数列知识点归纳及

合集下载

数列知识点总结及题型归纳

数列知识点总结及题型归纳

数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n-=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn Sn a S S n -=⎧=⎨-⎩≥二、等差数列(一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

数列基础知识点和方法归纳

数列基础知识点和方法归纳

数列基础知识点和方法归纳1. 等差数列的定义与性质定义:(为常数),,推论公式: ,等差中项:成等差数列,等差数列前项和: 性质:是等差数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为; (4)若是等差数列,且前项和分别为,则; (5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数n 2的等差数列,有1n n a a d +-=d ()11n a a n d =+-x A y ,,2A x y ⇔=+n ()()11122n n a a n n n S nad +-==+{}n a m n p q +=+m n p q a a a a +=+;232n n n n n S S S S S --,,……a d a a d -+,,n n a b ,n n n S T ,2121m m m m a S b T --={}n a 2n S an bn ⇔=+a b ,n n S 2n S an bn =+{}n a 100a d ><,100n n a a +≥⎧⎨≤⎩n S n 100a d <>,100n n a a +≤⎧⎨≥⎩n S n {}n and S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇 2. 等比数列的定义与性质定义:(为常数,),.推论公式:且等比中项:成等比数列,或.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:是等比数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等。

(完整版)高三总复习数列知识点及题型归纳总结

(完整版)高三总复习数列知识点及题型归纳总结

一、数列的概念(1) 数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。

记作a n ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作 a n ; 数列的一般形式:a 1, a 2, a 3,……,a n ,……,简记作a n 。

例:判断下列各组元素能否构成数列 (1) a, -3, -1, 1, b, 5, 7, 9; (2) 2010年各省参加高考的考生人数。

(2) 通项公式的定义:如果数列 叫这个数列的通项公式。

例如:①:1 , 2 , 3 , 4, 511111 _ _ _ _ , ? ? ?2 3 4 5a n = n ( n 7, n N ),1 a n =(n N)。

n说明:1 n 2k 1② 同一个数列的通项公式的形式不一定唯一。

例如,a n = ( 1)n =(k Z);1,n 2k③ 不是每个数列都有通项公式。

例如, 1 , 1.4 , 1.41 , 1.414 ,…… (3) 数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项:456 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N (或它的有限子集)的函数 f(n)当自变量n 从1开始依次取值时对应的一系列函数值f(1),f(2), f(3),……,f(n),……•通常用a n 来代替f n ,其图象是一群孤立点。

例:画出数列a n 2n 1的图像•(4) 数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列) 、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1) 1 , 2, 3, 4, 5, 6,… (2)10, 9, 8, 7, 6, 5, …(3) 1,0, 1,0, 1,0, … (4)a, a, a, a, a,…例:已知数列{a n }的前n 项和s n 2n 2 3,求数列{a n }的通项公式高三总复习 数列{a n }的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就②:数列①的通项公式是 数列②的通项公式是①a n 表示数列,a n 表示数列中的第n 项,a n = n 表示数列的通项公式;(5)数列{ a n }的前n 项和S n 与通项a n 的关系:a nS 1(n 1)S n A n > 2)练习:1 •根据数列前4项,写出它的通项公式:(1) 1, 3, 5, 7……;22 132 1 42 1 52 1(2)234 5 (3)1 1 1 1---1*2*3*44*5(4) 9, 99, 999, 9999 …(5) 7, 77, 777, 7777,(6)8, 88, 888, 8888 2 •数列a n 中,已知a n(1)与出a i, , a 2, a 3, a n 1, a n 2 ;2(2) 79 2是否是数列中的项?若是,是第几项?33• (2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表 观察表中数据的特点,用适当的数填入表中空白(_____ )内。

数列的知识点

数列的知识点

数列的知识点数列是数学中一个重要的概念,是一系列按一定规律排列的数字集合。

数列在数学和其他学科领域中都有较为广泛的应用,因此对数列的理解和掌握是学习和研究的基础。

一、数列的概念。

数列是按照一定的顺序排列的一组数的集合。

数列中的每个数称为数列的项,用an表示。

数列中的第一项用a1表示,第二项用a2表示,依次类推。

二、数列的分类。

1.等差数列。

等差数列是指数列中,从第二项开始,每一项与它的前一项的差都相等。

差称为公差,用d表示。

等差数列的通项公式为an=a1+(n-1)d。

2.等比数列。

等比数列是指数列中,从第二项开始,每一项与它的前一项的比值都相等。

比值称为公比,用q表示。

等比数列的通项公式为an=a1q^(n-1)。

3.等差数列与等比数列之外的数列。

除了等差数列和等比数列,还存在着其他形式的数列,如斐波那契数列、阶乘数列等。

这些数列的通项公式可能没有明确的表达式,但仍然可以通过递推或递归的方式来定义。

三、数列的性质。

1.有界性。

数列可以是有上界或下界的,也可以同时有上界和下界。

有界数列是指存在一个上界和下界,使得数列中的每一项都不超过这个上界和下界。

2.单调性。

数列可以是递增的,也可以是递减的。

递增数列是指数列中的项按照从小到大的顺序排列;递减数列是指数列中的项按照从大到小的顺序排列。

3.极限性。

数列中的每一项都可以有一个极限,即随着项数的增加,数列的值趋于某个数值。

这个极限可以是有限的,也可以是无限的。

数列的极限可以用极限符号来表示,如lim(a_n)=L。

四、数列的应用。

1.数列在数学分析和微积分中有广泛的应用,如泰勒级数、幂级数等都可以表示为数列的和式。

2.数列在函数的连续性和导数的定义中也有应用。

通过研究数列的收敛性质,可以给出函数的连续性和导数的定义,从而对函数进行更深入的研究。

3.数列在统计学中也有应用,如样本的有序排列、时间序列分析等都需要对数列进行处理和分析。

总之,数列是数学中一个重要的概念,它不仅在数学分析和微积分中有广泛的应用,也在其他学科中有着重要的地位。

数列知识点归纳总结

数列知识点归纳总结

数列知识点归纳总结一、定义数列是由一列有限或无限多个数按照一定的规律排列而成的集合。

其中,每个数称作数列的项,每项之间的间隔称作公差。

二、等差数列1. 定义等差数列是指数列中相邻两项之差相等的数列。

2. 性质(1)首项 a1,公差 d(2)第 n 项 an = a1 + (n-1)d(3)前 n 项和Sn = (a1 + an) × n ÷ 2 = n[a1 + a(n-1)/2]3. 求和(1)连续求和法若已知数列的首项、尾项及项数,则可以使用连续求和法求和。

公式如下:S = (a1 + an)× n ÷ 2(2)差数求和法若已知数列的首项、公差及项数,则可以使用差数求和法求和。

公式如下:S = n[a1 + a(n-1)/2]4. 应用(1)找公差通过两个连续的数的差来求得公差。

(2)求某一项通过公式 an = a1 + (n-1)d 来求某一项。

(3)求和通过公式 Sn = n[a1 + a(n-1)/2] 来求和。

三、等比数列1. 定义等比数列是指数列中相邻两项之比相等的数列。

2. 性质(1)首项 a1,公比 q(2)第 n 项an = a1 × q^(n-1)(3)前 n 项和 Sn = a1 (q^n - 1) ÷ (q - 1)3. 求和(1)分步求和法将等比数列分为两个等差数列求和。

将等比数列的第一项乘上公比 q,得到一个新的等比数列,其首项为a1 × q,公比为 q,使用等差数列求和公式求和。

两次求和结果相加即为等比数列的和。

(2)直接求和法使用公式 Sn = a1 (q^n - 1) ÷ (q - 1) 直接求和。

四、通项公式1. 概念通项公式是指数列中任意一项的计算公式。

通过通项公式,可以方便地计算数列中的任何一项。

2. 求法根据已知条件,列出数列的一般式或递推式,然后解出通项公式。

五、等差数列与等比数列的比较1. 不同点(1)等差数列中相邻两项的差相等,等比数列中相邻两项的比相等。

《数列》知识点归纳

《数列》知识点归纳

《数列》知识点归纳一、数列:(1)一般形式:n a a a ,,,21⋯ (2)通项公式:)(n f a n =(3)前n 项和:12n n S a a a =++⋯及数列的通项a n 与前n 项和S n 的关系:1121(1)(2)n n n n n Sn S a a a a S S n -=⎧=++⋯⇔=⎨-≥⎩ 二、等差数列: 1等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列3等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和:⑤2)(1n n a a n S += ⑥d n n na S n 2)1(1-+=对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项:⑦如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质:⑧等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑨对于等差数列{}n a ,若q p m n +=+,则p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑩若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列如下图所示:kkk k k S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 6奇数项和与偶数项和的关系:⑾设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:前n 项的和偶奇S S S n +=当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差; 当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n(其中中a 是等差数列的中间一项)7前n 项和与通项的关系:⑿若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S ,则'1212--=n n n n b a三、等比数列1.等比数列的概念:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比常用字母q 表示(0≠q )2.等比中项:如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项 也就是,如果是的等比中项,那么Gb a G =,即ab G =23.等比数列的判定方法:①定义法:对于数列{}n a ,若)0(1≠=+q q a a nn ,则数列{}n a 是等比数列②等比中项:对于数列{}n a ,若212++=n n n a a a ,则数列{}n a 是等比数列 4.等比数列的通项公式:如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 或n m n m a a q -=5.等比数列的前n 项和:○1)1(1)1(1≠--=q qq a S n n ○2)1(11≠--=q q q a a S n n ○3当1=q 时,1na S n =当1q ≠时,前n 项和必须..具备形式(1),(n n S A q A =-≠ 6.等比数列的性质:①等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m n q a a -=② 对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ⋅=⋅也就是: =⋅=⋅=⋅--23121n n n a a a a a a 如图所示:nn a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321③若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么只有当公比1q =-且k 为偶数时,k S ,k k S S -2,k k S S 23-不成等比数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 四、等差数列与等比数列的性质及其应用 1一般数列的通项a n 与前n 项和S n 的关系:a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n2等差数列的通项公式:a n =a 1+(n-1)d a n =a m +(n--m )d (其中a 1为首项、a m 为已知的第m 项) 当d ≠0时,a n 是关于n 的一次式;当d=0时,a n 是一个常数3等差数列的前n 项和公式:S n =d n n na 2)1(1-+S n =2)(1n a a n + 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式4等差数列的通项a n 与前n 项和S n 的关系:a n =1212--n S n 5等差中项公式:A=2ba + (有唯一的值) 6等比数列的通项公式:a n = a 1 q n-1 a n = a m q n --m(其中a 1为首项、a m 为已知的第m 项,a n ≠0)7等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =qq a n --1)1(1 S n =q q a a n --118等比中项公式:G=ab ± (ab>0,有两个值)9等差数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等差数列10等差数列{a n }中,若m+n=p+q ,则q p n m a a a a +=+11等比数列{a n }中,若m+n=p+q ,则q p n m a a a a ∙=∙12等比数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等比数列(当m 为偶数且公比为-1的情况除外)13两个等差数列{a n }与{b n }的和差的数列{a n+b n }、{a n -b n }仍为等差数列14两个等比数列{a n }与{b n }的积、商、倒数的数列{a n ∙b n }、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列15等差数列{a n }的任意等距离的项构成的数列仍为等差数列 16等比数列{a n }的任意等距离的项构成的数列仍为等比数列17三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d18三个数成等比的设法:a/q,a,aq ;四个数成等比的错误设法:a/q 3,a/q,aq,aq 3 (因为其公比为2q >0,对于公比为负的情况不能包括) 19{a n }为等差数列,则{}na c(c>0)是等比数列20{b n }(b n >0)是等比数列,则{log c b n } (c>0且c ≠1) 是等差数列五、数列的通项求法1、公式法:①d n a a n )1(1-+=或d m n a a m n )(-+=;②11-=n n q a a 或n mn m a a q-=2、观察法:1137153121,,,,...4816322n n n a ++-=3、裂项相消法:)11(1))((1CAn B An B C C An B An a n +-+-=++=4、利用n nS a 与的关系求(定义法):⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 5、逐差求和法:1(),(2)n n a a f n n --=≥若,)2(12f a a =-则 , )3(23f a a =-,………, )(1n f a a n n =--1(2)(3)()n a a f f f n ⇒-=++⋯ 6、逐商求积法:)(1n g a a n n =-若,)2(12g a a =则,)3(23g a a =,………,)(1n g a a n n =-1(2)()n ag g n a ⇒=⋯7、构造等差、等比数列法:11();()1n n n n qp q x p x x pa a a a ++=+⇒-=-=- 11111111}1,1,{}21122,21221{}.211(),2()222n n nn n n n n n n n n a a a a a a a a b b a a a +++--==+-==-==-=-∴∴=--==-+1n n 1n n n 例:在数列{中,求数列的通项.解:(-2) 令 则是以-1为首项,为公比的等比数列由知 b b b b b111{}1133)323233)()323nn n n n n n n nn n a a a a a a a a a a a a a a a -=∙+⇒=∙+⇒-=-∴--=-∙⇒=-n+1n+1n+1n+1n+1n n+1n+1n+1n n+1n 1n 1511例2.已知=,=+(),求数列的通项.63212解:22223322(232{2}是以公比为,首项为(2-3)的等比数列.32(2六、数列求和的方法高考要求等差数列与等比数列的有限项求和总是有公式可求的,其它的数列的求和不总是可求的,但某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法 知识点归纳1等差数列的前n 项和公式法:S n =d n n na 2)1(1-+S n =2)(1n a a n + S n =d n n na n 2)1(-- 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式 2等比数列的前n 项和公式法:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =qq a n --1)1(1 S n =q q a a n --113拆项法求数列的和,如a n =2n+3n4错位相减法求和,如a n =(2n-1)2n(非常数列的等差数列与等比数列的积的形式)5裂项法求和:将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项等)!1(1!1)!1(1,C C C ,ctg2ctg 2sin 1,!)!1(!,111)1(111+-=+-=-=-+=⋅+-=++-n n n ααn n n n n n n n rn r n n nα6倒序相加法求和,如a n =nnC 1007求数列{a n }的最大、最小项的方法:①a n+1-a n =……⎪⎩⎪⎨⎧<=>000 如a n = -2n 2+29n-3 ②⎪⎩⎪⎨⎧<=>=+1111 n n a a (a n >0) 如a n =n n n 10)1(9+ ③a n =f(n) 研究函数f(n)的增减性 如a n 1562+n n8等比、等差数列和的形式:{}Bn An S B An a a n n n +=⇔+=⇔2成等差数列 {}(1)(0)n n n a S A q A ≠⇔=-≠(q 1)成等比数列9无穷递缩等比数列的所有项和:{}1lim 1n n n a a S S q→∞⇔==-(|q|<1)成等比数列题型讲解例1 (分情况讨论)求和:)(*122221N n b ab b a b a b a a S n n n n n n n ∈++++++=---- 解:①当a=0或b=0时,)(n n n a b S = ②当a=b 时,n n a n S )1(+=;③当a ≠b 时,ba ba S n n n --=++11例2(分部求和法)已知等差数列{}n a 的首项为1,前10项的和为145,求.242n a a a +++ 解:首先由3145291010110=⇒=⨯⨯+=d da S 则12(1)32322n n na a n d n a =+-=-⇒=⋅-22423(222)2n na a a n ∴+++=+++-12(12)32322612n n n n +-=-=⋅--- 例3(分部求和法)求数列1,3+13,32+132,……,3n +13n 的各项的和 解:其和为:(1+3+ (3))+(13132++……+13n )=3121321n n +--+-=12(3n +1-3-n)例4(裂项求和法))(,32114321132112111*N n n∈+++++++++++++++ 解:)1(2211+=+⋯++=k k k a k ,])1n (n 1321211[2S n ++⋯+⋅+⋅=∴ 1211121113121211[2+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+⋯+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n n 例5(裂项求和法)已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑=+ni i i a a 111解:首先考虑=∑=+ni i i a a 111∑=+-n i i i a a d 11)11(1 则∑=+ni i i a a 111=1111)11(1++=-n n a a n a a d 点评:已知数列{}n a 为等差数列,且公差不为0,首项也不为0,下列求和11nni i ===也可用裂项求和法例6(错位相减法)设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和 解:①若a=0时,S n =0②若a=1,则S n =1+2+3+…+n=)1n (n 21- ③若a ≠1,a ≠0时,S n -aS n =a (1+a+…+a n-1-na n ),S n =]na a )1n (1[)a 1(a 1n n 2+++-- 例7(错位相减法)已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈⋅=,求数列{}n b 的前n 项和n S解:,lg n n n n a a b n a a ==⋅232341(23)lg (23)lg n n n n S a a a na a aS a a a naa +∴=++++=++++……①……②①-②得:a na a a a S a n n n lg )()1(12+-+++=-[]nn a na n a a a S )1(1)1(lg 2-+--=∴ 点评:设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法例8(组合化归法)求和:)12)(1(532321++++⋅⋅+⋅⋅=n n n S n解:)1(3)2)(1(2)342)(1(+-++=-++=n n n n n n n n a n而连续自然数可表示为组合数的形式,于是,数列的求和便转化为组合数的 求和问题了213221326122)1(,6)2)(1(++++-=∴=+=++n n n n n C C a C n n C n n n )(6)(12212322323433+++++-+++=∴n n n C C C C C C S3243212333323444612)(6)(12++++-=+++-+++=n n n n CCC C C C C C12(3)(2)(1)6(2)(1)4!3!n n n n n n n nS +++++∴=-2(3)(2)(1)(2)(1)21(1)(2)2n n n nn n nn n n +++=-++=++ 点评:可转化为连续自然数乘积的数列求和问题,均可考虑组合化归法当然本题也可以将通项(1)(243)n a n n n =++-展开为n 的多项式,再用分部求和法例9(逆序相加法)设数列{}n a 是公差为d ,且首项为d a =0的等差数列,求和:nnn n n n C a C a C a S +++=+ 11001 解:因为nnn n n n C a C a C a S +++=+ 11001 00111n n n n n n n n C a C a C a S +++=--+ nn n n n n C a C a C a 0110+++=- 01101102()()()nn n n n n n nS a a C a a C a a C +-∴=++++++ 0100()()()2nn n n n n n a a C C C a a =++++=+ 110()2n n n S a a -+∴=+⋅点评:此类问题还可变换为探索题形:已知数列{}n a 的前n 项和n S 12)1(+-=nn ,是否存在等差数列{}n b 使得n n n n n n C b C b C b a +++= 2211对一切自然数n 都成立例10(递推法)已知数列{}n a 的前n 项和n S 与n a 满足:21,,-n n n S S a )2(≥n 成等比数列,且11=a ,求数列{}n a 的前n 项和n S 解:由题意:21(),2n n n S a S =-1n n n a S S -=-11111112(1)221.21n n n n n n S S S S S n -∴-=⇒=+-=-∴=- 点评:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前n 项和n S 的递推公式,是一种最佳解法小结:1等价转换思想是解决数列问题的基本思想方法,复杂的数列转化为等差、等比数列2 由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想,数学归纳法是这一思想的理论基础3错位相减”、“裂项相消”是数列求和最重要的方法。

完整版)数列知识点归纳

完整版)数列知识点归纳

完整版)数列知识点归纳数列一、等差数列性质总结1.等差数列的定义式为:$a_n-a_{n-1}=d$(其中$d$为常数,$n\geq2$);2.等差数列通项公式为:$a_n=a_1+(n-1)d$(其中$a_1$为首项,$d$为公差)推广公式为:$a_n=a_m+(n-m)d$。

因此,$d=\frac{a_n-a_m}{n-m}$;3.等差数列中,如果$a$、$A$、$b$成等差数列,那么$A$叫做$a$与$b$的等差中项,即$A=\frac{a+b}{2}$;4.等差数列的前$n$项和公式为:$S_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)d}{2}=\frac{n[2a_1+(n-1)d]}{2}$。

特别地,当项数为奇数$2n-1$时,$a_n$是项数为$2n-1$的等差数列的中间项,且$S_{2n-1}=n\cdot a_n$;5.等差数列的判定方法:1)定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;2)等差中项:数列$\{a_n\}$是等差数列,当且仅当$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^*$);3)数列$\{a_n\}$是等差数列,当且仅当$a_n=kn+b$(其中$k$、$b$为常数);4)数列$\{a_n\}$是等差数列,当且仅当$S_n=An^2+Bn$(其中$A$、$B$为常数);6.等差数列的证明方法:定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;等差中项性质法:$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^+$)。

7.提醒:1)等差数列的通项公式及前$n$项和公式中,涉及到5个元素:$a_1$、$d$、$n$、$a_n$及$S_n$,其中$a_1$、$d$称作为基本元素。

数列知识点归纳总结

数列知识点归纳总结

数列知识点归纳总结数列是数学中一种重要的概念,广泛应用于各个领域。

接下来,本文将从数列的定义、性质、分类、求和公式、递推关系、数列应用等方面进行归纳总结,并对数列的相关题型进行讲解。

一、数列的定义与性质1. 数列的定义:数列是按照一定规律排列的一系列数的集合。

一般用符号a₁, a₂, a₃, ... 表示,其中a₁称为首项,a₂,a₃, ...称为数列的项。

2. 数列的性质:数列的性质主要包括有界性、有序性和离散性。

(1)有界性:数列中的数存在上界和下界。

上界是指数列中的所有数都不超过某个数,下界是指数列中的所有数都不小于某个数。

(2)有序性:数列中的数是按照一定的顺序排列的,每个数都有它的前驱和后继。

(3)离散性:数列中的数之间可以有无限个数,也可以有有限个数,数列中的数可以是整数、有理数或者实数。

二、数列的分类1. 等差数列:等差数列是指数列中相邻两项之差为常数的数列。

通项公式为an = a₁ + (n-1)d,其中a₁为首项,d为公差。

2. 等比数列:等比数列是指数列中相邻两项之比为常数的数列。

通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比。

3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项的和。

通项公式为an = an-1 + an-2,其中a₁ = 1,a₂ = 1。

三、数列求和公式1. 等差数列求和公式:等差数列的前n项和Sn = (a₁ + an) * n / 2。

2. 等比数列求和公式:当公比r≠1时,等比数列的前n项和Sn = a₁ * (1 - r^n) / (1 - r);当公比r=1时,等比数列的前n项和Sn = a₁ * n。

四、数列递推关系1. 通项公式与递推公式的关系:数列的通项公式可以通过递推公式来确定,通项公式更为简洁。

2. 递推关系的求解:对于给定的递推关系an = f(an-1, an-2, ...),可以通过寻找数列中的规律来求解递推关系,进而得到通项公式。

数列的概念知识点归纳总结

数列的概念知识点归纳总结

数列的概念知识点归纳总结一、数列的定义数列是由一系列按照一定顺序排列的数字组成的集合。

每个数字称为数列的项,用a1, a2, a3,...表示。

二、等差数列1. 等差数列的定义:如果一个数列从第二项开始,每一项与它的前一项的差都相等,那么这个数列就是等差数列。

2. 公差的定义:等差数列相邻两项之间的差值称为公差,用d表示。

3. 等差数列的通项公式:设等差数列首项为a1,公差为d,那么第n项的值可以表示为an=a1+(n-1)d。

4. 等差数列的常用性质:- 第n项的值可以表示为an=a1+(n-1)d。

- 第n项和的通项公式为Sn=n(a1+an)/2。

三、等比数列1. 等比数列的定义:如果一个数列从第二项开始,每一项与它的前一项的比值都相等,那么这个数列就是等比数列。

2. 公比的定义:等比数列相邻两项之间的比值称为公比,用q表示。

3. 等比数列的通项公式:设等比数列首项为a1,公比为q,那么第n项的值可以表示为an=a1*q^(n-1)。

4. 等比数列的常用性质:- 第n项的值可以表示为an=a1*q^(n-1)。

- 前n项和的通项公式为Sn=a1*(q^n-1)/(q-1),其中q不等于1。

四、数列的求和1. 等差数列的求和公式:设等差数列首项为a1,公差为d,前n 项和为Sn,那么Sn=n(a1+an)/2。

2. 等比数列的求和公式:设等比数列首项为a1,公比为q,前n 项和为Sn,那么Sn=a1*(q^n-1)/(q-1),其中q不等于1。

五、常见数列1. 自然数数列:1, 2, 3, 4, ...2. 完全平方数数列:1, 4, 9, 16, ...3. 斐波那契数列:1, 1, 2, 3, 5, 8, ...4. 等差数列:如1, 3, 5, 7, ...5. 等比数列:如2, 6, 18, 54, ...六、数列应用数列可以在实际问题中发挥重要作用,常见的数列应用包括:1. 等差数列可以用于描述物体的运动轨迹、成长过程等。

数列知识点、公式总结

数列知识点、公式总结

数列知识点、公式总结一、数列的概念 1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成123,,,,,n a a a a ,简记为数列{}n a ,其中第一项1a 也成为首项;na 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集N *(或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列{}n a 的第n 项n a 与项数n 之间的函数关系可以用一个式子表示成()n a f n =,那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列{}n a ,如果从第二项起,每一项都大于它前面的一项,即1n n a a +>,那么这个数列叫做递增数列;如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列;如果数列{}n a 的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列 1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列{}n a 的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列{}n a 为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是n a 与2n a +的等差中项,且21=2n n n a a a +++;反之若数列{}n a 满足21=2n n n a a a +++,则数列{}n a 是等差数列.4、等差数列的性质: (1)等差数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列{}n a 和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题: 设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和;(2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列 1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠). 即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a q a q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ;(2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是n a 与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质: (1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列,{}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则(1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m ma a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列); (2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结 1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列. 2、两个恒等式: 对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥类型二(累加法):已知:数列{}n a 的首项1a ,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列{}n a 的首项1a ,且()()1,n na f n n N a ++=∈,求n a 通项.给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得:()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

数列知识要点梳理

数列知识要点梳理

知识要点梳理知识点一:数列得概念1、数列得定义:数列就是按一定顺序排列得一列数,如1,1,2,3,5,…,an,…,可简记为{an}注意:ﻫ (1)数列可以瞧作就是定义在自然数集N*或它得有限子集{1,2,…,n}上得函数。

函数当自变量n从1开始依次取自然数时所对应得一列函数值,,…,,…,通常用代替ﻫ ,于就是数列得一般形式为a1,a2,…,,…,简记为、其中就是数列得第n项,也叫做通项。

(2)数列得特征:有序性。

一个数列不仅与构成数列得“数”有关,而且与这些数得顺序有关,“顺ﻫ序”就是对数列本质属性得刻画。

ﻫ (3)数列得定义域就是离散得,因而其图象也就是离散得点集。

ﻫ2、数列得通项公式ﻫ一个数列得第n项与项数n之间得函数关系,如果可以用一个公式来表示,我们就把这个公式叫做这个数列得通项公式、注意:①不就是每个数列都能写出它得通项公式。

如数列1,2,3,―1,4,―2,就写不出通项公式;ﻫ②有得数列虽然有通项公式,但在形式上又不一定就是唯一得。

如:数列―1,1,―1,1,…得通项公ﻫ式可以写成,也可以写成;ﻫ③仅仅知道一个数列得前面得有限项,无其她说明,数列就是不能确定得。

ﻫ3、数列得表示:(1)列举法:如-2,-5,-8,…ﻫ注意:数列得列举法与集合得列举法不一样,主要就就是有序与无序得差别。

(2)图象法:由点组成得图象;就是离散得点集。

(3)解析式法:用数列得通项公式an=f(n),n∈N*或其她式子表示得数列。

4ﻫﻫ、数列得分类:ﻫ (1)按项数:有限数列与无限数列;ﻫ (2)按单调性:递增数列、递减数列(递增数列与递减数列统称为单调数列);(3)按照任何一项得绝对值就是否都小于某一正数来分:有界数列、无界数列;ﻫ (4)其她数列:摆动数列、常数列。

ﻫﻫ5、数列得递推式:ﻫ如果已知数列得第一项或前若干项,且任一项与它得前一项或前若干项间得关系可以用一个公式来表示,那么这个公式就叫做这个数列得递推公式,简称递推式。

(完整版)数列知识点总结(经典)

(完整版)数列知识点总结(经典)

数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,2. 等比数列的定义与性质 定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!) 性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.4. 求数列前n 项和的常用方法(1) 裂项法(2)错位相减法如:2311234n n S x x x nx -=+++++……① ()23412341n n n x S x x x x n x nx -=+++++-+·……② ①—②()2111n n n x S x x x nx --=++++-…… 1x ≠时,()()2111n n nx nx S x x -=---,1x =时,()11232n n n S n +=++++=……。

数列知识点与常用解题方法归纳总结

数列知识点与常用解题方法归纳总结

数列知识点及常用解题方法归纳总结一、等差数列的定义与性质定义: a n 1 a n d ( d为常数 ) , an a1n 1 d等差中项: x,A , y成等差数列2A x ya1a n n n n1前 n项和 S n na12d2性质:a n是等差数列(1)若 m n p q,则 a m a n a p a q;( 2)数列a2 n 1, a2 n, ka n b 仍为等差数列;S n,S2 n S n,S3n S2n⋯⋯仍为等差数列;( 3)若三个数成等差数列,可设为 a d,a,a d;( 4)若 a n, b n是等差数列 S n, T n为前 n项和,则amS2m1;b mT2 m1( 5) a n为等差数列S n an2bn( a, b为常数,是关于n的常数项为0的二次函数)S n的最值可求二次函数S n an2bn的最值;或者求出 a n中的正、负分界项,即:当a10, da n00,解不等式组可得 S n达到最大值时的 n值。

a n10当a10, d0,由a n0可得 S n达到最小值时的 n值。

a n10如:等差数列 a n, S n18,a n an 1an 23,S31,则 n(由 a n an 1an 2 3 3a n 13,∴ a n 11又 S a1a3 · 3 3a2,∴a21313 211 na 1a n n a 2an 1· n318n 27)∴ S n222二、等比数列的定义与性质定义: an1q ( q 为常数, q0), a n a 1 q n 1a n等比中项: x 、G 、 y 成等比数列G 2 xy ,或 Gxyna 1 (q 1)前n 项和: S na 1 1q n 1)(要注意 ! )1(qq性质: a n 是等比数列(1)若 m n p q ,则 a m · a na p ·a q( 2)S n ,S 2n S n , S 3 n S 2 n ⋯⋯仍为等比数列三、求数列通项公式的常用方法1、公式法2、 由S n 求a n ;(n1时, a 1 S 1 ,n2时, a nS n S n 1)3、求差(商)法如: a n 满足 1a 112 a 2⋯⋯1n a n2n 512 221解: n1时, 2a12 1 5,∴ a 114n 2 时,11 a 2⋯⋯1an 12n 1 522a1222 n 112 得:1a n 2 , ∴ a n2n 1, ∴ a n14 (n 1)2n 1(n2)2 n[练习]数列 a n 满足 S nS n 15a n 1 , a 14,求 a n3(注意到 a n 1S n 1 S n 代入得:S n 14S n又 S 1 4,∴ S n 是等比数列, S n4 n24、叠乘法例如:数列 a n 中, a 1an 1n3,a nn ,求 a n1解: a 2 · a 3 ⋯⋯ a n1 ·2 ⋯⋯ n 1 ,∴ a n1a 1a 2an 123na 1 n又 a 13,∴ a n3 n5、等差型递推公式由a na n 1 f (n) ,a 1 a 0 ,求 a n ,用迭加法n 2时, a 2a 1 f (2)a 3 a 2f (3) 两边相加,得:⋯⋯⋯⋯a na n1f (n)a n a 1 f (2) f ( 3) ⋯⋯ f ( n)∴a na 0f (2) f (3) ⋯⋯f (n)[练习]数列 a n , a 1 1, a n 3n 1a n 1 n 2 ,求 a n( a n13n1 )26、等比型递推公式a n ca n 1d c 、 d 为常数, c0, c 1, d 0可转化为等比数列,设 a n xc a n 1xa n ca n 1 c 1 x令 (c 1)xd ,∴ xdc 1∴ a ndd1是首项为 a 1, c 为公比的等比数列cc 1∴ a nd a 1c d · c n 1c 11∴ a na 1d c n 1d[练习]数列 a n 满足 a 19, 3a n 1a n 4,求 a n4n 1(a n81)37、倒数法例如: a 11, a n 12a n,求 a n1a n 2 1 1 a n, 由已知得:2 a n2a n 12a n11 1 ,1为等差数列,1,公差为1a n2a na 12an 11 1 n 1 ·1 1n 1, ∴ a n2n1a n2 2 三、 求数列前 n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

数列知识点归纳总结小学

数列知识点归纳总结小学

数列知识点归纳总结小学一、数列的基本概念1. 数列的定义:数列是指按照一定顺序排列的一组数的集合。

数列中的每一个数称为数列的项,用a1,a2,a3,…表示。

2. 数列的通项公式:对于一个数列,如果能找到一个式子,使得第n项可以由n表示,并且能够表示出数列的通项公式,那么这个式子就叫做数列的通项公式。

二、常见的数列类型1. 等差数列:如果一个数列中,任意相邻两项的差都相等,那么这个数列就是等差数列。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。

2. 等比数列:如果一个数列中,任意相邻两项的比值都相等,那么这个数列就是等比数列。

等比数列的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比。

3. 斐波那契数列:斐波那契数列是指前两项为1,后面的每一项都等于前两项之和的数列。

其通项公式为an=an-1+an-2,其中a1=1,a2=1。

三、数列的性质1. 数列的有界性:如果一个数列的项数有限,那么这个数列就是有界的。

反之,如果一个数列的项数是无穷的,那么这个数列就是无界的。

2. 数列的单调性:如果一个数列中的每一项都比它前面的项都大(或都小),那么这个数列就是单调递增(或单调递减)的。

3. 数列的数和:数列的数和是指数列中所有项的和。

求等差数列、等比数列的数和有对应公式。

四、数列的应用1. 数列在几何图形中的应用:数列可以用来表示几何图形中的一些特定的数值,例如等差数列可以表示等差数列的公差、等比数列可以表示等比数列的公比。

2. 数列在金融中的应用:数列可以用来表示一些金融中的模型,例如投资收益、贷款利息等。

3. 数列在自然界中的应用:斐波那契数列在自然界中有许多应用,例如植物的叶子排列方式、鸟类的繁殖规律等。

总结起来,数列是数学中非常基础和重要的一部分,它在日常生活、自然界和其他学科中都有着广泛的应用。

学生在学习数列的过程中,除了要熟练掌握其基本概念和性质,还应该能够应用数列来解决实际问题,培养数学建模的能力。

高中数学《数列》知识点归纳

高中数学《数列》知识点归纳

高中数学《数列》知识点归纳
一、数列的概念
1. 数列的定义与表示
2. 数列的分类:等差数列、等比数列、等差几何数列、斐波那契数列、调和数列等
3. 数列的通项公式、前n项和公式及其应用
五、斐波那契数列
1. 斐波那契数列的定义和性质
2. 斐波那契数列的通项公式及其应用
3. 斐波那契数列的递推公式及其推导方法
4. 斐波那契数列的特殊应用:黄金分割
六、调和数列
1. 调和数列的定义和特征:调和平均数、算术平均数、宾汉姆不等式
2. 调和数列的通项公式及应用
3. 调和数列和几何平均数的关系
4. 调和数列的应用:调和平均数与平均速度等
七、数列极限
1. 数列的极限及其定义
2. 数列极限的性质:唯一性、有界性、保号性、代数运算性等
3. 数列极限的判定法:夹逼定理、单调有界原理等
4. 数列极限的应用:数学归纳法、发散数列的研究等
八、数列的应用领域
1. 数列在经济方面的应用:摆脱“复利”套路等
2. 数列在自然科学中的应用:波动方程、元素周期表等
3. 数列在计算机科学中的应用:搜索算法、排序算法等
4. 数列在生命科学和社会实践中的应用:基因序列分析、大学分配问题等。

数列知识点总结小学

数列知识点总结小学

数列知识点总结小学一、数列的基本概念1. 数列的定义数列是按照一定规律排列的一组数字组成的序列。

这些数字按照顺序排列,并且之间有着一定的规律和关系。

例如,1,2,3,4,5……就是一个自然数的数列。

数列的一般形式可以表示为:a₁,a₂,a₃,……,aₙ,……,其中a₁,a₂,a₃,……,aₙ代表数列中的第1,2,3,……,n个数。

2. 数列的性质数列可以是有限项的,也可以是无限项的。

根据数列的项数,可以将数列分为有限数列和无限数列。

例如,1,2,3,4,5……就是一个无限数列,而1,3,5,7,9就是一个有限数列。

数列还可以根据规律的不同分为等差数列、等比数列和其他类型的数列。

接下来将分别介绍这三种常见的数列。

二、等差数列1. 等差数列的定义等差数列是指数列中任意相邻两项的差都相等的数列。

这个公共的差叫做等差数列的公差,通常用d表示。

等差数列的一般形式可以表示为:a₁,a₁+d,a₁+2d,a₁+3d,……,a₁+nd,……,其中a₁为等差数列的第一项,d为公差。

等差数列的前n项和可以表示为:Sₙ = n/2(2a₁ + (n-1)d)。

2. 等差数列的性质(1)等差数列的任意一项可以表示为:aᵢ = a₁ + (i-1)d,其中aᵢ为等差数列的第i项。

(2)等差数列的前n项和公式可以根据等差数列的第一项a₁、最后一项aₙ和项数n来计算,即Sₙ = n/2(a₁ + aₙ)。

(3)等差数列的性质还包括:首项、末项、公差、项数、通项公式和前n项和等内容。

三、等比数列1. 等比数列的定义等比数列是指数列中任意相邻两项的比都相等的数列。

这个公共的比叫做等比数列的公比,通常用q表示。

等比数列的一般形式可以表示为:a₁,a₁q,a₁q²,a₁q³,……,a₁qⁿ,……,其中a₁为等比数列的第一项,q为公比。

等比数列的前n项和可以表示为:Sₙ = a₁(qⁿ-1)/(q-1),当q≠1时。

数列知识点归纳及例题分析

数列知识点归纳及例题分析

数列知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: 10,-3,8,-15,24,....... 221,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化求通项例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:定义法;函数单调性法 (2)最大小项问题:单调性法;图像法(3)数列的周期性:注意与函数周期性的联系例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列例4等差数列的判定或证明:已知数列{a n}中,a1=错误!,a n=2-错误!n≥2,n∈N,数列{b n}满足b n=错误!n∈N.1求证:数列{b n}是等差数列;2求数列{a n}中的最大项和最小项,并说明理由.1证明∵a n=2-错误!n≥2,n∈N,b n=错误!.∴n≥2时,b n-b n-1=错误!-错误!=错误!-错误!=错误!-错误!=1.∴数列{b n}是以-错误!为首项,1为公差的等差数列.2解由1知,b n=n-错误!,则a n=1+错误!=1+错误!,设函数fx=1+错误!,易知fx在区间错误!和错误!内为减函数.∴当n=3时,a n取得最小值-1;当n=4时,a n取得最大值3.例5等差数列的基本量的计算设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn ,满足S5S6+15=0.1若S5=5,求S6及a12求d的取值范围.解1由题意知S6=错误!=-3,a6=S6-S5=-8. 所以错误!解得a1=7,所以S6=-3,a1=7.2方法一∵S5S6+15=0,∴5a 1+10d 6a 1+15d +15=0, 即2a 错误!+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-810d 2+1=d 2-8≥0, 解得d ≤-2错误!或d ≥2错误!. 方法二 ∵S 5S 6+15=0, ∴5a 1+10d 6a 1+15d +15=0, 9da 1+10d 2+1=0.故4a 1+9d 2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-2错误!或d ≥2错误!.例6前n 项和及综合应用1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;2已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 方法一 ∵a 1=20,S 10=S 15,∴10×20+错误!d =15×20+错误!d ,∴d =-错误!. ∴a n =20+n -1×错误!=-错误!n +错误!. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+错误!×错误!=130.方法二 同方法一求得d =-错误!.∴S n =20n +错误!·错误!=-错误!n 2+错误!n =-错误!错误!2+错误!. ∵n ∈N,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 2∵a n =4n -25,a n +1=4n +1-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令错误!由①得n <6错误!;由②得n ≥5错误!,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n =错误! =错误!例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . 先求an/bn n=5,13,35例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为 ()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例1111a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: 1倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________2错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列; 3裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=4拆项分组法:形如n n n c b a ±=,如:n n n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为 B A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________;4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a100502=⨯=. 四、求数列通项式2ln n+1公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等 2累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 3累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 4待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1型5转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn变化1已知0),(11=--n n a S f ;2已知0),(1=--n n n S S S f (6)猜想归纳法慎用练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和n n S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭*N n ∈,则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是 DA .)1(22++=n n a nB .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 ;30年2、在一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初同时被甲、乙公司录取,试问:1若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元2若该人打算连续工作10年,且只考虑工资收入的总量,该人应该选择哪家公司为什么精确到1元解:1设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元 则2301270n a n =+,120001.05n n b -=⋅ 2设工作10年在甲公司的总收入为S 甲,在甲公司的总收入为S 乙由于S S >乙甲,所以该人应该选择甲公司.等比数列模型例 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据计划,本年度投入800万元,以后每年投入将比上一年度减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加41;1设n 年内本年度为第一年总投入为n a 万元,旅游业总收入为n b 万元,写出n a 、n b 的表达式;2至少经过几年旅游业的总收入才能超过总投入精确到整数 参考解答:112511800511800511800800-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=n n a2解不等式n n a b >,得5≥n ,至少经过5年,旅游业的总收入才能超过总投入.六、2017年高考题一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 2017年新课标Ⅰ 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为2. 2017年新课标Ⅱ卷理 我国古代数学名着算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.2017年新课标Ⅲ卷理 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为4. 2017年浙江卷 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是“5642S S S >+”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.2017年新课标Ⅰ 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 二、填空题将正确的答案填在题中横线上6. 2017年北京卷理 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a ,22a b =_______.7.2017年江苏卷等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =_______________.8. 2017年新课标Ⅱ卷理 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk kS ==∑. 9.2017年新课标Ⅲ卷理设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __. 三、解答题应写出必要的文字说明、证明过程或演算步骤10. 2017年新课标Ⅱ文已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n 1若533=+b a ,求}{n b 的通项公式; 2若213=T ,求3S . 11.2017年新课标Ⅰ文 记nS 为等比数列{}n a 的前n 项和,已知.6,232-==S S1求{}n a 的通项公式; 2求n S ,并判断21,,++n n n S S S 是否成等差数列; 12. 2017年全国Ⅲ卷文设数列{}n a 满足()123+212n a a n a n ++-=…1求数列{}n a 的通项公式; 2求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;13.2017年天津卷文已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. 1求{}n a 和{}n b 的通项公式; 2求数列2{}n n a b 的前n 项和*()n ∈N . 14.2017年山东卷文已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.1求数列{}n a 的通项公式;2{}n b 为各项非零等差数列,前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭前n 项和n T15. 2017年天津卷理已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.1求{}n a 和{}n b 的通项公式; 2求数列221{}n n a b -的前n 项和()n *∈N . 16. 2017年北京卷理 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数. 1若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; 2证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.17.2017年江苏卷对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.1证明:等差数列{}n a 是“(3)P 数列”;2若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 18.本小题满分12分已知}{n x 是各项均为正数的等比数列,且.2,32321=-=+x x x x Ⅰ求数列}{n x 的通项公式;Ⅱ如图,在平面直角坐标系xOy 中,依次连接点)1,(,),2,(),1,(11211+⋯++n x P x P x P n n 得到折线121+⋯n P P P ,求由该折线与直线11,,0+===n x x x x y 所围成的区域的面积n T .19.2017年浙江卷已知数列}{n x 满足:).)(1ln(,1*111N n x x x x n n n ∈++==++证明:当*N n ∈时,1n n x x <<+10; 22211++≤-n n n n x x x x ; 3212121++≤≤n n n x .。

数列知识点、公式讲解

数列知识点、公式讲解

数列知识点、公式讲解一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成123,,,,,n a a a a ,简记为数列{}n a ,其中第一项1a 也成为首项;n a 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集N *(或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1)有穷数列:数列中的项为有限个,即项数有限;(2)无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列{}n a 的第n 项n a 与项数n 之间的函数关系可以用一个式子表示成()n a f n =,那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列{}n a ,如果从第二项起,每一项都大于它前面的一项,即1n n a a +>,那么这个数列叫做递增数列;如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列;如果数列{}n a 的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列{}n a 的首项为1a ,公差为d ,则通项公式为:解:设S 2002=2002321a a a a +⋅⋅⋅+++,由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵665646362616=+++++++++++k k k k k k a a a a a a ∴S 2002=2002321a a a a +⋅⋅⋅+++=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列知识点归纳及例题分析《数列》知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:①强调2,1≥=n n 分开,注意下标;②n a 与n S 之间的互化(求通项)例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:①定义法;②函数单调性法 (2)最大(小)项问题:①单调性法;②图像法 (3)数列的周期性:(注意与函数周期性的联系)例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)等差数列等比数列定义 1n n a a d +-=(d 是常数1,2,3n =,…)1n na q a +=(q 是常数,且0≠q ,1,2,3n =,…)通项公式()11n a a n d =+-()n m a a n m d =+-11n n a a q -=推广:n m n m a a q -=求和 公式()112n n n S na d -=+=()12n n a a +()111(1)1(1)11n n n na q S a q a a qq qq =⎧⎪=-⎨-=≠⎪--⎩ 中项公式 2n k n k a a A -++=(*,,0n k N n k ∈>>)k n k n a a G +-±=(*,,0n k N n k ∈>>)例4(等差数列的判定或证明):已知数列{a n}中,a1=35,a n=2-1an-1(n≥2,n∈N*),数列{b n}满足b n=1an-1(n∈N*).(1)求证:数列{b n}是等差数列;(2)求数列{a n}中的最大项和最小项,并说明理由.(1)证明∵a n=2-1an-1(n≥2,n∈N*),b n=1an-1.∴n≥2时,b n-b n-1=1an-1-1an-1-1重要性质1、等和性:srnmaaaa+=+(srnmNsrnm+=+∈,,,,*)2、(第二通项公式)()n ma a n m d=+-及mnaad mn--=3、从等差数列中抽取等距离的项组成的数列是一个等差数列。

如:14710,,,,a a a a⋅⋅⋅(下标成等差数列)4、nnnnnsssss232,,--成等差数列5、}{nSn是等差数列1、等积性:srnmaaaa⋅=⋅(srnmNsrnm+=+∈,,,,*)2、(第二通项公式)n mn ma a q-=⋅及mnmnaaq=-3、从等比数列中抽取等距离的项组成的数列是一个等比数列。

如:14710,,,,a a a a⋅⋅⋅(下标成等差数列)4、nnnnnsssss232,,--成等比数列。

(仅当公比1q=-且n为偶数时,不成立)等价条件1.定义:a n-a n-1=d (n≥2)}{na⇔是等差数列2.等差中项:2a n+1=a n+a n+2}{na⇔是等差数列3.通项公式:pknan+=(pk,为常数)}{na⇔是等差数列4.前n项和:BnAnSn+=2(BA,为常数)}{na⇔是等差数列1.定义:qaann=-1(n≥2)}{na⇔是等比数列2.等比中项:22221+++=nnnaaa)0(≠na}{na⇔是等比数列3.通项公式:nnqca⋅=(0,≠qc且为常数)}{na⇔是等比数列4.前n项和:kqkS nn-⋅=(0,≠qk且为常数)}{na⇔是非常数列的等比数列联系真数等比,对数等差;指数等差,幂值等比。

=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. ∴数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n =1+22n -7,设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞内为减函数.∴当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.例5(等差数列的基本量的计算)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1 (2)求d 的取值范围.解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8.所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7. (2)方法一 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-8(10d 2+1)=d 2-8≥0, 解得d ≤-22或d ≥2 2.方法二 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0, 9da 1+10d 2+1=0.故(4a 1+9d )2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.例6(前n 项和及综合应用)(1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值; (2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.解 方法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 同方法一求得d =-53.∴S n =20n +n n -12·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n =-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. (2)∵a n =4n -25,a n +1=4(n +1)-25, ∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令⎩⎨⎧a n =4n -25<0, ①a n +1=4n +1-25≥0, ②由①得n <614;由②得n ≥514,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则T n=⎩⎪⎨⎪⎧21n +nn -12×-4 n ≤666+3n -6+n -6n -72×4n ≥7=⎩⎨⎧-2n 2+23n n ≤6,2n 2-23n +132 n ≥7.例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . (先求an/bn n=5,13,35)例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例11 311b a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为( ) 例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: (1)倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________(2)错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列。

(3)裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=(4)拆项分组法:形如n n n c b a ±=,如:nn n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为( B ) A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________。

4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a2ln n+22,Z 3k k ππ±∈100502=⨯=. 四、求数列通项式(1)公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等(2)累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 (3)累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 (4)待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1)型(5)转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n n n变化(1)已知0),(11=--n n a S f ;(2)已知0),(1=--n n n S S S f (6)猜想归纳法(慎用) 练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和nn S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭(*N n ∈),则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是( D ) A .)1(22++=n n a n B .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 。

相关文档
最新文档