Inhibition of vesicular stomatitis virus infection in

合集下载

慢病毒的简介

慢病毒的简介
The development of stable packaging cell lines that produce high titers of lentiviral vectors has been hindered by the toxicity of constitutive VSV-G expression. For this reason, many groups continue to use transient triple transfection to generate their vector stocks.
慢病毒载体系统的另一个特征是携带病毒微粒 的表面蛋白,包含HIV受体和共受体,从而改变或 扩大的细胞类型的范围,使得该载体可以结合并 且进入。这个模型涉及取代的HIV-1包膜糖蛋白与 另一种病毒的包膜糖蛋白,如疱疹性口腔炎病毒 糖蛋白(VSV-G)。
14
1.3. Lentiviral Vector Production
质粒一携带了gag/ pol编码序列及RRE ; 质粒二包含了编码rev的序列; 质粒三是载体质粒; 质粒四表达env。
6
3.4自身失活型(SIN)慢病毒载体 SIN载体的构建是在原病毒载体基础上删 除了病毒3’端LTR的U3区增强子和启动子序 列的片段。该区域出现突变则在HIV-1载体 转录后,其5’LTR会因为缺失HIV-1所需要 的启动子和增强子序列而无法复制出完整 长度的病毒基因组。
In SIN vectors, viral promoter activity is deleted
from the inte-grated provirus by deletions in the
U3 region of the 3’ long terminal repeat (LTR)

分泌蛋白的合成和运输的研究方法

分泌蛋白的合成和运输的研究方法

分泌蛋白的合成和运输的研究方法引言分泌蛋白是细胞合成并通过胞吐 (exocytosis) 释放到细胞外的蛋白质。

合成和运输分泌蛋白的过程对于维持细胞内外环境的稳态和调节信号传导具有重要作用。

本文将探讨分泌蛋白的合成和运输的研究方法。

体外合成体系研究合成机制为了研究分泌蛋白的合成机制,科学家们开发了体外合成体系。

以下是一些常用的技术和方法:1. 信号肽识别和定位信号肽是用于将蛋白质定位到内质网 (endoplasmic reticulum, ER) 的重要序列。

通过设计信号肽突变体和使用荧光染料标记信号肽,可以研究信号肽与其识别机制之间的相互作用。

2. 原核和真核细胞体外合成体系利用细胞提取物或粗体制作的提取液,可以在体外合成蛋白。

对细胞提取物进行分离、纯化和再组装可以揭示不同细胞器的参与和作用。

原核和真核细胞体外合成系统为研究分泌蛋白的合成和折叠提供了有力工具。

3. 脱敏感受体研究脱敏感受体是细胞内膜通路的一个重要组成部分,可以通过某种方式下调信号传导。

通过应用具有已知功能的脱敏感受体,可以研究信号传导的机制以及信号肽对合成和运输的影响。

蛋白质折叠和质量控制分泌蛋白在合成过程中需要经历正确折叠和质量控制检查。

下面是研究蛋白质折叠和质量控制的常用方法。

1. 质量控制点标记引入点突变和标记序列以干扰分泌蛋白的折叠和质量控制机制。

通过追踪标记的蛋白质以及其折叠状态,可以探究质量控制的机制和参与因素。

2. 质子化检测利用荧光染料和显微镜技术,在细胞中观察和可视化蛋白质在合成和折叠过程中的质子化状态。

这可以为研究分泌蛋白的折叠机制提供重要线索。

3. 质量控制点突变体筛选通过对突变体细胞库进行筛选,找到与特定折叠错误相关的突变体。

这可以揭示质量控制机制中的特定参与因素和途径。

分泌蛋白运输调节正确的分泌蛋白运输是维持细胞功能和稳态的重要过程。

以下是对分泌蛋白运输调节的研究方法。

1. 免疫共沉淀通过将目标蛋白与抗体结合,然后使用磁珠等材料分离目标蛋白复合物,可以鉴定参与蛋白运输的其他分子。

禽类抗病毒蛋白质_Mx蛋白

禽类抗病毒蛋白质_Mx蛋白
收稿日期:2 0 0 7 - 0 6 - 2 5 作者简介 :尹春光(1971-),女,博士生,副教授,E-mail : jnycg@126.com ;杜立新(1956-) ,博士生导师,教授,联系 作者,E-mail:lxdu@263.net
蛋白能够维持机体的抗病毒状态,抵抗病毒的感染。 1962 年,Lindenmann[1]首次发现小鼠 A2G16 号染
摘要:M x 蛋白是在干扰素( I F N ) 诱导下产生的具有抗病毒功能的蛋白质,M x 蛋白具有 G T P a s e 活性,其 C 末端的区 域是进行亚细胞定位及与病毒直接作用的区域。人类 I F N 诱导的 M x A 蛋白能够维持机体的抗病毒状态,抵抗病毒 的感染。禽类的 M x 蛋白抗病毒活性与 G E D 区单核苷酸多态性有关,其中 6 3 1 位氨基酸 N 与 S 的变化可以改变其抗 病毒的作用。据此,M x 基因单核苷酸多态性( S N P ) 标记可指导人类疾病的临床治疗和应用于禽类的抗病育种。 关键词:M x 蛋白;G T P a s e 活性;G E D 区 中图分类号:S 8
色体上有一个显性基因能抵抗正黏液毒科的病毒(流 感病毒),并将该基因命名为myxovirusresistant,即 M x 基因,该基因表达使得 A 2 G 对流感病毒 N W S 株 不敏感,能抵抗致死剂量的流感病毒。Mx 蛋白在真 核生物中普遍存在并行使着重要的功能。 1. 禽类Mx 蛋白
1993 年,Bazzigher 等[2]首次利用人的 Mx基因作 探针,与鸭的基因组进行分析没有检测分离到 Mx 基 因相关序列。进一步利用小鼠 M x 1 外显子 3 基因设
● 小综述
《生命的化学》2007 年 27 卷 6 期 CHEMISTRY OF LIFE 2007,27(6)

219326121_猪塞内卡病毒病综述及防控

219326121_猪塞内卡病毒病综述及防控

Summarize and reviews | 综述与专论148 ·2022.210 引言猪塞内卡病毒病是一种典型的猪传染病,主要是由A 型塞内卡病毒病导致,以接触传播为主要的传播方式,其临床症状类似于水泡性口炎感染、口蹄疫病毒感染,会让生猪的口鼻部出现若干个囊泡,并且还会破溃,还会有水疱出现在生猪的蹄部[1]。

猪塞内卡病毒病最早出现在美洲地区,尤其是于2014年在巴西出现大规模蔓延的趋势,而后开始受到畜牧业的重视。

2015年开始,猪塞内卡病毒病从国外传入到我国,目前已经在我国部分省市零星散发,2015年,广东某地大规模养猪场就出现了猪塞内卡病毒病现象,导致大量猪死亡,塞内卡病毒病菌从发病病料中得以分离出来。

2016年3月,华南地区某集约化猪场出现水疱性疾病暴发的现象,发病率100%、病死率约40%,试验证明,这起水疱性疾病是单纯地由猪塞内卡病毒病引起的暴发[2]。

虽然猪塞内卡病毒病已经在一定程度上影响到了我国生猪养殖业,但由于流行范围有限,并未引起国内社会大众的关注。

该文就猪塞内卡病毒病防控进行探讨。

1 猪塞内卡病毒病临床症状塞内卡病毒病的传染性较强,既可通过间接接触方式或直接接触方式来实现水平传播,又可在气溶胶、口沫等作用下实现长距离传播。

病猪在临床上通常会在身体多处出现水泡性损伤,如口腔粘膜、鼻孔、鼻镜等,还有可能会出现蹄壳脱落等临床特征,同时还会伴随出现精神不振、厌食厌水、站立困难、跛行不便等问题。

若猪群内暴发猪塞内卡病毒病后,就会让整个猪群出现不吃料、不喝水的情况,甚至发烧发热。

猪塞内卡病毒病的临床症状与水泡疹、口蹄疫、水泡性口炎、猪水泡病等疾病的临床症状区别不大,从目前来看,塞内卡病毒病还没有被正式纳入到(OIE )《陆生动物诊断试验与疫苗手册》中,我国农业部门也未将猪塞内卡病毒病归类[3]。

2007年,加拿大曾经出现过一次猪塞内卡病毒病疫情,80%的病猪发生了跛行现象,30%的病猪发生了蹄部冠状带水泡现象,6%的病猪发生了鼻镜水泡现象,所幸未有病猪死亡现象。

猪水疱性口炎病毒基因及其疫苗的研究进展

猪水疱性口炎病毒基因及其疫苗的研究进展

猪水疱性口炎病毒基因及其疫苗的研究进展甘振磊;汤德元;罗险峰;曾智勇;李春燕;王凤【摘要】Swine vesicular stomatitis is a highly contagious viral disease caused by vesicular stomatitis virus. Clinical characteristics of pigs lips, the nose, mouth, blisters and drooling from the mouth repeatedly assured, sometimes often also occur in the skin of the hoof crown and toes, their symptoms to blisters. VSV has widely spread in many parts of the world. In recent years, because the increase of he product trade swine vesicular stom-atitis virus also spreads into our country. Because Swine vesicular stomatitis has similar clinical symptoms with swine vesicular disease, swine foot and mouth disease and swine vesicular rash, so it is particularly important to make the accurate diagnosis and prevention. In VSV vaccine research, mainly are inactivated vaccine and attenu-ated vaccine, and little research of new vaccines. This paper reviews the research progress of swine vesicular stom-atitis virus gene and its vaccine, so as to provide reference for further understand and prevention of this disease.% 猪水疱性口炎是由水疱性口炎病毒引起的高度接触传染性的病毒性疾病。

水泡性口炎

水泡性口炎

二、水泡性口炎(Versicular stomatitis, VS)水泡性口炎又名口疮、伪口疮、牛及马的口腔溃疡病、伪口蹄疫,是由水泡性口炎病毒感染引起的多种哺乳动物和人共患的急性高度接触性传染病。

临床上以舌、唇、口腔黏膜、乳头和蹄冠等处上皮发生水泡和糜烂为主要症状。

对动物的生产性能影响严重,但预后良好,很少引起动物死亡。

1821年,水泡性口炎最先报道于美洲的马和骡,1916年,第一次世界大战期间由美国的军马传至欧洲。

该病被OIE列为A类动物疾病。

美洲是该病的主要流行区,而我国则没有水泡性口炎的流行。

作为外来疫病,我国在进出境动物检疫对象中将VS列为二类疫病。

随着国际间交流和贸易的不断扩大和深入,此类疾病传入我国的风险不断加大。

病原学学名及分类地位水泡性口炎病毒(Versicular stomatitis virus, VSV)是弹状病毒科(Rhabdoviridae)水泡病毒属(Vesiculovirus)成员。

形态特征电镜下VSV病毒粒子呈子弹状或圆柱状,大小为150~180nm×50~70nm,表面有囊膜。

典型的病毒粒子内部为紧密盘旋的螺旋对称的核衣壳,核衣壳外径约49nm,内径约29nm,内部中空。

此外,电镜下有时也可见短缩的T粒子,T粒子含有全部结构蛋白,但无转录酶活性,其RNA含量仅为典型粒子的1/3,无感染性。

分子生物学特性VSV基因组为单股不分节段的负链RNA,长约11kb。

从3’端到5’端依次排列着N、P、M、G和L共5个不重叠的基因。

N基因的3’端有47bp的先导序列,L基因的5’端有59bp的非翻译区,各基因间存在长度均为2bp的间隔序列,且分别为GA、CA、GA、GA,保守性较强。

理化特性VSV不耐热,56℃30min可以灭活,在直射阳光或紫外照射下也可迅速灭活。

对脂溶剂敏感,pH3以下酸性环境内不稳定,2%氢氧化钠或1%福尔马林可在数分钟内灭活病毒。

4~6℃时,VSV在土壤中可存活数天,在50%甘油磷酸盐缓冲液内可存活长达半年,因此在野外采集病料时,可使用50%甘油磷酸盐缓冲液暂时保存和运输。

中华人民共和国进境动物检疫疫病名录

中华人民共和国进境动物检疫疫病名录

中华人民共和国进境动物检疫疫病名录文章属性•【制定机关】农业农村部,中华人民共和国海关总署•【公布日期】2020.01.15•【文号】中华人民共和国农业农村部、中华人民共和国海关总署公告第256号•【施行日期】2020.01.15•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】动植物检疫正文中华人民共和国农业农村部中华人民共和国海关总署公告第256号为防范动物传染病、寄生虫病传入,保护我国畜牧业及渔业生产安全、动物源性食品安全和公共卫生安全,根据《中华人民共和国动物防疫法》《中华人民共和国进出境动植物检疫法》等法律法规,农业农村部会同海关总署组织修订了《中华人民共和国进境动物检疫疫病名录》(以下简称《名录》),现予以发布。

该《名录》自发布之日起生效,2013年11月28日发布的《中华人民共和国进境动物检疫疫病名录》(农业部、国家质量监督检验检疫总局联合公告第2013号)同时废止。

农业农村部和海关总署将在风险评估的基础上对《名录》实施动态调整。

特此公告。

农业农村部海关总署2020年1月15日附件:中华人民共和国进境动物检疫疫病名录附件中华人民共和国进境动物检疫疫病名录List of Quarantine Diseases for the Animals Imported to thePeople’s Republic of China一类传染病、寄生虫病(16种)List A diseases口蹄疫Infection with foot and mouth disease virus猪水泡病Swine vesicular disease猪瘟Infection with classical swine fever virus非洲猪瘟Infection with African swine fever virus尼帕病Nipah virus encephalitis非洲马瘟Infection with African horse sickness virus牛传染性胸膜肺炎Infection with Mycoplasma mycoides subsp. mycoides SC (contagious bovine pleuropneumonia)牛海绵状脑病Bovine spongiform encephalopathy牛结节性皮肤病Infection with lumpy skin disease virus痒病Scrapie蓝舌病Infection with bluetongue virus小反刍兽疫Infection with peste des petits ruminants virus绵羊痘和山羊痘Sheep pox and Goat pox高致病性禽流感Infection with highly pathogenic avianinfluenza新城疫Infection with Newcastle disease virus埃博拉出血热Ebola haemorrhagic fever二类传染病、寄生虫病(154种)List B diseases共患病(29种)Multiple species diseases狂犬病Infection with rabies virus布鲁氏菌病Infection with Brucella abortus, Brucella melit-ensis and Brucella suis炭疽Anthrax伪狂犬病Aujeszky’s disease(Pseudorabies)魏氏梭菌感染Clostridium perfringens infections副结核病Paratuberculosis (Johne’s disease)弓形虫病Toxoplasmosis棘球蚴病Infection with Echinococcus granulosus,Infection with Echinococcus multilocularis钩端螺旋体病Leptospirosis施马伦贝格病Schmallenberg disease梨形虫病Piroplasmosis日本脑炎Japanese encephalitis旋毛虫病Infection with Trichinella spp.土拉杆菌病Tularemia水泡性口炎Vesicular stomatitis西尼罗热West Nile fever裂谷热Infection with Rift Valley fever virus结核病Infection with Mycobacterium tuberculosis complex新大陆螺旋蝇蛆病(嗜人锥蝇)New world screwworm(Cochliomyia hominivorax)旧大陆螺旋蝇蛆病(倍赞氏金蝇)Old world screwworm(Chrysomya bezziana)Q热Q Fever克里米亚刚果出血热Crimean Congo hemorrhagic fever伊氏锥虫感染(包括苏拉病)Trypanosoma Evansi infection (including Surra)利什曼原虫病Leishmaniasis巴氏杆菌病Pasteurellosis心水病Heartwater类鼻疽Malioidosis流行性出血病感染Infection with epizootic haemorrhagicdis-ease小肠结肠炎耶尔森菌病(Yersinia enterocolitica)牛病(11种)Bovine diseases牛传染性鼻气管炎/传染性脓疱性阴户阴道炎Infectious bo-vine rhinotracheitis/Infectious pustular vulvovaginitis牛恶性卡他热Malignant catarrhal fever牛白血病Enzootic bovine leukosis牛无浆体病Bovine anaplasmosis牛生殖道弯曲杆菌病Bovine genital campylobacteriosis牛病毒性腹泻/粘膜病Bovine viral diarrhoea/Mucosaldisease赤羽病Akabane disease牛皮蝇蛆病Cattle Hypodermosis牛巴贝斯虫病Bovine babesiosis出血性败血症Haemorrhagic septicaemia泰勒虫病Theileriosis马病(11种)Equine diseases马传染性贫血Equine infectious anaemia马流行性淋巴管炎Epizootic lymphangitis马鼻疽Infection with Burkholderia mallei (Glanders)马病毒性动脉炎Infection with equine arteritis virus委内瑞拉马脑脊髓炎Venezuelan equine encephalomyelitis马脑脊髓炎(东部和西部)Equine encephalomyelitis (East-ern and Western)马传染性子宫炎Contagious equine metritis亨德拉病Hendra virus disease马腺疫Equine strangles溃疡性淋巴管炎Equine ulcerative lymphangitis马疱疹病毒-1型感染Infection with equid herpesvirus-1(EHV-1)猪病(16种)Swine diseases猪繁殖与呼吸道综合征Infection with porcine reproductive and respiratory syndrome virus猪细小病毒感染Porcine parvovirus infection猪丹毒Swine erysipelas猪链球菌病Swine streptococosis猪萎缩性鼻炎Atrophic rhinitis of swine猪支原体肺炎Mycoplasmal hyopneumonia猪圆环病毒感染Porcine circovirus infection革拉泽氏病(副猪嗜血杆菌)Glaesser’s disease(Haemoph-ilus parasuis)猪流行性感冒Swine influenza猪传染性胃肠炎Transmissible gastroenteritis of swine猪铁士古病毒性脑脊髓炎(原称猪肠病毒脑脊髓炎、捷申或塔尔凡病)Teschovirus encephalomyelitis(previously Enterovirus encephalomyelitis or Teschen/Talfan disease)猪密螺旋体痢疾Swine dysentery猪传染性胸膜肺炎Infectious pleuropneumonia of swine猪带绦虫感染\猪囊虫病Infection with Taenia solium(Porcine cysticercosis)塞内卡病毒病(Infection with Seneca virus)猪δ冠状病毒(德尔塔冠状病毒)Porcine deltacorona virus(PDCoV)禽病(21种)Avian diseases鸭病毒性肠炎(鸭瘟)Duck virus enteritis鸡传染性喉气管炎Avian infectious laryngotracheitis鸡传染性支气管炎Avian infectious bronchitis传染性法氏囊病Infectious bursal disease马立克氏病Marek's disease鸡产蛋下降综合征Avian egg drop syndrome禽白血病Avian leukosis禽痘Fowl pox鸭病毒性肝炎Duck virus hepatitis鹅细小病毒感染(小鹅瘟)Goose parvovirus infection鸡白痢Pullorum disease禽伤寒Fowl typhoid禽支原体病(鸡败血支原体、滑液囊支原体)Avian mycoplasmosis (Mycoplasma Gallisepticum, M. synoviae)低致病性禽流感Infection with Low pathogenic avian influenza 禽网状内皮组织增殖症Reticuloendotheliosis禽衣原体病(鹦鹉热)Avian chlamydiosis鸡病毒性关节炎Avian viral arthritis禽螺旋体病Avian spirochaetosis住白细胞原虫病(急性白冠病)Leucocytozoonosis禽副伤寒Avian paratyphoid火鸡鼻气管炎(禽偏肺病毒感染)Turkey rhinotracheitis(avian metapneumovirus)羊病(4种)Sheep and goat diseases山羊关节炎/脑炎Caprine arthritis/encephalitis梅迪-维斯纳病Maedi-visna边界病Border disease羊传染性脓疱皮炎Contagious pustular dermertitis (Contagious Echyma)水生动物病(43种)Aquatic animal diseases鲤春病毒血症Infection with spring viraemia of carp virus流行性造血器官坏死病Epizootic haematopoietic necrosis传染性造血器官坏死病Infection with infectious haematopoietic necrosis病毒性出血性败血症Infection with viral haemorrhagic septicaemia virus流行性溃疡综合征Infection with Aphanomyces invadans (epizootic ulcerative syndrome)鲑鱼三代虫感染Infection with Gyrodactylus Salaris真鲷虹彩病毒病Infection with red sea bream iridovirus锦鲤疱疹病毒病Infection with koi herpesvirus鲑传染性贫血Infection with HPR-deleted or HPRO infectious salmon anaemia virus病毒性神经坏死病Viral nervous necrosis斑点叉尾鮰病毒病Channel catfish virus disease鲍疱疹样病毒感染Infection with abalone herpesvirus牡蛎包拉米虫感染Infection with Bonamia Ostreae杀蛎包拉米虫感染Infection with Bonamia Exitiosa折光马尔太虫感染Infection with Marteilia Refringens奥尔森派琴虫感染Infection with Perkinsus Olseni海水派琴虫感染 Infection with Perkinsus Marinus加州立克次体感染Infection with Xenohaliotis Californiensis白斑综合征Infection with white spot syndrome virus传染性皮下和造血器官坏死病Infection with infectious hypodermal andhaematopoietic necrosis virus传染性肌肉坏死病Infection with infectious myonecrosis virus桃拉综合征Infection with Taura syndrome virus罗氏沼虾白尾病Infection with Macrobrachium rosenbergii nodavirus (white tail disease)黄头病Infection with yellow head virus genotype 1螯虾瘟Infection with Aphanomyces astaci (crayfish plague)箭毒蛙壶菌感染Infection with Batrachochytrium Dendrobatidis蛙病毒感染Infection with Ranavirus species异尖线虫病Anisakiasis坏死性肝胰腺炎Infection with Hepatobacter penaei (necrotising hepatopancreatitis)传染性脾肾坏死病Infectious spleen and kidney necrosis刺激隐核虫病Cryptocaryoniasis淡水鱼细菌性败血症Freshwater fish bacteria septicemia鮰类肠败血症Enteric septicaemia of catfish迟缓爱德华氏菌病Edwardsiellasis鱼链球菌病Fish streptococcosis蛙脑膜炎败血金黄杆菌病Chryseobacterium meningsepticum of frog (Rana spp)鲑鱼甲病毒感染 Infection with salmonid alphavirus蝾螈壶菌感染 Infection with Batrachochytrium salamandrivorans鲤浮肿病毒病 Carp edema virus disease罗非鱼湖病毒病 Tilapia Lake virus disease细菌性肾病Bacterial kidney disease急性肝胰腺坏死Acute hepatopancreatic necrosis disease十足目虹彩病毒1感染 Infection with Decapod iridescent virus 1蜂病(6种)Bee diseases蜜蜂盾螨病Acarapisosis of honey bees美洲蜂幼虫腐臭病Infection of honey bees with Paenibacillus larvae (American foulbrood)欧洲蜂幼虫腐臭病Infection of honey bees with Melissococcusplutonius (European foulbrood)蜜蜂瓦螨病Varroosis of honey bees蜂房小甲虫病(蜂窝甲虫)Small hive beetle infestation(Aethina tumida) 蜜蜂亮热厉螨病Tropilaelaps infestation of honey bees其他动物病(13种)Diseases of other animals鹿慢性消耗性疾病Chronic wasting disease of deer兔粘液瘤病Myxomatosis兔出血症Rabbit haemorrhagic disease猴痘Monkey pox猴疱疹病毒I型(B病毒)感染症 Cercopithecine Herpesvirus Type I(B virus)infectious diseases猴病毒性免疫缺陷综合征Simian virus immunodeficiency syndrome马尔堡出血热Marburg haemorrhagic fever犬瘟热Canine distemper犬传染性肝炎Infectious canine hepatitis犬细小病毒感染Canine parvovirus infection水貂阿留申病Mink aleutian disease水貂病毒性肠炎Mink viral enteritis猫泛白细胞减少症(猫传染性肠炎)Feline panleucopenia (Feline infectious enteritis)其他传染病、寄生虫病(41种)Other diseases共患病(9种)Multiple species diseases大肠杆菌病Colibacillosis李斯特菌病Listeriosis放线菌病Actinomycosis肝片吸虫病Fasciolasis丝虫病 Filariasis附红细胞体病Eperythrozoonosis葡萄球菌病Staphylococcosis血吸虫病Schistosomiasis疥癣Mange牛病(5种)Bovine diseases牛流行热Bovine ephemeral fever毛滴虫病Trichomonosis中山病Chuzan disease茨城病Ibaraki disease嗜皮菌病Dermatophilosis马病(3种)Equine diseases马流行性感冒Equine influenza马媾疫Dourine马副伤寒(马流产沙门氏菌)Equine paratyphoid (Salmonella Abortus Equi.)猪病(2种)Swine diseases猪副伤寒Swine salmonellosis猪流行性腹泻Porcine epizootic diarrhea禽病(5种)Avian diseases禽传染性脑脊髓炎Avian infectious encephalomyelitis传染性鼻炎Infectious coryza禽肾炎Avian nephritis鸡球虫病Avian coccidiosis鸭疫里默氏杆菌感染(鸭浆膜炎)Riemerella anatipestifer infection 绵羊和山羊病(7种)Sheep and goat diseases羊肺腺瘤病Ovine pulmonary adenocarcinoma干酪性淋巴结炎Caseous lymphadenitis绵羊地方性流产(绵羊衣原体病)Infection with Chlamydophila abortus (Enzootic abortion of ewes, ovine chlamydiosis)传染性无乳症Contagious agalactia山羊传染性胸膜肺炎Contagious caprine pleuropneumonia羊沙门氏菌病(流产沙门氏菌)Salmonellosis(S.abortusovis)内罗毕羊病Nairobi sheep disease蜂病(2种)Bee diseases蜜蜂孢子虫病Nosemosis of honey bees蜜蜂白垩病Chalkbrood of honey bees其他动物病(8种)Diseases of other animals兔球虫病Rabbit coccidiosis骆驼痘Camel pox家蚕微粒子病Pebrine disease of Chinese silkworm蚕白僵病Bombyx mori white muscardine淋巴细胞性脉络丛脑膜炎Lymphocytic choriomeningitis 鼠痘Mouse pox鼠仙台病毒感染症Sendai virus infectious disease小鼠肝炎Mouse hepatitis。

开题报告

开题报告
[2]Mead DG,Ramberg FB,Besselsen DG,etal.Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice [J]. Science,2000,287: 485-487
存在问题:
病毒对细胞又何影响
病毒能否在CIK细胞中复制
能否引起CIK细胞单层产生空斑
研究目标和内容
目标:
本实验用VSV病毒感染草鱼肾细胞(CIK细胞),分别于攻毒后12h、24h、36h后观察其细胞病变效应,同时利用RT-PCR方法检测其在CIK细胞中的复制。观察细胞病变效应发现,病毒感染后的细胞圆缩、聚集、脱落、并有空泡形成。随着时间的延长,病变效应加剧,并逐渐凋亡。RT-PCR结果证实了VSV病毒可在CIK 细胞中复制。在空斑实验中,证实了VSV病毒不能使CIK细胞单层产生蚀斑。
(1)病毒RNA的提取(2)cDNA合成 (3)PCR扩增(4)电泳鉴定
4.VSV病毒对CIK细胞单层的空斑实验
在24孔板中进行细胞铺板,当细胞生长至70%~80%时,弃去原培养液,加入梯度稀释后的病毒液,孵育 h后弃去病毒液,加入含%小牛血清的甲基纤维素覆盖,置于27℃恒温箱中培养,3 d后弃去甲基纤维素,用%的结晶紫染色1min,漂洗,风干,观察空斑和计数。
湖州师范学院毕业设计(论文)开题报告
学生姓名
高霞婷
班级
060922
学号
06092204
专 业
生物技术
指导教师
采克俊
刘 莉
开题时间
设计(论文)题目

Neddylation在病毒感染性疾病中的作用

Neddylation在病毒感染性疾病中的作用
240—273.
[3] 余功旺,黄文浩,刘爱梅,等•小鼠腹腔巨噬细胞炎症模型的建 立[J] •广东药学院学报,2014(6 ):766—770
[4] 孙秀超,买尔旦•玉苏甫,张健,等•石榴花多酚对离体大鼠胸 主动脉环舒张作用的影响[J] •新疆医科大学学报,2018,41 (5) :71—75.
[5 ]柯春林,李作美,路滨宇,等•石榴花多糖醇提工艺的响应曲面 法优化及其抗氧化活性研究[J].食品工业科技,2015 ,36 (8":
1 Neddylation概念及其特征 Neddyeation 新 的 种 白质 译后修饰
抗炎药,但其有效成分及分子作用机制尚不明确, 有待进一步研究。
参考文献:
[1] Ng P C, Li K, Wong R PO, eS aU Pre-inIammatorg and anti-in-
Iammatog cytokine responses in preterm infants with systemic in­
fections ( J). Arch Dis Child-Fetal,2003 ,88(3) :209—213.
[2] Mogensen T H. Pathogen recognition and inIammatog signaling in
innate immune defenses [ J ]. Clin Microbiol Rea, 2009,22 ( 2 ):
Chinese Journal of Veterinag Medicine
中国兽医杂志2021年(第57卷)第3期 57
Neddylahon在病毒感染性疾病中的作用
白 玉,赵立红,连鹏敬,李静云,乔 健
(中国农业大学动物医学院,北京海淀100193)

水飞蓟宾过敏误诊为疱疹性口炎一例报告

水飞蓟宾过敏误诊为疱疹性口炎一例报告

天津医药2018年1月第46卷第1期水飞蓟宾过敏误诊为疱疹性口炎一例报告段海真,胡权,任达福,马璇岚,宋仁杰,喻安永△摘要:水飞蓟宾具有抗氧化、抗肿瘤、抗炎及免疫调节作用,广泛用于各种原因所致肝损害,近年来还发现其有潜在的抗过敏反应。

即使较大剂量使用水飞蓟宾仍未发现明显不良反应,尚少见文献报道水飞蓟宾可引起过敏反应。

本文中患者因预防结核化疗所致的肝功能损害服用水飞蓟宾,1d 后出现口唇疼痛、糜烂伴咽喉异物感、进食困难,初诊被误诊为“疱疹性口炎”,给予抗病毒治疗无效,按过敏反应治疗后痊愈出院。

水飞蓟宾作为临床常用的安全有效的预防肝损害的药物,当出现口唇肿胀、糜烂等局部皮肤表现时应警惕过敏可能。

关键词:过敏反应;误诊;口炎,疱疹性;水飞蓟宾中图分类号:R441.9文献标志码:DDOI :10.11958/20171281A case analysis of silibinin allergy misdiagnosed as herpetic stomatitisDUAN Hai-zhen,HU Quan,REN Da-fu,MA Xuan-lan,SONG Ren-jie,YU An-yong △Department of Emergency,the Affiliated Hospital of Zunyi Medical College,Zunyi 563003,China△Corresponding AuthorE-mail:anyongyu@Abstract:It is known that silibinin has antioxidant,anti-tumor,anti-inflammatory and immunomodulatory effects,andwhich is widely used for liver damage caused by a variety of reasons.In recent years,it is found that silibinin has potentialanti-allergic reactions.However,even larger doses of silibinin still show no significant side effects.The rare literature reports that silibinin can cause allergic reactions.The paper reports a middle-aged patient who orally took silibinin for the prevention of tuberculosis chemotherapy-induced liver damage,and he occurred symptoms of lip pain and anabrosis,foreign body sensation,and difficulty eating one day after treatment.The patient was misdiagnosed as "vesicular stomatitis"and was treated by anti-viral therapy.The patient was discharged from the hospital after treating allergic reactions.As a safe andeffective drug for prevention of liver damages in clinic,silibinin should be alert to induce possible allergies when there are local skin manifestations such as lip pain and anabrosis.Key words:anaphylaxis;diagnostic errors;stomatitis,herpetic;silibinin作者单位:贵州省遵义医学院附属医院急诊科(邮编563003)作者简介:段海真(1976),女,副教授,博士在读,主要从事心肺复苏、中毒、急危重症研究△通讯作者E-mail :anyongyu@水飞蓟宾是水飞蓟果实中提取分离而得的一种黄酮类化合物,广泛用于各种原因肝损害,近年来还发现水飞蓟宾具有抗过敏作用[1-3],即使较大剂量使用也罕见不良反应报道。

纳米膜过滤和低pH孵放法去除灭活静注人免疫球蛋白中病毒效果的验证

纳米膜过滤和低pH孵放法去除灭活静注人免疫球蛋白中病毒效果的验证

•论著•纳米膜过滤和低p H孵放法去除/灭活静注人免疫球蛋白中病毒效果的验证张宝献1张剑涛2刘亚芳2李冠军2李光飞2王海林2孙振国2张学成21华兰生物工程重庆有限公司研发部408102;哗兰生物工程股份有限公司研发部,新乡453003通信作者:孙振国,Email: s z g()12()@【摘要】目的验证纳米膜过滤法和低p H孵放法去除/灭活静注人免疫球蛋白中病毒的效果。

方法纳米膜过滤法选用猪细小病毒为指示病毒,低p H孵放法选用水疱性口炎病毒、辛德比斯病毒、H IV和伪狂犬病毒为指示病毒,高浓度静注人免疫球蛋白在pH4. 6〜5. 0、3()〜32 °C条件下作用不同时间后,取样检测样品中残余病毒滴度以评价病毒灭活效果。

结果纳米膜过滤可降低猪细小病毒滴度达4. 5()〜4.68 lg,低p H孵放法对伪狂犬病毒、辛德比斯病毒、水疱性口炎病毒、H IV等指示病毒的滴度降低量均大于4 lg。

结论纳米膜过滤法和低p H孵放法均能有效去除/灭活指示病毒,提高静注人免疫球蛋白产品的安全性。

【关键词】免疫球蛋白类,静脉内;病毒灭活;纳米膜过滤;低p H孵放【中图分类号】R927 DOI:10. 3760/cma. j. cn311962-20200302-00021Validation of virus removal/inactivation by nanofilm filtration and low pH incubation in humanimmunoglobulin for intravenous injectionZhang Baoxian1, Zhang Jiantao2 , Liu Yafang2 , Li Guanjun2 , Li Guangfei2 »Wang HaiLin2 , SunZhenguo2 »Zhang Xuecheng2'Research and Development Department,Hualan Biological Engineering Chongqing, Chongqing408102,China;2Research arid Development Department, Hualan Biological Engineering Inc.,Xinxiang 453003, ChinaCorresponding author :Sun Zhenguo >,Email-, sz^) 120®hualan. com【Abstract】Objective To verify the efficacy of nanofiltration and incubation with low pH toremove/inactivate the viruses in human immunoglobulin for intravenous injection. Methods Porcineparvovirus (PPV) was used as the indicator virus for nanofilm filtration virus removal. Low pHincubation method used vesicular stomatitis virus (VSV), Sindbis virus (Sindbis),HIV and pseudo­rabies virus (PRV) as indicator viruses. High concentration human immunoglobulin for intravenousinjection was incubated under pH4. 6-5. 0, 30-32 °C conditions for different time, then sampled andtested for the residual virus titer to evaluate the effect of virus inactivation. Results The removal of PPVby nanofilm filtration was 4. 50-4. 68 lg» and the titer reductions of PRV, Sindbis, VSV and HIV wereall >4 lg. Conclusion Both nanofiltration and incubation with low pH can effectively remove/inactivatethe indicator viruses and improve the safety of human immunoglobulin for intravenous injection.【Key words】Immunoglobulins,intravenous;Virus inactivation;Nanofilm filtration;Low pHincubationDOI:10. 3760/cma. j. cn311962-20200302-00021静注人免疫球蛋白(human immunoglobulin 方法包括有机溶剂/清洗剂(S/D)灭活、酶(胃蛋白f o r i n t r a v e n o u s i n j e c t i on,IVIG )病毒去除/灭活的 酶、胰蛋白酶)处理、巴氏灭活法、辛酸盐处理、低p H孵放和纳米膜过滤等w。

病毒的形态结构与分类

病毒的形态结构与分类

衣壳
核酸
核衣壳
包膜 刺突
完整病毒分两部分:蛋白质衣壳和核酸内芯, 两者构成核衣壳。完整的具有感染力的病毒体 叫病毒粒子。一种是不具被膜的裸露病毒粒子; 另一种是在核衣壳外面有包膜(囊膜)包围所构 成的复杂病毒粒子。
1.蛋白质衣壳:由一定数量的衣壳粒(由一种或 几种多肽链折叠而成的蛋白质亚单位)按一定的排列 组合构成的病毒外壳,称蛋白质衣壳。由于衣壳粒的 不同排列组合,使病毒有三种对称性构型。
envelope spike
nucleic acid
DNA or RNA
capsid
Virion: The complete virus particle. Capsid: The protein coat that surrounds nucleic acid. Nucleocapsid: The nucleic acid plus the capsid.
•廿面体对称结构 (球状)
•螺旋对称结构 (杆状)
•复合对称结构 (蝌蚪状)
病毒的形态结构与分类2016版
1)球或近球形; 2)高倍电镜下为多面体,
具20个等边三角形和 12个顶点; 3)多面多角多棱,是多颗 粒按一定方式对称排 列形成,在角上为五邻 体(penton) ,面上为 六邻体(hexon)。
(1)立体对称型:外观为球状,实际为20面体,呈 立体多面体,如腺病毒等;
(2)螺旋对称型:衣壳粒一个接一个地呈螺旋对称 排列而成,核酸存在于螺旋状沟中,如烟草花叶病毒;
(3)复合对称型:头部为立体对称,尾部为螺旋对 称,如大肠杆菌T系噬菌体。
蛋白质的功能:保护病毒使其免受环境因素的影
响;决定病毒感染的特异性;病毒蛋白质还有致病性、 毒力和抗原性。

干扰素诱导的跨膜蛋白研究初探

干扰素诱导的跨膜蛋白研究初探

干扰素诱导的跨膜蛋白研究初探李东富;覃岭;张永宏【摘要】The living organisms have a variety of ways to slow down or even stop the virus replication. These mechanisms are mainly through mediating antiviral protein, and expanded by interferon inducement. Among these interferon-stimulated proteins, interferon-induced transmembrane (IFITM) family is unique, which prevents virus infection by blocking the virus permeating cell lipid bilayer. Now it is known that, at least 3 IFITMs have antiviral activities: IFITM1, IFITM2, and IFITM3. These transmembrane proteins in vitro cell culture can prevent many RNA virus infections, including dengue virus, Ebola virus, influenza virus, SARS coronavirus, West Nile virus and so on. IFITM3 gene polymorphism is associated with human seasonal influenza / HPAI disease, but the mechanism is still not fully understood. Here we discuss the antiviral functions of ifitm gene, IFITM proteins and the possible mechanisms, then the best regime may be found in the treatment of virus infection and tumor.%生物机体存在多种方式减缓甚至阻止病毒复制.其机制主要通过抗病毒蛋白来介导,可因干扰素诱导而扩大.在这些干扰素刺激蛋白中,干扰素诱导的跨膜(interferon-induced transmembrane,IFITM)蛋白家族独树一帜,其通过阻止病毒透过细胞脂质双分子层而防止病毒感染.目前已知,至少有3种IFITM具有抗病毒活性:IFITM1、IFITM2以及IFITM3.这些跨膜蛋白已被证实在体外细胞培养中能阻止多种RNA病毒感染,包括登革热病毒、埃博拉病毒、甲型流感病毒、SARS冠状病毒和西尼罗病毒等.人ifitm3基因多态性与季节性流感/高致病性禽流感病情严重程度相关,但介导其抗病毒作用的具体分子机制仍不完全清楚.本文主要讨论ifitm基因、IFITM蛋白及其抗病毒作用和可能的作用机制,从而在研究病毒感染和肿瘤治疗中另辟蹊径,寻找最佳治疗方案.【期刊名称】《传染病信息》【年(卷),期】2017(030)001【总页数】5页(P56-60)【关键词】ifitm基因;IFITM蛋白;作用;机制【作者】李东富;覃岭;张永宏【作者单位】100069,首都医科大学附属北京佑安医院生物医学信息中心;100069,首都医科大学附属北京佑安医院生物医学信息中心;100069,首都医科大学附属北京佑安医院生物医学信息中心【正文语种】中文【中图分类】R961.1 IFITM家族分子基因干扰素诱导的跨膜(interferon-induced transmembrane, IFITM)蛋白是最早被发现的一批干扰素诱导蛋白[1],被命名为9-27(IFITM1)、1-8D(IFITM2)、1-8U(IFITM3),而在小鼠中依次命名为fragilis2,fragilis3,fragilis。

环保高触摸抗菌洁净产品说明书

环保高触摸抗菌洁净产品说明书

pathogens • surfaces • kill claims • dwell time • base active • 319 • dilution • surface com-patibility • 892 • application technique • 814 • pH • color • fragrance • 815 • microogan-ism • bacterial endospore • husky • mycobacteria • small non-enveloped virus • E/N/A • fungi • large non-enveloped virus • vegetative bacterium • non-acid • soft surface sanitizerConfidently maintaining a healthy environment for employees, residents, patients, students & children is of the highest importance. Education and proper product selection are two key factors to successful facility disinfection. This guide is designed to educate on the basics of disinfection and make product selection simple so you can disinfect with confidence.BEST PRACTICESTO PREVENT THE SPREAD OF HARMFUL PATHOGENSHIGH-TOUCH POINTSBreakroom Appliances Cabinet & File Drawer Handles Coffee Machines Computer Equipment Copier, Printer & Fax Buttons Countertops Desk & Office Chairs Door Handles & KnobsFood Preparation Surfaces Front Desk & Lobby Surfaces Handrails Light Switches PhonesRecreation Equipment Remote Controls Elevator ButtonsVending Machines Wheelchairs & Walkers Restroom Stalls & Dispensers Sinks & FaucetsHigh-touch surfaces in your facility to focus on include:Avoid touching your eyes, nose and mouth.Avoid close contact with people who are sick.Stay home when you’re sick.Cover your cough or sneeze with a tissue.Wash hands often with soap and water for at least 20 seconds.Clean and disinfect frequently touched objects and surfaces.HARDEST TO KILLEASIESTTO KILLPRODUCT KEY®Husky 319®Husky 814®Husky 892®Husky 815®Husky 824FUNGIRotavirusStaph, MRSA, VREKILL CLAIMS & DWELL TIMEProducts are tested against a chosen list of microorganisms and completed tests are submitted to EPAfor approval. The list of kill claims and dwell times are of the highest importance when selecting a disinfectant. BASE ACTIVEA range of active ingredients that have antimicrobial qualities. DILUTIONEPA approved products are tested at a specific dilution to achieve the claims listed on the master label. Following dilutions correctly ensures that the product will perform as tested.SURFACE COMPATIBILITYCertain formulas can be applied to a wider variety of surfaces without causing degradation.Surface compatibility and pre-testing (spot testing) is important in preserving surfaces and finishes. APPLICATION TECHNIQUEThere’s a wide range of ways to apply chemistry. Each product is tested using specific applications to ensure effective disinfection.pHA scale to identify alkalinity, neutrality or acidity. Different actives produce different pH ranges. pH can affect stability, safety, cleaning ability and surface compatibility.COLORA dye or color can help associate a specific chemistry with a specific application for ease of training but can cause staining or leave a residue if too strong.FRAGRANCEFragrance of a chemistry shouldn’t affect performance and shouldn’t become a primary focal of purchasing decisions.SURFACE COMPATIBILITYEPA - 6836-152DILUTIONRTUpH LEVELAlkalineCOLORBlue / Dye-Free AvailableFRAGRANCEOcean BreezePACK TYPE12 - 32 oz.Tubs & Shower Stalls • Toilet Bowls & Urinals • Sinks & Fixtures • Car Seats • Cushions & Pillows • Telephones • Fiberglass • Desks • A/C Coils • Wheelchairs • Upholstery • Window Treatments • Doorknobs • Glazed TilesMOPSPRAY WIPENorwalk Virus - NorovirusRotavirusHIV-1 [AIDS virus]Human Coronavirus2013 Influenza A Virus (H7N9)Influenza A Virus / Hong Kong [Influenza] [Influenza Virus] SARS-CoV-2SARS Associated Coronavirus [SARS]Hepatitis B Virus [HBV]Hepatitis C Virus [HCV]Herpes Simplex Virus Type 1Herpes Simplex Virus Type 2Respiratory Syncytial Virus [RSV]Vaccinia [Pox Virus]Avian Influenza (H5N1)Avian Influenza (H3N2)Avian Influenza Bronchitis VirusCanine Distemper VirusFeline CalicivirusNewcastle’s Disease VirusPseudorabies VirusAspergillus nigerAspergillus fumigatusTrichophyton mentagrophytes (athlete’s foot fungus)10 minutes10 minutes1 minute1 minute1 minute1 minute3 minutes3 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutesEnterobacter aerogenesEnterobacter cloacae NDM1 - Carbapenem Resistant [CRE]Enterococcus faecalis - Vancomycin resistant [VRE]Escherichia coli [E. coli]Pseudomonas aeruginosa [pseudomonas]Salmonella enterica [Salmonella]Salmonella typhiStaphylococcus aureus [Staph]Staphylococcus pyogenes (Strep)Acinetobacter baumannii [Acinetobacter]Klebsiella pneumoniae [Klebsiella]Klebsiella pneumoniae - Extended Spectrum Beta LactamaseKlebsiella pneumoniae NDM1 - PositiveStaphylococcus aureus - Community Associated MethicillinStaphylococcus aureus - Methicillin-Resistant [MRSA]Staphylococcus aureus - Mutli-Drug ResistantStaphylococcus pyogenes [Strep] [a cause of scarlet fever]Burkholderia cepaciaCampylobacter jejuniCorynebacterium ammoniagenesLegionella pneumophiliaListeria monocytogenesSerratia marcescensShigella dysenteriaeVibrio choleraeEmerging Pathogen ComplianceBloodborne Pathogen Compliance10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutesEPA - 1839-83SURFACE COMPATIBILITYFloors • Plastic Surfaces • Walls • Bathroom Fixtures • Shower Stalls & Sinks • Count-ers • Non-Porous Surfaces • Metal Surfaces • Appliances • Stainless Steel Surfaces • Glazed Porcelain • Ceramic TileSPRAYpH LEVELAlkalineCOLORDye-FreeFRAGRANCELemonDILUTIONRTUMycobacterium bovis (Tb) {(BCG)}Norovirus (Norwalk Virus)Feline CalicivirusRotavirusRhinovirus type 39Hepatitus A Virus (HAV)Poliovirus Type 1Canine ParvovirusRabies VirusHIV-1 (associated with AIDS)Hepatitis B Virus (HBV)Hepatitis C Virus (HCV)Duck Hepatitus B Virus (DHBV)Bovine Viral Diarrhea Virus (BVDV)SARS-CoV-2SARS associated Coronavirus Paramyxovirus (Mumps)Human Coronavirus (ATCC VR-740)Avian Influenza A strain (H3N2)Avian Influenza A strain (H9N2) Trichophyton mentagrophytes (athlete’s foot fungus)5 minutes30 seconds30 seconds3 minutes3 minutes10 minutes10 minutes10 minutes30 seconds1 minute1 minute1 minute1 minute1 minute1 minute2 minutes2 minutes2 minutes2 minutes3 minutes10 minutesPseudomonas aeruginosaStaphylococcus aureusSalmonella (choleraesuis) entericaEscherichia coliEscherichia coli O157:H7Streptococcus pyogenes (Necrotizing Fascilitis-Group A)Listeria monocytogenesYersinia enterocoliticaEnterococcus faeciumCorynebacterium ammoniagenesSalmonella (typhi) entericaMethicillin resistant Staphylococcus aureusVancomycin resistant Enterococcus faecalisVancomycin intermediate resistant Staphylococcus aureusMethicillin resistant Staphylococcus epidermidisCommunity Associated Methicillin resistant Staphylococcus aureusEmerging Pathogen ComplianceBloodborne Pathogen ComplianceInhibits growth of mold and mildew3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutespH LEVELAcidicCOLORDye-FreeFRAGRANCEStrong VinegarEPA - 10324-214®SURFACE COMPATIBILITYFloors • Tables • Walls • Bathroom Fixtures • Chairs • Counters • Telephones • Carts • Plastic & Plexiglas • Vinyl & Plastic Upholstery • Drinking Fountains • Ambulance &Equipment/SurfacesMOPSPRAY WIPEClostridium difficile {(ATCC 43598)}Mycobacterium bovis (Tb) {(BCG)}Enterovirus Type 68 {(ATCC VR-561)}Rhinovirus Type 37 {(ATCC VR-1147)}Rotavirus {(Strain WA)}Adenovirus Type 5 {(ATCC VR-5)} {(Strain Adenoid 75)} Norovirus {(Norwalk-like Virus)} {(ATCC VR-782)}Canine Parvovirus {(ATCC VR-2017)}Murine Norovirus {(MNV-1)}Avian Adenovirus {(ATCC VR-280)}Infectious Bursal Disease VirusPorcine Rotavirus {(ATCC VR-893)}SARS-CoV-2 {(SARS Coronavirus 2)} {(COVID-19 virus)} {(2019-nCoV)} Herpes Simplex Type 1 Virus {(ATCC VR-733)}Herpes Simplex Type 2 Virus {(ATCC VR-734)Human Immunodeficiency Virus Type 1 {(HIV-1)} Influenza A Virus {(ATCC VR-544)} (Hong Kong) Respiratory Syncytial Virus {(RSV)} {(ATCC VR-26)} Vaccinia Virus {(ATCC VR-119)}Hepatitis B Virus (HBV) {(Duck Hepatitus B Virus)} Hepatitis C Virus (HCV) {(ATCC VR-1422)}Marek’s Disease VirusPorcine Epidemic Diarrhea Virus (Clinical Isolate)Avian Influenza A {(H5N1)} VirusHuman Coronavirus {(ATCC VR-740)}Avian Infectious Bronchitis Virus {(Strain Baudette IB42)} Inflectious Laryngotracheitis Virus {(Strain LT-IVAX)} Newcastle’s Disease Virus {(ATCC VR-108)}Porcine Respiratory & Reproductive Syndrome Virus Transmissible Gastroenteritis Virus {(TGE)}Vesicular Stomatitis Virus {(VR-158)}2 minutes10 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes10 minutes10 minutes10 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutesAcinetobacter baumannii {(ATCC 19606)}Bordetella pertussis {(ATCC 12743)}Enterococcus faecalis {Vancomycin Resistant} {(ATCC 51575)}Escherichia coli {(ATCC 11229)}Escherichia coli {(Extended Spectrum B-Lactamase)}Klebsiella pneumoniae {(ATCC 4352)}Klebsiella pneumoniae {Carbapenem Resistant}Legionella pneumophila {(ATCC 33153)}Proteus mirabilis {(ATCC 9240)}Pseudomonas aeruginosa {(ATCC 15442)}Salmonella enterica {(ATCC 10708)}Staphylococcus aureus {(ATCC 6538)}Staphylococcus aureus {Community Acquired Methicillin Resistant}Staphylococcus aureus {Methicillin Resistant} (MRSA)Staphylococcus aureus {Vancomycin Intermediate Resistant}Staphylococcus pneumoniae {(ATCC 6305)}Staphylococcus pyogenes {(ATCC 19615)}Bordetella bronchiseptica {(ATCC 10580)}Campylobacter jejuni {(ATCC 29428)}Corynebacterium ammoniagenes {(ATCC 6872)}Escherichia coli O157:H7 {(ATCC 35150)}Listeria monocytogenes {(ATCC 19117)}Salmonella typhi {(ATCC 6539)}Shigella sonnei {(ATCC 25931)}Emerging Pathogen ComplianceBloodborne Pathogen Compliance2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes2 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutes10 minutesCandida Albicans {(ATCC 10231)}Candida auris {(Strain CDC AR-0381)}Trichophyton interdigitale (athlete’s foot fungus)2 minutes2 minutes2 minutesEPA - 6836-348pH LEVELAlkalineCOLORLight GreenFRAGRANCESpring RainDILUTION1:128 - 1:64PACK TYPE 12 - 10 mil. cartridges 3 - 32 oz. bottlesSURFACE COMPATIBILITYGarbage Cans • Wheelchairs • Cabinets • Sofas & Chairs • Couches & Cushions • Pillows & Upholstery • Dog Bedding & Blankets • Cages & Kennel Runs • Car Seats • Stuffed Animals & Toys • Desks & Chairs • Foot Spas • Floors • Coils & Drain • Pans Bed • Frames & Gourneys • Exam Tables • Bathroom Fixtures • Shower Stalls • Plastic • Vinyl • Laminated Surfaces • Gym & Laundry Bags • Diaper BagsSPRAYRotavirusEnterovirus D68 at 1:64 dilutionNorwalk Virus [Norovirus] at 1:64 dilutionFeline Calicivirus at 1:64 dilutionAdenovirus Type 5 [Adenovirus] at 4 oz. per gallon Adenovirus Type 7 [Adenovirus] at 4 oz. per gallonHIV-1 [AIDS Virus]Influenza Type A / Hong Kong [Influenza]SARS-Related Coronavirus 2 [SARS-CoV-2] cause of Covid-19 Hepatitis B Virus (HBV)Hepatitis C Virus (HCV)Herpes Simplex Type 1 VirusHerpes Simplex Type 2 VirusHuman CoronavirusRespiratory Syncytial Virus [RSV]VacciniaCanine Distemper VirusNewcastle’s Disease VirusCandida albicansTrichophyton mentagrophytes (athlete’s foot fungus)Pseudomonas aeruginosa [pseudomonas]Salmonella enterica [Salmonella]Staphylococcus aureus [Staph]Acinetobacter baumannii [Acinetobacter]Bordetella bronchiseptica [Kennel cough]Bordetella pertussis [whooping cough]Campylobacter jejuni [campylobacter]Enterobacter aerogenes at 1:64 dilutionEnterococcus faecalis [Enterococcus]Enterococcus faecalis - Vancomycin resistant [VRE]ESBL Escherichia coliEscherichia coli [E. coli]Escherichia coli O157:H7Klebsiella pneumoniae [Klebsiella]Klebsiella pneumoniae, Carbapenem-resistantListeria monocytogenesSerratia marcescens at 1:64 dilutionShigella dysenteriae [Shigella]Shigellla flexneri serotype 1BShigella sonneiStaphylococcus aureus - Methicillin Resistant [MRSA]Staphylococcus aureus - Vancomycin Intermediate ResistantStaphylococcus aureus - Multi-Drug ResistantStreptococcus pyogenes [Strep] [cause of scarlet fever]Vibrio choleraeYersinia enterocoliticaProteus VulgarisLegionella pneumophiliaEmerging Pathogen ComplianceBloodborne Pathogen ComplianceInhibits growth of mold and mildew3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes3 minutes10 minutes 3 minutes5 minutes5 minutes5 minutes10 minutes 10 minutes 1 minute 1 minute 3 minutes 3 minutes 3 minutes 3 minutes 3 minutes 3 minutes 3 minutes 3 minutes 3 minutes 3 minutes 3 minutes 3 minutesSURFACE COMPATIBILITYFloors • Plastic • Vinyl • Whirlpool Tubs • Foot Spas • Coils & Drains • Desks & Chairs • Cabinets • Garbage Cans • Cages & Kennel Runs • Exam Tables • Wheelchairs • Pans • Gurneys • Bed Frames • Shower Stalls • Bathroom FixturesEPA - 6836-365pH LEVELNeutralCOLORLight GreenFRAGRANCECitrus SunriseDILUTION1:128 - 1:64PACK TYPE6 - 32 oz.MOPSPRAY WIPENorwalk Virus - NorovirusFeline CalicivirusCanine ParvovirusHepatitis B Virus (HBV)Hepatitis C Virus (HCV)Herpes Simplex Type 1 VirusHerpes Simplex Type 2 VirusHIV-1 [AIDS Virus]Human CoronavirusInfluenza A Virus (H7N9)Influenza A Virus / Hong Kong [Influenza] Respiratory Syncytial Virus [RSV]SARS associated Coronavirus [SARS] Vaccinia [Pox Virus]Avian Influenza (H5N1)Candida albicansTrichophyton mentagrophytes (athlete’s foot fungus)Pseudomonas aeruginosa [pseudomonas]Salmonella enterica [Salmonella]Staphylococcus aureus [Staph]Acinetobacter baumannii [Acinetobacter]Enterobacter aerogenesEnterococcus cloacae NDM 1 - Carbapenem Resistant [CRE]Enterococcus faecalis - Vancomycin resistant [VRE]Escherichia coliEscherichia coli NDM 1 - Carbapenem Resistant [CRE]Escherichia coli [E. coli]Escherichia coli O157:H7Klebsiella pneumoniae [Klebsiella]Klebsiella pneumoniae - Extended Spectrum Beta LactamaseKlebsiella pneumoniae NDM 1 - Carbapenem Resistant [CRE]Staphylococcus aureus - Methicillin Resistant [MRSA]Staphylococcus aureus - Community Associated MethicillinStaphylococcus aureus - Vancomycin Resistant - [VRSA]Streptococcus pyogenes [Strep] [cause of scarlet fever]Emerging Pathogen ComplianceBloodborne Pathogen Compliance5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes 5 minutes5 minutes10 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes5 minutes10 minutesSolutions that work.People you trust. 111120。

热毒宁注射液联合阿糖腺苷治疗小儿疱疹性口腔炎效果观察

热毒宁注射液联合阿糖腺苷治疗小儿疱疹性口腔炎效果观察

热毒宁注射液联合阿糖腺苷治疗小儿疱疹性口腔炎效果观察王和平;周优树;张林贵【摘要】目的观察热毒宁注射液联合阿糖腺苷治疗小儿疱疹性口腔炎效果.方法以2017年1月~2017年11月为研究时段,选取58例疱疹性口腔炎患儿作为研究样本,以抽签的方法随机分为联合组(n=29)和单一组(n=29),单一组予以阿糖腺苷治疗,联合组予以热毒宁注射液+阿糖腺苷治疗.而后对比两组患儿临床症状消失时间以及治疗效果.结果联合组退热时间以及疱疹消失时间均快于单一组,差异具有统计学意义(P<0.05),联合组治疗总有效率为96.55%远高于单一组为75.86%,差异具有统计学意义(P<0.05).结论热毒宁注射液联合阿糖腺苷治疗小儿疱疹性口腔炎效果显著,值得借鉴.【期刊名称】《当代医学》【年(卷),期】2018(024)018【总页数】3页(P96-98)【关键词】热毒宁注射液;阿糖腺苷;小儿疱疹性口腔炎【作者】王和平;周优树;张林贵【作者单位】抚州市妇幼保健院儿内科,江西抚州 344000;抚州市妇幼保健院儿内科,江西抚州 344000;抚州市妇幼保健院儿内科,江西抚州 344000【正文语种】中文小儿疱疹性口腔炎好发于1~3岁幼儿,发病主要是由于受到Ⅰ型病毒感染所致,患儿发病时间没有固定性,发病后患儿会存在厌食以及流涎等临床表现,同时口腔内、齿龈处以及颊黏膜处会出现小疱疹,数量成单个或者成簇存在,治疗不及时会发生溃烂,对患儿的成长存在极大地影响[1]。

根据近年来诸多临床工作人员以及专家研究发现在治疗小儿疱疹性口腔炎的过程中单独应用阿糖腺苷效果并不显著,但是在此基础上辅以热毒宁注射液治疗,无论是对于发热情况还是疱疹消失情况都十分可观。

因此,本文就本院于2017年1月~2017年11月收治的58例小儿疱疹性口腔炎患儿采取热毒宁注射液联合阿糖腺苷治疗的效果展开系统研究,具体内容如下。

1 资料与方法1.1 临床资料将2017年1月~2017年11月收治的58例疱疹性口腔炎患儿根据随机抽签的方式分为联合组和单一组,各29例,单一组男14例、女15例,年龄0.5~3岁,平均年龄(1.75±0.4)岁,病程2~3 d,平均病程(2.5±0.2)d,其中母乳喂养8例、人工喂养10例、混合喂养11例;联合组男15例、女14例,年龄0.5~3岁,平均年龄(1.75±0.5)岁,病程2~3 d,平均病程(2.5±0.3)d,其中母乳喂养10例、人工喂养9例、混合喂养10例。

紫草素通过促进巨噬细胞Ⅰ型干扰素的产生抑制病毒感染

紫草素通过促进巨噬细胞Ⅰ型干扰素的产生抑制病毒感染

紫草素通过促进巨噬细胞Ⅰ型干扰素的产生抑制病毒感染胡莉蔓陈旭央阮旦青(乐清市人民医院儿科,温州325600)中图分类号R392文献标志码A文章编号1000-484X(2022)01-0045-06[摘要]目的:探讨紫草素对病毒感染的影响及其作用机制。

方法:C57BL/6J小鼠用水疱性口炎病毒(VSV)感染后,不同浓度紫草素通过腹腔注射处理小鼠,观察小鼠的生存率以及肝、脾和肺组织中的VSV病毒滴度和VSV-G病毒基因的转录水平变化;H&E组化实验检测肺部组织的损伤和炎症细胞的浸润。

RT-PCR检测小鼠肝脏、脾脏及肺中IFN-β和IL-6的mRNA 表达。

在细胞实验中,用VSV病毒感染经不同浓度紫草素预处理的原代巨噬细胞,利用RT-PCR及ELISA实验方法检测IFN-α和IFN-β的mRNA水平及蛋白水平。

Western blot检测p38、ERK、JNK、p65、TBK1、IRF3蛋白磷酸化水平。

结果:紫草素处理能够显著提高VSV病毒感染小鼠的生存率;H&E组化实验结果表明,VSV病毒感染小鼠在紫草素处理后其肺组织结构的损伤和炎症细胞的浸润与对照组相比明显减少;VSV病毒感染小鼠在紫草素处理后其肝、脾和肺组织中的VSV滴度和VSV-G mRNA 与对照组相比明显降低,而IFN-β的mRNA水平显著升高;在细胞实验中,紫草素能够显著提高巨噬细胞抵抗病毒感染的能力,抑制病毒基因VSV-G mRNA的表达。

紫草素能够促进病毒感染的巨噬细胞诱导IFN-α和IFN-β的产生,然而TNF-α没有明显差异。

此外,利用Ⅰ型干扰素受体的阻断抗体(IFNAR1Ab)来阻断Ⅰ型干扰素的信号通路,发现紫草素并不能抑制VSV病毒的扩增和复制。

Western blot实验发现在病毒感染过程中,紫草素能够显著促进巨噬细胞IRF3的磷酸化。

结论:紫草素通过促进IRF3激活来上调Ⅰ型干扰素的产生从而抑制病毒感染。

QCM监测不同浓度肌力药物作用下乳鼠原代心肌细胞的粘弹性响应

QCM监测不同浓度肌力药物作用下乳鼠原代心肌细胞的粘弹性响应

QCM监测不同浓度肌力药物作用下乳鼠原代心肌细胞的粘弹性响应彭涵阁;周铁安;谭成方;涂博轩【摘要】采用石英晶体微天平(QCM)非侵入式实时监测乳鼠原代心肌细胞于金晶体电极上的动态黏附响应与不同浓度肌力药物下的粘弹性响应.在乳鼠原代心肌细胞黏附铺展于金晶体电极表面后,加入不同浓度的正性肌力药物异丙肾上腺素与负性肌力药物维拉帕米,监测QCM频率(F)以及动态电阻(R)的实时变化,采用粘弹性指数CVI(CVI=△R/△F)表征细胞的粘弹性变化,并通过光学显微镜观察药物作用下细胞的形态变化.结果表明:随着异丙肾上腺素浓度的增加,药物引起的QCM频率下降、电阻增加与CVI增大的幅度均增大;光学显微镜下观测到细胞收缩,符合CVI变大、细胞变硬的响应;随着维拉帕米浓度的增加,药物引起的QCM频率升高、电阻下降与CVI减小的幅度均增大;光学显微镜下观测到细胞舒张,符合CVI变小、细胞变软的响应.说明QCM与原代心肌细胞结合作为心血管药物筛选细胞模型与工具有很大的应用前景.【期刊名称】《激光生物学报》【年(卷),期】2019(028)003【总页数】6页(P239-244)【关键词】石英晶体微天平;乳鼠原代心肌细胞;细胞粘弹性;肌力药物【作者】彭涵阁;周铁安;谭成方;涂博轩【作者单位】湖南农业大学生物科学技术学院,湖南长沙410128;湖南农业大学细胞力学与生物传感研究所,湖南长沙410128;;【正文语种】中文【中图分类】R54心血管疾病(cardiovascular disease,CVD)是人类发病和死亡的主要原因[1,2],占居民疾病死亡率的40%以上[3]。

心肌细胞是心血管结构与功能的基本单位,心肌细胞的损伤会诱发包括心力衰竭和心肌梗死在内的心血管疾病[4]。

无论是细胞内部或外部环境改变及刺激下细胞结构、功能、形态的变化都将引起或伴随细胞的变形或粘弹性、黏附特性等力学性质的变化[5,6],因此了解控制心肌细胞的力学性能对于研究心血管疾病具有极其重要的意义。

农业专业英语词汇(U-Z)

农业专业英语词汇(U-Z)

农业专业英语词汇(U-Z)农业专业英语词汇 (U-Z) 农业专业英语词汇 (U-Z)u test u测试udder乳房udder index乳房指数udder induration乳房变硬udder massage乳房按摩udderform乳房型ulcer溃疡ulcerous acromastitis of cow牛溃疡性乳头炎ulmin乌敏ulminic acid乌敏酸ultisol老成土ultra dense planting mulberry field超密植桑园ultra microelement超微量元素ultraanthracite石煤ultrabasic rock超盐基性岩ultracentrifuge超速离心计ultrafiltration超出滤ultrametamorphic rock超变质岩ultrasonic超声波ultraviolet irradiation紫外线照耀ultraviolet rays紫外线umbel伞形花序umbelliferae伞形花序植物umbellulate具小伞形花序的umbellule小伞umbilical hernia脐疝umbrella leaved伞状叶的uncapping翻开蜜盖unchangeable humus不变腐殖质unchangeable metamorphosis不变态unconditioned reflex无条件反射uncultivated area非耕地uncultivated subsoil生荒地unden残杀威under lip下唇underdrain暗沟underdrainage地下排水underground地下underground dam地下坝underground installation地下埋设物underground moisture地下水分underground part 地下部underground pipe 潜管underground reservoir 地下水库underground water 地下水undergrown larva 迟小蚕undigested material 不用化物质undiluted liquid 原汁unfertilized egg 未受精卵ungula 蹄unheating hothouse不加温温室unicellular单胞的unicellular animal单细胞动物unicellular culture单细胞培育unicellular plant单细胞植物unifoliate单叶的uniform distribution均匀散布uniformity均匀性unilobate单叶的uniparous animal单胎动物unipetalous单瓣的unipolar nuclear division单极核分裂unisexual flower单性花unisexual reproduction单性生殖unit leaf area单位叶面积unit of soil classification土壤分类单位universal tractor全能拖沓机univoltine一化性unknown growth factor未知生长要素unpupated larva毛脚蚕unrestrictive feeding饱饲unripe未熟的unsaturated capillary permeance不饱和毛管浸透unsaturated fatty acid 不饱和脂肪酸unsaturated hydrocarbon 不饱和烃unsaturated solution 不饱和液unseasonable flowering 未熟开花unstable 不平定的unveined 无脉的unweighted mean 非加权均匀upland meadow 山地草原upland pasture 丘陵放牧地upland rice 旱稻upper lip 上唇upper maxillary fracture上颌骨骨折upper stream 上游upright spined 直刺的upright stalk 直立茎uprightness 直立uranium 铀uratosis尿酸盐沉稳urban sewage城市污水urban waste城市废料urea尿素urea biosynthesis尿素生物合成urea fertilizer尿素肥料urea fodder尿素饲料urea gypsum fertilizer尿素石膏肥料urea herbicide尿素类除草剂urea humate腐殖酸尿素urea nitrogen脲氮urea protein fodder尿素蛋白质饲料urease脲酶urease inhibitor脲酶克制剂urediniospore夏孢子urediospore夏孢子uredispore夏孢子uredospore夏孢子uremia尿毒症ureter输尿管urethra尿道uric acid尿酸uridine尿核甙uridine triphosphate尿啶三磷酸urinary passage尿道urination排尿urination disorder排尿阻碍urine尿urobacter尿素菌urolithiasis尿结石病urophyllous尾叶的useful animal益兽useful arthropods实用节足动物useful plant实用植物uterine子宫的uterine body子宫体uterine cervix子宫颈uterine disease子宫病uterine horn子宫角uterine hypoplasia子宫发育不全uterine torsion子宫扭转uterus子宫uterus hernia子宫脱出utility rate of luminous energy光能利用率utility rate of water用水率vacant hill空株vaccination注射疫苗vaccination by puncture of wing membrane膜翅穿刺接种vaccine 疫苗vacuole 液泡vacuum 真空vacuum cooling drying 真空冷冻干燥vacuum drying 真空干燥vacuum drying of cocoon 蚕茧真空干燥vagina 叶鞘vaginal disease 阴道病vaginal mucus 阴道膣黏液vaginal prolapse 阴道脱出vaginitis阴道炎vaginocele阴道脱出vaginoscope阴道镜vaginoscopy阴道镜检查vagotomy 迷走神经切断术vain growth 徒长valence 原子价valerian 缬草valine 缬氨酸valley alluvial soil 山谷冲积土valley paddy soil 山谷水稻土vanadium 钒vanadium fertilizer 钒肥vanilla 香子兰vanillin 香草醛vapour 蒸汽vapour density 蒸汽密度vapour water 气态水variability 变异性variable 变数variable humus 可变性腐殖variable resistance可变电阻variable transformation变量变换variance方差variance analysis方差剖析variance analysis table方差剖析表variant变异体variate随机变量variation变异variation curve变异曲线varietal purity品种纯度variety品种variety of field crop农罪品种variety rotation品种改换variety trial品种试验variola天花varroosis蜂大螨病vas deferens输精管vascular维管的vascular bundle 维管制vascular disease 血管疾病vascular plant 导管植物vascular spasm 血管痉挛vascular system 维管系vascular tissue 维管组织vasography血管照相术vasospasm血管痉挛veal小牛肉vector矢量vector insect媒介昆虫vegetable 蔬菜vegetable acid 植物性酸vegetable alkaloid 植物碱vegetable breeding 蔬菜育种vegetable crop 蔬菜罪vegetable dye 植物染料vegetable factory 蔬菜工厂vegetable farming 蔬菜种植vegetable feed 植物性饲料vegetable fertilizer 植物肥料vegetable fiber 植物纤维vegetable for can 罐头蔬菜vegetable for kimziang 腌泡菜用蔬菜vegetable harvester 蔬菜收获机vegetable insecticide 植物性杀虫剂vegetable legume 蔬菜豆类vegetable manure 植物肥料vegetable nursery bed 蔬菜苗床vegetable oil 植物油vegetable organ 营养瀑vegetable patch 菜园vegetable poison 植物毒vegetable poisoning蔬菜中毒vegetable processing 蔬菜加工vegetable protein feed 植物性蛋白质饲料vegetable science 蔬菜学vegetable seeds 蔬菜种子vegetable sponge 丝瓜vegetable storage 蔬菜储藏vegetable tier 捆菜装置vegetable under structure 保护地蔬菜vegetable washer 蔬菜冲洗机vegetable wax 植物蜡vegetable works 蔬菜工厂vegetal organ 营养瀑vegetal pole植物极vegetalization植物性化vegetation生长vegetation process生长过程vegetative营养的vegetative cone生长锥vegetative form生长型vegetative function植物性机能vegetative growth营养生长vegetative hybrid营养杂种vegetative hybridization营养杂交vegetative kingdom 植物界vegetative law 生长定律vegetative nerve 植物性神经vegetative nucleus 营养核vegetative organ 营养瀑vegetative period 生长久vegetative phase 生育相vegetative pole 植物极vegetative propagation 营养生殖vegetative regulation 生长第vegetative stage 生长阶段vegetative tissue 营养组织vein 叶脉vein handing of potato马铃薯条斑花叶病veinless无脉的veinlet细脉velamen根被velocity速度velocity of nitrogen absorption吸氮速度velocity of nitrogen assimilation氮素同化速度velogen strain强毒株velvet bent grass绒毛剪股颖veneer grafting嵌接venom毒物vent换气窗ventilation通风ventilator通风器ventriculitis肌胃炎vermicide杀蠕虫剂vermiculation蠕动vermiculite蛭石vermifugal驱蠕虫的vernalization春化办理vernalization stage春化阶段vertic cambisol变性始成土vertic luvisol变性淋溶土vertical distribution垂直散布vertical infection垂直传染vertical resistance垂直抗性vertical zonal soil垂直地带性土壤vertical zone of soil垂直土壤带verticillate轮生的verticillation轮生叶序verticillium wilt of egg plant茄子半身萎凋病vertisol变性土vesical calculus膀胱石vesical stone膀胱石vesicle小泡vesicular dermatitis of swine 猪水泡性疹vesicular stomatitis 水泡性口炎 vessel 导管vetch巢菜veterinarian兽医师veterinary and sanitary inspection兽医卫生查验veterinary antiepizootic measure兽医防疫举措veterinary biomedicine兽医生物药品veterinary biopreparation兽医生物药品veterinary clinic牲口诊断所veterinary equipment兽医设施veterinary hygiene兽医卫生veterinary implement兽医七veterinary instrument兽医七veterinary law and regulation兽医法例veterinary medicament兽医药品veterinary medicine兽医学veterinary pharmacy兽医药房veterinary quarantine兽医检疫veterinary service兽医服务veterinary work兽医工作veterinary worker兽医服务人员vexillum旗瓣viability生活力vibramycin强力霉素villose具长柔毛的villous具长柔毛的villus绒毛vinasse酒糟vine葡萄vine knife葡萄刀vine nursery葡萄苗圃vine prop 葡萄支柱vinegar fly 果蝇vineland 葡萄园vinery 葡萄温室vineyard 葡萄园vineyard cultivator 葡萄园中耕锄vineyard plough 葡萄园犁vineyard sprayer 葡萄园喷雾机vineyard tractor 葡萄园用拖沓机viniculture葡萄种植vining plant蔓生植物vintage葡萄收获vinyl acetate maleic acid醋酸乙烯酯马来酸vinyl chloride氯乙烯vinyl house塑料大棚vinyl storage塑料布储藏库vinyl tunnel塑料大棚violet堇菜violet root rot紫纹羽病viral diarrhoea of silkworm蚕病毒性泻病viral enteritis of turkey火鸡病毒性肠炎virgin soil处女地virology病毒学virulence病毒性virulent毒性的virulent phage烈性噬菌体virus病毒virus disease病毒病virus examination病毒查验virus of domestic animal牲口病毒virus resistance breeding病毒抗性育种virus rna病毒rnavirusfree plant无病毒植物viscometer粘度计viscose粘胶viscosimeter粘度计viscosity粘性viscous limit粘性限度visibility能见度visible lethal可见致死visible mutation可见突变visible radiation可见光辐射vision disorder视力阻碍vital生命的vital capacity肺活量vital force生命力vital power生命力vital staining活体染色vitalism活力论vitality 生活力vitamin 维生素vitamin additive维生素增添剂vitamin b2 抗神经炎素vitamin b23 氰钴胺vitamin b3 核黄素vitamin b6 泛酸vitamin content 维生素含量vitamin deficiency 维生素缺少病vitamin e 生育酚vitamin feed 维生素饲料vitamin h 生物素vitamin hay 维生素干草vitamin k 维生素 kvitamin pp 烟酰胺vitamin preparation 维生素剂vitamin requirement维生素需要vitelline peritonitis卵黄性腹膜炎vitelline sac卵黄囊vitellogenin卵黄蛋白原vitellus卵黄viticulture葡萄种植vitreousness透鸣质vitric andosol玻璃质暗色土vitroplant试管植物vivianite蓝铁矿viviparity胎生viviparous reproduction胎生生殖volatile compound挥发性化合物volatile fatty acid挥发性脂肪酸volatility挥发性volatilization挥发volcanic area火山地带volcanic ash soil火山灰土volcanic soil火山土volcano火山vole野鼠voltinism化性volubile plant 环绕植物volume 容积vomit 呕吐vulnus 创伤vulva 阴门wadi 旱谷wafered feed 饼状饲料wagner pot 瓦氏盆walking leg 步行足walking tractor 双轮拖沓机wallace effect 华莱士效应walnut 核桃walnut tree 核桃树胡桃树wandering cell 游走细胞warble 牛皮蝇幼虫warble fly disease of cattle 牛皮下蝇蛆病warehouse 储藏库warfarin 杀鼠灵warm air drier 烘干机warm blooded animal 温血动物warm front 暖锋warm tolerance 耐热性warming irrigation保温浇灌warning预察warning colouration戒备色warning device 预察装置warning lamp 预察灯warning method 预察法wash bucket 清洗桶washed out soil 淋洗土壤waste disposal 废物办理waste gas废气waste heat 废热waste hog disease 非洲猪瘟waste land 荒地waste water 废水waste water irrigation 污水浇灌waste water of spa 温泉废水waste water treatment 污水办理water 水water activity 水分活性water analysis 水剖析water availability 水有效性water balance 水分均衡water binding capacity 持水性water bowl 水箱water buffalo 水牛water chestnut 菱water circulation 水循环water content 含水量water culture 溶液培育water current 水流water deprivation 耗水water erosion 水蚀water exploration 水勘探water filling 冲水water for life 生活用水water fowl 水禽water gauge 水位计water hammer action水锤酌water harvesting 径怜蓄water holding capacity 保水力water hyacinth 水葫芦water inlet 进水口water intake to paddy field 水田引水water leak paddy field 漏水稻田water lily睡莲water logging积水water management用水管理water management in rice field稻田水管理water melon 蜗water metabolism 水代谢water microorganisms 水生微生物water of crystallization 结晶水water plants 水生植物water pocket 水塘water pollination 水媒water pollution 水质污染water pore 水孔water potential 水位water proofing work 防水工程water quality 水质water raising 抽水water requirement in transplantation 插秧期需水量water requirement of paddy field 田间需水量water resource 水资源water soluble fertilizer 水溶性肥料water soluble phosphorous fertilizer 水溶性磷肥water soluble potassic fertilizer 水溶性钾肥water soluble vitamin 水溶性维生素water spout 水龙卷water sprout 徒长枝water stable aggregate 水稳性聚会water storage tissue 储水组织water supply 给水water supply plan 给水计划water supply plant 供水设施water supplying system 供水系统water surface 水面water surface evaporation水面蒸发water table水面water tank水池water temperature水温water temperature in rice field稻田水温water tissue储水组织water treatment水办理water vapour蒸汽water wheel水车watercress水田芥watered mulberry leaf湿桑watered seedbed水育秧床watering喷水watering area喂水处watering can喷壶watermifoil狐尾藻waterproofing防水watershed分水岭wave leaved波叶的wax coat蜡质层wax extractor蜜蜡提取器wax gourd冬瓜wax producing产蜡的waxy maize蜡质种玉米weak podzolic soil弱漂白土weaned pig断奶仔猪weaning断奶weaning weight断奶重weanling断奶幼畜weanling number断奶只数weather天气weather and climate condition 气象天气条件weather control 天气控制weather damage 天气害weather forecast 天气预告weather satellite 气象卫星weather ship 天气船weathered crust 风化壳weathered granite 风化石weathered granite horizon 风化石层weathering 风化weathering speed 风化速度weathering type 风化型weed 杂草weed control 杂草防除weed infestation 杂草丛生weed killer 除莠剂weeder 除草机weedicide 除莠剂weeding 除草weeding by machine机械除草weeding of paddy field水田锄草weeding system 杂草防除系统weeping willow 垂柳weevils 象虫科weight increment 增重weight loss 失重weight of cocoons per liter 一升茧重weight of weaning litter 断奶窝重weighted arithmetic mean 加权算术均匀weighted deviation 加权误差weighted mean 加权均匀weighted sum 加权总和weil's disease牛钩端螺旋体病weir 溢吝well 井well construction 井建设well sinking 沉井well type drainage 井式排水welsh onion 大葱westerly zone 午带wet disinfection 湿式消毒wet feeding 湿喂法wet mash 湿粉料wet resistance耐湿性wether阉公羊wetland湿地wetland soil 湿地土壤wettability 润湿性wetter 润湿剂wetting agent 润湿剂wetting powder 可湿性粉剂wheat 小麦wheat bran 麦麸wheat meal 面粉wheat straw 麦秸wheel sprayer 手推车式喷雾机wheelbarrow 手推车whey medium 乳清培育基whip worm disease of domestic animal 牲口鞭虫病whipping 振荡whipworm 鞭虫whirlwind 旋风white alkali soil 白碱土white clover 白车轴草white cocoon 白茧white core rice 白芯大米white diarrhoea of calf 犊牛白痢white flowered 白花的white gourd 冬瓜white leaf spot of strawberry 草莓蛇眼病white line dart moth of turnip 黄地老虎white lupin 白羽扇豆white mulberry 桑树white muscardine白僵病white muscle disease 白肌病white mustard 白芥white of egg 蛋白white rot egg 白死卵white rot of sweet potato甘薯白纹羽病white rust of colza 油菜白锈病white rust of radish 萝卜白锈病white sweet clover 白香草木樨whole cocoon 全茧whole layer placement of fertilizer 全层施肥whole milk 全乳whole rice grain 完好米whorled 轮生的wide field trial大区试验wide ridge田塍wide row seeding宽行条播wild野生的wild animal 野生动物wild blueberry 短毛蓝果忍冬wild boar 野猪wild chervil 林峨参wild duck 野鸭wild goat 原山羊wild mulberry 山桑wild oat 野燕麦wild pig 野猪wild plant 野生植物wild silk yarn 天蚕丝wild silkworm 天蚕wild sow母野猪wild species野生种wild type野生型wild yeast野生酵母wildlife野生生物willow柳wilting凋萎wilting coefficient萎凋系数wilting moisture凋萎湿度wilting point萎蔫点winch 卷扬机wind 风wind break 防风林wind damage 风害wind egg 无精蛋wind erosion 风蚀wind erosive soil 风蚀土wind motor 风力原动机wind pollinated 风媒的wind pollination 风媒wind power 风力wind velocity 风速windrow loader 草条装载机windrower 铺条机windrowing 铺条割wine 葡萄酒wine grape 酿酒葡萄wing 翅wing media翅中脉wing muscle翼状肌wing radius翅径脉winged fruit翅果winnower簸风选机winnowing风选winter barley 冬大麦winter bud 冬芽winter catch crop 冬天填闲罪winter cherry 酸浆winter cress 山芥winter crops 秋插罪winter hardy 耐冬的winter injury 冻害winter pruning 冬天修剪winter rape 芜菁甘蓝winter season 冬天winter sleep 冬眠winter spore 冬孢子winter spraying 冬天喷雾winter squash 笋瓜winter wheat 冬小麦wintering越冬wintering ability越冬性wintering habit越冬性wintering rate越冬率wintering vegetable过冬的蔬菜witches broom of sweet cherry 欧洲甜樱桃丛枝病withers height 体高wolfram 钨womb 子宫wood anatomy 木材解剖学wood ashes 木灰wood fiber 木纤维wood leopard 豹蛾wood parenchyma 木薄壁组织wood small reed 酚茅wooden pipe 木管wooden tongue 舌头放线菌病woody plant 木本植物woody rooted 木质根的wool collector 毛采集器wool density 毛密度wool elasticity 毛弹性wool elongation 毛伸长性wool fat 脂汗wool grease 脂汗wool length 毛长wool productivity 绒毛生产性woolfell 羊毛皮woolskin 羊毛皮wooly aphis 苹果绵蚜worker bee 工蜂working capacity 役用能力worm 蛆wormwood 亚洲蒿wound 创伤wound gastritis 创伤性胃炎x chromosome x 染色体x ray apparatus x 射线装置x ray irradiation x 射线辐照xanthein 花黄素xanthic ferralsol 黄色铁铝土xanthine alkaloid 黄质生物碱xanthine dehydrogenase黄嘌呤脱氢酶xanthine oxidase黄嘌呤氧化酶xanthoceras sorbifolia文冠树xanthochromia黄变xanthoma黄瘤xanthomatosis黄瘤病xanthophyll叶黄素xanthosis黄变症xenia直感xenogamy异株异花授粉xenon氙xeromorphism旱生形态xerophilous适旱的xerophthalmia干眼病xerophytes旱生植物xerosol干旱土xylan木聚糖xylem木质部xylem fibre木纤维xylem parenchyma木薄壁组织xylene二甲苯xylitol木糖醇xylocarpous木质果的xylol二甲苯xylose木糖xylulose木酮糖y chromosome y染色体y suppressed lethal y克制致死yak牦牛yam薯蓣yeanling羔羊year old shoot一年生枝yearling一岁牲口yeast 酵母yeast treatment of feed 饲料的酵母办理yellow blood silkworm 黄血蚕yellow brown forest soil 黄棕色丛林土yellow cell 黄细胞yellow dwarf 黄矮病yellow enzyme 黄酶yellow fruited 黄果的yellow horn 文冠树yellow leaf stage 黄叶期yellow mealworm 黄粉虫yellow ripeness 黄熟yellow ripening stage 黄熟期yellow rust 条锈病yellow soil 黄色土yellow spot 黄斑yellow sweet clover 黄香草木樨yellow virosis of beets 甜菜黄化yermosol 漠境土yield 产量yield component 产量组成要素yield forecast 产量预告yield loss 收获损失yield of root根收量yield per jongbo每町步产量yield per pyong每坪实粒重yield per unit单产yield prediction产量展望yield weather model产量天气模式yielding ability生产性yoghurt酸奶yoke轭yolk卵黄yolk antibody免疫蛋黄yolk peritonitis卵黄性腹膜炎yolk sac卵黄囊yongyangalmo营养粒苗yongyangmo营养苗young ear幼穗young panicle formation stage幼穗形成期young plant 幼小植物young seedling 幼苗young silkworm 稚蚕young sprout 新梢young stand 幼林young stock 幼畜z chromosome z 染色体z transformation table z变换表zeatin玉米素zebra斑马zebu瘤牛zebu cattle瘤牛zein玉米蛋白zeolite沸石zero pasture青刈用草场zeropoint mutation起点突变zigzag planting锯齿形栽种zinc 锌zinc borate fertilizer 硼酸锌肥料zinc fertilizer 锌肥zinc oxide fertilizer 氧化锌肥zinc phosphide 磷化锌zinc residue 锌残渣zinc sulphate 硫酸锌zinc superphosphate 锌过磷酸钙zineb 代森锌zoidiogamy 游动精zona pellucida 透螟zonal index 纬向指数zonal soil 地带性土壤zone 地带zoogamete 游动配子zoogeographic region 动物地理区zooglea 菌胶团zoogloea 菌胶团zoology 动物学zoonosis人畜共患传得病zooparasite寄生动物zoophyte植虫zooplankton浮游动物zoosporangium游动孢子囊zoosporangium stem游动孢子囊茎zoospore游动孢子zootechnician畜牧学家zootechnician to breeding种畜技术员zootechnics畜牧学zygomorphic flower左右对称花zygosome接合染色体zygosperm接合孢子zygospore接合孢子zygote合子zygotic induction接合子引诱zygotic selection接合子选择zymase酒化酶zymogen酶原zymology酶学zymotic发酵的农业专业英语词汇 (U-Z)有关内容:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Inhibition of vesicular stomatitis virus infection in epithelial cells by alpha interferon-induced soluble secreted proteinsMausumi Basu,134Ratan K.Maitra,2Yan Xiang,3Xiangzhi Meng,3 Amiya K.Banerjee1and Santanu Bose33Correspondence Santanu Bose bose@ 1,2Department of Molecular Genetics/Virology Section1and Virus Core Facility2,The Lerner Research Institute,The Cleveland Clinic Foundation,Cleveland,OH44195,USA3Department of Microbiology and Immunology,University of Texas Health Science Center, 7703Floyd Curl Drive,MC7758,San Antonio,TX78229-3900,USAReceived16March2006 Accepted9May2006Interferons(IFNs)are potent antiviral cytokines that inhibit infection by a wide spectrum of viruses by activating the Janus kinase/signal transducers and activators of transcription(JAK/STAT)pathway. Several IFN-induced antiviral proteins including29,59-oligoadenylate synthetase,dsRNA-activated protein kinase and Mx play a critical role in conferring the antiviral properties of IFN.However, studies have shown that additional antiviral factors are involved in addition to these proteins during IFN-mediated antiviral action.In an effort to characterize these novel antiviral factors,the antiviral mechanism of alpha IFN(IFN-a)against vesicular stomatitis virus(VSV)was investigated in human lung epithelial A549cells.These studies demonstrated that soluble secreted antiviral proteins as the constituents of conditioned medium prepared from IFN-a-treated cells reduced VSV infectivity by more than2logs,compared with a4log inhibition observed following treatment of cells with IFN-a.The antiviral mechanism of these secreted proteins appeared to act at the level of cellular entry of VSV.Interestingly,the IFN-a-induced antiviral proteins were secreted independently of STAT1(an essential component of the JAK/STAT pathway),demonstrating that the release of such extracellular soluble antiviral proteins from cells may represent an alternative mechanism of the antiviral defence strategy of IFN towards VSV infection.INTRODUCTIONInterferons(IFNs)constitute an important element of the innate immune response elicited by the host to control virus infection(Stark et al.,1998;Biron&Sen,2001;Bose& Banerjee,2003).IFNs are classified into two classes,namely IFN I and IFN II,representing IFN-a/b and IFN-c,res-pectively.The former is produced from non-immune cells (e.g.epithelial cells),whilst the latter is restricted to immune cells.IFN-a/b induces antiviral activity by binding to IFN receptors,which results in activation of Janus kinases(JAKs) and signal transducers and activators of transcription (STATs)(Stark et al.,1998;Biron&Sen,2001)and formation of the IFN-stimulated gene factor3(ISGF3) complex comprising STAT1,STAT2and p48.The ISGF3 complex translocates to the nucleus to induce a wide variety of IFN-stimulated genes,some of which possess antiviral activity.The three well-established antiviral proteins in-volved in IFN-mediated inhibition of virus infection are:(i)the29,59-oligoadenylate synthetase(OAS)/RNaseL path-way(Silverman,1997),which degrades viral RNAs;(ii)the dsRNA-activated protein kinase(PKR),which inhibits mRNA translation(Clemens&Elia,1997);and(iii)the Mx proteins(Mx1in mice and MxA in humans),which possess GTPase activity and which restrict virus infection at several stages of the viral life cycle(Haller&Kochs,2002). These three IFN-induced proteins restrict a wide spectrum of viruses(Staeheli&Pavlovic,1991;Zhao et al.,1996;Stojdl et al.,2000;Behera et al.,2002),including negative-sense, non-segmented,single-stranded RNA(NNS)viruses. NNS viruses are enveloped viruses that undergo replication/ transcription in the cytoplasm.Representative NNS viruses include vesicular stomatitis virus(VSV),human para-influenza virus type3(HPIV-3)and human respiratory syncytial virus(Lamb&Kolakofsky,2001;Rose&Whitt, 2001).Although the three IFN-induced proteins described above are capable of restricting NNS virus infection following IFN treatment,several studies have shown that alternative IFN-induced factors are also operative in IFN-treated cells.For example,it has been shown that IFN elicits its antiviral activity against HPIV-3independently of PKR,3These authors contributed equally to this work.4Present address:Department of Biology,Natural Science Center,Georgia State University,50Decatur Street,Atlanta,GA30303,USA.0008-2039G2006SGM Printed in Great Britain2653 Journal of General Virology(2006),87,2653–2662DOI10.1099/vir.0.82039-0Mx and OAS/RNaseL(Choudhary et al.,2001).The ability of IFN to inhibit virus replication by novel antiviral pathways has also been observed for VSV.Studies with PKR,Mx and RNaseL triple-knockout mouse embryonic fibroblasts have revealed the ability of IFN to restrict VSV infection in the absence of the these three IFN-induced proteins(Zhou et al.,1999).A similar study also reported the ability of IFN to restrict VSV replication in cells expressing PKR,OAS/RNaseL and Mx proteins(Pattyn et al.,1999).Moreover,phospholipid scramblase has been identified as a candidate IFN-induced antiviral protein that restricts VSV infection(Dong et al.,2004).Thus,IFN has been shown to induce novel antiviral factors that restrict virus replication.In an effort to characterize these novel IFN-induced factors, we investigated the mechanism of antiviral function of IFN-a(henceforth designated IFN)in human lung epithelial A549cells.We chose VSV for our studies,as VSV is highly sensitive to IFN and is routinely used to assay the antiviral activity of IFN(Marcus&Sekellick,1978).We also utilized epithelial cells for our studies,as these cells serve as the primary site for productive infection of several NNS viruses (Garofalo&Haeberle,2000)and therefore studies on the IFN-dependent innate antiviral response by epithelial cells are important to elucidate host defence mechanisms.Our studies revealed that IFN activates its antiviral function as early as1h after treatment of cells and that this activity is maintained during infection(in the absence of IFN added exogenously during infection).Moreover,we demonstrated that IFN induces heat-and acid-sensitive soluble secreted antiviral proteins that inhibit VSV entry.Surprisingly,the induced secreted antiviral proteins were produced inde-pendently of the JAK/STAT signalling pathway.Our studies have thus elucidated(i)the role of extracellular IFN-induced soluble secreted proteins as opposed to cytoplasmic proteins such as PKR,OAS/RNaseL and Mx in conferring antiviral activity,and(ii)the existence of a putative JAK/ STAT-independent signalling pathway/mechanism for the antiviral function of IFN.METHODSVirus and cells.VSV(Indiana serotype,Mudd–Summers strain) was propagated in BHK-21cells(Bose et al.,2003b;Dong et al., 2004).Human lung epithelial A549cells,African green monkey kidney epithelial Vero cells and humanfibrosarcoma2fTGH and U3A cells were maintained in DMEM(Gibco-BRL)supplemented with10%FBS.The viral titre was monitored by plaque assay using CV-1(African green monkeyfibroblasts)and L929(mousefibro-blasts)cells(Bose&Banerjee,2002;Bose et al.,2001,2003a,b, 2004).In our studies,similar results were obtained when plaque assays were performed using either CV-1or L929cells(data not shown).The plaque assay values given in thefigures are expressed as p.f.u.ml21and represent the mean±SD of three independent deter-minations.Western blot analysis.Western blot analysis was performed essentially as described previously(Bose et al.,2003b)using poly-clonal anti-VSV P protein antibody.Preparation of conditioned medium.In order to prepare control mock-conditioned medium(MCM)and IFN-a-conditioned medium (IFN-CM),confluent cells were either left untreated or incubated with IFN-a(1000U ml21;Sigma-Aldrich)for1–2h.After six washes in PBS,fresh medium(DMEM/10%FBS)was added to the cells.Following incubation at37u C for24h,the medium collected from these cells was centrifuged at800g for10min and the super-natant(MCM or IFN-CM)was collected and applied to fresh cells to examine the effect of IFN-induced soluble factors on VSV infection.VSV infection following IFN and IFN-CM treatment.To study the antiviral function of IFN and IFN-CM,cells were pre-treated with IFN(1000U ml21)or IFN-CM for0?5–18h.Following incu-bation,VSV(m.o.i.of0?2)was added to the washed cells and allowed to adsorb for1?5h at37u C in the presence or absence of IFN or IFN-CM.Cells were washed to remove unbound virus and infection was allowed to continue for an additional36h in the pre-sence or absence of IFN or IFN-CM.Infected cell lysates were used for Western blot analysis with anti-VSV P protein antibody.In addi-tion,culture supernatants were collected to measure virus yield by plaque assay.ELISA to detect IFN-a and IFN-b in MCM and IFN-CM.MCM and IFN-CM derived from A549and Vero cells along with IFN-a and IFN-b(10and100U)added exogenously to the conditioned media and DMEM were analysed using ELISA kits(PBL Biomedical Laboratories)to detect IFN-a and IFN-b.The ELISA was performed according to the manufacturer’s specification and the results were expressed as pg IFN(5pg=1U).Treatment of IFN-CM with neutralizing antibodies against IFN-a/b.MCM and IFN-CM derived from A549cells were either left untreated or incubated with either IFN-a-or IFN-b-neutralizing antibodies(1000neutralizing U;Biosource International)for6h at room temperature.Similarly,1000or100U IFN-a or IFN-b ml21 added exogenously to DMEM was incubated with the corresponding neutralizing antibodies.The medium was then added to A549cells for pre-treatment(8h for the conditioned media,16h for DMEM plus IFNs),followed by infection with VSV.The viral titre was determined at36h post-infection(p.i.).In one set of experiments, A549cells were only pre-treated with neutralizing antibodies prior to virus infection.Immunofluorescence analysis.A549cells grown on coverslips were either left untreated or incubated with IFN-a(1000U ml21) or CM for8h at37u C.Cells were washed twice with PBS and VSV (m.o.i.of10)was added in the presence of100m g cycloheximide ml21.After adsorption for45min,the cells were washed and fresh medium was added.At45min p.i.,cells werefixed with3?7%for-maldehyde in PBS and stained with anti-VSV P antibody,followed by FITC-conjugated anti-rabbit IgG.Cells were visualized under a Leica CISM confocal laser-scanning microscope(Bose et al.,2001; Bose&Banerjee,2004).Infection of A549cells by VSV G protein-pseudotyped lenti-virus expressing enhanced GFP(lenti-VSV).To study the cellu-lar entry efficiency of VSV,we constructed a VSV G(envelope protein)-pseudotyped lentivirus expressing the enhanced GFP (eGFP)gene(lenti-VSV)(Popik et al.,2002;Yonezawa et al.,2005). The transduction efficiency of lenti-VSV(representing cellular entry via VSV G protein)was tested in IFN-and IFN-CM-treated A549 cells.For these studies,A549cells were either left untreated or incu-bated with IFN-a(1000U ml21)or conditioned medium(MCM or IFN-CM)for8h.The cells were then washed and lenti-VSV (m.o.i.of20)was added in the absence of IFN or conditioned medium.At40h p.i.,eGFP expression was determined byfluores-cence microscopy.2654Journal of General Virology87 M.Basu and othersRESULTSRapid establishment of IFN-mediated antiviral activity in A549cellsInitially,we performed a series of experiments to delineate the kinetics of the antiviral action of IFN.It is well established that pre-treatment of cells with IFN for12–18h elicits a potent antiviral activity(in the presence of IFN during infection)(Kuwata et al.,1977;Zhao et al.,1996; Trottier et al.,2005).To investigate whether shorter IFN pre-treatment would result in inhibition of VSV replication, A549cells pre-treated with IFN for0?5,1and16h were infected with VSV in the presence of IFN.At36h p.i.,viral titre and infection efficiency were determined by plaque assay and Western blot analysis using anti-VSV P antibody. As expected,in cells pre-treated with IFN for16h there was a dramatic decline of4log in infectivity(Fig.1a).However, there was also a significant inhibition(100-to300-fold)of virus infectivity in cells pre-treated with IFN for only0?5and 1h.Concomitantly,Western blot analysis(Fig.1b)revealed complete abolishment(the titre was decreased by more than 100-fold)of intracellular VSV P protein production following treatment of cells with IFN for1h.These results suggested that pre-treatment of cells with IFN for0?5–1h may be sufficient to induce a robust antiviral activity.Next,we repeated the experiments but included cells infected in the absence of IFN.Cells pre-treated with IFN(1or18h) were infected with VSV in the presence or absence of IFN.As expected,a significant decline in infectivity was observed in cells pre-treated for18h and infected in the presence of IFN (Fig.1c).Surprisingly,significant antiviral activity was retained in the absence of IFN during infection. Interestingly,pre-treatment of cells for only1h(in the absence of IFN during infection)preserved substantial levels of antiviral activity.These results were confirmed by Western blot analysis(Fig.1d),as pre-treatment for1h(in the absence of IFN during infection)led to complete loss of VSV P protein synthesis.In contrast,IFN failed to inhibit virus replication when it was added following viral infection (4–8h p.i.,in the absence of pre-treatment)(data not shown).These results demonstrated that IFN can bring about an antiviral state within a short period of time(1h) and that IFN-induced antiviral factors sustain this activity during infection.These results also suggested that IFN may induce an antiviral mechanism/strategy very rapidly,result-ing in the production of antiviral factors such as soluble secreted factors,which are known to be produced rapidly following stimulation of cells(Landis et al.,1991;Nevins& Thurmond,2003;Gao et al.,2004).Therefore,we embarked on studies to investigate whether IFN induced such soluble secreted factors to restrict virusinfection.Fig.1.Pre-treatment(p.t.)of A549cellswith IFN-a for1h induces an antiviral state.(a)Culture supernatants collected fromuntreated(”)and IFN pre-treated A549cells infected with VSV were analysed byplaque assay.IFN was present during VSVinfection(i.e.post-infection,p.i.)of IFN pre-treated cells.(b)A549cell lysates(10m gprotein)obtained from mock-infected(lane1)and VSV-infected(lanes2and3)cells(at36h p.i.)in the absence(lane2)orpresence(lane3;cells were pre-treated for1h and IFN was present during infection)ofIFN were subjected to Western blot analysiswith VSV anti-P antibody.(c)Culture super-natants collected from untreated(”)and IFNpre-treated(1and18h)A549cells infectedwith VSV were analysed by plaque assay.The presence(+)or absence(”)of IFN afterinfection(p.i.)is indicated.(d)A549celllysates(10m g protein)obtained from mock-infected(lane1)and VSV-infected(lanes2–6)cells(at36h p.i.)in the absence of IFN(lane4)or following pre-treatment of cellswith IFN for18h(lanes2and3)or1h(lanes5and6)were subjected to Western blotanalysis with VSV anti-P antibody.The pres-ence(+)or absence(”)of IFN after infection(p.i.)is indicated.2655IFN-induced soluble secreted antiviral factorsAntiviral activity of conditioned medium derived from IFN-treated A549cellsIn order to assess the possibility that IFN-induced soluble secreted antiviral factors are produced following IFN treatment,conditioned medium was prepared from IFN-treated cells (Fig.2a).A549cells were treated with IFN-a (1000U ml 21)for 1–2h,followed by exhaustive washing to remove exogenous IFN.Fresh medium was added to washed cells,and after 24h the medium (IFN-CM)was collected.Fresh A549cells were incubated with IFN-CM for 1or 8h,followed by infection of these cells with VSV (in the presence of IFN-CM).Plaque assays (Fig.2b)of IFN-CM-treated cells demonstrated significant inhibition (2logs)of virus infectivity compared with untreated and cells treated with the control mack conditioned medium (MCM).The antiviral specificity of IFN-CM was confirmed by the observation that,similar to MCM,IFN-CM prepared from human IFN-a -treated L929cells (human IFN is not recognized by the mouse IFN receptor)failed to restrict virus infection (data not shown).We utilized 1000U IFN-a ml 21to prepare IFN-CM for our subsequent studies,as this represented the optimal concentration required for robust antiviral activity of IFN-CM (based on titration experiments;data not shown).Western blot analysis (Fig.2c)confirmed the antiviral activity of IFN-CM,as VSV P protein was not detected in cells incubated with IFN-CM.Similar results were obtained when cells were pre-treated with IFN-CM and infected with VSV in the absence of IFN-CM (data not shown),indicating that IFN-CM contains soluble secreted antiviral factors that are induced by IFN-a .The antiviral activity of IFN-CM is not mediated by IFN-a /bAs IFN-CM was prepared from IFN-a -treated cells,the antiviral activity of IFN-CM could have been due to a residual amount of IFN-a present in the conditioned me-dium or due to production of de novo -synthesized IFN-a /b .However,these possibilities are unlikely as (i)the residual amount of IFN-a present after exhaustive washing would be endocytosed and rapidly degraded (Zoon et al.,1983);(ii)IFN-a treatment does not induce the IFN-a /b gene (Der et al.,1998);and (iii)although IFN-a and IFN-b are acid-stable cytokines (Nakane &Minagawa,1981),acid treat-ment of IFN-CM eliminated its antiviral activity (data not shown).The lack of involvement of IFN-a /b during IFN-CM-mediated antiviral action was confirmed by further assays.Firstly,quantification of IFN-a and IFN-b concen-trations in IFN-CM using a highly sensitive ELISA failed to detect IFN-a in IFN-CM,whereas it was able to detect 10and 100U recombinant IFN-a added exogenously to regular medium (DMEM)or to the conditioned media derived from A549cells (Table 1).Similar results were obtained by performing an IFN-b -specific ELISA (data not shown).Secondly,IFN-a -specific (Fig.3a)and IFN-b -specific (data not shown)neutralizing antibodies failed to alter the antiviral activity of IFN-CM.The neutralizing activity of these antibodies were specific,as they dramati-cally inhibited the antiviral activity of exogenouslyaddedFig.2.Conditioned medium (IFN-CM)prepared from IFN-a -treated cells inhibits VSV infection.(a)Generation of IFN-CM from IFN-treated cells (see Methods).(b)Culture supernatants collected from VSV-infected A549cells pre-treated (p.t.)with either the control MCM or IFN-CM (for 1or 8h)were sub-jected to plaque assay analysis.(c)A549cell lysates (10m g protein)obtained from mock-infected (lane 1)and VSV-infected (lanes 2–5)cells in the absence of IFN (lane 2)or following pre-treatment of cells with MCM (lane 3)or IFN-CM for 1h (lane 4)or 8h (lane 5)were subjected to Western blot analy-sis with VSV anti-P antibody.Table 1.Measurement of IFN-a concentration in condi-tioned media by ELISA analysisValues are means ±SD .ND ,Not detected (IFN-a concentration below the detection limit).The minimum detectable amount of IFN-a in the ELISA was 0?1U.SampleIFN-a (pg)10U IFN-a +DMEM 55±2?8100U IFN-a +DMEM 580±17?410U IFN-a in A549MCM 51±3?610U IFN-a in A549IFN-CM 56±4?110U IFN-a in Vero MCM 53±3?410U IFN-a in Vero IFN-CM 57±3?9A549MCM ND A549IFN-CM ND Vero MCM ND Vero IFN-CMND2656Journal of General Virology 87M.Basu and othersIFN-a and IFN-b (100and 1000U ml 21)(Fig.3a).Note that 10U IFN-a ml 21failed to inhibit VSV replication efficiently,confirming the non-involvement of IFNs during the antiviral action of IFN-CM,as the amount of IFN in IFN-CM was significantly lower than 10U IFN-a (Table 1)or IFN-b (data not shown)ml 21.Finally,we confirmed the non-involvement of IFN-a /b by utilizing Vero monkey epithelial cells,which are unable to produce IFN-a /b (Zhang et al.,2005).Vero cells are highly sensitive to the antiviral action of human IFN-a (Fig.3b).Although Vero cells are not capable of producing IFN-a /b ,IFN-CM prepared from Vero cells,when added to fresh Vero or A549cells,inhibited VSV infection by more than 100-fold (Fig.3b).Moreover,A549cell-derived IFN-CM was capable of restricting VSV infection following pre-treatment of Vero cells (data not shown).In addition,we failed to detect induction of the IFN-inducible gene PKRfollowing incubation of A549cells with IFN-CM (data not shown),thus confirming the absence of IFN-a /b .It is important to mention that IFN-CM prepared from monkey CV-1fibroblast cells (sensitive to human IFN-a /b ,similar to Vero cells)failed to restrict VSV infection in both CV-1and A549cells (data not shown).Based on these observations,we suggest that IFN-induced soluble factors may constitute epithelial-cell-specific proteins.Based on these results,it was clear that the antiviral activity of IFN-CM was not elicited by IFN-a /b .We speculated that IFN-induced soluble antiviral factors might restrict infec-tion at the stage of cellular entry of VSV,since (i)soluble secreted factors are extracellular factors,and (ii)VSV infection was restricted in cells pre-treated with IFN-CM (in the absence of IFN-CM during infection).IFN treatment of cells might also lead to inhibition of VSV entry,as pre-treatment of cells with IFN for only 1h (in the absence of IFN during infection)reduced VSV infectivity (Fig.1c,d).IFN and IFN-CM inhibit cellular entry of VSV The efficiency of virus entry in IFN-and IFN-CM-treated cells was next investigated by utilizing two techniques.First,we pre-treated A549cells with IFN for 8h and infected them with VSV (m.o.i.of 10)in the presence of cycloheximide (100m g ml 21).After adsorption for 45min,cells were washed and fresh medium containing cycloheximide was added in the absence of IFN.Cells were fixed and labelled with anti-VSV P protein antibody and FITC-labelled secondary antibody at 45min p.i.,and the amount of intracellular P protein was detected by immunofluorescence microscopy.By performing infection in the presence of cycloheximide,a protein synthesis inhibitor (Rigaut et al.,1991),this technique enabled us to detect virus entry by monitoring the amount of intracellular P protein derived from the input virus,as the infection time frame is very short (prior to transcription/replication initiation).The results (Fig.4a)clearly demonstrated dramatic inhibition of VSV entry in the presence of IFN,as the amount of intracellular VSV P protein (from input virus)was significantly reduced in IFN-treated cells.Similarly,IFN-CM treatment also significantly inhibited VSV entry into A549cells (Fig.4b).To confirm these findings,we next studied the ability of IFN and IFN-CM to inhibit the entry of VSV G-pseudotyped lentivirus expressing eGFP (lenti-VSV),as described in Methods.Pseudotyped viruses containing heterologous viral envelope protein have been widely used to study virus entry (Popik et al.,2002;Yonezawa et al.,2005).For our studies,A549cells were incubated with IFN or IFN-CM for 8h,followed by the addition of lenti-VSV (m.o.i.of 20).Following adsorption for 4h,cells were washed and fresh medium was added in the absence of IFN or IFN-CM.At 40h p.i.,the expression of eGFP was monitored by fluorescence microscopy.Pre-treatment of cells with IFN (Fig.4c)or IFN-CM (Fig.4d)resulted in a dramatic inhibition of VSV entry,with significant reduction of eGFP expression in these cells compared with untreatedcells.Fig.3.Antiviral activity of IFN-CM is not mediated by IFN-a /b .(a)Culture supernatants collected from VSV-infected A549cells either left untreated (UT)or incubated (8h pre-treatment)with control MCM or IFN-CM (derived from A549cells)in the presence or absence of IFN-a -neutralizing antibody (a -Ab)were subjected to plaque assay analysis.Similarly,VSV-infected A549cells pre-treated (16h)with either a -Ab alone or 1000,100or 10U IFN-a ml ”1in the presence or absence of a -Ab were assayed for infectivity.(b)Plaque assay analysis of VSV-infected Vero cells either left untreated or pre-treated with either IFN-a (1000U ml ”1,16h)or with MCM or IFN-CM (8h pre-treatment)derived from Vero cells.A similar analysis was performed following the addition of Vero cell-derived condi-tioned medium to A549cells.2657IFN-induced soluble secreted antiviral factorsTogether,these results confirmed that,in A549cells,IFN and IFN-CM treatment lead to inhibition of VSV entry.This demanded further characterization of the soluble secreted factors.Therefore,we performed additional experiments to demonstrate that IFN-induced soluble secreted factors were heat-and acid-sensitive proteins,as the antiviral activity of IFN-CM was lost following heat and acid pH treatment and incubation of IFN-CM with trypsin (Bampton &Taylor,2005)(data not shown).IFN-induced secreted proteins confer antiviral function independently of the STAT1-mediated JAK/STAT pathwayAs the soluble secreted antiviral proteins were produced following IFN treatment and presumably by the subsequent activation of the JAK/STAT pathway,it is possible that IFN-like molecules may constitute secreted antiviral proteins.Moreover,these proteins may activate the JAK/STATpathway to elicit its antiviral effect.Therefore,we examined the involvement of the JAK/STAT pathway in the antiviral function of IFN-CM.For these studies,we utilized wild-type (2fTGH)and JAK/STAT pathway-deficient (U3A cells lacking STAT1)human fibrosarcoma epithelial cells (Bose et al.,2003a;Cremer et al.,2002).These cells were incubated with IFN-CM prepared from A549cells for 8h and then infected with VSV (in the absence of conditioned medium)for 36h.Plaque assays (Fig.5a)revealed the ability of IFN-CM to restrict VSV infection in both wild-type (2fTGH)and STAT1-null (U3A)cells.Moreover,Western blot analysis (Fig.5b)demonstrated concomitant loss of intracellular VSV P protein in both wild-type and STAT1-null cells.These results suggested that STAT1and presumably a functional JAK/STAT pathway are not required for the antiviral activity of IFN-CM,although they may be critical for production of soluble secreted antiviral proteins following IFNtreatment.Fig.4.IFN-a and IFN-CM inhibit cellular entry of VSV.Confocal immunofluorescence microscopic analysis of VSV P protein in uninfected (mock)and VSV-infected A549cells.(a,b)Cells were mock-infected or infected with VSV at an m.o.i.of 10(in the presence of 100m g cycloheximide ml ”1)with or without pre-treatment with IFN-a for 8h (a)or following pre-treatment with IFN-CM or MCM (b)for 8h.VSV P protein was detected at 1?5h p.i.to monitor entry.(c,d)Expression of eGFP was monitored by fluor-escence microscopy in mock-infected cells and in cells infected with VSV G-pseudo-typed lentivirus (lenti-VSV)with or without pre-treatment with IFN-a for 8h (c)or fol-lowing pre-treatment with IFN-CM or MCM (d)for 8h.2658Journal of General Virology 87M.Basu and othersThe STAT1-dependent JAK/STAT pathway is not required for the production of secreted antiviral proteinsIn order to study the requirement of the STAT1-dependent JAK/STAT pathway for the induction of soluble secreted antiviral proteins,we prepared IFN-CM from wild-type and STAT1-null cells by the procedure described in Fig.2(a).A549cells were incubated with these conditioned media for 8h,followed by virus infection (in the absence of conditioned medium)for 36h.Surprisingly,we observed that IFN-CM derived from both wild-type and STAT1-null cells retained its antiviral property.As shown in Fig.6(a),plaque assays demonstrated the ability of IFN-CM generated from wild-type and STAT1-null cells to restrict VSV infection of A549cells.Moreover,we observed complete loss of intracellular VSV P protein in A549cells incubated with IFN-CM derived from wild-type and STAT1-null cells as assayed by Western blot analysis (Fig.6b).In addition,IFN-CM derived from STAT1-null cells restricted VSV infection following its addition to either wild-type or fresh STAT1-null cells (data not shown).ELISA (Table 1)and a neutralization assay (Fig.3a)revealed that the antiviral activity of IFN-CM derived from wild-type and STAT1-null cells was not due to IFN-a /b .These results indicated that IFN-induced soluble antiviral proteins are secreted into the medium by a STAT1-independent mechanism.The antiviral properties of IFN are partially retained in STAT1-deficient cellsTo study the observed alternative STAT1-independent pathway/strategy,we examined the antiviral efficiency of IFN in wild-type and STAT1-null cells,as this mechanism would be intact in the latter.2fTGH and U3A cells were pre-treated with IFN for 16h,followed by VSV infection in the presence of IFN as described above for A549cells.As expected,plaque assays revealed potent antiviral activity of IFN in wild-type 2fTGH cells,with viral titres reduced by almost 6000-fold in these cells (Fig.7a).In contrast,IFN treatment of STAT1-null U3A cells failed to reduce the viral titre dramatically (Fig.7a),possibly due to the lack of the JAK/STAT pathway,the major antiviral pathway induced by IFN.In spite of the reduced antiviral properties of IFN in STAT1-null cells,we noted consistently that,in these cells,IFN was still able to reduce the viral titre by approximately 20-fold.A comparison of the fold decrease in viral titre (as determined by plaque assays)following IFN treatment of wild-type and STAT1-null cells is shown in Fig.7(b).These results indicated that,although IFN failed to confer a potent antiviral function in STAT1-null cells,partial antiviral activity of IFN was retained in these cells,whichFig.5.IFN-a -induced secreted factors confer the antiviral func-tion of IFN independently of the STAT1-induced JAK/STAT pathway.(a)Plaque assay analysis of culture supernatants col-lected from VSV-infected A549,2fTGH (wild-type)and U3A (STAT1-null)cells incubated (for 8h)with control MCM or IFN-CM derived from A549cells.(b)Cell lysates (10m g pro-tein)from uninfected (mock,lane 1)and VSV-infected A549(lanes 2and 3),2fTGH (lanes 4and 5)and U3A (lanes 6and 7)cells incubated with A549cell-derived MCM (lanes 2,4and 6)or IFN-CM (lanes 3,5and 7)were subjected to Western blot analysis with VSV anti-Pantibody.Fig.6.IFN-a -induced soluble secreted antiviral factors are pro-duced independently of STAT1.(a)Plaque assay analysis of culture supernatants collected from VSV-infected A549cells incubated (for 8h)with control MCM or IFN-CM derived from A549,2fTGH (wild-type)or U3A (STAT1-null)cells.(b)Cell lysates (10m g protein)from uninfected (mock,lane 1)and VSV-infected A549cells incubated with MCM (lanes 2and 4)or IFN-CM (lanes 3and 5)derived from 2fTGH (lanes 2and 3)or U3A (lanes 4and 5)cells were subjected to Western blot analysis with VSV anti-P antibody.2659IFN-induced soluble secreted antiviral factors。

相关文档
最新文档