岩石物理参数计算及应力研究-llzlllo

合集下载

岩石的物理力学性质

岩石的物理力学性质

n0
Vn0 V
100%
(5)闭空隙率nc: 即岩石试件内闭型空隙的体积(Vnc)占 试件总体积(V)的百分比。
nc
Vnc V
100%
2 、空隙比(e)
所谓空隙比是指岩石试件内空隙的体积(V V)与 岩石试件内固体矿物颗粒的体积(Vs)之比。
e VV V Vs n
Vs
Vs
1 n
四、岩石的水理性质
c 具有粘性的弹性岩石
由于应变恢复 有滞后现象,即加 载和卸载曲线不重 合,加载曲线弹模 和卸载弹模也不一 样。P点加载弹模 取过P点的加载曲 线的切线斜率,P 点卸载弹模取过P 点的卸载曲线的切 线斜率。
d、弹塑性类岩石
Ee e
2、变形模量
E0 e p
变形
弹性变形 塑性变形
线弹性变形 非线弹性变形
o
理想弹性体
s
o
线性硬化弹塑性体
s
o
理想弹塑性体
o
d
dt
理想粘性体
一、岩石在单轴压缩状态下的力学特性
1、σ~ε曲线的基本形状 美国学者米勒将σ~ε曲线分为6种。
σ~ε曲线的基本形状
致密、坚硬、少裂隙 致密、坚硬、多裂隙
少裂隙、 岩性较软
较多裂隙、 岩性较软
d
Ws V
d d g
(g/cm3) (kN /m3)
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
g——重力加速度。
3、饱和密度(ρ )和饱和重度(γw)
饱和密度就是饱水状态下岩石试件的密度。
w
Ww V
(g/cm3)
w wg
(kN /m3)
式中:WW——饱水状态下岩石试件的质量 (g); V——岩石试件的体积(cm3);

岩石力学第2章岩石的基本物理力学性质PPT课件

岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在

岩石物理参数测量方法与应用

岩石物理参数测量方法与应用

岩石物理参数测量方法与应用概述岩石物理参数的精确测量对于地质工程、油气勘探和地震学等领域具有重要意义。

岩石物理参数既包括地球物理学中常见的弹性参数,如波速和密度,也包括微观结构参数,如孔隙度和渗透性等。

本文将介绍一些常用的岩石物理参数测量方法及其在实际应用中的意义。

弹性参数测量弹性参数是岩石物理学中最基本的参数之一,通常通过声波测量得到。

常见的测量方法包括传统的超声波测量、岩石样品切割成薄片后的声波测量以及岩芯样品的声波测量。

这些方法能够提供岩石中纵波速度(P波速度)和横波速度(S波速度)等参数,从而帮助地质工程师了解地下岩石结构和岩石的强度特性。

岩石物理参数在地质工程中的应用地质工程是利用岩石物理参数对地下岩石结构和特性进行分析和评估的学科。

岩石物理参数的精确测量对于地下建筑、堡垒工程和水库工程等具有重要意义。

通过测量岩石的弹性参数,可以预测岩石的稳定性,从而为地质工程师提供决策依据。

此外,岩石物理参数的测量还可以评估岩石的渗透性和孔隙度等参数,为地下水资源的勘探和管理提供帮助。

岩石物理参数在油气勘探中的应用油气勘探是岩石物理学的另一重要领域。

岩石物理参数的测量可以帮助勘探人员评估地下岩石中的油气储量和分布。

通过测量岩石的声波速度和密度等参数,可以估计岩石中的孔隙度和饱和度等参数,从而对油气勘探提供重要参考。

此外,岩石物理参数的测量也可以帮助勘探人员优化钻探方案,减少勘探成本和风险。

岩石物理参数在地震学中的应用地震学是研究地球内部结构和地震波传播的学科。

岩石物理参数的测量对于理解地震波在不同岩石中的传播性质和岩石中的地震波速度衰减等现象至关重要。

通过测量岩石的声波速度和密度等参数,地震学家可以推断地球内部的结构和物理特性,为地震学模拟和地震监测提供重要参考。

结语岩石物理参数的测量方法和应用涉及了多个领域,包括地质工程、油气勘探和地震学等。

通过精确测量岩石的弹性参数和微观结构参数,我们可以更好地理解地下岩石的特性和结构,为工程建设和自然灾害研究提供必要的参考。

岩石物理参数

岩石物理参数

岩石物理参数岩石物理参数岩石的弹性常数包括杨氏弹性模量E、泊松比V、剪切弹性模量G和体积弹性模量K等:泊松比:在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。

比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向应变e'与轴向应变e之比称为泊松比V。

材料的泊松比一般通过试验方法测定。

E-弹性模量,Es-压缩模量,Eo-变形模量。

E弹性模量和Eo变形模量一般是岩石力学或者岩体分析中用,弹性模量一般是通过岩样测试而得;变形模量一般在探硐或者建基面加反力测得,只有大型工程才做,特别是水利工程。

而压缩模量是土力学的中的参数。

§弹性变形,以εe表示;塑性变形,以εp表示;总变形,以ε表示。

§弹性模量E:把卸载曲线的割线的斜率作为弹性模量,即:E=PM/NM=ζ/εe§变形模量Eo:是正应力与总应变(ε)之比,即:§Eo=PM/OM=ζ/ε=ζ/(εe+εp)弹性模量=应力/弹性应变,它主要用于计算瞬时沉降;压缩模量和变形模量均=应力/总应变,压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

按规范的规定,在地基变形验算中要用的是压缩模量Es,但因Es是通过现场取原状土进行试验的,这对于粘性土来说很容易做到,但对于一些砂土和砾石土等粘聚力较小的土来说,取原状土是很困难的,很容易散掉,因此对砂土的砾石土通常都是通过现场载荷试验得到Eo,所以在地堪报告上,对于砂土的砾石土一般都仅给出Eo,即使给出Es,也是根据Eo换算来的,而不是试验直接得出的。

理论上Es和Eo有一定的关系,但根据该关系换算误差较大,所以二者关系一般都根据地区经验进行换算。

岩石应力课件ppt

岩石应力课件ppt

岩石中的断层和节理是应力集中的地方,容易引发岩石的变形和破坏。
断层与节理
褶皱和穹窿的形成与岩石的应力分布密切相关,是地壳运动和板块构造的重要标志。
褶皱与穹窿
03
CHAPTER
岩石应力对工程的影响
在地下洞室施工过程中,岩石应力的分布和大小对洞室的稳定性有重要影响。
地下洞室
盾构隧道施工过程中,岩石应力的变化可能影响隧道的推进方向和盾构机的稳定性。
采矿工程
在采矿工程中,应合理利用岩石应力,以提高采矿效率、降低成本、保障安全。例如,利用定向爆破技术将矿体切割成合适的大小和形状,以方便采掘和运输。
隧道与地下工程
在隧道与地下工程建设中,应严格控制围岩的应力状态,以防止隧道坍塌和围岩失稳。例如,在地铁建设中,采用盾构法施工,通过控制盾构机的推进速度和注浆压力等参数,确保隧道围岩的稳定性和安全性。
05
CHAPTER
岩石应力研究展望
1
2
3
随着深地资源开发、核废料储存等工程的需要,岩石在高应力条件下的力学行为成为研究重点。
高应力条件下岩石的力学行为
地震活动与地下岩层的应力状态密切相关,研究岩石应力变化对地震预测和预防具有重要意义。
岩石应力与地震活动关系
工程中岩体的稳定性受岩石应力状态影响,如何通过岩石应力分析保证工程安全是重要研究方向。
直接测量法
通过在岩石上打钻孔,将测力计放入钻孔中,直接测量岩石内部的应力大小。这种方法精度高,但会对岩石造成一定程度的破坏。
地应力测量法
通过在地表或者地下一定深度处设置测量钻孔,利用地应力计测量地壳内部的应力状态。这种方法对于研究地壳运动、地震预测等具有重要意义。
02
CHAPTER

常用的岩石物理力学参数

常用的岩石物理力学参数
12.1
第5页
江西大坳
小什字 水库 绿水河 石景山龙 口灰坝 小井沟 长滩水库 太平湾 下马岭 江垭
以礼河 一级
小什字
备注 *室内三轴值
Sheet2
岩石名称 岩石性状
(裂隙、风 化、夹层)
容重 g/cm3
吸水率 %
软岩物理力学参数汇总表
干抗 压
湿抗压
E
抗剪强度 抗剪强度
工程名称
Mpa Mpa Gpa tgψ C(Kpa)
细砂岩
1.98 8.19 15.3 11.6
陕西王圪 堵水库
灰岩
粘土岩 砂页岩
薄层,风 化
2.55
2.36 2.66
1.61 6.5
30
40.6 14.3
11.2
11.4 11.1
恒山
三岔 徐州铜山
绢英千 枚岩
薄片, 微风化
2.60 0.20
25
10
0.53
10
碧口
石英砾岩 泥灰岩 泥岩
2.58 1.01
7.6
上饶大坳 五强溪 岗南水库
石景山龙 口灰坝
2.55
2.25 2.35 2.62 2.27 2.62
2.48 39
7.6 3.18 1.92
20.6 14.3 13.1 14
7 5.39
6.7 1.85 6.2 3.23 5.9 5.7 5.5 4.6
江西奉新
淮阳 葛洲坝 陆浑 升钟 巩河水库
绿泥石 片岩
泥质 紫红色
2.37 3.32 14.1 2.25 4.98 7
2.59 1.01
2.14 2.35 2.25
10.24 20.6 24.9

岩石的基本物理力学性质及其试验方法-知识归纳整理

岩石的基本物理力学性质及其试验方法-知识归纳整理

第一讲 岩石的基本物理力学性质及其试验想法(之一) 一、内容提要:本讲主要讲述岩石的物理力学性能等指标及其试验想法,岩石的强度特性。

二、重点、难点:岩石的强度特性,对岩石的物理力学性能等指标及其试验想法作普通了解。

一、概述岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周 围物理环境(力场)的变化作出反应的一门力学分支。

所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。

由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。

岩体是指在一定工程范围内的自然地质体。

通常以为岩体是由岩石和结构面组成。

所谓的结构面是指没有或者具有极低抗拉强度的力学不延续面,它包括一切地质分离面。

这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。

从结构面的力学来看,它往往是岩体中相对照较薄弱的环节。

所以,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。

【例题1】岩石按其成因可分为( )三大类。

A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩 答案:A 【例题2】片麻岩属于( )。

A. 火成岩 B. 沉积岩 C. 变质岩 答案:C【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。

A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小 答案:C 二、岩石的基本物理力学性质及其试验想法 (一)岩石的质量指标与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。

1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度 是指岩石的固体物质的质量与其体积之比值。

岩石颗粒密度通常采用比重瓶法来求得。

其试验想法见相关的国家标准。

岩石颗粒密度可按下式计算2 岩石的块体密度岩石的块体密度是指单位体积岩块的质量。

岩石物理参数计算及应力研究-llzlllo.

岩石物理参数计算及应力研究-llzlllo.

第三章 岩石物理参数计算及应力研究第一节 岩石物理参数计算地层岩石是地应力的载体,岩石物理性质对地应力的传递、衰减、集中、分散都会产生很大的影响,岩石物理参数与岩体赋存的地应力密切相关,岩石物理参数计算是地应力研究的必然步骤。

通过纵、横波时差和密度等测井资料,可以计算地层条件下的岩石动态弹性模量,在此基础上,可以进行地应力分析、井眼稳定性分析、地层出砂分析、以及人工压裂设计等方面的研究。

岩石物理参数包括岩石弹性参数和岩石机械强度参数。

岩石弹性参数主要有泊松比μ、杨氏模量E 、剪切模量G 、体积模量K 、体压缩系数b C 和ma C 、有效应力系数系数α(比奥特系数);岩石机械强度主要有单轴抗压强度c σ、岩石的抗剪强度0C 和岩石抗张强度t s ,以及内摩擦角ϕ等。

1、岩石弹性参数对于各向同性均匀介质岩石来说,利用牛顿第二定律和三维虎克定律,经数学推导,可导出计算声波速度在岩石介质中的波动方程:P ∆=-+-=+=t E G V 1)21)(1()1(2p μμρμρλ (3-1-1) s s t E G V ∆=+==1)1(2μρρ (3-1-2)根据上述的波动方程,可以得出各种弹性参数与声波时差的关系式。

①泊松比定义为横向应变与纵向应变之比。

22225.0p s ps t t t t ∆-∆∆-∆=μ (3-1-3)②切变模量定义为施加的应力与切应变之比。

a t G s b⨯∆=2ρ (3-1-4)③杨氏模量定义为施加的轴向应力与法向应变之比。

)1(2μ+=G E(3-1-5) ④体积模量定义为静水压力与体积应变之比。

a t t K s pb b ⨯⎪⎪⎭⎫ ⎝⎛∆-∆=22341ρ (3-1-6)⑤体积压缩系数定义为体积模量的倒数。

即:b b K C 1= (3-1-7)⑥有效应力系数(Boit)表示孔隙压力对岩石变形的影响,即:b ma C C -=1α=K b /K ma (3-1-8)式中:b ρ为岩石体积密度,3cm g ;s t ∆、p t ∆为纵、横波时差,ft s μ。

岩石的主要物理性质和力学性质ppt课件

岩石的主要物理性质和力学性质ppt课件

c
P A
端部效应
破坏形态
岩石的单轴抗拉强度σt
直接拉伸试验
t
P A
岩石的剪切强度τf:岩石抵抗剪切破坏的能力。
十、 影响岩石力学性质的因素
(1)矿物成分对岩石力学性质的影响 矿物硬度大,岩石的弹性越明显,强度越高。 如岩浆岩,橄榄石等矿物含量的增多,弹性越明显,
强度越高; 沉积岩中,砂岩的弹性及强度随石英含量的增加而
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
六、岩石的抗冻性
岩石的抗冻性是指岩石抵抗冻融破坏的性能,
是评价岩石抗风化稳定性的重要指标。
岩石的抗冻性用抗冻系数Cf表示,指岩石试样在 ±250C的温度期间内,反复降温、冻结、融解、升
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
岩石的主要物理性质
岩石由固体,水,空气等三相组成。 一、密度(ρ)和重度(γ): 单位体积的岩石的质量称为岩石的密度。单位体积的岩石的 重力称为岩石的重度。所谓单位体积就是包括孔隙体积在内的体 积。
二、比重(Δ)
岩石的比重就是指岩石固体的质量与同体积水 的质量之比值。岩石固体体积,就是指不包括孔隙 体积在内的体积。岩石的比重可在实验室进行测定, 其计算公式为:
Ws Vs w
式中:Δ——岩石的比重; Ws——干燥岩石的质量(g); Vs——岩石固体体积(cm3);
ΔW — 40C时水的密重。
W (g/cm3),γ=ρg(kN /m3)
V
岩石的密度可分为天然密度、干密度和饱和密度。相应地,岩 石的重度可分为天然重度、干重度和饱和重度。

岩石力学 初始应力的组成与计算

岩石力学  初始应力的组成与计算
3、影响岩体初应力状态的其它因素
(1)地形-自重的减小或增大
图6-7 地形对初应力的影响
(2)地质条件对初应力的影响。
图6-8背斜褶曲对地应 力的影响
图6-9 断层对地 应力的影响
(3)水压力、热应力
孔隙水压力、流动水压力(影响小,可不计)、 静水压力(悬浮作用)热膨冷缩在岩体中产生 热应力。地温升高会使岩体内地应力增加,一 般地温梯度: 3C /100m 岩体的体膨胀系 数: 10-5,岩体弹模E=104MPa;地温梯度引 起的温度应力约为:
相当于3岩体为理想松散介质风化带断层带由极限平衡理得2岩体构造应力判断测试不能计算当构造应力存在时图67地形对初应力的影响2地质条件对初应力的影响
第二节 初始应力的组成与计算 1、岩体自重应力场
垂直应力: Z
HA
A
H
z H
侧压力: X y Z
H—总深度(m)
—平均密度,KN/m3
z ihi x y n z
i 1
图6-2自重垂直应力分布
(2)Heim假设(塑性状态)
当原始应力超过一定的极限,岩体就会处
于潜塑状态或塑性状态。
1 (相当于 0.5 )
(3)岩体为理想松散介质(风化带、断层带)
由极限平衡理得
sin z x x z
1 sin x z 1 sin
—侧压力系数 的取值有4种可能 图6-1 岩体自重垂直应力
(1)岩体假定处于弹性状态

x
y
1 E
x
y
z
0
推出
x 1
z
得:
1
•岩体由多层不同性质岩层组成时(图6-2)
第j层应力:
j
z j ihi

岩土的物理力学性质参数

岩土的物理力学性质参数

岩土的物理力学性质指标之南宫帮珍创作
岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点, 选取与之有关的试样进行力学试验, 测定岩石及软弱夹层物理力学性质指标.
岩石及软弱夹层的物理性质指标详见表1至表7.
表1 部份岩石的容重
表2 部份岩石的孔隙率与吸水率
表3 分歧成因粘土的有关物理力学性质指标(一)
表4 分歧成因粘土的有关物理力学性质指标(二)
表5 几种土的渗透系数表
表6 土的平均物理、力学性质指标(一)
表7 土的平均物理、力学性质指标(二)
注:1.平均比重取:砂为;轻亚粘土为;亚粘土为;粘土.
2.粗砂与中砂的Eo值适用于不均系数Cu=3时, 当Cu>5时应按表中所列值减少2/
3.Cu为中间值时, Eo 值按内插法确定.
3.对地基稳定计算, 采纳内摩擦角φ的计算值低于标准值2°.
岩石及软弱夹层的力学性质指标见表8至表25.
表8 岩石力学性质指标的经验数据(一)。

岩石力学研究内容与方法

岩石力学研究内容与方法

基本理论材料实验研究内容工程应用岩石应力岩石强度岩石变形岩石渗流岩石动力学岩体内应力的来源、初始应力(构造应力、自重应力等)、二次应力、附加应力等,以及相应的试验方法。

抗压、抗拉、抗剪(断)强度及岩石破坏、断裂的机理和强度准则以及相应的试验方法。

单向和三向条件下的变形曲线特性、弹性和塑性变形、流变(应力-应变-时间关系)和扩容。

渗透性(渗透系数确定)、渗流理论、渗流应力状态和渗流控制(抽水、排水、灌浆帷幕以延长渗径)等。

爆炸、爆破、地震、冲击等动力作用下岩石力学特性、应力波在岩石内传播规律、地面振动与损害等。

基本理论岩石地基岩质边坡地下洞室岩石破碎岩石爆破研究高坝、高层建筑、核电站以及输电线路塔等地基的稳定、变形及处理的问题;水库边坡、高坝岸坡、渠道、运河、路堑、露天开采坑等天然和人工边坡的稳定、变形及加固问题地下电站、水工隧洞、交通隧道、采矿巷道、战备地道、石油产品库等的围岩稳定和变形,地下开挖施工以及围岩加固(如固结灌浆、锚喷、预应力锚固)问题将岩石破碎成各种所要求的规格,以作为建筑材料(建筑物面石、土坝护石、堆石坝和防波堤石料、混凝土骨料等);定向爆破筑坝,巷道掘进和采矿等工程应用(从研究方向划分)坝基、坝肩防渗工程大跨度高边墙水流冲刷水库诱发地震库岸稳定及加固露天采矿边坡设计、加固技术巷道稳定性岩爆、瓦斯等预测、矿井突水采空区地面塌陷及地面沉降路边边坡稳定性铁路隧道洞口稳定性隧道设计和施工技术隧道施工的地质超前预测高地应力区的岩爆地铁施工技术地基的处理与加固大型的地下洞室地面建筑物沉降及体偏岩石地应力渗透性地球物理勘探钻探技术与采油(水压致裂)。

岩石物理方程解释

岩石物理方程解释

Reuss 模型:此模型为Reuss 在应力均匀恒定的情况下,相当于各个岩石模块的并联组合,容易得出∑==Ni ii R M M 11φ. 模型如右所示:推导过程:因为有i dV dV =∑,由d V VPM =,则可得到()i i R iP V PV M M ϕ=∑又因为假设岩石内应力各向相同,则容易得出∑==N i ii RMM 11φ,即可得出岩石体积模量的最小值。

Voigt 模型:此模型为Voigt 在岩石中各矿物的应变均匀情况下,相当于岩石模块的串联组合,容易得出V iiM Mφ=∑. 模型图如右所示:推导过程:因为有i i P P φ=∑,同理dVP MV=,即有i Vi idV dV M M V V φ=∑,又因为假设岩石中各矿物的应变均匀相同即i idV dV φ=,即可得∑=i i V M M φ,即可得出岩石体积模量的最大值。

Wyllie 模型:此模型为Wyllie 在沉积岩中发现孔隙度和速度之间的简单单调关系,即完全理想情况,岩石各向同性即可得出岩石速度f f iMi W νφνφν+=∑,则可得出岩石的平均速度,然后根据体积模量和速度的关系即可得出岩石的集体模量W M . 模型图如右:Hill 模型:Hill 模型为Hill 提出用上下边界求平均值的方法来对岩石有效弹性模量进行切合实际的评价即可得出2R VH M M M +=.Reuss、Voit和Hill模型所得体积模量对比Reuss、Voit和Hill模型所得剪切模量对比孔隙流体为水,泥质和石英各为占一半的岩石体积模量界限值对比孔隙流体为水,泥质和石英占骨架比7:3和1:1的岩石体积模量界限值对比Qua:Cla=1:1 Qua:Cla=7:3孔隙流体为水,泥质和石英各为占一半的岩石体积模量界限值对比(下面两条无意义)孔隙流体为空气,泥质和石英各为占一半的岩石体积模量界限值对比Gassman 方程:主要讨论岩石体积模量在不同压力下的不同值。

常用的岩土和岩石物理力学参数讲解

常用的岩土和岩石物理力学参数讲解

(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E1, E3,ν12,ν13和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3,ν12,ν13,ν23,G12,G13和G23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表3.7给出了各向异性岩石的一些典型的特性值。

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。

纯净水在室温情况下的K f 值是2 Gpa 。

其取值依赖于分析的目的。

分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。

这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。

在FLAC 3D 中用到的流动时间步长, tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。

f'K nm k C +=νν (7.4)其中3/4G K 1m +=νf 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。

岩石的基本物理力学性质及其试验方法2

岩石的基本物理力学性质及其试验方法2

第二讲岩石的基本物理力学性质及其试验方法(之二)一、内容提要:本讲主要讲述岩石的变形特性、强度理论二、重点、难点:岩石的应力-应变曲线分析及岩石的各种强度理论。

三、讲解内容:四、岩石的变形特性与岩石的强度特性一样,岩石的变形特性也是岩石的重要力学特性。

只有对岩石的变形特性的变化规律有了足够的了解,才能应用某些数学表达式描述岩石的变形特性,进而运用这些表达式计算岩石在外荷载作用下所产生的变形特性,并评价其稳定性。

在实际的工程中,经常遇到岩石在单轴和三轴压缩状态下的变形问题。

(一)岩石在单向压缩应力作用下的变形特性1. 岩石在普通试验机中进行单向压缩试验时的变形特性岩石的变形特性通常可从试验时所记录下来的应力-应变曲线中获得。

岩石的应力-应变曲线反映了各种不同应力水平下所对应的应变(变形)规律。

以下先介绍具有代表性的典型的应力-应变曲线。

1)典型的岩石应力-应变曲线分析图15-1-17例示了典型的应力-应变曲线。

根据应力-应变曲线的变化,可将其分成OA,AB,BC三个阶段。

三个阶段各自显示了不同的变形特性。

(1)OA阶段,通常被称为压密阶段。

其特征是应力-应变曲线呈上凹型,即应变随应力的增加而减少。

形成这一特性的主要原因是存在于岩石内的微裂隙在外力作用下发生闭合所致。

(2)AB阶段,也就是弹性阶段。

从图15-1-17可知,这一阶段的应力-应变曲线基本呈直线。

若在这一阶段卸荷的话,其应变可以恢复,由此可称为弹性阶段。

这一阶段常用两个弹性常数来描述其变形特性。

即弹性模量E和泊松比。

所谓弹性模量,是指应力—应变曲线中呈直线阶段的应力与应变之比值(或者是该曲线在直线段的斜率)被称作平均模量。

就模量的概念而言,岩石的模量还有初始模量、切线模量、割线模量等。

在岩石力学中比较常用的是平均弹性模量E和割线模量E50,E50是指岩石峰值应力一半的应力、应变之比值,其实质代表了岩石的变形模量。

所谓泊松比,是指在弹性阶段中,岩石的横向应变与纵向应变比之值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩石物理参数计算及应力研究-llzlllo第三章 岩石物理参数计算及应力研究第一节 岩石物理参数计算地层岩石是地应力的载体,岩石物理性质对地应力的传递、衰减、集中、分散都会产生很大的影响,岩石物理参数与岩体赋存的地应力密切相关,岩石物理参数计算是地应力研究的必然步骤。

通过纵、横波时差和密度等测井资料,可以计算地层条件下的岩石动态弹性模量,在此基础上,可以进行地应力分析、井眼稳定性分析、地层出砂分析、以及人工压裂设计等方面的研究。

岩石物理参数包括岩石弹性参数和岩石机械强度参数。

岩石弹性参数主要有泊松比μ、杨氏模量E 、剪切模量G 、体积模量K 、体压缩系数b C 和ma C 、有效应力系数系数α(比奥特系数);岩石机械强度主要有单轴抗压强度c σ、岩石的抗剪强度0C 和岩石抗张强度t s ,以及内摩擦角ϕ等。

1、岩石弹性参数对于各向同性均匀介质岩石来说,利用牛顿第二定律和三维虎克定律,经数学推导,可导出计算声波速度在岩石介质中的波动方程:P ∆=-+-=+=t E G V 1)21)(1()1(2p μμρμρλ (3-1-1) s s t E G V ∆=+==1)1(2μρρ (3-1-2)根据上述的波动方程,可以得出各种弹性参数与声波时差的关系式。

①泊松比定义为横向应变与纵向应变之比。

22225.0p s ps t t t t ∆-∆∆-∆=μ (3-1-3)②切变模量定义为施加的应力与切应变之比。

a t G s b⨯∆=2ρ (3-1-4)③杨氏模量定义为施加的轴向应力与法向应变之比。

)1(2μ+=G E(3-1-5) ④体积模量定义为静水压力与体积应变之比。

a t t K s pb b ⨯⎪⎪⎭⎫ ⎝⎛∆-∆=22341ρ (3-1-6)⑤体积压缩系数定义为体积模量的倒数。

即:b b K C 1= (3-1-7)⑥有效应力系数(Boit)表示孔隙压力对岩石变形的影响,即:b maC C -=1α=K b /K ma (3-1-8)式中:b ρ为岩石体积密度,3cm g ;s t ∆、p t ∆为纵、横波时差,ft s μ。

公式中的a 为单位转换系数。

具体选择方法如下:如果密度单位为3/cm g ,时差单位为ft s /μ,弹性参数单位为psi ,则101034.1⨯=a ;如果密度单位为3/cm g ,时差单位为ft s /μ,弹性参数单位为MPa ,则71029.9⨯=a ;如果密度单位为3/cm g ,时差单位为m s /μ,弹性参数单位为MPa ,则910=a 。

因此,利用阵列声波测井提供的纵、横波时差以及常规测井提供的密度资料就可以进行岩石弹性参数计算。

但是由于费用等原因,并不是每口井都开展声波全波列或阵列声波测井,因而不能直接获取横波时差资料,在研究中则可以通过构造内某些井已有的横波时差曲线资料来建立横波时差曲线计算式。

研究表明,横波时差与纵波时差、地层密度和纵波波阻抗之间有很好的相关性。

通过对安棚地区4口井的纵横波时差曲线进行分析后,建立了纵横波时差经验关系式:34.1358.579.1+-∆=∆b p s t t ρ (3-1-9)904.0=R图3-1是由上式纵横波时差关系式得出的横波时差与实测横波时差的关系图,从图中可以看出,大部分点分布在斜率约为450的直线上,计算的横波时差与实测横波时差近似相等。

图3-1-1 合成横波时差与实测横波时差关系图当研究区内没有一口井具有横波时差资料时,则可用下面的公式来合成横波时差曲线:()()()mas fp map pmas fs mas s t t t t t t t t ∆-∆∆-∆∆-∆+∆=∆ (3-1-10)式中:mas t ∆、map t ∆为岩石骨架的横波时差和纵波时差,ft s μ;fs t ∆、fp t ∆为流体的横波时差和纵波时差,ft s μ。

2、岩石动、静态弹性参数之间的转换方法岩石弹性参数的常用测定方法有动态法和静态法两种。

静态法是通过对岩样进行静态加载测其变形得到,所得弹性参数称之为静态参数;动态法则是通过测定超声波在岩样中的传播速度转换得到,所得弹性参数称之为动态参数。

因此,用测井资料计算得到的弹性参数是动态参数。

根据地下岩层的应力形成、赋存和起作用的机理,特别是在应力幅值、加载速度和所引起的岩石变形等方面,更接近岩石静态测试的条件,另外,现有的力学本构关系一般是基于静态参数建立的,因此,在地应力计算和实际工程中应采用岩石的静态弹性参数。

大量研究资料表明岩石的动态、静态弹性参数具有很好的相关性,且大部分情况下岩样的静态参数弹性模量小于其动态值。

岩石动、静态弹性参数间存在较大差别,其原因主要是岩石中微裂缝和孔隙的存在。

岩石这种孔隙的弹性材料有别于各向同性、均质的线弹性体。

微裂缝的存在对岩石静态变形的影响较大,而超声波可以绕过一些微裂缝传播。

在实际应用时,可通过岩石力学动、静态同步测试建立动、静态参数间的关系,从而把测井得到的动态参数转换为静态参数。

由于研究区及其邻近区块没有条件做岩石力学试验,本次研究引用了辽河油田和大庆油田的实验结果:d s E E 7095.02526.0+=(3-1-11) 37.036.0d s μμ⨯= (3-1-12)式中:s E 、s μ为静态杨氏模量和静态泊松比;d E 、d μ为动态杨氏模量和动态泊松比,即测井资料计算结果。

式(3-11)和式(3-12)的相关系数分别为0.75和0.86。

3、岩石机械强度参数目前,岩石机械强度参数还没有理论计算式,一般通过岩石力学测试来确定。

为了克服岩石力学试验存在的测试费用昂贵和数据量少等缺点,研究人员通过岩石力学试验建立了岩石强度参数的经验计算式:⑴单轴抗压强度C σDeer 和Miller (1996)根据大量的室内试验结果建立了砂泥岩的单轴抗压强度与岩石动态杨氏模量dE 和地层泥质含量sh V 之间的关系:①砂泥岩地层()sh d sh d c V E V E ⋅+-=008.010045.0σ(3-1-13)②碳酸盐岩地层 ()sh d sh d c V E V E ⋅+-=008.010026.0σ (3-1-14)式中:c σ和d E 的单位为MPa ;泥质含量为小数,由自然伽马测井资料确定。

⑵岩石粘聚力0C (内聚强度或抗剪切强度)根据Brules 和Coates 的研究结果,粘聚力0C 的计算公式为:()()sh d d d b p V v C 78.0111211044.524150+⨯⎪⎪⎭⎫ ⎝⎛-+⨯-⨯=-μμμρ (3-1-15)式中:d μ为岩石动态泊松比,无量纲;b ρ为岩石的体积密度,单位为3cm g ;p v 为岩石的纵波速度,s m ;sh V 为地层的泥质含量,小数。

①岩石的抗张强度t s40C s t = (3-1-16)②岩石的内摩擦角ϕ对于岩石内摩擦角ϕ的确定,斯伦贝谢和西方阿特拉斯公司在计算时假定岩石的所有内摩擦角ϕ都为030,这与实际情况有一定的误差,岩石类型和组成岩石的颗粒的相对大小对内摩擦角有影响。

一般岩石的摩擦角在150~450之间。

根据Brie 强度公式,摩擦角与泊松比之间关系有:15)11(30+--=μμϕ (3-1-17) 另外,内摩擦角也可以按石油大学提出的经验关系式进行计算: ()21log 654.220M M ++⨯+=ϕ(3-1-18)其中:0785.193.58C M -=。

具体采用哪个公式,视实际情况而定。

4、岩石物理参数计算实例分析 根据上述参数计算公式,利用的相应测井资料对安塞油田的几口井进行岩石机械特性进行分析。

从安2051和泌356井的岩石物理参数成果图(图3-1-2、图3-1-3)可以看出,这两口井地层岩石的各种弹性模量参数(动态)比较大,杨氏模量在40000MPa-65000MPa 之间,即岩石的抗破坏能力比较强。

从图中还可以看出,泥岩层的抗剪切强度和单轴抗拉强度比砂岩层的大,这是在储层改造时为什么泥岩层能作为遮挡层的原因之一。

当然,井壁岩石的破坏不仅与岩石本身的强度有关,还与地应力有关。

一般情况下,若不考虑地应力的影响,泥岩抗破坏的能力比砂岩强。

图3-1-2 安2051井岩石机械特性成果图图3-1-3 泌356井岩石机械特性成果图图3-1-4 安2051井实测横波、合成横波及力学参数对比图计算各种弹性模量参数需要同时具备有纵、横波时差,并且弹性模量是计算地应力及各种破裂压力的基础参数,因此,纵、横波时差是地应力研究中的重要原始数据。

在缺乏横波时差资料的情况下,可由纵波时差以及密度来合成横波时差。

下面给出了安2051井采用实测横波时差和合成横波时差计算弹性力学参数的对比图。

从图3-1-4看出,合成的横波时差与实测横波时差几乎相等,并且分别由这两种时差计算得出的各种弹性参数曲线基本重合,只有少数深度点相差较大,从总体上来讲,通过合成的横波来计算弹性力学参数的精度还是比较高的。

因此,在缺乏横波时差的情况下,可以由纵波时差与密度资料来合成横波时差,并且能获得比较准确的弹性力学参数,进而进行地应力以及井壁稳定性等方面的分析。

第二节 地应力大小及方位1、地应力地应力是存在于地层中的未受工程扰动的天然应力,也成岩体初始应力、绝对应力或原岩应力。

它是由于地壳内部的垂直运动和水平运动及其他因素而引起介质内部单位面积上的作用力。

地壳中的不同地区,不同深度地层中的地应力的大小和方向随空间和时间的变化而变化构成应力场。

地层中每一个质点的地应力都有其大小和方向,其中包括最大水平主应力H σ、最小水平主应力h σ、垂向应力v σ的大小和方向。

地应力是石油勘探与开发中的一个重要基础参数。

含油气盆地构造的形成和演化是在一定的地应力场作用下的产物,只有弄清含油气盆地、含油气区块的地应力场分布,才能正确认识古构造行迹的发生演化历史,才能有效地分析和解决油气勘探开发的有关问题。

现在已经认识到地应力对油气勘探开发的作用和影响越来越多地从各个方面表现出来,如:地质构造形成玉演化是构造应力作用及变化的结果;储层中油气运移和聚集与地应力有关,油气总是由强应力区向弱应力区运移;天然裂缝和裂隙面与最大主应力方向平行;油田应力场状态决定着断层的形态和分布;在渗透率各向异性、低渗透率油田中,主渗透率方向与最大目前最大水平主应力方向一致;在钻井过程中,井壁的稳定性与地层岩石的力学性质、地层剖面的地应力状态有密切关系;油井采油过程中的出砂与地层的岩石力学性质、油层的应力环境、出砂指数有关;油层改造过程中,地应力场状态、地层岩石的力学性质决定着水力压裂的裂缝的形态、方位、高度和宽度,影响着压裂的增产效果等等。

地应力的大小、方向、分布规律及其演化史是油气勘探开发中地应力研究的主要内容,而岩石的力学性质、储层的孔隙压力、地层温度、构造应力、重力及地层剥蚀等是影响油田应力场状态的主要因素。

相关文档
最新文档