著名机构五升六数学讲义倒推法的妙用
【】五年级下册数学试题五升六讲义第4讲分数应用题(奥数板块)北师大版
第四讲分数应用题一、量率对应解答分数应用题首先应从分率入手找出单位“1〞的量,如果单位“1〞的量那么用乘法解,如果单位“1〞的量未知,那么用除法解。
例〔1〕已读了多少页?例1一本书30页,已读了2,〔2〕还剩下多少页?5〔3〕已读的比剩下的少多少页?全书的分率:〔〕;已读的分率:〔〕剩下的分率:〔〕;已读比剩下少的分率:〔〕练习1〔1〕白花多少朵?红花有60朵,白花比红花多1,〔2〕白花比红花多多少朵?6〔3〕两种花一共有多少朵?红花的分率:〔〕;白花的分率:〔〕;例白花比红花多的分率;〔〕;两种花一共的分率:〔〕例例例例例2一辆汽车4小时行了全程的1,照这样的速度,再行几小时到达?3练习2:六〔1〕班,男生比女生少 8人,女生比男生多1,全班多少人?3例3小红看一本小说,第一天看总页数的1还多19页,第二天看的比总页数的1少17 12 8页,还余下93页,这本书共多少页?练习3一批木料,先用去总数的2,又用去总数的4这时用去的比剩下的多21方,这批木料5 9 ,共多少方?二、抓不变量:解答较复杂的分数应用题时,我们往往从题目中找出不变量,把不变的量看做单位1,将条件进行转化,找出所求数量相当于单位1的几分之几,再列式解答。
例1:晶晶三天看完一本书,第一天看了全书的1,第二天看了的2,第二天比第一天4 5多看了15页。
这本书共有多少页?练习1:有一批货物,第一天运了这批货物的1,第二天运的是第一天的4 3,还剩590吨没有运。
这批货物有多少吨?例2:甲数是乙数的2,乙数是丙数的3,甲、乙、丙的和是216。
甲、乙、丙各是多少?34练习2:甲数是乙数的5,乙数是丙数的3,甲、乙、丙的和是152。
甲、乙、丙各是多少?64例3:牛的头数比羊的头数多20%,羊的头数比牛的头数少几分之几?练习3:甲仓存粮的吨数比乙仓的少25%,乙仓存粮的吨数比甲仓多几分之几?例4:某工厂有三个车间,第一车间的人数占总人数的1,第二车间人数是第三车间的3。
五年级奥数讲义:倒推法解题
五年级奥数讲义:倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反.其实在数学中,也有许多类似的还原问题.解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案. 例题选讲例1:有一群猴子分吃桃子,第一只拿走—半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了.曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:3×2=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)×2=18(个),第三只猴子拿之前应该有桃子:(18—3)×2=30(个),第二只猴子拿之前应该有桃子:(30+3)×2=66(个),第一只猴子拿之前应该有桃子:66×2=132(个),即这堆桃有132个.例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱.问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:48÷2:24(元),乙:48÷2—24(元),丙:48+24+24—96(元);第二次在乙给甲、丙添钱之前:甲:24÷2—12(元),乙:24+12+48===84(元),丙:96÷2=48(元);第一次在甲给乙、丙添钱之前:甲:12+42+24—78(元),乙:84÷2=42(元),丙:48÷2=24(元). 所以开始时甲有78元,乙有42元,丙有24元.例3:甲、乙、丙三人共有48张邮票,第一次甲先拿出与乙的邮票数相等的张数给乙;第三次乙拿出与丙的邮票数相等的张数给丙;第三次丙又拿出与这时的甲的邮票数相等的张数给甲,最后三人的邮票数相等,三人原来各有多少张邮票?【分析与解答】此题条件复杂,因此我们可以用列表的方法,从最后的果一步步按每次的变化倒推,这样就容易看清题中的数量关系了.列表如下:练习与思考1.张强去银行取款,第一次取了存款的一半多100元,第二次取了余下的一半少50元,第三次取了余下的一半多50元,这时他的存折上还剩下575元.问:张强原来有存款多少元?2.书架上有上、中、下三层书,共2400本一先从上层拿出与中层同样多的书放进中层,再从中层拿出与下层同样多的书放进下层,最后从下层拿出与上层现在同样多的书放进上层,这时三层书同样多.问:开始时,上、中、下三层各有多少本书?3.做一道整数加一个学生把个位上的7看作5,把十位上的5看作7,把百位上的9看作6,结果得出和为775.问:正确的答案应该是多少?4.有26块砖,兄弟两人争着去挑,弟弟走在前面,刚摆好砖哥哥赶来了.哥哥见弟弟挑得太多,就拿来一半给自己.弟弟觉得自己能行,又从哥哥那里拿来一半.哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块.问:开始时,弟弟准备挑多少块?5.甲、乙、丙三个瓶子共装了24升水,现在把甲瓶的水分别倒给乙、丙两瓶,使乙、丙两瓶的水比原来增加1倍;之后,又将乙瓶的水按上面的要求倒给甲、丙;最后,再按上面的要求将丙瓶的水倒一部分给甲、乙两瓶,这样倒了三次后,三个瓶中的水一样多.问:开始时甲、乙、丙三瓶各装水多少升?6.世纪商场里有一批儿童玩具,第一天运出总数的一半少4 个,第二天运出剩下的一半多2个,第三天又运进25个,这时库存儿童玩具45个,世纪商场原来有多少个儿童玩具?7.有一堆书,第一次搬一半,第二次般走剩下的一半多3本,第三次搬走剩下的一半少3本,第四次搬走剩下的一半多3本,第五次搬走剩下的一半,最后剩3本.问:原来有多少本书?8.甲、乙、丙各有若干个橘子.第一次甲给乙、丙橘子,各给与他们原有橘子数量相等的个数;同样,第二次乙给甲、丙橘子,各给与他们现有橘子数量相等的个数;第三次丙给甲、乙橘子,同样各给与他们现有数量相等的个数.最后三人都各有48个橘子,那么开始时三人各有多少个橘子?9.一种有益的菌种每小时可增长.l倍,现有一批这样的细菌:10小时后达到100万个,当它们达到25万个时,经历了多少长时间?。
(完整版)倒推法的妙用
《倒推法的妙用》自学教材在分析应用题的过程中,倒推法是一种常用的思考方法。
这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。
”小朋友,你知道于昆得多少分吗?【分析】这道题如果顺推思考,比较麻烦,很难理出头绪来。
如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56。
如何求出□中的数呢?我们可以从结果56出发倒推回去。
因为56是乘以4后得到的,而乘以4之前是56÷4=14。
14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88。
88是减8以后得到的,减8以前是88+8=96。
这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10〕÷7=56÷4答:于昆这次数学考试成绩是96分.通过以上例题说明,用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算。
③列式时注意运算顺序,正确使用括号.例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111。
问正确答案应是几?【分析】马小虎错把减数个位上1看成7,使差减少7-1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70—10)+(7—1)=57答:正确的答案是57。
例3树林中的三棵树上共落着48只鸟。
教你的孩子使用倒推法解决五年级数学难题
教你的孩子使用倒推法解决五年级数学难题数学是一个需要逻辑推理和思考的学科,对于许多学生来说,解决数学难题可能会感到困惑和挫败。
然而,倒推法是一种解决数学难题的有效策略,它可以帮助学生逐步分析问题并找到解答。
本文将介绍如何教你的孩子使用倒推法解决五年级数学难题。
一、理解倒推法的概念倒推法是一种从问题的答案出发,逆向推导出问题的步骤和条件的方法。
它鼓励学生从已知条件出发,通过逐步反推来获得正确答案。
这种方法可以帮助孩子培养逻辑思维和问题解决能力。
二、示范倒推法的应用1. 示例一:小明的年龄问题假设题目是:小明今年的年龄是12岁,如果过几年他的年龄数字颠倒,那时他会多大?首先,要引导孩子思考已知条件。
我们知道小明今年12岁,所以答案中肯定有数字2出现。
然后,我们可以通过倒推方法,只需逐个尝试数字,直到找到符合条件的数字。
尝试数字1,不满足年龄颠倒的条件。
尝试数字2,符合条件,年龄颠倒后为21岁。
所以,小明过几年的时候,他会21岁。
2. 示例二:购物价格问题假设题目是:小明去商店买了一件衬衫,他付了50元并拿回了10元的零钱。
衬衫的价格是多少?同样,先让孩子明确已知条件。
小明支付了50元,回来的零钱是10元。
那么衬衫的价格一定在这两个数之间,且两个数相差40元。
现在,可以使用倒推法尝试不同的价格。
假设衬衫价格为40元,那么小明支付的金额就会超过50元,超出了题目中的条件。
再假设衬衫价格为30元,则小明支付的金额为20元,也不符合题目条件。
通过类似的方式,可以尝试不同的价格,直到找到符合题目条件的答案。
在这个例子中,衬衫的价格是20元。
三、培养孩子使用倒推法的技巧1. 强调逻辑思维倒推法需要学生运用逻辑推理来分析问题。
在教导孩子时,可以通过提问的方式激发他们的思考,例如:“如果题目要求的答案是7,那么之前的数是多少呢?”鼓励他们根据逻辑关系来推断答案。
2. 练习反复实践倒推法需要孩子在实践中逐步掌握。
可以提供一系列相关的数学难题,让孩子通过不断的练习来熟练掌握倒推法的运用。
倒推法知识点总结
3.反证法:反证法是一种通过假设结论为假,然后推导出矛盾的逻辑推理方法。反证法要求推理者要通过推导出矛盾来证明结论为真。
以上是倒推法相关的一些常见概念,它们是倒推法的重要组成部分,对于倒推法的理解和应用具有重要意义。
1.数学领域:倒推法在数学领域中有着广泛的应用。在解决数学难题时,倒推法可以帮助数学家们从已知结论出发,逆向推导出问题的根本原因,从而找到解决问题的方法。例如,在证明一个数论问题时,可以先假设结论为假,然后推导出矛盾,从而证明结论为真。
2.物理领域:倒推法在物理领域中也有着重要的应用。在解决物理问题时,科学家们常常需要通过倒推法来确定问题的原因和规律,从而建立起科学理论和模型。例如,在研究地球的内部结构时,科学家可以通过地震波的传播速度和方向来推导地球的内部结构。
倒推法知识点总结
一、倒推法的基本原理
倒推法的基本原理是以结论为出发点,逆向推导出前提或原因。它是一种以反证法为基础的逻辑推理方法,要求从已推理过程通常包括以下几个步骤:
1.首先确定问题的结论或目标;
2.然后逆向推导,分析这个结论的前提条件或原因;
3.接着继续递归分析这些前提条件的前提条件,直至找出最根本的原因;
5.经济学领域:在解决经济问题时,倒推法也发挥着重要的作用。例如,在研究市场供需关系时,经济学家可以通过倒推法来分析市场价格和供给关系的变化,从而预测市场的发展趋势。
以上是倒推法在各个领域中的典型应用案例,可以看出倒推法在各个领域都有重要的作用,它是一种非常常用的推理方法。
三、倒推法的相关概念
1.正向推导:正向推导是一种从已知原因或前提来推导结论的逻辑推理方法。正向推导要求推理者要从已知的原因或前提出发,推导出结论或结果。
倒推法的解题技巧
倒推法的解题技巧在学习数学的过程中,倒推法是一种常见的解题方法,尤其是解决那些“从既定条件出发,结合一定的规律,总结出结论”的问题时尤为重要。
那么,倒推法到底是什么,它又有哪几个步骤?通过本文,我们将逐一解答。
首先,我们来解释一下倒推法的概念。
倒推法是方便快捷解决问题的一种方法,它有利于提高问题解决的效率,减少解题时间,从而更好地解决数学问题。
它的核心思想是从已知的结论出发,运用一定的规律及技巧,经过逐步推理,最终追溯到初始条件。
其次,我们来描述倒推法在解题时的几个步骤。
首先,仔细阅读题干,了解问题的含义,确定解题要用到的规律。
其次,可以从题目中给出的结论出发,根据规律不断推理,一步步追溯到初始条件。
第三,不断检验推理的正确性,确保途中所有步骤的准确性,直到最终得出所求的结果。
最后,根据实际情况进行一些可能的修改,一定程度上增加解题的准确性。
可以看出,倒推法在解决数学问题时有其独到的优势。
它能够有效简化问题,有针对性地找出问题的解,迅速帮助我们找到题目的答案。
举一个例子,如果题目是:一共有25只鸡,其中有15只母鸡,那么它们一共有多少只公鸡?在这种情况下,我们可以倒推法来解答,首先,我们把题目中已知的条件25只鸡,15只母鸡综合起来,可以得出:总鸡数25只=母鸡15只+公鸡x。
根据等式,我们就可以推出,公鸡一共有10只。
通过以上例子,我们可以清楚地看到,倒推法的解题步骤及其效率,因此它的作用十分重要。
但同时也不可忽视,倒推法虽然有很多优势,但也有一定的局限性,尤其是在某些非数值形式的复杂问题中,比如说一些文字题,倒推法并不总能得到正确的答案,这时我们不妨试试其他解题技巧,以期达到更好的效果。
综上所述,倒推法的解题技巧有其独特的优势,它能够有效帮助我们快速有效解决数学问题,但同时也存在一定的局限性,我们在实际应用中也应当加强对倒推法的认识。
最后,希望能够在学习中多多使用这种解题技巧,提高自身的解题水平,为数学学习和考试取得更好的成绩。
五年级奥数讲义:倒推法解题
五年级奥数讲义:倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反。
其实在数学中,也有许多类似的还原问题。
解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案。
例题选讲例1:有一群猴子分吃桃子,第一只拿走—半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了。
曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:3×2=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)×2=18(个),第三只猴子拿之前应该有桃子:(18—3)×2=30(个),第二只猴子拿之前应该有桃子:(30+3)×2=66(个),第一只猴子拿之前应该有桃子:66×2=132(个),即这堆桃有132个。
例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱。
问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:48÷2:24(元),乙:48÷2—24(元),丙:48+24+24—96(元);第二次在乙给甲、丙添钱之前:甲:24÷2—12(元),乙:24+12+48===84(元),丙:96÷2=48(元);第一次在甲给乙、丙添钱之前:甲:12+42+24—78(元),乙:84÷2=42(元),丙:48÷2=24(元)。
六年级上册数学讲义-倒推法的妙用-人教版(含答案)
倒推法的妙用学生姓名年级学科授课教师日期时段核心内容灵活运用倒推法解答题课型一对一/一对N教学目标1.使学生学会用“倒推”的策略寻求解答题的思路,并能根据实际的问题确定合理的解题方法,从而有效地解答题。
2.让学生体验“倒推”的策略对于解决特定问题的价值,增强解答题的策略意识,进一步发展分析、综合和简单推理的能力。
3.使学生进一步积累解答题的经验,获得解答题的成功体验,提高学好数学的信心。
重、难点重点:学会运用“倒推”的策略解答题,并能根据问题的具体情况确定合理的解题方法和步骤。
难点:在解答题过程中体验“倒推”的策略对于解决特定问题的价值。
课首沟通知识导图上讲回顾(错题管理);作业检查;询问学生学习进度等;课首小测1.一个数加上1,乘以8,减去8,结果还是8,这个数是。
2.某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。
那么小强这次考试的成绩是。
3.在横线上填上合适的数。
(1)85-÷7=65 (2)(37+)×2=100 (3)(448+42)÷=30导学一:简单的倒推法问题知识点讲解 1例 1. 一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。
这捆电线原来长多少米?我爱展示1.把一根绳子对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米,这根绳子原来长多少?2.(应元二中小升初真题)一桶油,每次倒掉油的一半,倒了三次后连桶重8千克,已知桶重3千克,原来桶里有油多少千克?3.(竞赛题)一根绳子第一次剪去4米,第二次剪去余下的一半还多2米,还剩下3米,原来这根绳子有()米。
A、14B、20C、18知识点讲解 2例 1. 3个笼子里共养了36只兔子,如果从第一个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的兔子一样多。
求3个笼子里原来各养了多少只兔子?我爱展示1.王老师说:“把我的年龄减去2,除以5,加上8,乘6,正好是72.”同学们,你能推算出王老师今年多大吗?2.(竞赛试题)一个数减去2再加上3,再乘2,最后再除以3是6这个数是多少?()A、18B、10C、83.同样重,三桶油原来各种多少千克?知识点讲解 3例 1. 甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
倒推法的妙用
倒推法的妙用1、小明问李老师今年多大年纪,李老师说:“把我的年纪加上9,除以4,减去2,再乘3,恰好是30岁。
”你知道李老师今年多少岁吗?2、一个数的3倍加上6,再减去9,最后乘2,结果得60,求这个数。
3、«小学生数学报»少年数学爱好者俱乐部成立的份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。
这个俱乐部成立于哪一年?4,粮库内有一批大米第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?5、某商场出售洗衣机,上午售出总数的一半多10台下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?6 、某水果店卖菠萝,第一次卖掉总数的一半多2个第二次卖掉剩下的一半多1个,第三天卖掉第二次卖后剩下的一半多1个这时只剩下1一个菠萝。
三次共卖得48元,求每个菠萝多少元?7、甲、乙、丙三个小朋友共有贺年卡90张,如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同。
问甲、乙、丙三个小朋友原来各有贺年卡多少张?8、小明、小强和小勇三个人共有故事书60本。
如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原有故事书多少本?9、甲、乙两个车站共停了195辆汽车,如果从甲站开往乙站36辆,又从乙站开出45辆汽车,这时乙站停的汽车辆数是甲站的2倍。
原来甲、乙两站各停放多少辆汽车?10、王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都有24张,问王亮和李强原来各有画片多少张?11、书架上分上中下三层,共放192本,现从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后,从下层取出与上层剩下的同样多的数放到上层,这时三层书架所放的书本数相等,这个书架上中下各层原来各有多少本书?12、猴妈妈摘来一筐桃,将它们3等分后还剩2个桃;取出其中2份,将它们3等分后还剩2个;然后再取出其中2份,又将这2份3等分后还剩2个,猴妈妈至少摘了多少个桃?13、有一盒奶糖,把它们4等分后还剩1粒,取走3份又1粒,剩下的再4等分又剩1粒,再取走其中的3份又1粒;剩下的再4等分后剩下1粒。
五上6倒推法(2)
姓名: 第六讲 倒推法(2)知识摘要:有些问题,若按一般的思路——“由前到后”的顺序去分析解答就会带来很大的困难,这时如果转换一下角度,试试“由后向前”的方法,根据题意从后面倒着往前一步一步地推,这样往往会令问题得到简化。
倒推法,就是从后面的已知条件入手,逐步向前一步一步地推算,最后得出所需要的结论。
例1、由1、3、5、7四个数字组成的没有重复数字的四位数一共有24个。
将这些四位数按从大到小的顺序排列,第22个数是多少?练习一1. 用1、2、3、4、5五个数字组成的五位数共有120个,将它们从大到小排列起来,第118个数是( )。
2. 用1、3、5、7、9这五个数字,可以排成60个不同的三位数。
把这些数从小到大排成一排,那么排在第56个的数是( )。
3. 由1、2、3、4四个数字组成的没有重复数字的四位数共有24个,将它们从小到大排列起来,第18个数等于( )。
(1998年奥赛决赛B 卷试题)4. 设1、3、9、21、81、243是六个给定的数,从这六个数中每次取出1个或几个不同的数求和(每个数每次只能取一次),可以得到一个新数。
这样共得到63个新数,如果把它们从小到大依次排列起来是1、3、4、9、10、12、…那么第60个数是( )。
例2、有一种细胞,每秒种分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个,……在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的14,需要多少秒?练习二1. 池塘水面渐渐被长出的睡莲所覆盖了,睡莲长得很快,每天覆盖的面积增加一倍,30天可覆盖整个池塘。
那么覆盖半个池塘需要( )天。
2. 一种微生物,每小时可增加一倍,现在一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要( )小时。
3.有一种水草长得很快,一天增加一倍。
如果第一天往池塘里投入1棵,第二天就发展成2棵,……,第28天恰好长满池塘;如果第一天投入4棵,那么经过()天就可长满池塘。
数学倒推法的解题技巧
数学倒推法的解题技巧
数学倒推法是一种常见的解题技巧,它通常在数学竞赛中被广泛应用。
该方法的基本思想是从已知结果开始,逆向推导出问题的答案。
这种方法在解决一些复杂的问题时非常实用,尤其是当问题的正向解法非常困难时。
以下是一些数学倒推法的解题技巧:
1. 理解问题并找到已知条件
在使用倒推法解题时,首先需要理解问题的背景和条件,找到已知条件并了解问题所要求的答案。
这将帮助你确定问题的解决方案,以及在逆向推导时需要注意的关键点。
2. 从结果开始倒推
倒推法的核心是从结果开始倒推。
在确定了问题的解决方案后,从答案开始逆向推导,寻找与已知条件相关的数学关系,并逆向推导出问题的前提条件。
3. 遵循逻辑推理
在倒推法中,需要遵循逻辑推理,确保每一步推导都符合数学规律和逻辑规则。
在进行推导时要仔细考虑每一步的正确性,不要忽略任何细节。
4. 使用举例法
有时候使用举例法可以帮助理解问题并找到解决方案。
通过举例,可以更加清晰地了解问题中的数学关系,同时也可以找到可能的解决方案。
数学倒推法是一种非常有用的解题技巧,它可以帮助你解决一些困难的问题。
当你在数学竞赛中遇到难题时,可以尝试使用这种方法来解决问题。
2倒推法的妙用
A+教育中心夏令营五升六奥数基础班讲义二——倒推法的妙用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③③列式时注意运算顺序,正确使用括号.基础训练例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。
”小朋友,你知道于昆得多少分吗?例2:小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.例3、某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?例4:树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?5、在□里填上适当的数。
20×□÷8+16=266、小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁,小刚的奶奶今年多少岁?7、小明、小强和小勇三个人共有故事书60本。
如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?8、王叔叔四月份工资若干元,他从工资中拿出一半多10元存入银行,又拿出余下的一半多5元买米、油,剩下80元买菜。
王叔叔四月份工资是多少元?9、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩下7米,这捆电线原来总长多少米?10、甲乙丙三个小朋友各有年历卡若干张。
如果甲给乙13张,乙给丙23张,丙给甲3张,那么她们每人各有30张年历卡。
小升初数学-名校冲刺专题汇编讲义-第30讲 倒推法 全国通用版(学生用不
2020-2021通用版数学小升初总复习专题汇编讲义第三十讲倒推法第一部分:要点提炼考点一倒推法倒推法,也叫逆推法或逆序推理法,简单说,就是调过头来从后面往回想,是用还原思想解题的方法,就是从题目的问题或结果出发,根据已知条件一步一步进行逆向推理,逐步靠拢原始的条件。
考点二解题关键解题关键:在从后往前推算的过程中,每一步都是同原来相反的运算、原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘……逆推问题内容:逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,由后向前逆推计算.解题方法:(1)要根据题意的顺序,从最后一组数量关系逆推至第一组数量关系,这就是逆推法中去处顺序的逆推含义.(2)原题相加,逆推用减;原题相减,逆推用加;原题相乘,逆推用除;原题相除,逆推用乘,这就是逆推法中计算方法的逆运算含义.第二部分:考点剖析第三十讲倒推法一.逆推问题(共40小题)1.(2018春•桐梓县期末)池塘里有一块浮萍,每天长一倍,如果二十天长满池塘,那么()天长到池塘的四分之一?A.4B.5C.18D.102.(2017秋•宁波期末)小明在计算(28+33)×□时,漏看了小括号,算出的结果是358,检查时发现了错误,又重新计算,他算出的正确结果是()A.610B.612C.614D.6163.(2017秋•皇姑区期末)在下面的括号里填上合适的运算符号,使等式成立.14.7()[(1.6+1.9)×0.4]=10.5A.+B.﹣C.×D.÷4.(2018秋•云梦县月考)小明做题时,把除以某数错看成乘某数,结果是.这道题的正确答案是()A.B.C.D.5.(2018•重庆模拟)小利从家带来鸡蛋,第一天吃了全部的一半又半个,第二天吃了余下的一半又半个,第三天再吃余下的一半又半个,恰好吃完.小利从家带了()个鸡蛋.A.10B.7C.13D.96.(2018•阜宁县)池塘里某种水草生长极快,当天的水草数量是它前一天的2倍,又知10天长满池塘,则()天长了池塘.A.4B.6C.8D.97.(2019春•陆丰市期末)甲、乙、丙三人共有图书195本,甲拿15本给乙,乙拿20本给丙,丙拿30本给甲,则此时甲、乙、丙手中的图书一样多,那么原来甲有本图书.8.(2019春•高密市期末)一本故事书,小明第一天看了全书的一半,第二天看了剩下的一半,还有48页没看.这本书共有页.9.(2019春•简阳市期末)一袋大米,第一天吃去它的一半少2千克,第二天吃去剩下的一半多2千克,还剩下10千克,这袋大米原有千克.10.(2019春•内江期末)一个数加上8得到一个和,用和乘8得到一个积,用积减去8得到一个差,最后用这个差除以8,结果还是8,那么这个数是.11.(2019•江西模拟)有一篮鸡蛋,第一次取出全部的一半还多1个;第二次取出余下的一半少3个,这时篮子里还剩下20个鸡蛋.篮子里原有鸡蛋个.12.(2019•武侯区)有A、B、C、D四种装置,将一个数输入一种装置后会输出另一个数.装置A:将输入的数加上0.5;装置B:将输入的数除以2;装置C:将输入的数减去0.4;装置D:将输入的数乘0.3.这些装置可以连接,如果装置A后面连接装置B就写成:A﹣B.输入1.5后,输出1.(1)输入3.5后,经过“A﹣B﹣C﹣D”,输出是.(2)输入后,经过“B﹣D﹣A﹣C”输出是1.3.13.(2019春•微山县月考)一位同学使用计算器算题,最后一步应加上11,但他却除以11了,因此得到的错误结果是10,正确的答案应该是.14.(2019•江西模拟)陈小明买一支钢笔用去所带钱的一半,买一本笔记本又用去2元,这时还剩18元,陈小明原来带了元.15.(2019•北京模拟)一筐苹果,把它们三等分后还剩2个苹果,取出其中两份,将它们三等分后还剩2个;然后再取出其中两份,又将这两份三等分后还剩2个,则这筐苹果至少有个.16.(2019春•蓝山县期中)某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元.这时他的存折上还剩1250元.他原有存款元.17.(2019•江西模拟)在横线上填上适当的数.40.1×[56.32﹣(﹣2.25 )]=2005.18.(2019•江西模拟)老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋个.19.(2019•长沙)已知:[13.5÷[11+]﹣1÷7]×=1,那么□=.20.(2018秋•武侯区月考)有A,B,C,D四种装置,将一个数输入后会输出另一个数.装置A:将输入的数除以0.5;装置B:将输入的数加上0.8;装置C:将输入的数乘以3.2;装置D:将输入的数减去0.6;(1)输入7.5后,经过“A﹣B﹣C﹣D”,输出的数是.(2)输入后,经过“D﹣C﹣B﹣A”输出的数是2.21.(2018春•获嘉县月考)一个九位数,个位上的数字是7,百位上的数字是2,任意相邻的三个数字的和都是18.这个九位数是.22.(2018秋•清河区校级月考)一条彩带,第一次用去一半,第二次又用去剩下的一半,还剩下128米,这条彩带原来长米.23.(2017秋•锦江区期末)一筐桔子,筐和桔子共重25千克,先拿一半送给幼儿园,再拿一半送给老人,余下的桔子和筐共重7千克,桔子原来有千克,筐有千克.24.(2018•合肥模拟)在□里填上适当的数,使等式成立73.06﹣□×(2.357+7.643)﹣42.06=13则□=.25.(2018春•祁东县月考)在□里填上合适的数(73﹣□)×92÷23=24443×(324﹣□)=111826.(2018秋•晋安区期中)小刚在计算某数除以1.2时错把除号看成乘号,算得结果是5.04,正确是商应该是27.(2018•徐州)老妇提篮卖蛋.第一次卖了全部的一半又一个,第二次卖了余下的一半又二个,第三次卖了第二次余下的一半又三个,第四次卖了第三次余下的一半又四个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋个.28.(2018秋•宿豫区校级期中)林林在计算□﹣5×4时,先算减法,后算乘法,得到的结果是80,正确结果应该是.29.(2019秋•武安市期中)小红做题时,由于粗心大意,把减数个位上的3错写成8,把十位上的5错写成3,这样算得的差是40,请你帮小红算一算正确的差是多少?30.(2019•保定模拟)有一袋大米,第一次取出全部的一半多1.5kg,第二次取出余下大米的一半少2kg,最后袋中的大米还剩20kg,这袋大米原来重多少千克?31.(2019•长沙)一个数的4倍除以24,再加上20,再减去3.5等于18,求这个数是多少?32.(2019•益阳模拟)甲、乙、丙三人共有270元,如果甲借给乙15.6元,又借给丙25.5元以后,三人的钱就一样多,甲、乙、丙三人原来各有多少钱?33.(2019•福田区)王奶奶上街卖一篮鸡蛋,第一天卖了一半还多1个,第二天卖了剩下的一半还多1个,第三天卖了剩下的一半还多1个,篮子里剩下5个鸡蛋,王奶奶的篮子里原来有多少个鸡蛋?34.(2019春•新田县期末)妈妈买来一些水果糖,小华吃掉一半后又多吃了两粒,第二天也是这样吃了剩下的一半再多吃两粒,第三天又吃了剩下的一半再多吃两粒,第四天打开糖盒时,里面只有4粒了,妈妈究竟买了多少粒水果糖?35.(2019秋•任丘市期末)四年级两个班共有学生100人,如果从一班分10名学生到二班,这时两个班的人数就相等,两班原来各有多少名学生?36.(2019•江西模拟)妈妈买了一些苹果,送给爷爷奶奶,又送给明明余下的,结果还剩下8个,这些苹果原来有个.37.(2019秋•北京月考)司机开车按顺序到五个车站接学生到学校(如图).每个站都有学生上车.第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半.车到学校时,车上最少有多少学生?38.(2019春•北京月考)池塘里睡莲的面积每天长大1倍,若经过17天就可长满整个池塘.试问:需要多少天,这些睡莲能长满半个池塘?39.(2019•长沙)一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来长多少米?40.(2019春•长沙月考)甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙、各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?。
四年级奥数教程(六)倒推法的妙用
四年级奥数教程(六)倒推法的妙用课题倒推法的妙用教学目标本节要求掌握倒推法解题的一般方法,明白倒推法是一种逆向思维,主要要在思维方式上得到新的启迪教学重难点重点是如何理解倒推法是一种逆运算,逆向思维难点是那这种思维用到自己解题中去,发散解题思路教学过程一、本讲知识点在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.二、教学方法讲练结合.三、具体安排【经典例题】例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4答:于昆这次数学考试成绩是96分.例2 小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.分析{[(□ + 17)÷4]- 15}×10 = 100采用逆推法,易知老爷爷的年龄为(100÷10+15) ×4-17=83(岁)【尝试实践1】1、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.2、某数除以4,乘以5,再除以6,结果是615,求某数.3、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是_____.例3 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70—10)+(7—1)=57答:正确的答案是57.例4 树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解. 解:①现在三棵树上各有鸟多少只?48÷3=16(只)②第一棵树上原有鸟只数.16+8=24(只)③第二棵树上原有鸟只数.16+6—8=14(只)④第三棵树上原有鸟只数.16—6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.【尝试实践2】1、生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?2、有砖26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?例5 篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.解:列综合算式:{[(1+1)×2+1]×2+1}×2=22(个)答:篮子里原有梨22个.例6“六 一”儿童节,小明和小培从妈妈那儿分得一些糖,妈妈把糖分成相同的两份给他们,多的一个给自己留下了.小明在路上遇着自己的两个朋友,他把自己的糖分成三份,每人一份,多的两颗分别送给了两个朋友.过了一会儿,又遇上两个小朋友,他同样分给他们糖,多的两颗分给了他们,后来,他又遇上了两个朋友,分完糖之后,小明发现自己只剩下一颗糖了,请问妈妈原来有多少糖?分析:最后一次分糖前小明有糖3+2=5颗;倒数第二次分糖前小明有糖5×3+2=17颗;倒数第三次分糖前小明有糖17×3+2=53颗;妈妈原来有糖53×2+1=107颗.例7 甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克. 解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16÷(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:④从甲桶卖出油多少千克?15-11=4(千克)⑤从乙桶卖出油多少千克? 15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.【尝试实践3】1、阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。
倒推法运用
数学课程教案授课方式(请打√)理论课√讨论课□实验课□习题课√其他□课时安排2课时授课题目(教学章、节或主题):倒推法的妙用教学目的、要求(掌握、熟悉、了解三个层次):1、通过本堂课的学习,使学生认识到什么是倒推法。
2、通过本次可得学习,使学生掌握倒推法的基本思路及运算步骤。
3、通过学习使学生逐渐养成良好的学习习惯及学习方法。
教学重点及难点:重点:是如何理解倒推法是一种逆运算,逆向思维。
难点:是那这种思维用到自己解题中去,发散解题思路。
教学基本内容方法及手段1、故事引入2、什么是倒推法3、例题讲解,课堂随堂练习。
教学内容详情见附页。
1、讲授法2、讨论法3、练习法作业、讨论题、思考题:详见发给学生试卷。
课后小结:通过本堂课学习,学生知道了什么是倒推法,并会用倒推法解决数学中的问题。
附页:教学内容引入故事猪八戒看到唐僧的篮子里有孙悟空化斋得来的果子,它偷偷的吃了其中的一半,还是觉得饿,又吃了剩下的一半,过了一会又吃了一半,最后偷偷的再吃了2个,他发现最后篮子里还剩下4个果子,他决定不吃了,那么猪八戒到底吃了多少果子呢?【分析】这种题型的奥数题目或者应用题,在以后的5、6年级乃至初中都非常常见,我们常用线段法分析此类为题,线段分法是行程等问题的杀手锏!但是此道题目因为出现在小学四年级中,难度上不会太大,所以如果采用倒推法比较简单!解法一、线段直观的展示出当中的数量数量关系,所以:第三次之后剩下:4+2=6 第二次之后剩下:6×2=12 第一次之后剩下:12×2=24 最初的果子数目:24×2=48 所以猪八戒吃了:48-4=44解法二、利用倒推法或者我们常说的还原法:所以很快就可以得到最初的果子数目:(4+2)×2×2×2=48一、什么是倒推法?有些应用题的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着推理,逐步靠拢所求,直到解决问题,这种思考问题的方法,我们通常把它叫做倒推法(还原法)。
小学数学 用“倒推”的策略解决实际问题
《用“倒推”的策略解决实际问题》教学案例兴化市唐刘学校姜广德教学内容:苏教版《义务教育课程标准实验教科书数学》五年级下册第88-89页的例1、例2,以及练习十六的相关练习。
教学目标:1.学生在具体中解决问题,初步学会用倒过来想的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。
2.学生在对自己解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3.学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:学会运用“倒推”的策略解决问题。
教学难点:根据问题的具体情况确定合理的解题方法和倒推步骤。
教学准备:多媒体课件教学过程:一、激活经验、感知策略1.游戏:今天很高兴能和大家一起上课,我们先来做个游戏,好吗?游戏的名字叫“正话倒说”,游戏规则知道吗?教师说学生接:数学、我爱数学、我真的非常爱数学。
“我真的非常爱数学”学生倒着说有困难,引导正着写出来,再倒着说。
小结:要玩好这个游戏,你有什么经验?(长的句子可以先正着定下来,然后再倒着说。
)2.谈话:老师今天早晨从唐刘出发,一路上先经过顾庄,再经过茅山,最后到达了陈堡。
如果老师带你到唐刘去做客,沿原路返回,该走怎样的路线呢?引导先正着摘录关键词语,并出示,学生依靠关键词说返回路线。
[设计意图:学生在生活中已经积累了一些关于倒推的认识,在以前的学习中也用到过这种方法,只不过处理一种潜意识状态。
通过创设“正话倒说”的游戏情境和老师返回的路线的现实情境,紧密联系学生的生活实际,从学生的生活经验和已有知识出发,让学生置身于生动,现实的生活情境中,激活了学生已有的经验,唤醒了学生的潜意识,使学生体会到“倒推”的策略在生活中的价值,激起学生学习的兴趣,调动了学生学习的积极性。
]二、 自主探索、体验策略1.教学例1。
(1) 出示问题,理解题意。
四年级奥数教程(六)倒推法的妙用
课题倒推法的妙用教学目标本节要求掌握倒推法解题的一般方法,明白倒推法是一种逆向思维,主要要在思维方式上得到新的启迪教学重难点重点是如何理解倒推法是一种逆运算,逆向思维难点是那这种思维用到自己解题中去,发散解题思路教学过程一、本讲知识点在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.二、教学方法讲练结合.三、具体安排【经典例题】例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4答:于昆这次数学考试成绩是96分.例2 小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.分析{[(□ + 17)÷4]- 15}×10 = 100采用逆推法,易知老爷爷的年龄为(100÷10+15) ×4-17=83(岁)【尝试实践1】1、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.2、某数除以4,乘以5,再除以6,结果是615,求某数.3、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是_____.例3 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70—10)+(7—1)=57答:正确的答案是57.例4 树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48÷3=16(只)②第一棵树上原有鸟只数.16+8=24(只)③第二棵树上原有鸟只数.16+6—8=14(只)④第三棵树上原有鸟只数.16—6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.【尝试实践2】1、生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?2、有砖26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?例5 篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.解:列综合算式:{[(1+1)×2+1]×2+1}×2=22(个)答:篮子里原有梨22个.例6“六 一”儿童节,小明和小培从妈妈那儿分得一些糖,妈妈把糖分成相同的两份给他们,多的一个给自己留下了.小明在路上遇着自己的两个朋友,他把自己的糖分成三份,每人一份,多的两颗分别送给了两个朋友.过了一会儿,又遇上两个小朋友,他同样分给他们糖,多的两颗分给了他们,后来,他又遇上了两个朋友,分完糖之后,小明发现自己只剩下一颗糖了,请问妈妈原来有多少糖?分析:最后一次分糖前小明有糖3+2=5颗;倒数第二次分糖前小明有糖5×3+2=17颗;倒数第三次分糖前小明有糖17×3+2=53颗;妈妈原来有糖53×2+1=107颗.例7 甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16÷(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:④从甲桶卖出油多少千克?15-11=4(千克)⑤从乙桶卖出油多少千克? 15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.【尝试实践3】1、阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倒推法的妙用学生姓名年级学科授课教师日期时段核心内容灵活运用倒推法解答题课型一对一/一对N教学目标1.使学生学会用“倒推”的策略寻求解答题的思路,并能根据实际的问题确定合理的解题方法,从而有效地解答题。
2.让学生体验“倒推”的策略对于解决特定问题的价值,增强解答题的策略意识,进一步发展分析、综合和简单推理的能力。
3.使学生进一步积累解答题的经验,获得解答题的成功体验,提高学好数学的信心。
重、难点重点:学会运用“倒推”的策略解答题,并能根据问题的具体情况确定合理的解题方法和步骤。
难点:在解答题过程中体验“倒推”的策略对于解决特定问题的价值。
课首沟通知识导图上讲回顾(错题管理);作业检查;询问学生学习进度等;课首小测1.一个数加上1,乘以8,减去8,结果还是8,这个数是。
2.某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。
那么小强这次考试的成绩是。
3.在横线上填上合适的数。
(1)85-÷7=65 (2)(37+)×2=100 (3)(448+42)÷=30导学一:简单的倒推法问题知识点讲解 1例 1. 一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。
这捆电线原来长多少米?我爱展示1.把一根绳子对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米,这根绳子原来长多少?2.(2016年应元二中小升初真题)一桶油,每次倒掉油的一半,倒了三次后连桶重8千克,已知桶重3千克,原来桶里有油多少千克?3.(2013年竞赛题)一根绳子第一次剪去4米,第二次剪去余下的一半还多2米,还剩下3米,原来这根绳子有()米。
A、14B、20C、18知识点讲解 2例 1. 3个笼子里共养了36只兔子,如果从第一个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的兔子一样多。
求3个笼子里原来各养了多少只兔子?我爱展示1.王老师说:“把我的年龄减去2,除以5,加上8,乘6,正好是72.”同学们,你能推算出王老师今年多大吗?2.(2013年竞赛试题)一个数减去2再加上3,再乘2,最后再除以3是6这个数是多少?()A、18B、10C、83.同样重,三桶油原来各种多少千克?知识点讲解 3例 1. 甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?我爱展示1.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。
再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。
原来甲班比乙班多多少人?2.甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个放入丙盒后,三个盒子内的小球个数相等。
原来乙盒比丙盒多几个球?导学二:稍复杂的倒推法问题例 1. 有一个三层书架共放书240册,先从上层取出与中层同样多册书放在中层,再从中层取出与下层同样多册书放在下层,最后再从下层取出与上层同样多册书放在上层。
经过这样的变动后,下层书的册数是上层书的3倍,中层书的册数是上层书的2倍。
原来上、中、下层各有多少册书?例 2. 有砖26块,兄弟二人争着挑,弟弟抢在前,刚刚摆好砖,哥哥赶到了,哥哥看弟弟挑的太多,就抢过一半,弟弟不肯,又从哥哥那儿抢走一半,哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多2块。
问:最初弟弟准备挑几块砖?我爱展示1.有三堆火柴,共48根,现从第一堆里拿出与第二堆根数相同的火柴放入第二堆,再从第二堆里拿出与第三堆根数相同的火柴放入第三堆,最后从第三堆里拿出与第一堆根数相同的火柴放入第一堆,这时三堆火柴的根数均相同。
原来三堆火柴各有几根?2.甲、乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?限时考场模拟:10 分钟完成1.[单选题] 池塘里的睡莲的面积每天长大一倍,若经过12天就可以长满整个池塘,则这些睡莲长满半个池塘需要()天. A.6B.7C.9D.112.(2013年广州市黄冈中学小升初真题)假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换()只兔子3.小明养了若干只鸡,鸡的只数加上8,乘以8,减去8,除以8,其结果等于8。
小明养了几只鸡?4.篮子里有一些梨,小刚取走总数的一半多一个,小明取走余下的一半多1个,小军取走了小明取走后剩下一半多一个,这时篮子里还剩梨1个。
问:篮子里原有梨多少个?5.一个书架分上中下三层,一共放书384本,如果从上层取出与中层同样多的本数放入中层,再从中层取出与下层同样多的本数放入下层,最后又从下层取出与现在上层同样多的本数放入上层,这时三层书架中书的本数相等,这个书架原来上层中层下层各放书多少本?课后作业1.有一篮鸡蛋,第一次取出全部的一半还多1个;第二次取出余下的一半少3个,这时篮子里还剩下20个鸡蛋.篮子里原有鸡蛋个.2.(1991年金翅杯小学数学竞赛)一种水生植物覆盖某湖面的面积每天增大一倍,18天覆盖整个湖面,那么经过16天覆盖整个湖面的。
3.(1993年奥赛初赛B卷试题)八个数从左到右排成一行,从第三个数开始,每个数都恰好等于它前面两个数之和。
如果第七个数和第八个数分别是81、131,那么第一个数是。
4.小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年岁。
5.有一个财迷总想使自己的钱成倍地增长,一天他在一座桥是碰见一个老人,老人对他说:“你只要走过一座桥再回来,你身上的钱就会增加一倍,但作为报酬,你每走一个来回要给我32个铜板。
”财迷觉得挺合算,就同意了。
他走过桥又走回来,身上的钱果然增加了一倍,就很高兴地给了老人32个铜板。
这样走完第五个来回,身上的最后32个铜板都给了老人,一个铜板也没有剩下。
财迷身上原来有个铜板。
6.修路队修一条公路第一天修了全长的一半少40米第二天修了余下的一半多10米还剩60米这条公路全长多少米?7.琳琳去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还多10元,还剩125元,你知道琳琳她原来有存款多少元吗?8.有一天,小明的爸爸先去新华书店买书,用去袋中钱的一半多10元,然后去银行取款200元,再去买衣服,又用去袋中钱的一半少10元,剩下的钱给了小明100元交学费,袋里还剩下60元。
小明爸爸这一天共用去多少钱?9.有一堆香蕉,第一只猴子拿走了这堆香蕉的一半加半个,第二只猴子来后又拿走剩下的一半加半个,第三只猴子来后同样拿走剩下的一半加半个,这时候香蕉正好被拿完。
则这堆香蕉原来有多少个?1、复习本次课主要内容。
2、标记出难度较大的题和易错题回去给学生复习。
课首小测1.1解析:(8+8)÷8-1=12.96分解析:(120÷8-6)×10+6=963.(1)140;(2)13;(3)3导学一知识点讲解 1例题1.54米解析:[(7+15—10)+3] 2=54(米)我爱展示1.16米解析:1 =16(米)2.40千克解析:8-3=5(千克)53.A知识点讲解 2例题1.第一个笼子里有20只;第二个笼子里有10只;第三个笼子里有6只解析:第一个笼子里有兔子:36÷3+8=20(只)第二个笼子里有兔子:36-20-6=10(只)第三个笼子里有兔子:36÷3-6=6(只)我爱展示1.22岁解析:(72÷6—8) 5+2=22(岁)2.C解析: 3 6 2—3+2=83.甲原来重39千克;乙原来重24千克;丙原来重27千克解析:知识点讲解 3例题1.28元。
解析:168÷3÷2=28元答:原来甲比乙多28元。
我爱展示1.24人解析: 144÷3÷2=24(人)2.12个。
解析:8×2-4=12(个)导学二例题1.上层:95本;中层:75本;下层:70本。
解析:变动后上层册数(和倍公式):240 ;中层:40 ;下层40 ;从下层取出与此时上层同样多册书放在上层,可知道上层是40/2=20本那下层就是120+20=140本,再从中层取出与下层同样多册书放在下层,可知道原来下层应该是:140/2=70本中层是80+70=150本,先从上层取出与中层同样多册书放在中层,可知道中层原来应该是:150/2=75本,那上层原来应该是:20+75=95本,所以结果就是:最初第一次第二次第三次上层:95 20 20 40中层:75 150 80 80下层:70 70 140 1202.16块解析:先用“和差”解法求出弟弟最后挑几块砖:(26-2)÷2=12(块),再用倒推法求出弟弟最初准备挑几块砖:{26-[26-(12+5)]×2}×2=16(块),答:弟弟最初准备挑砖16块。
我爱展示1.第一堆22根;第二堆14根;第三堆12根解析:现在每堆有:48÷3=16(根);第三堆取出与第一堆同样多的书放到第一堆,这时三堆各有:第一堆:16÷2=8(根),第二堆:16根,第三堆:16+8=24(根);第二堆取出与第三堆同样多的书放到第一堆,这时三堆各有:第一堆:8根,第二堆:16+24÷2=28(根),第三堆=24÷2=12(根);第一堆取出与第二堆同样多的书放到第二堆,第一堆:8+28÷2=22(根),第二堆=28÷2=14(根),第三堆:12根。
答:原来第一、二、三堆各有火柴22、14、12根。
2.甲桶卖4千克;乙桶卖10千克。
解析:①甲乙两桶油共剩重量:15×2-14=16(千克);②乙桶油剩下重量(和倍公式):16÷(3+1)=4(千克)③ 甲桶油剩下重量:4×3=12(千克)倒推法:从乙桶倒一部分给甲桶,使甲桶油也增加一倍则:甲原来12乙:4+6=10(千克);售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍则有:乙:10,甲6+5=11(千克)。
④从甲桶卖出油重量:15-11=4(千克),⑤从乙桶卖出油重量: 15—5=10(千克)限时考场模拟1.解:因为睡莲面积每天增大1倍,从半个池塘到长满整个池塘,仅需1天的时间,所以这些睡莲长满半个池塘需要:12-1=11(天);故选:D.解析: 此题用逆推的方法解答,睡莲的面积每天长大一倍,12天睡莲面积=11天睡莲面积×2,12天长满整个池塘,所以11天长满半个池塘.2.6003.14.22个5.上层176本;中层112本;下层96本解析:用表格法。