08高考物理三轮例题复习专题03:牛顿运动定律总结 热门!!
高考物理牛顿运动定律复习

牛顿运动定律牛顿第一定律1. 内容:一切物体总保持静止状态或者匀速直线运动状态,直到有外力迫使它改变这种状态为止。
2. 意义:⑴揭示了力与运动的关系:力不是使物体运动的原因,而是改变物体运动状态的原因,从而推翻了亚里士多德“没有力物体不能运动”的错误观点。
⑵揭示了任何物体都有保持静止或运动直线运动的性质------惯性3. 惯性(1)定义:物体所具有的保持静止状态或匀速直线运动状态的性质叫惯性。
(2)说明:①惯性是物体本身的固有属性。
与物体受力情况无关,与物体所处的地理位置无关,一切物体都具有惯性。
②质量是物体惯性大小的唯一量度,质量大惯性大。
③惯性不是一种力,惯性不是一种力,惯性的大小反映了改变物体运动状态的难易程度。
二、牛顿第三定律1. 内容:两个物体之间的作用力与反作用力总是大小相等、方向相反、作用在同一条直线上。
2. 表达式:F F3. 说明:作用力与反作用力有“三同、三不同”。
⑴ 三同:大小相同、性质相同、同时存在消失具有同时性⑵ 三不同:方向不同、作用对象不同、作用的效果不同。
三、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。
这就是牛顿第二定律。
2、其数学表达式为:Fam F maF x ma x牛顿第二定律分量式:F y ma yF合-P用动量表述:t3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题;四、两类动力学问题1. 由受力情况判断物体的运动状态;2. 由运动情况判断的受力情况五、单位制1、单位制:基本单位和导出单位一起组成了单位制。
(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位:长度一cm、m km等;质量一g、kg等;时间一s、min、h等。
高考物理必拿满分系列之牛顿三大定律专题复习

高考物理必拿满分系列之牛顿三大定律-专题复习牛顿运动三定律在经典物理学中是最重要、最基本的规律,是力学乃至整个物理学的基础。
历年高考对本章知识的考查重点:①惯性、力和运动关系的理解;②熟练应用牛顿定律分析和解决两类问题(已知物体的受力确定物体的运动情况、已知物体的运动情况确定物体的受力)。
命题的能力考查涉及:①在正交的方向上质点受力合成和分解的能力;②应用牛顿定律解决学科内和跨学科综合问题的能力;③应用超重和失重的知识定量分析一些问题;④能灵活运用隔离法和整体法解决简单连接体问题的能力;⑤应用牛顿定律解题时的分析推理能力。
命题的最新发展:联系理科知识的跨学科综合问题。
一、牛顿第一定律(惯性定律):◎知识梳理一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
1.理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
①惯性是物体的固有属性,与物体的受力情况及运动状态无关。
②质量是物体惯性大小的量度。
③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量m Fr GM=2/严格相等。
④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。
二、牛顿第二定律◎知识梳理1. 定律内容物体的加速度a跟物体所受的合外力F成正比,跟物体的质量合m成反比。
2. 公式:F ma=合理解要点:①因果性:F是产生加速度a的原因,它们同时产生,同时变合化,同时存在,同时消失;②方向性:a与F都是矢量,,方向严格相同;合是该时刻作用③瞬时性和对应性:a为某时刻物体的加速度,F合在该物体上的合外力。
高考物理易错题专题三物理牛顿运动定律(含解析)及解析

高考物理易错题专题三物理牛顿运动定律(含解析)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
高考物理备考系列专题牛顿运动定律

专题03 牛顿运动定律第一部分牛顿运动规律特点描述综合分析近几年的高考物理试题发现,试题在考查主干知识的同时,注重考查必修中的基本概念和基本规律,且更加突出考查学生运用"力和运动的观点"分析解决问题的能力。
牛顿运动定律及其应用是每年高考考查的重点和热点,应用牛顿运动定律解题的关键是对研究对象进行受力分析和运动分析,特别是牛顿运动定律与曲线运动,万有引力定律以及电磁学等相结合的题目,牛顿定律中一般考查牛顿第二定律较多,一般涉及一下几个方面:一是牛顿第二定律的瞬时性,根据力求加速度或者根据加速度求力,二是动力学的两类问题,三是连接体问题,四是牛顿第二定律在生活生产和科技中的应用。
第一部分知识背一背1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)牛顿第一定律的意义①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。
②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。
(3)惯性①定义:物体具有保持原来匀速直线运动状态或静止状态的性质.②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.③普遍性:惯性是物体的固有属性,一切物体都有惯性。
2.牛顿第二定律(1)内容:物体的加速度与所受合外力成正比,跟物体的质量成反比。
(2)表达式:F=ma.(3)力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg•m/s2=1 N.(4)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.(5)适用范围:①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.3单位制(1)单位制:由基本单位和导出单位一起组成了单位制.①基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是长度、质量、时间;它们的国际单位分别是米、千克、秒.②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.(2)国际单位制中的基本物理量和基本单位4.(1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力.(2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上. (3)物理意义:建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系. 5.作用力与反作用力的“四同”和“三不同”四同: (1) 大小相同 (2)方向在同一直线上 (3) 性质相同 (4) 出现、存在、消失的时间相同 三不同:(1) 方向不同 (2) 作用对象不同 (3) 作用效果不同 6.超重与失重和完全失重 (1)实重和视重①实重:物体实际所受的重力,它与物体的运动状态 无关 .②视重:当物体在 竖直 方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的 重力 .此时弹簧测力计的示数或台秤的示数即为视重. (2)超重、失重和完全失重的比较第三部分 技能+方法 一、如何理解牛顿第一定律1.建立惯性的概念,即一切物体都具有保持原来的匀速直线运动状态或静止状态的性质,叫做惯性.是物体固有的一种属性,与物体是否受力及物体的运动状态无关.2.对力的概念更加明确.力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是物体产生加速度的原因.3.牛顿第一定律不是实验定律,即不能由实验直接加以验证,它是在可靠的实验事实基础上采用科学的抽象思维而推理和总结出来的.二、牛顿第一定律、惯性、牛顿第二定律的比较1.力不是维持物体运动的原因,牛顿第一定律指出“一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止”.因此物体在不受力时仍可以匀速运动,并不需要力来维持,力是改变这种状态的原因,也就是力是产生加速度的原因.2.惯性是一切物体保持原来运动状态的性质,而力是物体间的相互作用.因此惯性不是一种力,力是使物体运动状态发生改变的外部因素,惯性则是维持物体运动状态,阻碍物体运动状态发生改变的内部因素.3.惯性的表现:物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来,物体不受外力时,惯性表现在维持原运动状态不变,即反抗加速度产生,且在外力一定时,质量越大的物体运动状态越难改变,加速度越小.4.牛顿第一定律不是牛顿第二定律的特例,而是牛顿第二定律的基础,牛顿第一定律不是由实验直接总结出来的,是以伽利略的理想实验为基础,通过对大量实验现象的思维抽象、推理而总结出来的.牛顿第一定律定性地给出了物体在不受力的理想情况下的运动规律,在此基础上牛顿第二定律定量地指出了力和运动的关系:F=ma.【例1】小明在做双脚跳台阶的健身运动,若忽略空气阻力,则下列说法正确的是:()A.小明在下降过程中处于失重状态B.小明起跳以后在上升过程处于超重状态C.小明落地时地面对他的支持力小于他的重力D.起跳过程地面对小明的作用力就是他对地面的作用力【答案】 A【解析】超失重要看加速度,若加速度方向向上即为超重,若加速度方向向下即为失重。
牛顿运动定律及应用例题和知识点总结

牛顿运动定律及应用例题和知识点总结牛顿运动定律是经典力学的基础,对于理解物体的运动和受力情况具有至关重要的意义。
接下来,让我们一起深入探讨牛顿运动定律的相关知识点,并通过具体的例题来加深对其的理解和应用。
一、牛顿第一定律牛顿第一定律,也称为惯性定律,其内容为:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
惯性是物体保持原有运动状态的性质,质量是衡量物体惯性大小的唯一量度。
质量越大,惯性越大,物体的运动状态就越难改变。
例如,在一辆行驶的公交车上,当车突然刹车时,站着的乘客会向前倾。
这是因为乘客原本具有向前的运动惯性,而车的刹车力使车的运动状态改变,但乘客的身体由于惯性仍要保持向前运动的趋势。
二、牛顿第二定律牛顿第二定律的表达式为:F = ma,其中 F 表示物体所受的合力,m 表示物体的质量,a 表示物体的加速度。
这一定律表明,物体的加速度与作用在它上面的合力成正比,与物体的质量成反比。
当合力为零时,加速度为零,物体将保持匀速直线运动或静止状态。
例题:一个质量为 2kg 的物体,受到水平方向上大小为 6N 的合力作用,求物体的加速度。
解:根据牛顿第二定律 F = ma,可得 a = F/m = 6/2 = 3m/s²,所以物体的加速度为 3m/s²。
在实际应用中,需要注意合力的计算和方向的确定。
例如,一个物体在斜面上运动,需要将重力分解为沿斜面和垂直斜面的两个分力,然后计算沿斜面方向的合力。
三、牛顿第三定律牛顿第三定律指出:两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。
作用力和反作用力同时产生、同时消失,且性质相同。
比如,当你用力推墙时,墙也会对你施加一个大小相等、方向相反的反作用力。
例题:一个人在冰面上行走,他向后蹬冰面,冰面对他的反作用力使人向前运动。
如果人对冰面的作用力为 100N,那么冰面对人的反作用力也是 100N。
高考物理力学知识点之牛顿运动定律知识点总复习附答案解析(3)

高考物理力学知识点之牛顿运动定律知识点总复习附答案解析(3)一、选择题1.质量为2kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数μ=0.2,最大静摩擦力与滑动摩擦力大小视为相等。
从t =0时刻开始,物体受到方向不变,大小呈周期性变化的水平拉力F 的作用,F ~t 图像如图所示,则物体在t =0至t =12s 这段时间的位移大小为( )A .18mB .54mC .81mD .360m2.如图所示,质量为m 的小物块以初速度v 0冲上足够长的固定斜面,斜面倾角为θ,物块与该斜面间的动摩擦因数μ>ta nθ,(规定沿斜面向上方向为速度v 和摩擦力f 的正方向)则图中表示该物块的速度v 和摩擦力f 随时间t 变化的图象正确的是()A .B .C .D .3.如图A 、B 、C 为三个完全相同的物体。
当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( )A .f 1=f 2=0B .f 1=0,f 2=FC .13F f =,f 2=23F D .f 1=F ,f 2=0 4.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( )A .3s t =时,部件属于失重状态B .4s t =至 4.5s t =时,部件的速度在减小C .5s t =至11s t =时,部件的机械能守恒D .13s t =时,部件所受拉力小于重力5.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J6.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A .甲球质量大于乙球B .m 1/m 2=v 2/v 1C .释放瞬间甲球的加速度较大D .t 0时间内,两球下落的高度相等7.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )A .升降机停止前在向下运动B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态C .13t t -时间内小球向下运动,动能先增大后减小D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量8.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A 的上表面水平且放有一斜劈B ,B 的上表面上有一物块C ,A 、B 、C 一起沿斜面匀加速下滑。
高考物理牛顿运动定律考点总结-经典教学教辅文档

高考物理牛顿运动定律考点总结高考物理牛顿运动定律考点一:对牛顿运动定律的理解1. 对牛顿第必然律的理解:(1) 揭示了物体不受外力作用时的运动规律(2) 牛顿第必然律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关(3) 肯定了力和运动的关系:力是改变物体运动形状的缘由,不是保持物体运动的缘由(4) 牛顿第必然律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例(5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以运用牛顿第必然律2. 对牛顿第二定律的理解:(1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、绝对性、独立性(2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始形状(3) 加速度是联系受力情况和运动情况的桥梁,不管是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度3. 对牛顿第三定律的理解:(1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力(2) 指出了物体间的彼此作用的特点:“四同”指大小相等,性质相等,作用在同不断线上,同时出现、消逝、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同高考物理牛顿运动定律考点二:运用牛顿运动定律经常用的方法、技巧1. 理想实验法2. 控制变量法3. 全体与隔离法4. 图解法5. 正交分解法6. 关于临界成绩处理的基本方法是:根据条件变化或过程的发展,分析引发的受力情况的变化和形状的变化,找到临界点或临界条件(更多类型见错题本)高考物理牛顿运动定律考点三:运用牛顿运动定律解决的几个典型成绩1. 力、加速度、速度的关系:(1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系,合力只需不为零,不管速度是多大,加速度都不为零(2) 合力与速度无必然联系,只需速度变化才与合力有必然联系(3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相反时,速度添加,否则速度减小2. 关于轻绳、轻杆、轻弹簧的成绩:(1) 轻绳:① 拉力的方向必然沿绳指向绳膨胀的方向②同一根绳上各处的拉力大小都相等③ 认为受力形变极微,看做不可伸长④ 弹力可做瞬时变化(2) 轻杆:① 作用力方向不必然沿杆的方向② 各处作用力的大小相等③ 轻杆不能伸长或紧缩④ 轻杆遭到的弹力方式有:拉力、压力⑤ 弹力变化所需工夫极短,可忽略不计(3) 轻弹簧:① 各处的弹力大小相等,方向与弹簧形变的方向相反② 弹力的大小恪守的关系③ 弹簧的弹力不能发生渐变3. 关于超重和失重的成绩:(1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实践重力(2) 物体超重或失重与速度方向和大小无关。
牛顿定律高中全题型归纳(全)

牛顿运动定律--(第一定律第三定律)一、牛顿第一定律:1.内容:一切物体总保持匀速直线运动运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.理解:①定律的前一句话揭示了物体所具有的一个重要属性,即“保持匀速直线运动状态或静止状态”,这种性质叫惯性.牛顿第一定律指出了一切物体在任何情况下都具有惯性.②定律的后一句话“除非作用在它上面的力迫使它改变这种状态”这实际上是给力下的定义,即力是改变运动状态的原因(力并不是产生和维持物体运动的原因).③牛顿第一定律指出了物体不受外力作用时的运动规律.实际上,不受外力作用的物体是不存在的.物体所受到的几个力的合力为零时,其运动效果就跟不受外力相同,这时物体的运动状态是匀速直线运动或静止状态.二、牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.2.表达式:F甲对乙=-F乙对甲,负号表示方向相反.3.意义:揭示了力的作用的相互性,即两个物体间只要有作用就必然会出现一对作用力和反作用力.4.特点:(1).是同种性质的力如G与G/、F N与F N/、f与f/.(2).作用在两个物体上,如G作用于人,G/作用于地球.(3).同时产生、同时消失(甲对乙无作用、乙对甲也无作用).(4).不管静止或运动,作用力和反作用力总是大小相等,方向相反.(5).与物体是否平衡无关.题型1:怎样判断物体运动状态是否发生变化?例1关于运动状态的改变,下列说法正确的是()A.速度方向不变,速度大小改变的物体,运动状态发生了变化B.速度大小不变,速度方向改变的物体,运动状态发生了变化C.速度大小和方向同时改变的物体,运动状态一定发生了变化D.做匀速圆周运动的物体,运动状态没有改变1. 在以下各种情况中,物体运动状态发生了改变的有()A.静止的物体 B.物体沿着圆弧运动,在相等的时间内通过相同的路程C.物体做竖直上抛运动,到达最高点过程 D.跳伞运动员竖直下落过程,速率不变2.跳高运动员从地面上跳起,是由于()A.地面给运动员的支持力大于运动员给地面的压力 B.运动员给地面的压力大于运动员受的重力C.地面给运动员的支持力大于运动员受的重力 D.运动员给地面的压力等于地面给运动员的支持力3.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动。
高考物理牛顿运动定律考点归纳

高考物理牛顿运动定律考点归纳考点一:对牛顿运动定律的理解1.对牛顿第一定律的理解1揭示了物体不受外力作用时的运动规律2牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关3肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因4牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例5当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律2.对牛顿第二定律的理解1揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性2牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态3加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度3.对牛顿第三定律的理解1力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力2指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同考点二:应用牛顿运动定律时常用的方法、技巧1.理想实验法2.控制变量法3.整体与隔离法4.图解法5.正交分解法6.关于临界问题处理的基本方法是:根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件更多类型见错题本考点三:应用牛顿运动定律解决的几个典型问题1.力、加速度、速度的关系1物体所受合力的方向决定了其加速度的方向,合力与加速度的关系,合力只要不为零,无论速度是多大,加速度都不为零2合力与速度无必然联系,只有速度变化才与合力有必然联系3速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小2.关于轻绳、轻杆、轻弹簧的问题1轻绳①拉力的方向一定沿绳指向绳收缩的方向②同一根绳上各处的拉力大小都相等③认为受力形变极微,看做不可伸长④弹力可做瞬时变化2轻杆①作用力方向不一定沿杆的方向②各处作用力的大小相等③轻杆不能伸长或压缩④轻杆受到的弹力方式有:拉力、压力⑤弹力变化所需时间极短,可忽略不计3轻弹簧①各处的弹力大小相等,方向与弹簧形变的方向相反②弹力的大小遵循的关系③弹簧的弹力不能发生突变3.关于超重和失重的问题1物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力2物体超重或失重与速度方向和大小无关。
高考物理总复习 3专题三 牛顿运动定律 专题三 牛顿运动定律(讲解部分)

2 mg,aB=
2 g,A、B项错误。剪断细
绳前对A球受力分析如图乙,得A球的重力大小mAg=2F绳 cos 30°= 6 mg,剪
断细绳瞬间,A球受到的支持力FNA=mAg cos 30°= 3 2 mg,C项错误。剪断细
2
绳瞬间,对A球由牛顿第二定律有mAg sin 30°=mAaA,得A球的加速度aA=g sin
二、实重和视重 1.实重:物体实际所受的重力,它与物体的运动状态④ 无关 。 2.视重:当物体在⑤ 竖直 方向上有加速度时,物体对弹簧测力计的拉力 或对台秤的压力将不等于物体的⑥ 重力 。此时弹簧测力计的示数或 台秤的示数即视重。
三、超重和失重的应用 此类问题多为定性分析台秤上放物体或弹簧测力计下悬吊物体时的示数 的变化。分析此类问题时,要特别注意以下几点: 1.超重、失重不是物体重力增加或减少了,而是物体对水平支持面的压力 或对竖直悬线的拉力变大或变小了,重力的大小是没有变化的,仍为mg。 2.超重、失重与物体的速度无关,只取决于物体的加速度方向。 3.对系统超重、失重的判定不能只看某一物体,要综合分析某一物体的加 速运动会不会引起其他物体运动状态的变化。例如台秤上放一盛水容器, 一细线拴一木球,线另一端拴于盛水容器的底部,剪断细 线,木球加速上升的同时有相同体积的水以相等的加速 度在加速下降,综合起来,台秤示数会减小。若不能注意 到这一点,会得出相反的错误结论。
解析 (1)在2 s内,由图乙知:
物块沿斜面向上运动的最大距离:s1=
1 2
×2×1
m=1
m
物块下滑的距离:s2=
1 2
×1×1
m=0.5
m所以Biblioteka 移大小s=s1-s2=0.5 m路程L=s1+s2=1.5 m
高考物理总复习专题三:牛顿运动定律

高考AB卷 学法大视野
3.一对作用力与反作用力和一对平衡力的比较
高考AB卷
学法大视野
【例1】 下列说法正确的是(
)
A. 在高速公路上高速行驶的轿车的惯性比静止在货运场的集装 箱货车的惯性大 B.牛顿第一定律是根据理论推导出来的
高考AB卷
学法大视野
2.求解瞬时加速度的一般思路
分析瞬时变化前、后 列牛顿第二 求瞬时 ⇒ ⇒ 物体的受力情况 定律方程 加速度
高考AB卷
学法大视野
【例 4 】 如图所示,物体 P 放在水平地面上,劲度系数为 k =
250 N/m的轻弹簧左端固定在竖直墙壁上、右端固定在质量为m =1 kg的物体P上,弹簧水平。开始时弹簧为原长,P从此刻开 始受到与水平面成 θ = 37°的拉力作用而向右做匀加速运动。 某时刻F=10 N,弹簧弹力大小为T=5 N,P向右的加速度大小
专题三
牛顿运动定律
高考AB卷
学法大视野
考点一
对牛顿运动定律的理解
高考AB卷
学法大视野
[物 理 学 史 ] (1)伽利略利用 “ 理想实验 ” 得出“ 力是改变物体运动状态的原 因 ” 的观点,推翻了亚里士多德的 “ 力是维持物体运动的原因 ”
的错误观点。
(2) 英国科学家牛顿在《自然哲学的数学原理》著作中提出了 “牛顿第一、第二、第三定律”。
答案
D
高考AB卷 学法大视野
技巧秘诀
1.应用牛顿第二定律常用的方法
若物体只受两个共点力作用而产生加速度时,根据牛顿 合成法
第二定律可知,利用平行四边形定则求出的两个力的合
2008高考物理专题03:牛顿运动定律总结

牛顿运动定律总结(一)牛顿第一定律(即惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(1)理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
①惯性是物体的固有属性,与物体的受力情况及运动状态无关。
②质量是物体惯性大小的量度。
③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量=2/严格相等。
m Fr GM④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。
(二)牛顿第二定律1. 定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比。
=2. 公式:F ma合理解要点:①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;②方向性:a与F合都是矢量,方向严格相同;③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。
(三)力的平衡1. 平衡状态指的是静止或匀速直线运动状态。
特点:a=0。
2. 平衡条件F0。
共点力作用下物体的平衡条件是所受合外力为零,即∑=3. 平衡条件的推论(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力;(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律专题例1. 如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球。
当滑块以2g 加速度向左运动时,线中拉力T 等于多少?解析:当小球和斜面接触,但两者之间无压力时,设滑块的加速度为a'此时小球受力如图2,由水平和竖直方向状态可列方程分别为:T ma T mg cos 'sin 45450︒=︒-=⎧⎨⎩解得:a g '=由滑块A 的加速度a g a =>2',所以小球将飘离滑块A ,其受力如图3所示,设线和竖直方向成β角,由小球水平竖直方向状态可列方程 T ma T mg sin ''cos ββ=-=⎧⎨⎩0解得:()()T ma mg mg '=+=225例2. 如图4甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。
如果突然把两水平细线剪断,求剪断瞬间小球A 、B 的加速度各是多少?(θ角已知)解析:水平细线剪断瞬间拉力突变为零,图甲中OA 绳拉力由T 突变为T',但是图乙中OB 弹簧要发生形变需要一定时间,弹力不能突变。
(1)对A 球受力分析,如图5(a ),剪断水平细线后,球A 将做圆周运动,剪断瞬间,小球的加速度a 1方向沿圆周的切线方向。
F mg ma a g 111==∴=sin sin θθ,(2)水平细线剪断瞬间,B 球受重力G 和弹簧弹力T 2不变,如图5(b )所示,则 F m g a g B 22=∴=tan tan θθ,小结:(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。
(2)明确两种基本模型的特点:A. 轻绳的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。
B. 轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。
例3. 传送带与水平面夹角37°,皮带以10m/s 的速率运动,皮带轮沿顺时针方向转动,如图6所示。
今在传送带上端A 处无初速地放上一个质量为m kg =05.的小物块,它与传送带间的动摩擦因数为0.5,若传送带A 到B 的长度为16m ,g 取102m s /,则物体从A 运动到B 的时间为多少?解析:由于μθ=<=05075.tan .,物体一定沿传送带对地下移,且不会与传送带相对静止。
设从物块刚放上到皮带速度达10m/s ,物体位移为s 1,加速度a 1,时间t 1,因物速小于皮带速率,根据牛顿第二定律,a mg mg mm s 1210=+=sin cos /θμθ,方向沿斜面向下。
tv a s s a t m 1111121125====<,皮带长度。
设从物块速率为102m s /到B 端所用时间为t 2,加速度a 2,位移s 2,物块速度大于皮带速度,物块受滑动摩擦力沿斜面向上,有:a mg mg mm s s vt a t 2222222212=-==+sin cos /θμθ即1651012212222-=+⨯=t t t s ,(t s 210=-舍去)所用总时间t t t s =+=122例4. 如图7,质量M kg =8的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N 。
当小车向右运动速度达到3m/s 时,在小车的右端轻放一质量m=2kg 的小物块,物块与小车间的动摩擦因数μ=02.,假定小车足够长,问: (1)经过多长时间物块停止与小车间的相对运动?(2)小物块从放在车上开始经过t s 030=.所通过的位移是多少?(g 取102m s /)解析:(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。
设物块在小车上相对运动时间为t ,物块、小车受力分析如图8:物块放上小车后做初速度为零加速度为a 1的匀加速直线运动,小车做加速度为a 2匀加速运动。
由牛顿运动定律:物块放上小车后加速度:a g m s 122==μ/小车加速度:()a F mg M m s 2205=-=μ/./v a tv a t11223==+由v v 12=得:t s =2(2)物块在前2s 内做加速度为a 1的匀加速运动,后1s 同小车一起做加速度为a 2的匀加速运动。
以系统为研究对象:根据牛顿运动定律,由()F M m a =+3得:()a F M m m s 3208=+=/./物块位移s s s =+12()()s a t ms v t at m s s s m112212212124124484===+==+=//..例5. 将金属块m 用压缩的轻弹簧卡在一个矩形的箱中,如图9所示,在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动。
当箱以a m s =202./的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为6.0 N ,下底板的传感器显示的压力为10.0 N 。
(取g m s =102/)(1)若上顶板传感器的示数是下底板传感器的示数的一半,试判断箱的运动情况。
(2)若上顶板传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?启迪:题中上下传感器的读数,实际上是告诉我们顶板和弹簧对m 的作用力的大小。
对m 受力分析求出合外力,即可求出m 的加速度,并进一步确定物体的运动情况,但必须先由题意求出m 的值。
解析:当a m s 1220=./减速上升时,m 受力情况如图10所示:mg N N ma m N N g a kg kg+-==--=--=12121110610205.(1)N N N N N N 22121025'''====, ∴+-=N mg N 120''故箱体将作匀速运动或保持静止状态。
(2)若N 10"=,则()F N mg N Na F mm s 合合(向上)=-≥-==≥22105510"/即箱体将向上匀加速或向下匀减速运动,且加速度大小大于、等于102m s /。
例6. 测定病人的血沉有助于对病情的判断。
血液由红血球和血浆组成,将血液放在竖直的玻璃管内,红血球会匀速下沉,其下沉的速度称为血沉,某人血沉为v ,若把红血球看成半径为R 的小球,它在血浆中下沉时所受阻力f R v =6πη,η为常数,则红血球半径R =___________。
(设血浆密度为ρ0,红血球密度为ρ)解析:红血球受到重力、阻力、浮力三个力作用处于平衡状态,由于这三个力位于同一竖直线上,故可得 mg gV f =+ρ0即ρπρππη⋅=⋅+43436303R g g R R v 得:()R vg=-920ηρρ1. 如图1所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是( ) A. 加速下降 B. 减速上升 C. 匀速向右运动 D. 加速向左运动2. 如图2所示,固定在水平面上的光滑半球,球心O 的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A 点,另一端绕过定滑轮,如图所示。
今缓慢拉绳使小球从A 点滑到半球顶点,则此过程中,小球对半球的压力大小N 及细绳的拉力T 大小的变化情况是( ) A. N 变大,T 变大 B. N 变小,T 变大 C. N 不变,T 变小 D. N 变大,T 变小3. 一个物块与竖直墙壁接触,受到水平推力F 的作用。
力F 随时间变化的规律为F kt =(常量k>0)。
设物块从t =0时刻起由静止开始沿墙壁竖直向下滑动,物块与墙壁间的动摩擦因数为()μμ<1,得到物块与竖直墙壁间的摩擦力f 随时间t 变化的图象,如图3所示,从图线可以得出( )A. 在01~t 时间内,物块在竖直方向做匀速直线运动B. 在01~t 时间内,物块在竖直方向做加速度逐渐减小的加速运动C. 物块的重力等于aD. 物块受到的最大静摩擦力总等于b4. 如图4所示,几个倾角不同的光滑斜面具有共同的底边AB ,当物体由静止沿不同的倾角从顶端滑到底端,下面哪些说法是正确的?( ) A. 倾角为30°时所需时间最短 B. 倾角为45°所需时间最短 C. 倾角为60°所需时间最短 D. 所需时间均相等5. 如图5所示,质量为M 的木板,上表面水平,放在水平桌面上,木板上面有一质量为m 的物块,物块与木板及木板与桌面间的动摩擦因数均为μ,若要以水平外力F 将木板抽出,则力F 的大小至少为( ) A. μmg B. ()μM m g +C. ()μm M g +2D. ()2μM m g +6. 一个质量不计的轻弹簧,竖直固定在水平桌面上,一个小球从弹簧的正上方竖直落下,从小球与弹簧接触开始直到弹簧被压缩到最短的过程中,小球的速度和加速度的大小变化情况是( )A. 加速度越来越小,速度也越来越小B. 加速度先变小后变大,速度一直是越来越小C. 加速度先变小,后又增大,速度先变大,后又变小D. 加速度越来越大,速度越来越小7. 质量m kg =1的物体在拉力F 作用下沿倾角为30°的斜面斜向上匀加速运动,加速度的大小为a m s =32/,力F 的方向沿斜面向上,大小为10N 。
运动过程中,若突然撤去拉力F ,在撤去拉力F 的瞬间物体的加速度的大小是____________;方向是____________。
8. 如图6所示,倾斜的索道与水平方向的夹角为37°,当载物车厢加速向上运动时,物对车厢底板的压力为物重的1.25倍,这时物与车厢仍然相对静止,则车厢对物的摩擦力的大小是物重的________倍。
9. 如图7所示,传送带AB 段是水平的,长20 m ,传送带上各点相对地面的速度大小是2 m/s ,某物块与传送带间的动摩擦因数为0.1。
现将该物块轻轻地放在传送带上的A 点后,经过多长时间到达B 点?(g 取102m s /)10. 鸵鸟是当今世界上最大的鸟。
有人说它不会飞是因为翅膀退化了,如果鸵鸟长了一副与身体大小成比例的翅膀,它是否就能飞起来呢?这是一个使人极感兴趣的问题,试阅读下列材料并填写其中的空白处。
鸟飞翔的必要条件是空气的上举力F 至少与体重G =mg 平衡,鸟扇动翅膀获得的上举力可表示为F cSv =2,式中S 为鸟翅膀的面积,v 为鸟飞行的速度,c 是恒量,鸟类能飞起的条件是F G ≥,即v ≥_________,取等号时的速率为临界速率。
我们作一个简单的几何相似性假设。
设鸟的几何线度为l ,质量m ∝体积∝l 3,S l ∝2,于是起飞的临界速率v l ∝。