-y 2 C .(m -n )2=(n -m )2 D .(x -y )(x +y )=(-x -y )(x -y ) 9.若9x 2+4y 2=(3x +2y )2+M ,则 M 为( ) A .6xy B .-6xy C .12xy D .-12xy 10.如图2-1所示的图形面积由以下哪个公式表示( ) A .a 2-b 2=a (a -b )+b (a -b ) B .(a -b )2=a 2-2ab +b 2 C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=a (a +b )-b (a +b )图2-1三、计算题11.(x n -2)(x n +2) 12.(3x +0.5)(0.5-3x )13.)3243)(4332(mn n m +-+ 14.323.232xy y x +-15.(3mn -5ab )216.(-4x 3-7y 2)2 17.(5a 2-b 4)2四、解答题18.用适当的方法计算. (1)1.02 ×0.98(2)13111321⨯(3)2)2140((4)20052-4010×2006+2006219.若a +b =17,ab =60,求(a -b )2和a 2+b 2的值.综合、运用、诊断一、填空题 20.(a +2b +3c )(a -2b -3c )=(______)2-(______)2; (-5a -2b 2)(______)=4b 4-25a 2. 21.x 2+______+25=(x +______)2; x 2-10x +______=(______-5)2;x 2-x +______=(x -______)2; 4x 2+______+9=(______+3)2. 22.若x 2+2ax +16是一个完全平方式,是a =______. 二、选择题23.下列各式中,能使用平方差公式的是( )A .(x 2-y 2)(y 2+x 2)B .(0.5m 2-0.2n 3)(-0.5m 2+0.2n 3)C .(-2x -3y )(2x +3y )D .(4x -3y )(-3y +4x )24.下列等式不能恒成立的是( )A .(3x -y )2=9x 2-6xy +y 2B .(a +b -c )2=(c -a -b )2C .(0.5m -n )2=0.25m 2-mn +n 2D .(x -y )(x +y )(x 2-y 2)=x 4-y 425.若,51=+a a 则221a a +的结果是( )A .23B .8C .-8D .-23 26.(a +3)(a 2+9)(a -3)的计算结果是( )A .a 4+81B .-a 4-81C .a 4-81D .81-a 4 三、计算题 27.(x +1)(x 2+1)(x -1)(x 4+1) 28.(2a +3b )(4a +5b )(2a -3b )(4a -5b ) 29.(y -3)2-2(y +2)(y -2) 30.(x -2y )2+2(x +2y )(x -2y )+(x +2y )2四、计算题31.当a =1,b =-2时,求)212]()21()21[(2222b a b a b a --++的值.拓展、探究、思考32.巧算:).200811()411)(311)(211(2222----33.计算:(a +b +c )2.34.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.35.若x 2-2x +10+y 2+6y =0,求(2x +y )2的值.36.若△ABC 三边a 、b 、c 满足a 2+b 2+c 2=ab +bc +ca .试问△ABC 的三边有何关系?测试3 整式的除法学习要求1.会进行单项式除以单项式的计算. 2.会进行多项式除以单项式的计算.课堂学习检测一、判断题1.x 3n ÷x n =x 3 ( )2.x xy y x 2121)(2-=÷- ( )3.26÷42×162=512 ( ) 4.(3ab 2)3÷3ab 3=9a 3b 3 ( )二、填空题5.直接写出结果: (1)(28b 3-14b 2+21b )÷7b =______; (2)(6x 4y 3-8x 3y 2+9x 2y )÷(-2xy )=______; (3)=-÷-+-)32()32752(32224y y x y x xy y ______. 6.已知A 是关于x 的四次多项式,且A ÷x =B ,那么B 是关于x 的______次多项式.三、选择题7.25a 3b 2÷5(ab )2的结果是( ) A .a B .5a C .5a 2b D .5a 28.已知7x 5y 3与一个多项式之积是28x 7y 3+98x 6y 5-21x 5y 5,则这个多项式是( ) A .4x 2-3y 2 B .4x 2y -3xy 2 C .4x 2-3y 2+14xy 2 D .4x 2-3y 2+7xy 3 四、计算题9.3422383ab b a ÷10.22425.0)21(y x y x ÷-11.)21()52(232434x y a y x a -÷- 12.26)(310)(5y x y x -÷- 13.35433660)905643(ax .ax .x a x a ÷-+-14.[2m (7n 3m 3)2+28m 7n 3-21m 5n 3]÷(-7m 5n 3)五、解答题15.先化简,再求值:[5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2,其中a =-5.16.已知长方形的长是a +5,面积是(a +3)(a +5),求它的周长.17.月球质量约5.351×1022千克,地球质量约5.977×1024千克,问地球质量约是月球质量的多少倍?(结果保留整数).综合、运用、诊断一、填空题18.直接写出结果:(1)[(-a 2)3-a 2(-a 2)]÷(-a 2)=______.(2)=-÷-+---++)3()31581(1115n n n n x x x x ______. 19.若m (a -b )3=(a 2-b 2)3,那么整式m =______. 二、选择题20.)(yz x z y x 3224214-÷-的结果是( ) A .8xyz B .-8xyz C .2xyzD .8xy 2z 221.下列计算中错误的是( )A .4a 5b 3c 2÷(-2a 2bc )2=abB .(-24a 2b 3)÷(-3a 2b )·2a =16ab 2C .214)21(4222-=÷-⋅y x y y x D .3658410221)()(a a a a a a =÷÷÷÷22.当43=a 时,代数式(28a 3-28a 2+7a )÷7a 的值是( ) A .425 B .41 C .49-D .-4三、计算题 23.7m 2·(4m 3p 4)÷7m 5p 24.(-2a 2)3[-(-a )4]2÷a 825.)43(]19)38[(23554y x xy z y x -⋅÷- 26.x m +n (3x n y n )÷(-2x n y n )27.])(21[)(122+++÷+n n y x y x 28.mmm m )42(372-⨯⨯29.[(m +n )(m -n )-(m -n )2+2n (m -n )]÷4n30.87232232429]31.)3(2)3[(y x y y x x x y x ÷-⋅-四、解答题31.求1,61=-=y x 时,(3x 2y -7xy 2)÷6xy -(15x 2-10x )÷10x -(9y 2+3y )÷(-3y )的值.32.若,72288223b b a b a n m =÷求m 、n 的值.拓展、探究、思考33.已知x 2-5x +1=0,求221xx +的值.34.已知x 3=m ,x 5=n ,试用m 、n 的代数式表示x 14.35.已知除式x -y ,商式x +y ,余式为1,求被除式.测试4 提公因式法学习要求能够用提公因式法把多项式进行因式分解. 一、填空题1.因式分解是把一个______化为______的形式.2.ax 、ay 、-ax 的公因式是______;6mn 2、-2m 2n 3、4mn 的公因式是______. 3.因式分解a 3-a 2b =______. 二、选择题4.下列各式变形中,是因式分解的是( )A .a 2-2ab +b 2-1=(a -b )2-1B.)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1) 5.将多项式-6x 3y 2 +3x 2y 2-12x 2y 3分解因式时,应提取的公因式是( ) A .-3xy B .-3x 2y C .-3x 2y 2 D .-3x 3y 36.多项式a n -a 3n +a n +2分解因式的结果是( ) A .a n (1-a 3+a 2) B .a n (-a 2n +a 2) C .a n (1-a 2n +a 2) D .a n (-a 3+a n ) 三、计算题 7.x 4-x 3y 8.12ab +6b9.5x 2y +10xy 2-15xy 10.3x (m -n )+2(m -n )11.3(x -3)2-6(3-x ) 12.y 2(2x +1)+y (2x +1)213.y (x -y )2-(y -x )3 14.a 2b (a -b )+3ab (a -b )15.-2x 2n -4x n16.x (a -b )2n +xy (b -a )2n +1四、解答题17.应用简便方法计算:(1)2012-201 (2)4.3×199.8+7.6×199.8-1.9×199.8(3)说明3200-4×3199+10×3198能被7整除.综合、运用、诊断一、填空题18.把下列各式因式分解:(1)-16a 2b -8ab =______;(2)x 3(x -y )2-x 2(y -x )2=______.19.在空白处填出适当的式子:(1)x (y -1)-( )=(y -1)(x +1);(2)=+c b ab 3294278( )(2a +3bc ).二、选择题20.下列各式中,分解因式正确的是( )A .-3x 2y 2+6xy 2=-3xy 2(x +2y )B .(m -n )3-2x (n -m )3=(m -n )(1-2x )C .2(a -b )2-(b -a )=(a -b )(2a -2b )D .am 3-bm 2-m =m (am 2-bm -1)21.如果多项式x 2+mx +n 可因式分解为(x +1)(x -2),则m 、n 的值为()A .m =1,n =2B .m =-1,n =2C .m =1,n =-2D .m =-1,n =-222.(-2)10+(-2)11等于( )A .-210B .-211C .210D .-2三、解答题23.已知x ,y 满足⎩⎨⎧=-=+,13,62y xy x 求7y (x -3y )2-2(3y -x )3的值.24.已知x +y =2,,21-=xy 求x (x +y )2(1-y )-x (y +x )2的值拓展、探究、思考25.因式分解:(1)ax +ay +bx +by ;(2)2ax +3am -10bx -15bm .测试5 公式法(1)学习要求能运用平方差公式把简单的多项式进行因式分解.课堂学习检测一、填空题1.在括号内写出适当的式子:(1)0.25m 4=( )2;(2)=n y 294( )2;(3)121a 2b 6=( )2. 2.因式分解:(1)x 2-y 2=( )( ); (2)m 2-16=( )( );(3)49a 2-4=( )( );(4)2b 2-2=______( )( ).二、选择题3.下列各式中,不能用平方差公式分解因式的是( ) A .y 2-49x 2 B .4491x - C .-m 4-n 2D .9)(412-+q p 4.a 2-(b -c )2有一个因式是a +b -c ,则另一个因式为( )A .a -b -cB .a +b +cC .a +b -cD .a -b +c5.下列因式分解错误的是( )A .1-16a 2=(1+4a )(1-4a )B .x 3-x =x (x 2-1)C .a 2-b 2c 2=(a +bc )(a -bc )D .)l .032)(32l .0(l 0.09422n m m n n m -+=- 三、把下列各式因式分解 6.x 2-257.4a 2-9b 28.(a +b )2-649.m 4-81n 410.12a 6-3a 2b 211.(2a -3b )2-(b +a )2四、解答题12.利用公式简算:(1)2008+20082-20092;(2)3.14×512-3.14×492.13.已知x +2y =3,x 2-4y 2=-15,(1)求x -2y 的值;(2)求x 和y 的值.综合、运用、诊断一、填空题14.因式分解下列各式:(1)m m +-3161=______; (2)x 4-16=______; (3)11-+-m m a a =______;(4)x (x 2-1)-x 2+1=______. 二、选择题15.把(3m +2n )2-(3m -2n )2分解因式,结果是( )A .0B .16n 2C .36m 2D .24mn 16.下列因式分解正确的是( )A .-a 2+9b 2=(2a +3b )(2a -3b )B .a 5-81ab 4=a (a 2+9b 2)(a 2-9b 2)C .)21)(21(212212a a a -+=- D .x 2-4y 2-3x -6y =(x -2y )(x +2y -3)三、把下列各式因式分解17.a 3-ab 2 18.m 2(x -y )+n 2(y -x )19.2-2m 4 20.3(x +y )2-2721.a 2(b -1)+b 2-b 3 22.(3m 2-n 2)2-(m 2-3n 2)2四、解答题23.已知,4425,7522==y x 求(x +y )2-(x -y )2的值.拓展、探究、思考24.分别根据所给条件求出自然数x 和y 的值:(1)x 、y 满足x 2+xy =35;(2)x 、y 满足x 2-y 2=45.测试6 公式法(2)学习要求能运用完全平方公式把多项式进行因式分解.课堂学习检测一、填空题1.在括号中填入适当的式子,使等式成立:(1)x 2+6x +( )=( )2;(2)x 2-( )+4y 2=( )2;(3)a 2-5a +( )=( )2;(4)4m 2-12mn +( )=( )22.若4x 2-mxy +25y 2=(2x +5y )2,则m =______.二、选择题3.将a 2+24a +144因式分解,结果为( )A .(a +18)(a +8)B .(a +12)(a -12)C .(a +12)2D .(a -12)24.下列各式中,能用完全平方公式分解因式的有( )①9a 2-1; ②x 2+4x +4; ③m 2-4mn +n 2; ④-a 2-b 2+2ab ; ⑤;913222n mn m +- ⑥(x -y )2-6z (x +y )+9z 2. A .2个 B .3个 C .4个 D .5个5.下列因式分解正确的是( )A .4(m -n )2-4(m -n )+1=(2m -2n +1)2B .18x -9x 2-9=-9(x +1)2C .4(m -n )2-4(n -m )+1=(2m -2n +1)2D .-a 2-2ab -b 2=(-a -b )2三、把下列各式因式分解6.a 2-16a +64 7.-x 2-4y 2+4xy8.(a -b )2-2(a -b )(a +b )+(a +b )2 9.4x 3+4x 2+x10.计算:(1)2972 (2)10.32四、解答题11.若a 2+2a +1+b 2-6b +9=0,求a 2-b 2的值.综合、运用、诊断一、填空题12.把下列各式因式分解:(1)49x 2-14xy +y 2=______;(2)25(p +q )2+10(p +q )+1=______;(3)a n +1+a n -1-2a n =______;(4)(a +1)(a +5)+4=______.二、选择题13.如果x 2+kxy +9y 2是一个完全平方公式,那么k 是( )A .6B .-6C .±6D .1814.如果a 2-ab -4m 是一个完全平方公式,那么m 是( )A .2161b B .2161b - C .281b D .281b - 15.如果x 2+2ax +b 是一个完全平方公式,那么a 与b 满足的关系是( )A .b =aB .a =2bC .b =2aD .b =a 2三、把下列各式因式分解16.x (x +4)+4 17.2mx 2-4mxy +2my 218.x 3y +2x 2y 2+xy 3 19.2341x x x -+四、解答题20.若,31=+x x 求221xx +的值.21.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.拓展、探究、思考22.(m 2+n 2)2-4m 2n 2 23.x 2+2x +1-y 224.(a +1)2(2a -3)-2(a +1)(3-2a )+2a -325.x2-2xy+y2-2x+2y+126.已知x3+y3=(x+y)(x2-xy+y2)称为立方和公式,x3-y3=(x-y)(x2+xy+y2)称为立方差公式,据此,试将下列各式因式分解:(1)a3+8 (2)27a3-1测试7 十字相乘法学习要求能运用公式x2+(a+b)x+ab=(x+a)(x+b)把多项式进行因式分解.课堂学习检测一、填空题1.将下列各式因式分解:(1)x2-5x+6=______;(2)x2-5x-6=______;(3)x2+5x+6=______;(4)x2+5x-6=______;(5)x2-2x-8=______;(6)x2+14xy-32y2=______.二、选择题2.将a2+10a+16因式分解,结果是()A.(a-2)(a+8)B.(a+2)(a-8)C.(a+2)(a+8)D.(a-2)(a-8)3.因式分解的结果是(x-3)(x-4)的多项式是()A.x2-7x-12 B.x2-7x+12C.x2+7x+12D.x2+7x-124.如果x2-px+q=(x+a)(x+b),那么p等于()A.ab B.a+bC.-ab D.-a-b5.若x2+kx-36=(x-12)(x+3),则k的值为()A.-9B.15C.-15 D.9三、把下列各式因式分解6.m2-12m+20 7.x2+xy-6y28.10-3a-a2 9.x2-10xy+9y210.(x-1)(x+4)-36 11.ma2-18ma-40m12.x3-5x2y-24xy2四、解答题13.已知x+y=0,x+3y=1,求3x2+12xy+13y2的值.综合、探究、检测一、填空题14.若m2-13m+36=(m+a)(m+b),贝a-b=______.15.因式分解x(x-20)+64=______.二、选择题16.多项式x2-3xy+ay2可分解为(x-5y)(x-by),则a、b的值为()A.a=10,b=-2 B.a=-10,b=-2C.a=10,b=2D.a=-10,b=217.若x2+(a+b)x+ab=x2-x-30,且b<a,则b的值为()A.5B.-6C.-5D.618.将(x+y)2-5(x+y)-6因式分解的结果是()A.(x+y+2)(x+y-3)B.(x+y-2)(x+y+3)C.(x+y-6)(x+y+1)D.(x+y+6)(x+y-1)三、把下列各式因式分解19.(x2-2)2-(x2-2)-220.(x2+4x)2-x2-4x-20拓展、探究、思考21.因式分解:4a2-4ab+b2-6a+3b-4.22.观察下列各式:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;判断是否任意四个连续正整数之积与1的和都是某个正整数的平方,并说明理由.。
人教版八年级数学上册整式的乘法和因式分解《整式的乘法(第6课时)》示范教学设计
整式的乘法(第6课时)教学目标1.探索多项式与多项式相乘的运算法则,知道推导这个法则的根据.2.能按照法则进行多项式与多项式相乘的运算.3.在经历探索的过程中,体会数形结合的思想和整体代换的思想.教学重点多项式与多项式相乘的运算法则.教学难点探索多项式与多项式相乘的运算法则.教学过程知识回顾1.p(a+b+c)=pa+pb+pc.一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.注意事项:(1)不要出现漏乘现象.(2)计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负.(3)运算顺序:先乘方,再乘除,最后加减.3.单项式与多项式相乘的实质是利用分配律把单项式乘多项式转化为单项式乘单项式.4.单项式与多项式相乘分三个阶段:(1)按分配律写成单项式与单项式乘积的代数和的形式;(2)按照单项式与单项式相乘的运算法则运算;(3)把所得的积相加.5.单项式乘多项式,如果计算结果中有同类项,要合并同类项.新知探究一、探究学习【问题】如图,悦悦家附近的花园有一长方形草坪分成了四块区域,植上了不同种类的草皮,你能用几种方法计算这个草坪的总面积?【师生活动】学生作答,教师补充并给出正确答案.【答案】解法1:先求这块草坪的长和宽,再求面积,即总面积为(a+b)(m+n).①解法2:先分别求Ⅰ,Ⅲ和Ⅱ,Ⅳ组成的草坪的面积,再把它们加起来求总面积,即总面积为a(m+n)+b(m+n).②解法3:先分别求四块草坪的面积,再求它们的和,即总面积为am+an+bm+bn.③【设计意图】由生活实例引入多项式乘多项式表示面积,为下文探索多项式乘多项式的运算法则做铺垫.【问题】①②③三个式子有什么关系?【师生活动】学生作答,教师讲解新知.【答案】由于①②③表示同一个量,所以(a+b)(m+n)=a(m+n)+b(m+n)=am+an+bm+bn.【新知】(a+b)(m+n)=a(m+n)+b(m+n)=am+an+bm+bn.上面的等式提供了多项式与多项式相乘的法则.计算(a+b)(m+n),可以先把其中的一个多项式(如m+n)看成一个整体,运用单项式与多项式相乘的法则,得(a+b)(m+n)=a(m+n)+b(m+n),再利用单项式与多项式相乘的法则,得a(m+n)+b(m+n)=am+an+bm+bn.总体上看,(a+b)(m+n)的结果可以看作由a+b的每一项乘m+n的每一项,再把所得的积相加而得到的,即(a+b)(m+n)=am+an+bm+bn.一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.【设计意图】运用转化思想,先将多项式乘多项式转化成单项式乘多项式,然后运用单项式乘多项式的运算法则得到结果,从而可以得到多项式乘多项式的运算法则,让学生体会转化思想.二、典例精讲【例1】计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).【答案】解:(1)(3x+1)(x+2)=3x·x+3x×2+1·x+1×2=3x2+6x+x+2=3x2+7x+2;(2)(x-8y)(x-y)=x2-xy-8xy+8y2=x2-9xy+8y2;(3)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3.【注意】1.用一个多项式的每一项乘遍另一个多项式的每一项,不要漏乘;在没有合并同类项之前,两个多项式相乘展开后的项数应是原来两个多项式的项数之积.2.多项式是单项式的和,每一项都包括它前面的符号,在计算时一定要注意确定积中各项的符号.3.展开后有同类项要合并,需化成最简形式.【设计意图】检验学生对多项式乘多项式的运算法则的理解和掌握情况,让学生注意计算过程中需要注意的关键点.【例2】已知m2-m-2=0,求代数式m(m-1)+(m+1)(m-2)的值.【答案】解:m(m-1)+(m+1)(m-2)=m2-m+m2-2m+m-2=2m2-2m-2=2(m2-m)-2.因为m2-m-2=0,所以m2-m=2,所以原式=2×2-2=2.【归纳】当已知中没有直接给出字母的值时,一般按如下步骤解题:(1)把待求的代数式用已知的代数式表示出来;(2)用整体代入的方法求解.【设计意图】进一步巩固学生对多项式乘多项式的运算法则的理解和掌握情况,让学生学习整体代入的条件和方法.【例3】小莹说:“我发现不论n取怎样的正整数,代数式(n+1)·(n2-n+2)+n·(2n2-1)+1的值都是3的倍数”.她说得对吗?【答案】解:小莹的说法对,因为(n+1)·(n2-n+2)+n·(2n2-1)+1=n3-n2+2n+n2-n+2+2n3-n+1=3n3+3=3(n3+1).所以不论n取怎样的正整数,给定代数式的值都是3的倍数.【设计意图】让学生知道多项式乘多项式的运算法则中,多项式不仅可以是两项,还可以是三项、四项、五项…….三、课堂活动观察下列动图,进一步巩固对多项式与多项式相乘法则的理解和记忆.课堂小结板书设计一、多项式与多项式相乘的法则二、注意事项课后任务完成教材第102页练习题.。
第十五章整式的乘除与因式分解导学案
课题:15.1.1同底数幂的乘法第1课时学习目标:1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点:正确理解同底数幂的乘法法则难点:正确理解和应用同底数幂的乘法法则学习方法:归纳、概括一.提出问题,创设情境复习na的意义:na表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,•n是指数.提出问题:问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?二.导入新课1.做一做计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)2.议一议a m·a n等于什么(m、n都是正整数)?为什么?“同底数幂相乘,底数__________,指数____________”.3.练习(1)x2·x5(2)a·a6(3)2×24×23(4)x m·x3m+1[例2]计算a m·a n·a p后,能找到什么规律?三.随堂练习1.课本P170练习四.反思归纳1、本节课学习的内容2、本节课的数学思想方法课题:15.1.2幂的乘方学习目标:1.会进行幂的乘方的运算。
.2.了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题.重点:会进行幂的乘方的运算难点:幂的乘方法则的总结及运用学习方法:归纳、概括一.提出问题,创设情境计算(1)(x+y )2·(x+y )3(2)x 2·x 2·x+x 4·x(3)(0.75a )3·(41a )4(4)x 3·x n-1-x n-2·x 4二.导入新课1.做一做()426表示_________个___________相乘.32)(a 表示_________个___________相乘.在这个练习中,要引导学生观察,推测(62)4与(a 2)3的底数、指数。
西点教育教案 第十五章 整式乘除与因式分...
西点教育个性化辅导学员学案学生签字:教学主管:第十五章 整式乘除与因式分解一、知识点一.回顾知识点1、主要知识回顾:幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘. ()n n nb a ab = (n 为正整数) 积的乘方等于各因式乘方的积. n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .负指数幂的概念:a -p =pa 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数) 单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a +b )(a -b )=a 2-b 2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a +b )2=a 2+2ab +b 2(a -b )2=a 2-2ab +b 2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式: a 2-b 2= (a +b )(a -b )②完全平方公式:a 2+2ab +b 2=(a +b )2a 2-2ab +b 2=(a -b )2二、课后练习1. 下列运算正确的是( )A 、954a a a =+B 、33333a a a a =⨯⨯C 、954632a a a =⨯D 、0(2010)0π-=; 2. 下面是某同学在一次检测中的计算摘录:①3x 3·(-2x 2)=-6x 5 ②4a 3b ÷(-2a 2b)=-2a ③(a 3)2=a 5 ④(-a)3÷(-a)=-a2 其中正确的个数有( )A 1个 B 2个 C 3个 D 4个3.计算:⑴()()()53x x x -⋅-⋅--; ⑵⎪⎭⎫ ⎝⎛+-⋅-231432x x x ; ⑶()()104+-a a ;4. 设12142++mx x 是一个完全平方式,则m =_______.5. 化简求值:5332(3)(1)(1)(1)x x x x x x +÷-+-+-,其中21-=x ;6.计算:⑴)21()52(232434x y a y x a -÷-; ⑵6334533693()45105a x a x ax ax -+-÷;⑶[(m +n )(m -n )-(m -n )2+2n (m -n )]÷4n7.因式分解:⑴a 3-ab 2; ⑵2-2m 4; ⑶2mx 2-4mxy +2my 2; ⑷x 3y +2x 2y 2+xy 3;⑸3(x +y )2-27; ⑹4a 2-9b 2; ⑺a 2-16a +64;⑻若2226100a b a b ++-+=,求a 2-b 2的值.三、课后练习1. 下列计算结果正确的是( )A.842a a a =⋅B.0=--x xC.()22242y x xy =-D.()743a a =- 2. 下列计算中正确的是( )A.a 2+b 3=2a 5B.a 4÷a=a 4C.a 2·a 4=a 8D.(-a 2)3=-a 63. 如果2592++kx x 是一个完全平方式,那么k 的值是( )A.15B.±5C.30D.±304. 从左到右的变形,是因式分解的为 ( )A.ma+mb-c=m(a+b)-cB.(a-b)(a 2+ab+b 2)=a 3-b 3C.a 2-4ab+4b 2-1=a(a-4b)+(2b+1)(2b-1)D.4x 2-25y 2=(2x+5y)(2x-5y)5.计算:⑴232425()()()a a a ⋅÷; ⑵021(2)()2---; ⑶()xy xy 31222÷-;⑷()()()y x y x y x -+--2; ⑸2[(34)3(34)](4)x y x x y y +-+÷-;6.因式分解: ⑴8142+-x ; ⑵22363y xy x +-; ⑶214x x -+; ⑷22327ax ay -;7.已知:122=+xy x ,152=+y xy ,求()2y x +-()()y x y x -+的值.8. 若0136422=+--+b a b a ,求a+b 的值.9. 已知a+b=1,ab=-12,求22b a +、a-b 的值.。
初中数学整式的乘法教案3篇
初中数学整式的乘法教案1总体说明:完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。
同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。
因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义。
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用。
一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。
二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用。
(2)了解完全平方公式的几何背景。
数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力。
(2)发展学生的数形结合的数学思想。
情感与态度:将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”。
三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用。
《完全平方公式》教学设计
《完全平方公式》(教学设计)教材:人教版义务教育课程标准实验教科书八年级《数学》上册第十五章第二节《乘法公式――完全平方公式》一、教材分析1.教材的地位和作用完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,而且公式的推导是初中代数中使用推理方法实行代数式恒等变形的开端,通过对公式的学习来简化某些整式的运算,且在以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算中都有举足轻重的作用。
本节内容共安排两个课时,这是第一课时。
教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理水平和建模思想。
2. 教学目标:(一)知识与与技能:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式实行计算。
(二)过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理水平,培养学生数学建模的思想。
喜悦,树立自信心3. 教学重点、难点完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,所以确定本节教学的重点是体会公式的发现和推导过程,理解公式的本质,并会使用公式实行简单的计算。
难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。
4.教学准备:为了突破教学难点,使公式的推导变成生动、形象、直观,提升教学效率,我利用投影仪辅助教学,并为学生准备了拼图材料:边长为a、b的两种正方形卡片每小组一张;长为a、宽为b的长方形卡片每小组两张,让学生得到知识的直观感受。
二、学情分析学生的知识技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理水平;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的水平。
最新人教版八年级数学上册《整式的乘法》教学设计
14.1.4 整式的乘法(单项式乘以单项式)教学目标:经历探索单项式与单项式相乘的运算法则的过程,会进行整式相乘的运算。
教学重点:单项式与单项式相乘的运算法则的探索.教学难点:灵活运用法则进行计算和化简.教学过程:一.复习巩固:同底数幂,幂的乘方,积的乘方三个法则的区分。
二.提出问题,引入新课(课本引例):光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?(1)怎样计算(3×105)×(5×102)?计算过程中用到哪些运算律及运算性质?(2)如果将上式中的数字改为字母,比如ac5•bc2怎样计算这个式子?说明:(3×105)×(5×102),它们相乘是单项式与单项式相乘.ac5•bc2是两个单项式ac5与bc2相乘,我们可以利用乘法交换律,结合律及同底数幂的运算性质来计算:ac5•bc2=(a•b)•(c5•c2)=abc5+2=abc7.三.单项式乘以单项式的运算法则及应用单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例4 (课本例题)计算:(学生黑板演板)(1)(-5a2b)(-3a);(2)(2x)3(-5xy2).练习1(课本)计算:(1)3x25x3;(2)4y(-2xy2);(3)(3x2y)3•(-4x);(4)(-2a)3(-3a)2.练习2(课本)下面计算的对不对?如果不对,应当怎样改正?(1)3a3•2a2= 6a6;(2)2x2•3x2= 6x4;(3)3x2•4x2= 12x2;(4)5y3•y5 = 15y15.四.巩固提高(补充例题):1.(-2x2y)·(1/3xy2)2.(-3/2ab)·(-2a)·(-2/3a2b2)3.(2×105)2·(4×103)4.(-4xy)·(-x2y2)·(1/2y3)5.(-1/2ab2c)2·(-1/3ab3c2)3·(12a3b)6.(-ab3)·(-a2b)37.(-2x n+1y n)·(-3xy)·(-1/2x2z)8.-6m2n·(x-y)3·1/3mn2·(y-x)2五.小结作业方法归纳:(1)积的系数等于各系数的积,应先确定符号。
初中数学《整式的乘除》单元教学设计以及思维导图
整式的乘除适用年七年级级所需时课内16 课时,课外 4 课时。
间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要学习方式和预期的学习成果,字数300-500。
) “整式的乘除”是整式加减的后续学习。
本章教材分为四个单元,第一单元是幂的运算性质,第二单元是整式的乘法,第三单元是乘法公式,第四单元是整式的除法。
第一单元包括 4 个小节,分别是“同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法”。
第二单元包括3 个小节,分别是“单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘”。
第三单元包括 2 个小节,分别是“两数和乘以这两数的差、两数和(或差)的平方”。
第四单元包括 2 个小节,分别是“单项式除以单项式、多项式除以单项式”。
其中,第一单元“幂的运算性质”是学习本章知识的基础,也是学习第二、三、四单元的关键,是学习本章其它主要内容的“桥梁”。
这几个单元一环紧扣一环,层层递进。
主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg 文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能。
)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1、理解并会进行同底数幂乘法、幂的乘方、积的乘方和同底数幂除法。
2、了解并记住零指数幂、负指数幂的意义。
3、理解整式乘法法则(包括乘法公式),能熟练进行整式的乘法。
4、以整式乘法法则为基础理解整式除法法则,并会进行整式除法运算。
过程与方法:1、类比数的运算,通过观察和体会、运用幂的意义,最终得到以字母为底数的幂的运算法则。
2、借助几何图形来理解整式乘法法则,尤其是乘法公式。
3、运用整式乘法的逆运算引入整式的除法法则。
情感态度与价值观:1、在教学法则的过程中,通过创设情景问题、穿插应用问题等,让学生从不同角度体会引入这些运算的意义,同时避免单纯的代数式运算给学习带来的枯燥感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章整式的乘法玉华中学:夏忠文15.1.1 同底数幂的乘法教学目的:1、能归纳同底数幂的乘法法则,并正确理解其意义;2、会运用同底数幂的乘法公式进行计算,对公式中字母所表示“数”的各种可能情形应有充分的认识,并能与加减运算加以区分;了解公式的逆向运用;教学重点:同底数幂的乘法法则难点:底数的不同情形,尤其是底数为多项式时的变号过程教具与实验:用于拼图的长方形硬纸板一、创设情境,激发求知欲课本第140页的引例二、复习提问1.乘方的意义:求n个相同因数a的积的运算叫乘方2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、讲授新课1.(课本141页 问题) 利用乘方概念计算:1014×103.2、 计算观察,探索规律:完成课本第141页的“探索”,学生“概括”a m ×a n =…=a m+n ;3、 观察上式,找出其中包含的特征:左边的底数相同,进行乘法运算; 右边的底数与左边相同,指数相加4、 归纳法则:同底数的幂相乘,底数不变,指数相加。
三、实践应用,巩固创新例1、计算:(1)x 2 ·x 5 (2)a ·a 6 (3) 2×24×23 (4) x m ·x3m + 1练习:1. 课本第142页:(学生板演过程,写出中间步骤以体现应用法则) 2.随堂巩固:下面计算否正确?若不正确请加以纠正。
①a 6·a 6=2a6 ②a 2+a 4=a 6 ③ a 2·a 4 =a 8例2、计算:要点指导: 底数中负号的处理;能化为同底数幂的数字底数的处理;多项式底数及符号的处理。
例3、 (1)填空:⑴若x m+n ×x m-n =x 9;则m= ; ⑵2m =16,2n =8,则2m+n = 。
四、归纳小结,布置作业小结:1、同底数幂相乘的法则;2、法则适用于三个以上的同底数幂相乘的情形;3、相同的底数可以是单项式,也可以是多项式;4、要注意与加减运算的区别。
15.1.2 幂的乘方教学目标:(1)经历探索幂的乘方的运算性质的过程,进一步体会幂的意义;(2)了解幂的乘方的运算性质,并能解决一些实际问题.教学重点:幂的乘方的运算性质及其应用.教学难点:幂的运算性质的灵活运用.一:知识回顾1.讲评作业中出现的错误2.同底数幂的乘法的应用的练习二:新课引入探究:根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3= 32 ×32 × 32 = 3﹝﹞(2)(a2)3 = a2·a2·a2 = a﹝﹞(3)(a m)3 = a m·a m ·a m = a﹝﹞(4)(a m )n =m a n m m m a a a 个∙∙∙⋅⋅⋅ = m n m m m a 个+⋅⋅⋅++ = a mn .观察结果,发现幂在进行乘方运算时,可以转化为指数的乘法运算. 引导学生归纳同底数幂的乘法法则:幂的乘方,底数不变,指数相乘.即:(a m )n =a mn (m 、n 都是正整数).二、知识应用例题 :(1)(103)5; (2)(a 4)4; (3)(a m )2;(4)-(x 4)3; 说明:-(x 4)3表示(x 4)3的相反数练习:课本第143页 ( 学生黑板演板)补充例题:(1)(y 2)3·y (2)2(a 2)6-(a 3)4 (3)(ab 2)3(4) - ( - 2a 2b)4说明:(1) (y 2)3·y 中既含有乘方运算,也含有乘法运算,按运算顺序,应先乘方,再做乘法,所以,(y 2)3·y = y 2×3·y = y 6+1 = y 7;(2) 2(a 2)6-(a 3)4按运算顺序应先算乘方,最后再化简.所以,2(a 2)6-(a 3)4=2a 2×6-a 3×4=2a 12-a 12=a 12.三 幂的乘方法则的逆用 m n n m m n a a a )()(==.(1)x 13·x 7=x ( )=( )5=( )4=( )10;(2)a 2m =( )2 =( )m (m 为正整数).练习:1.已知3×9n =37,求n 的值.2.已知a 3n =5,b 2n =3,求a 6n b 4n 的值.3.设n 为正整数,且x 2n =2,求9(x 3n )2的值.四、归纳小结、布置作业小结:幂的乘方法则.15.1.3 积的乘方教学目标:(1)经历探索积的乘方的运算性质的过程,进一步体会幂的意义;(2)了解积的乘方的运算性质,并能解决一些实际问题.教学重点:积的乘方的运算性质及其应用.教学难点:积的乘方运算性质的灵活运用.教学过程:一. 创设情境,复习导入1 .前面我们学习了同底数幂的乘法、幂的乘方这两个运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:(1) (2)(3)(4) 2.探索新知,讲授新课(1)(3×5)7——积的乘方 = )53(7)53()53()53(⨯⨯⨯⨯⨯⨯⨯个——幂的意义= 37)333(个⨯⨯⨯×57)555(个⨯⨯⨯——乘法交换律、结合律 =37×57;——乘方的意义 (2) (ab )2 = (ab) · (ab) = (a ·a) ·(b ·b) = a ( ) b ( )(3) (a 2b 3)3 = (a 2b 3) · ( a 2b 3) ·( a 2b 3) = (a 2 ·a 2· a 2 ) ·(b 3·b 3·b 3) = a ( ) b ( )(4) (ab )n=ab n ab ab ab 个)()()(⋅⋅⋅——幂的意义 = a n a a a a 个)(⋅⋅⋅⋅· b n b b b b 个)(⋅⋅⋅⋅——乘法交换律、结合律 =a n b n . ——乘方的意义由上面三个式子可以发现积的乘方的运算性质:积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘.即:(ab )n =a n ·b n二、知识应用,巩固提高例题3 计算(1)(2a )3; (2)(-5b )3; (3)( xy 2 )2;(4)(- 23x 3)4. (5)(-2xy )4 (6)(2×103 )2 说明: (5)意在将(ab )n =a n b n 推广,得到了(abc )n =a n b n c n判断对错:下面的计算对不对?如果不对,应怎样改正? ① ② ③练习:课本第144页三.综合尝试,巩固知识补充例题: 计算:(1)(2)四.逆用公式:b a ab n n n =)(,即)(ab b a nn n = 预备题:(1) (2)例题:(1)0.12516·(-8) 17;(2)20032004532135⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-(2)已知2m =3,2n =5,求23m +2n 的值. (注解):23m +2n =23m ·22n =(2m )3·(2n )2=33·52=27×25=675.四、归纳小结、布置作业作业:习题 15.115.1.4 整式的乘法 (单项式乘以单项式)教学目标:经历探索单项式与单项式相乘的运算法则的过程,会进行整式相乘的运算。
教学重点:单项式与单项式相乘的运算法则的探索.教学难点:灵活运用法则进行计算和化简.教学过程:一. 复习巩固:同底数幂,幂的乘方,积的乘方三个法则的区分。
二. 提出问题,引入新课(课本引例):光的速度约为3×105千米秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?(1)怎样计算(3×105)×(5×102)?计算过程中用到哪些运算律及运算性质?(2)如果将上式中的数字改为字母,比如ac5•bc2怎样计算这个式子?说明:(3×105)×(5×102),它们相乘是单项式与单项式相乘.ac5•bc2是两个单项式ac5与bc2相乘,我们可以利用乘法交换律,结合律及同底数幂的运算性质来计算:ac5•bc2=(a•b)•(c5•c2)=abc5+2=abc7.三.单项式乘以单项式的运算法则及应用单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例4 (课本例题)计算:(学生黑板演板)(1)(-5a2b)(-3a);(2)(2x)3(-5xy2).练习1(课本)计算:(1)3x25x3;(2)4y(-2xy2);(3)(3x2y)3•(-4x);(4)(-2a)3(-3a)2.练习2(课本)下面计算的对不对?如果不对,应当怎样改正?(1)3a3•2a2= 6a6;(2)2x2•3x2= 6x4;(3)3x2•4x2= 12x2;(4)5y3•y5 = 15y15.四.巩固提高(补充例题):1.(-2x2y)·(13xy2)2.(-32ab)·(-2a)·(-23a2b2)3.(2×105)2·(4×103)4.(-4xy)·(-x2y2)·(12y3)5.(-12ab2c)2·(-13ab3c2)3·(12a3b)6.(-ab3)·(-a2b)37.(-2x n+1y n)·(-3xy)·(-12x2z)8.-6m2n·(x-y)3·13mn2·(y-x)2五.小结作业方法归纳:(1)积的系数等于各系数的积,应先确定符号。
(2)相同字母相乘,是同底数幂的乘法。
(3)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式丢掉。
(4)单项式乘法法则对于三个以上的单项式相乘同样适用。
(5)单项式乘单项式的结果仍然是单项式。
作业:课本149页 315.1.4 整式的乘法(单项式乘以多项式)教学目标:经历探索单项式与多项式相乘的运算法则的过程,会进行整式相乘的运算。
教学重点:单项式与多项式相乘的运算法则的探索.教学难点:灵活运用法则进行计算和化简.教学过程:一.复习旧知1.单项式乘单项式的运算法则2.练习:9x 2y 3·(-2xy 2) (-3ab)3·(13abz) 3. 合并同类项的知识 二、问题引入,探究单项式与多项式相乘的法则(课本内容):三家连锁店以相同的价格m (单位:元瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a 、b 、c .你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?学生独立思考,然后讨论交流.经过思考可以发现一种方法是先求出三家连锁店的总销量,再求总收入,为:m (a +b +c ).另一种计算方法是先分别求出三家连锁店的收入,再求它们的和,即:ma +mb +mc .由于上述两种计算结果表示的是同一个量,因此m (a +b +c )=ma +mb +mc .学生归纳:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.引导学生体会:单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,三.讲解例题1. 例题5(课本) 计算:(1)(-4x 2)(3x +1); (2)ab ab ab 21)232(2⋅-2 .补充例题1:化简求值: (-3x)2 - 2x ( x+3 ) + x ·x +2x ·(- 4x + 3)+ 2007 其中:x = 2008练习:课本146页 1、23.补充练习:计算1.2ab (5ab 2+3a 2b ); 2.(32ab 2-2ab )· 21ab ; 3.-6x (x -3y ); 4.-2a 2(21ab +b 2). 5.(-2a 2)·(12ab + b 2)6. (23 x 2y - 6x y )·12xy 27. (-3 x 2)·(4x 2- 49x + 1) 8 3a b ·( 6 a 2b 4 -3ab + 32ab 3 )9. 13x n y ·(34x 2-12xy -23y -12x 2y) 10. ( - ab)2 ·( -3ab)2·(23a 2b + a 3·a 2·a -13a )四.小结归纳,布置作业:作业:课本第149页 415.1.4 整式的乘法(多项式乘以多项式)教学目标:经历探索多项式与多项式相乘的运算法则的过程,会进行整式相乘的运算.教学重点:多项式与多项式相乘的运算法则的探索教学难点:灵活运用法则进行计算和化简.教学过程:一.复习旧知讲评作业ma b二.创设情景,引入新课(课本)如图,为了扩大街心花园的绿地面积,把一块原长a米、宽m米的长方形绿地,增长了b米,加宽了n米.你能用几种方法求出扩大后的绿地面积?一种计算方法是先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn)米2.另一种计算方法是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a +b)(m+n)米2.由于上述两种计算结果表示的是同一个量,因此(a +b)(m+n)= am+an+bm+bn.教师根据学生讨论情况适当提醒和启发,然后对讨论结果(a +b)(m+n)=am+an+bm+bn进行分析,可以把m+n看做一个整体,运用单项式与多项式相乘的法则,得(a +b)(m+n)=a(m+n)+b(m+n),再利用单项式与多项式相乘的法则,得a(m+n)+b(m+n)= am+an+bm+bn.学生归纳:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.三、应用提高、拓展创新例6(课本):计算(1)(3x+1)(x+2) ; (2) (x-8y)(x-y) ;(3) (x+y)(x2-xy+y2)进行运算时应注意:不漏不重,符号问题,合并同类项练习:(课本)148页 1 2补充例题:1.(a+b)(a-b)-(a+2b)(a-b)2.(3x4-3x2+1)(x4+x2-2)3.(x-1)(x+1)(x2+1)4.当a=-12时,求代数式 (2a-b)(2a+b)+(2a-b)(b-4a)+2b(b-3a)的值四.归纳总结,布置作业课本 149页 515.2.1平方差公式教学目标:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算.教学重点:平方差公式的推导和应用.教学难点:灵活运用平方差公式解决实际问题.过程:一.创设问题情境,激发学生兴趣,引出本节内容活动1 知识复习多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b)(m+n)=am+an+bm+bn活动2 计算下列各题,你能发现什么规律?(1)(x+1)(x -1); (2)(a+2)(a -2);(3)(3-x )(3+x ); (4)(2m+n )(2m -n ). 再计算:(a+b )(a -b )=a 2-ab+a b -b 2=a 2-b 2.得出平方差公式(a+b )(a -b )= a 2-b 2.即两数和与这两数差的积等于这两个数的平方差. 活动3 请用剪刀从边长为a 的正方形纸板上,剪下一个边长为b 的小正方形(如图1),然后拼成如图2的长方形,你能根据图中的面积说明平方差公式吗?图1 图2 图1中剪去一个边长为b 的小正方形,余下图形的面积,即阴影部分的面积为(a 2-b 2).在图2中,长方形的长和宽分别为(a +b )、(a -b ),所以面积为(a +b )(a -b ).这两部分面积应该是相等的,即(a +b )(a -b )= a 2-b 2.二、知识应用,巩固提高例1 计算:(1)(3x +2)(3 x -2); (2)(-x+2y )(-x -2y )(3)(b +2a )(2a -b ); (4)(3+2a ) (-3+2a )练习:加深对平方差公式的理解 (课本 153页练习1有同种题型) 下列多项式乘法中,能用平方差公式计算的是( )(1)(x +1)(1+x ); (2)(21a +b )(b -21a ); (3)(-a +b )(a -b ); (4)(x 2-y )(x +y 2);(5)(-a -b )(a -b ); (6)(c 2-d 2)(d 2+c 2).例题2:计算(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)(3)(a+b+c)(a-b+c)(补充)(4) 20042-20032(补充)(5)(a + 3 )(a - 3)( a2+ 9 ) (补充)说明:(3)意在说明公式中的a,b可以是单项式,也可以是多项式(4) 意在说明公式的逆用练习:课本153页 2四、归纳小结、布置作业课本习题156 页习题 1 ; 515.2.2 完全平方公式(第1课时)教学目标:完全平方公式的推导及其应用;完全平方公式的几何背景;体会公式中字母的广泛含义,它可以是数,也可以是整式.教学重点:(1)完全平方公式的推导过程、结构特点、语言表述、几何解释;(2)完全平方公式的应用.教学难点:完全平方公式的推导及其几何解释和公式结构特点及其应用.教学过程:一、激发学生兴趣,引出本节内容活动1 探究,计算下列各式,你能发现什么规律?(1)(p +1)2 =(p +1)(p +1)=_________;(2)(m +2)2=(m +2)(m +2)=_________;(3)(p -1)2 =(p -1)(p -1)=_________;(4)(m -2)2=(m -2)(m -2)=_________.答案:(1)p 2+2p +1; (2)m 2+4m +4; (3)p 2-2p +1; (4)m 2-4m +4.活动2 在上述活动中我们发现(a +b )2=222b ab a ++,是否对任意的a 、b ,上述式子都成立呢?学生利用多项式与多项式相乘的法则进行计算,观察计算结果,寻找一般性的结论,并进行归纳,用多项式乘法法则可得(a +b )2=(a +b )(a +b )= a (a +b )+b (a +b )=a 2+ab +ab +b 2=a 2+2ab +b 2.(a -b )2=(a -b )(a -b )=a (a -b )-b (a -b )=a 2-ab -ab +b 2 =a 2-2ab +b 2.二、问题引申,总结归纳完全平方公式两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即(a + b )2=a 2+2ab +b 2,(a -b )2=a 2-2ab +b 2.在交流中让学生归纳完全平方公式的特征:(1)左边为两个数的和或差的平方;(2)右边为两个数的平方和再加或减这两个数的积的2倍.活动4 你能根据教材中的图15.2-2和图15.2-3中的面积说明完全平方公式吗?三.例题讲解,巩固新知例3:(课本)运用完全平方公式计算(1) (4m+ n )2 ; (2) (y -12)2补充例题:运用完全平方公式计算(1)(-x +2y )2; (2)(-x -y )2; (3) ( x + y )2-(x -y )2.说明:(1)题可转化为(2y-x)2或(x-2y)2,再运用完全平方公式;(2)题可以转化为(x+y)2,利用和的完全平方公式;(3)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.例4:(课本)运用完全平方公式计算(1)1022;(2)992.思考:(a+b)2与(-a-b)2相等吗?为什么?(a-b)2与(b-a)2相等吗?为什么?(a-b)2与a2-b2相等吗?为什么?练习:课本155页 1 ;2补充例题:(1) 如果x2 + kxy + 9y2是一个完全平方式,求k的值(2) 已知x+y=8,xy=12,求x2 + y2 ;(x- y )2的值(3) 已知 a + 1a = 3 ,求 a2+ 1a2四、归纳小结、布置作业小结:完全平方公式.作业:课本156 页习题 2 ;6;715.2.2 完全平方公式(第2课时)教学目标:熟练掌握完全平方公式及其应用,理解公式中添括号的方法重点:添括号法则及完全平方公式的灵活应用难点:添括号法则及完全平方公式的灵活应用内容:一复习旧知,引入添括号法则去括号法则:a +(b+c) = a+b+c a-(b+c) = a - b - c添括号法则:a+b+c = a +(b+c) a - b - c = a-(b+c)添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。