Gluon polarization in transversely polarized nucleons and jet spin asymmetries at RHIC
粘接均匀弹性材料的功能梯度压电带中单裂纹对SH波的散射问题
其 中 C , ,。 , o £ , 卢分别 是剪 切模 量 , 电 系数 , 电常数 , 度 , 能梯 度参 数 。 压 介 密 功
I 】z,)一 D ( ( 0 , D(( O 2 )z,) z> 口 3
压 电带 中裂 纹 对 S 波 的散 射 的几 何 模 型 H
』 (z一 一 ,(z一 一 , ( 一一 rs , ^ 0 y( ^ o ) , o ( ) ) D3 , ) Dz ‘
( 3 )
0 引 言
当一种 介质 中传 播 的扰动 遇到一个 物体 或遇 到任何 材料 的不连续 时 , 就会 受 到反射和 折射 , 于是就 造成 在物体 内部或 外部传播 新 的波 , 种现象 就称 为波 的散射 。波 已经 深入 到人们 的生活 中 , 这 研究 波和 这些 材料 中缺陷 的散射作 用就很 重要 。S 波在 压 电材料 或功 能梯 度材 料 中裂纹 处 的散射 已有 不 少人 H 研究 。陈 晓岚等[ 利 用 C po [ 法研 究 了 S 波 与功 能 梯度 材料 中静 止裂 纹 的相 互 作 用 。李 星教 1 o sn 方 H 授和刘 俊俏 [ 利用 C p o 3 o s n方法 研究 了无 限大正交 各 向异 性功 能梯度 材料垂 直裂纹 处 的 S 波的散 射 , H
k k一 1 2 ( ,)分别 对应上 半平 面 D 下半平 面 D。 为 使 问题便 于 处 理 , 和 。 假设 材 料性 质 的变 化呈 指 数形
*
பைடு நூலகம்
收 稿 日期 :20 — 1 —1 09 2 6 作 者 简 介 :周 春梅 ,女 , 回族 , 夏 固 原人 ,硕 士 ,宁夏 师 范 学 院数 学 与 计算 机 科 学 学 院 教 师 , 究 方 向 为复 分 析及 其 在 力 学 中 宁 研 的应 用 。
反式乙烯基联吡啶表面增强拉曼光谱的密度泛函理论研究
2 结果 与讨论
利用 密度泛 函理论 ,采用 B 8 , w9 P 6 P 1和 1 L 3 YP方法 , 3 H, N 原子运用 63 ++G( , ) C, -1 d p 基组 , Ag原子使用赝式 基组 ,对反式乙烯基联吡啶分别键连 1 A 、3个 Ag 个 个 g 、4
配合物 HO MO 与 L UMO的能级差估计在 49 1 l 范 围内。 4  ̄9 2n l T
关键 词
反式乙烯基联 吡啶与银 配合物 ( B E ; 面增 强拉 曼光谱( E S ; tP )表 - S R ) 密度泛 函理论 ( T) DF ;势能分
布 ( D) PE
中图分类号 : 5 O6 7
文献标识码 :A
D : 0 3 6  ̄.sn 1 0—5 3 2 1 )82 2-4 OI 1 . 9 4 i . 0 00 9 (0 10 -1 30 s
引 言
反式 乙烯基 联吡 啶(—P ) t E 具有 两个 活性 氮原 子 ,形成 B
法 ,t P - - E Ag配合 物中的 H、c B 、N原子使用 63 ++G( , —l d p基组 , ) Ag原子采用 L n2 z赝式 ) a ld( 基组 , 进行 全几何 构型 优化 , 然后对该配合物拉曼光谱 进行计算 , 并且 使用程 序默 认 的收敛 阈值 和 B ry 梯度 法 。采用 Gasi 3】 程 序 en[ ] us n0 3 a r_ 进行计算 。 势能分布 中的每个基频振动方式 主要决定 于局域 对称性 坐标[ ] 11 。按照势能分布计算得 到的结果对 t P 46 - y分 B 子及其 配合 物的 R ma a n光谱进行归属 。
新型不对称吡喃鎓方酸菁染料的晶体结构(英文)
新型不对称吡喃鎓方酸菁染料的晶体结构(英文)
陈建国;黄德音;黎源
【期刊名称】《感光科学与光化学》
【年(卷),期】2000(18)2
【摘要】通过缓慢挥发溶剂法得到一种不对称吡喃方酸菁染料的单晶 ,测定了其晶体结构 .其晶系为三斜晶系 ,空间群为P1 ,a =0 .92 2 8( 4 ) ,b =1 .41 2 2 ( 6) ,c=0 .61 2 4 ( 3)nm ,α =93.97( 4 ) ,β=98.1 4( 5) ,γ =71 .0 5( 4 ) ,V
=0 .7470 ( 6)nm3,Z =1 .用晶体结构数据解释了此不对称染料的1 H NMR谱 .【总页数】8页(P104-111)
【关键词】吡喃Weng方酸染料;菁染料;晶体结构;^1H-NMR谱
【作者】陈建国;黄德音;黎源
【作者单位】上海交通大学化学化工学院
【正文语种】中文
【中图分类】TQ614.4;O644
【相关文献】
1.新型不对称吡喃鎓方酸菁染料的晶体结构 [J], 陈建国;黄德音;黎源
2.新型吡喃鎓方酸菁染料溶剂效应、聚集行为研究 [J], 陈建国;黎源;黄德音
3.近红外水溶性不对称吲哚方酸菁染料的合成 [J], 宋波;于浩;刘翠翠;马文辉;彭孝军
4.一种新型含肉桂酸酯结构的螺吡喃光致变色染料的合成与性能研究 [J], 申凯华; 崔东熏
因版权原因,仅展示原文概要,查看原文内容请购买。
二氧化钛-钌杂化膜增强铂电极的光催化活性
二氧化钛-钌杂化膜增强铂电极的光催化活性2016-07-01 13:33来源:内江洛伯尔材料科技有限公司作者:研发部二氧化钛-钌杂化膜在光沉积铂纳米团簇前后的AFM图纳米尺度的有机-无机杂化膜在光学、微电子学以及分子敏感元器件等方面的应用倍受人们的广泛关注, 其中基于层状无机含氧化合物如蒙脱土、二氧化钛的无机-有机杂化超薄膜的设计与合成已成为该领域的研究热点之一.目前, 多种实验方法如Langmuir-Blodgett(LB)膜法、层层自组装法、电泳沉积法等已成功地应用于有机-无机杂化膜的制备, 其中LB膜法由于可以在分子水平上按照人们预想的次序排列和取向进行设计而备受推崇. 比如Yamagishi等利用LB膜技术设计合成了纳米单层的蒙脱土-有机锇螯合物杂化膜, 并成功地应用于手性分子的光电识别。
有研究利用LB法可控制备了纳米单层的蒙脱土-有机钌螯合物杂化膜, 并发现上述杂化膜修饰的ITO电极对DNA的主要成分之一单磷酸鸟苷具有优良的光电催化氧化特性. 层状水合二氧化钛具有蒙脱石相似的结构特性, 如层间阳离子的可交换性、片层的径厚比和比表面积大等. 通过离子交换进行层间的膨胀,可使层状水合二氧化钛在水中或其它水溶液中发生层的剥离,获得单分子层的无机膜.纳米单层的二氧化钛超薄膜不但可用来在分子水平探讨有机-无机杂化膜的界面电子传递机制,而且也为纳米二氧化钛利用其优良的光催化氧化还原能力,在光催化、光电池、生物和化学传感器等方面获得重要应用. 但目前在纳米TiO2的应用过程中仍存在由于光生电子与空穴复合速度过快而造成光催化性能下降的问题.贵金属纳米团簇已被发现具有有效阻止电子空穴对的复合特性, 从而提高光子利用率和光催化活性. 如He等发现银纳米团簇敏化的二氧化钛-有机钌螯合物杂化膜修饰电极具有良好的光电流增强效应. 最近,Nakamura等也发现Pt纳米团簇敏化的石墨电极,同样具有良好的电催化作用.温州大学纳米材料与化学重点实验室王舜等人利用LB膜技术可控制备了纳米单层和多层的二氧化钛-有机钌螯合物杂化膜, 研究了上述无机-有机杂化膜修饰电极在Pt纳米团簇敏化后的光电流增强效应. 实验结果表明: (1)纳米单层TiO2/[Ru(phen)2(dC18bpy)]2+(简称为TiO2-Ru)杂化膜的平均厚度为(3.6±0.5) nm; (2) 在光照条件下TiO2-Ru杂化膜能有效催化还原[Pt(NH3)6]4+形成粒径位于20~160 nm之间的Pt纳米团簇; (3)Pt纳米团簇的引入消除了金属钌螯合物中配体对电子传递的阻碍作用, 改变了电子传递途径, 从而有效减少了电子空穴对的复合, 提高了Pt纳米团簇敏化的n层杂化膜修饰电极(ITO/(TiO2-Ru)n/Pt)在支持电解质中的光电流. 与纳米单层TiO2-Ru杂化膜修饰的ITO电极(ITO/TiO2-Ru) 相比, 当工作电压为900mV时, ITO/TiO2-Ru/Pt在0.1mol•L-1的NaClO4电解质溶液中和光照(λ>360 nm)条件下, 单位面积的光电流提高了约5倍; (4)ITO/(TiO2-Ru)n/Pt电极光电流的大小与杂化膜的层数密切相关, 当TiO2-Ru杂化膜的层数从一层、二层增加到四层时, 光电流呈现先升高后下降行为,这表明ITO/(TiO2-Ru)n/Pt电极的电子传递过程直接通过非电活性的二氧化钛纳米单层进行.。
一种噻吩基双偶极半菁与普鲁士蓝的静电自组装薄膜
一种噻吩基双偶极半菁与普鲁士蓝的静电自组装薄膜王志平;罗虹;高丽华;王科志【摘要】We successfully prepared a novel inorganic-organic hybrid electrostatically self-assembled multilayer film by alternately depositing Prussian blue (PB) and a thiophene-containing hemicyanine. The optical, electrochemical, and photoelectrochemical properties of the as-prepared films were studied by UV-visible absorption spectroscopy, cyclic voltammetry, and photoelectrochemical experiment. Linear increases in the absorbances at 376 and 698 nm with the number of deposited layers, up to at least 8 layers, indicated that film deposition was uniform and reproducible. The PB in the prepared films was found to occur surface-confined rather than diffusion-controlled redox reactions and the peak currents increased with an increase in the number of layers up to 5 layers. Upon irradiation with 100 mW· cm-2 white light the films exhibited stable and reproducible cathodic photocurrents, which increased as the number of layers increased up to 4 layers. A maximum photocurrent density of 0.28 μA· cm-2 was found for the four-layer film at a bias voltage of -0.4 V vs the saturated calomel electrode.%通过交替沉积普鲁士蓝和一种含噻吩的半菁,制备了一种新的无机-有机杂化静电自组装膜.用紫外-可见吸收光谱、循环伏安技术和光电化学实验对薄膜进行了表征或光电性质研究.376和698 nm处薄膜的吸光度随薄膜层数增加线性增加,表明薄膜的沉积是均匀和可重复的.薄膜中的普鲁士蓝具有良好的表面控制而非扩散控制的电化学活性.膜的层数从1增加至5时,阳极峰电流随膜层数增加而线性增加.100 mW·cm-2的白光照射下,薄膜产生稳定的阴极光电流,随层数增加线性增长,层数增加到4层时,光电流达到最大值.饱和甘汞电极为参比电极,-0.4 V偏压下,4层薄膜产生的光电流密度高达0.28 μA·cm-2.【期刊名称】《物理化学学报》【年(卷),期】2011(027)003【总页数】5页(P754-758)【关键词】半菁;自组装膜;循环伏安;紫外可见光谱;噻吩;光电化学性质【作者】王志平;罗虹;高丽华;王科志【作者单位】北京师范大学化学学院,北京100875;集宁师范学院,内蒙古集宁012000;北京师范大学化学学院,北京100875;北京工商大学化学与环境工程学院,北京100048;北京师范大学化学学院,北京100875【正文语种】中文【中图分类】O646Abstract: We successfully prepared a novel inorganic-organic hybrid electrostatically self-assembled multilayer film by alternately depositing Prussian blue(PB)and a thiophene-containing hemicyanine.Theoptical,electrochemical,and photoelectrochemical properties of the as-prepared films were studied by UV-visible absorption spectroscopy,cyclic voltammetry,and photoelectrochemical experiment.Linear increases in the absorbances at 376 and 698 nm with the number of deposited layers,up to at least 8 layers,indicated that film deposition was uniform and reproducible.The PB in the prepared films was found to occur surface-confined rather than diffusion-controlled redox reactions and the peak currents increased with an increase in the number of layers up to 5 layers.Upon irradiation with 100 mW·cm-2white light the films exhibited stable and reproducible cathodic photocurrents,which increased as the number of layers increased up to 4 layers.A maximum photocurrent density of 0.28 μA·cm-2was found for the four-layer film at a bias voltage of-0.4 Vvsthe saturated calomel electrode.Key Words:Hemicyanine;Self-assembled film;Cyclic voltammetry;UV-visible spectrum;Thiophene;Photoelectrochemical propertyDecher1发展的以静电作用力为驱动、将阴阳离子交替沉积吸附制备自组装膜的技术,由于具有方法简单、厚度可控、性质稳定和高度的分子水平组装能力的特点,已引起科学工作者的广泛关注,而有机-无机杂化材料的静电自组装膜已成为目前研究的热点.2,3半菁化合物是备受关注的二阶非线性光学和光电转换材料,过去的十几年的时间里主要采用Langmuir-Blodgett(LB)技术制备多层薄膜,4-10但LB技术具有仪器昂贵、制备费时和薄膜不够稳定等缺点.近年我们曾报道了双偶极半菁和Ru(II)配合物与杂多/同多阴离子、普鲁士蓝和WO3形成的静电自组装多层薄膜,表现出诱人的二阶非线性光学性质和光电转换性质.11-19噻吩是重要的导电聚合物单体,在发光二极管、太阳能电池和场效应晶体管领域有重要应用前景.20普鲁士蓝是一类重要的电致变色、传感和磁学材料.21-24但含噻吩的半菁静电自组装膜未见文献报道.本文报道一种含噻吩基的新双偶极半菁衍生物与普鲁士蓝形成的静电自组装膜以及薄膜的氧化还原和光电化学性质,旨在为这种原料易得、制备简单的有机-无机复合的纳米薄膜材料在多领域的应用提供重要的基础实验数据.用于成膜的含噻吩基双偶极半菁(分子结构示于图1,简记为ABr2),按文献5,11报道的方法合成,经元素分析和核磁共振谱表征.普鲁士蓝{KFeIII4[FeII(CN)6]3}(简记为KFeIII-FeII)按文献14报道的方法合成.GBC Cintra 10e型紫外-可见分光光度计(澳大利亚);pHS3酸度计(上海精密科学仪器有限公司);CHI420电化学分析仪(上海辰华仪器公司);采用三电极系统,覆盖有自组装膜的氧化铟-氧化锡(ITO)玻璃为工作电极,铂丝为对电极,饱和甘汞电极为参比电极,支持电解质为0.5 mol·L-1的Na2SO4溶液(pH=1.93).白光光源(光强为100 mW·cm-2)为配有红外和紫外截止滤光片的500 W高压氙灯光源系统(北京畅拓科技有限公司),薄膜光照的有效面积为0.28 cm2.将石英和玻璃基片分别用98%浓硫酸:30%双氧水(体积比为3:1)和25%氨水:30%双氧水:水(体积比为1:1:5)清洁和亲水处理;ITO玻璃用氢氧化钠的饱和乙醇溶液清洁和亲水处理.处理后的石英和ITO基片按图2所示的途径途组装薄膜.首先按文献3,7,8方法进行表面硅烷化和氨基质子化,然后依次分别浸入1.0 mmol·L-1普鲁士蓝水溶液30 min和1.0 mmol·L-1ABr2水溶液50 min,每次取出后用pH=3.0的去离子水冲洗干净,空气吹干;重复图2所示的步骤2、3即可得到静电自组装多层膜.普鲁士蓝水溶液、半菁ABr2水溶液和9层[(FeIII-FeII)-/A2+]9膜的紫外-可见吸收光谱的比较如图3所示.从图中可见,ABr2在378 nm处出现了1个π→π*吸收峰,4普鲁士蓝在684 nm处出现了Fe(II)与Fe(III)间的电荷转移跃迁吸收峰,25而自组装多层膜在376和698 nm处明显出现了两个最大吸收峰,其中376 nm处的吸收峰和ABr2水溶液的吸收特征相似,698 nm处的吸收峰与普鲁士蓝的吸收特征相似,说明阴阳离子已组装到基片上.值得注意的是薄膜的吸收峰较普鲁士蓝发生了近14 nm的红移,可能源于膜中A2+与普鲁士蓝间发生电荷转移.21图4为不同层数[(FeIII-FeII)-/A2+]n(n=1-8)膜的紫外可见吸收光谱.从图中可见,不同层数的薄膜的吸收峰基本保持不变,表明层间分子的相互作用不随膜层数的增加而变化;在376和698 nm处的吸光度随着膜层数的增加而线性增加(见图4插图),表明两种成膜组分已被成功组装上去,且薄膜的沉积是均匀和可重复的.因为基片的两面均有膜,由376 nm处的吸光度随层数增加的直线斜率0.00576除以2,可得出单层膜[(FeIII-FeII)-/A2+]1膜的吸光度A=2.9×10-3,由ABr2水溶液在376 nm处的摩尔消光系数ε=5.4×104L·mol-1·cm-1,根据朗伯-比耳定律可推出半菁分子表面覆盖率Γ=10-3A/ε,其中A为每层的吸光度,ε为ABr2水溶液的摩尔消光系数.求得Γ=5.3×10-11mol·cm-2,此值大于我们最近报道的双核钌配合物与普鲁士蓝形成的静电自组装膜的表面覆盖率3.7×10-11mol·cm-2,14表明薄膜的致密性较好.同理,由在698 nm处单层膜的吸光度值4.0×10-3以及普鲁士蓝水溶液的摩尔消光系数值3.0×104L·mol-1·cm-1,求得普鲁士蓝在膜中的表面覆盖率为1.3×10-10mol·cm-2,约为半菁分子表面覆盖率值的2.5倍.显然,成膜材料的分子体积是控制每个成膜组分多少的关键因素,另外膜中组分间的电荷转移通常也是导致膜中组分非整比的因素.图5为以覆盖有4层[(FeIII-FeII)-/A2+]4膜的ITO基片为工作电极,饱和甘汞电极为参比电极,铂丝为对电极,电解液为0.5 mol·L-1的Na2SO4溶液(pH=1.93),在60-200 mV·s-1的扫描速率下的循环伏安曲线.可见薄膜分别在半波电位E1/2=0.015和0.97 V处出现两对氧化还原峰,可分别指认为如方程(1)和(2)所示普鲁士蓝PB被还原为Everitt盐ES(过程I)和PB被氧化为普鲁士黄PY(过程II)的两个过程:26如图5内插图所示,峰电流与扫描速率成正比,表明为表面控制而非扩散控制的氧化还原过程.图6为不同层数薄膜[(FeIII-FeII)-/A2+]n(n=1,2,3,5)的循环伏安曲线.由图6及其插图所示,膜的层数从1增加到5时,普鲁士蓝在膜中的氧化还原反应阳极峰电流随膜层数增加而线性增加.如图7(A)所示,-0.4 V偏压下,100 mW·cm-2白光照射2层薄膜[(FeIII-FeII)-/A2+]2产生较为稳定的阴极光电流,光电流达37 nA,明显有别于没有沉积薄膜的空白ITO电极产生的可忽略的微弱光电信号,可证实光电信号来自组装的薄膜.但光电流信号强度较我们最近研究的几种光电化学体系产生的光电流低.14,15,18可能源于本文研究的半菁吸光能力较差.偏压对光电流的影响研究表明,偏压越负,光电流越大,进一步证实为阴极光电流.薄膜产生的阴极光电流随膜层数增加而增加(光电流密度可达0.28 μA·cm-2),膜层数达4层后进一步增加层数,光电流减小(图7(B)). 紫外-可见吸收光谱、循环伏安技术和光电化学实验表明,能成功地通过静电自组装技术制备含有新型噻吩双偶极半菁和普鲁士蓝的多层超薄膜.薄膜在376和698 nm处的吸光度随着膜层数的增加而线性增加,测得膜中半菁和普鲁士蓝的表面覆盖率分别为5.3×10-11和1.3×10-10mol·cm-2,表明薄膜沉积均匀致密.循环伏安实验观察到两对分别指认为普鲁士蓝PB被还原为Everitt盐和PB被氧化为普鲁士黄的两对氧化还原峰,氧化还原过程为表面控制,且峰电流随层数增加而增加.白光照射下,薄膜能产生稳定的阴极光电流,4层薄膜的光电流密度可达0.28 μA·cm-2.【相关文献】(1) Decher,G.Science 1997,277,1232.(2)Zhang,X.;Chen,H.;Zhang,mun.2007,1395.(3)Wang,K.Z.;Gao,L.H.Mater.Res.Bull.2002,37,2447.(4)Lang,A.D.;Zhai,J.;Huang,C.H.;Gan,L.B.;Zhao,Y.L.;Zhou,D.J.;Chen,Z.D.J.Phys.Chem.B 1998,102,1424.(5)Yao,Q.H.;Shan,L.;Li,F.Y.;Yin,D.D.;Huang,C.H.Acta Phys.-Chim.Sin.2003,19,635.[姚巧红,单路,李富有,尹冬冬,黄春辉.物理化学学报,2003,19,635.](6)Wang,K.Z.;Huang,C.H.;Xu,G.X.;Xu,Y.;Liu,Y.Q.;Zhu,D.B.;Zhao,X.S.;Xie,X.M.;Wu.N.Z.Chem.Ma ter.1994,6,1986.(7)Wang,K.Z.;Huang,C.H.;Xu,G.X.;Zhao,X.S.;Xia,X.H.;Wu,N.Z.;Xu,L.G.;Li,T.K.Thin Solid Films 1994,252,139.(8)Wang,K.Z.;Huang,C.H.;Xu,G.X.;Wang,R.J.Polyhedron 1995,14,3669.(9)Wang,K.Z.;Jiang,W.;Huang,C.H.;Xu,G.X.;Xu,L.G.;Li,T.K.;Zhao,X.S.;Xie,X.M.Chem.Lett.1995,1 761.(10)Wang,K.Z.;Huang,C.H.;Zhou,D.J.;Xu,G.X.;Xu,Y.;Li,Y.Q.;Zhu,D.B.;Zhao,X.S.;Xie,X.M.Solid State Commun.1995,93,189.(11)Wang,L.Y.;Wang,K.Z.;Gao,L.H.Acta Chim.Sin.2003,61,1877.[王丽颖,王科志,高丽华.化学学报,2003,61,1877.](12)Gao,L.H.;Hu,X.J.;Zheng,D.S.;Guo,Y.;Wang,K.Z.J.Nanosci.Nanotechnol.2008,8,1355.(13)Gao,L.H.;Wang,K.Z.;Wang,L.Y.J.Nanosci.Nanotechnol.2010,10,2018.(14)Ju,C.C.;Luo,H.;Wang,K.Z.J.Nanosci.Nanotechnol.2010,10,2053.(15)Zou,X.;Fan,Y.;Zhuang,M.Y.;Peng,J.;Wang,K.Z.J.Nanosci.Nanotechnol.2010,10,2203.(16)Zhang,Y.Q.;Gao,L.H.;Wang,K.Z.;Gao,H.J.;Wang,Y.L.J.Nanosci.Nanotechnol.2008,8,1248.(17)Wang,Y.B.;Xia,J.Y.;Gao,L.H.;Wang,K.Z.Chem.J.Chin.Univ.2007,28,1175.[王宜冰,夏即雅,高丽华,王科志.高等学校化学学报,2007,28,1175.](18)Zhou,X.;Fan,Y.;Zhuang,M.Y.;Peng,J.;Gao,L.H.;Wang,K.Z.Acta Chim.Sin.2010,68,2250.[邹旭,范娅,庄敏阳,彭景,高丽华,王科志.化学学报,2010,68,2250.](19)Zhang,Y.Q.;Gao,L.H.;Duan,Z.M.;Wang,K.Z.;Wang,Y.L.;Gao,H.J.Acta Chim.Sin.2004,62,738. [张玉琦,高丽华,段智明,王科志,王业亮,高鸿均.化学学报2004,62,738.](20) Mishra,A.;Ma,C.Q.;Baeuerle,P.Chem.Rev.2009,109,1141.(21) Karyakin,A.A.Electroanalysis 2001,13,813.(22) Dei,A.Angew.Chem.Int.Edit.2005,44,1160.(23) Ricci,F.;Palleschi,G.Biosens.Bioelectron.2005,21,389.(24) Itaya,K.;Uchida,I.;Neff,V.D.Accounts Chem.Res.1986,19,162.(25) Robin,M.B.Inorg.Chem.1962,1,337.(26) Dostal,A.;Meyer,B.;Scholz,F.;Bond,A.M.;Marken,F.;Shaw,S.J.J.Phys.Chem.1995,99,2096.。
氧化钛表面拓扑结构对蛋白质吸附的分子动力学模拟
为 了得 到能 量优化 的蛋 白质 MD模 型 , 构 建 的 两种 蛋 白质 分子 模 型 进 行 了模 拟 退 火 处理 , 2 8 K 对 从 9
到 3 8K 的升温 随后 降至原 温度 , 中温度 步长均 为 1 每个 温度 点 MD模 拟 的时间为 1 0p 。 3 其 0K, 0 s 1 2 T O (1 ) . i : 1 0 面及 其表 面缺 陷模 型 本 文选 取 了结构最 稳定 且作 为生 物医用 材料 的 Ti 。 O 常见 的 晶面 : 红石 ( 1 ) , 金 1 0 面 采用 Acers 司 的 cl 公 y
1 MD 模 型 构 建
1 1 蛋 白 质 模 型 .
本 文从 蛋 白质数据 库 ( D ) P B 中分别 选取 了具有 代 表 性 的球 状 和纤 维 状 蛋 白质 分 子 1 P 和 aF PT — NA 并 导入 到 Maeil t do 拟 软件 中 , 图 1 tr u i 模 aS 如 。直接 导人 到 MS中的蛋 白质 分子 空 间 结构 正 常 , 但有 的键 ( 如
* 收 稿 日期 : 0 2 0 1 2 1 - 5 2
作 者 简 介 : 立 伟 (9 6)男 , 士 研 究 生 , 要 从 事 分 子 动力 学 模 拟 研 究 邱 1 8 一, 硕 主 通讯 作 者 :黄 乔松 , , 士 生 导 师 ,— i p h s 1 3 cr。 男 硕 Emal h q@ 6 .o : n
精 确 的计 算机模 拟 方法 , 能在原 子水 平上 细致研 究蛋 白质 与 Ti 表 面 间的相互 作用 。材 料表 面拓 扑 结构 对 O。
蛋 白质 吸附有很 大影 响 : 表面粗 糙度 等决定 了与蛋 白质分 子相 互作用 的材 料表 面积 大小 [ ; 5 纳米 级粒 子 的曲 ] 率 半径 大小 、 凹槽 类拓扑 结构 中凹槽 的尺寸 和取 向等都 会 影 响吸 附 的蛋 白质 的种类 、 数量 及 构象 变 化 ; 而
PhysRevD.79.114009
Relativistic correction to J=c production at hadron collidersYing Fan,*Yan-Qing Ma,†and Kuang-Ta Chao‡Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing100871,China(Received20April2009;published10June2009)Relativistic corrections to the color-singlet J=c hadroproduction at the Tevatron and LHC arecalculated up to Oðv2Þin nonrelativistic QCD(NRQCD).The short-distance coefficients are obtainedby matching full QCD with NRQCD results for the subprocess gþg!J=cþg.The long-distancematrix elements are extracted from observed J=c hadronic and leptonic decay widths up to Oðv2Þ.Usingthe CTEQ6parton distribution functions,we calculate the leading-order production cross sections andrelativistic corrections for the process pþ"pðpÞ!J=cþX at the Tevatron and LHC.Wefind that theenhancement of Oðv2Þrelativistic corrections to the cross sections over a wide range of large transversemomentum p t is negligible,only at a level of about1%.This tiny effect is due to the smallness of thecorrection to short-distance coefficients and the suppression from long-distance matrix elements.Theseresults indicate that relativistic corrections cannot help to resolve the large discrepancy between leading-order prediction and experimental data for J=c production at the Tevatron.DOI:10.1103/PhysRevD.79.114009PACS numbers:12.38.Bx,12.39.St,13.85.Ni,14.40.GxI.INTRODUCTION Nonrelativistic QCD(NRQCD)[1]is an effectivefield theory to describe production and decay of heavy quark-onium.In this formalism,inclusive production cross sec-tions and decay widths of charmonium and bottomonium can be factored into short-distance coefficients,indicating the creation or annihilation of a heavy quark pair,and long-distance matrix elements,representing the evolvement of a free quark pair into a bound state.The short-distance part can be calculated perturbatively in powers of coupling constant s,while the nonperturbative matrix elements, which are scaled as v,the typical velocity of heavy quark or antiquark in the meson rest frame,can be estimated by nonperturbative methods or models,or extracted from experimental data.One important aspect of NRQCD is the introduction of the color-octet mechanism,which allows the intermediate heavy quark pair to exist in a color-octet state at short distances and evolve into the color-singlet bound state at long distances.This mechanism has been applied success-fully to absorb the infrared divergences in P-wave[1–3] and D-wave[4,5]decay widths of heavy quarkonia.In Ref.[6],the color-octet mechanism was introduced to account for the J=c production at the Tevatron,and the theoretical prediction of production ratefits well with experimental data.However,the color-octet gluon frag-mentation predicts that the J=c is transversely polarized at large transverse momentum p t,which is in contradiction with the experimental data[7].(For a review of these issues,one can refer to Refs.[8–10]).Moreover,in Refs.[11,12]it was pointed out that the color-octet long-distance matrix elements of J=c production may be much smaller than previously expected,and accordingly this mayreduce the color-octet contributions to J=c production at the Tevatron.In the past a couple of years,in order to resolve the largediscrepancy between the color-singlet leading-order(LO)predictions and experimental measurements[13–15]ofJ=c production at the Tevatron,the next-to-leading-order (NLO)QCD corrections to this process have been per-formed,and a large enhancement of an order of magnitudefor the cross section at large p t is found[16,17].But thisstill cannot make up the large discrepancy between thecolor-singlet contribution and data.Similarly,the observeddouble charmonium production cross sections in eþeÀannihilation at B factories[18,19]also significantly differfrom LO theoretical predictions[20].Much work has beendone and it seems that those discrepancies could be re-solved by including NLO QCD corrections[21–24]andrelativistic corrections[25,26].One may wonder if therelativistic correction could also play a role to some extentin resolving the long standing puzzle of J=c production at the Tevatron.In this paper we will estimate the effect of relativisticcorrections to the color-singlet J=c production based on NRQCD.The relativistic effects are characterized by therelative velocity v with which the heavy quark or antiquarkmoves in the quarkonium rest frame.According to thevelocity scaling rules of NRQCD[27],the matrix elementsof operators can be organized into a hierarchy in the smallparameter v.We calculate the short-distance part pertur-batively up to Oðv2Þ.In order to avoid model dependence in determining the long-distance matrix elements,we ex-tract the matrix elements of up to dimension-8four fermionoperators from observed decay rates of J=c[28].Wefind that the relativistic effect on the color-singlet J=c produc-tion at both the Tevatron and LHC is tiny and negligible,*ying.physics.fan@†@‡ktchao@PHYSICAL REVIEW D79,114009(2009)and relativistic corrections cannot offer much help to re-solve the puzzle associated with charmonium production at the Tevatron,and other mechanisms should be investigated to clarify the problem.The rest of the paper is organized as follows.In Sec.II, the NRQCD factorization formalism and matching condi-tion of full QCD and NRQCD effectivefield theory at long distances are described briefly,and then detailed calcula-tions are given,including the perturbative calculation of the short-distance coefficient,the long-distance matrix elements extracted from experimental data,and the parton-level differential cross section convolution with the parton distribution functions(PDF).In Sec.III,nu-merical results of differential cross sections over transverse momentum p t at the Tevatron and LHC are given and discussions are made for the enhancement effects of rela-tivistic corrections.Finally the summary of this work is presented.II.PRODUCTION CROSS SECTION IN NRQCDFACTORIZATIONAccording to NRQCD factorization[1],the inclusive cross section for the hadroproduction of J=c can be writ-ten asd dt ðgþg!J=cþgÞ¼XnF nm d nÀ4ch0j O J=c n j0i:(1)The short-distance coefficients F n describe the production of a heavy quark pair Q"Q from the gluons,which come from the initial state hadrons,and are usually expressed in kinematic invariants.m c is the mass of charm quark.Thelong-distance matrix elements h0j O J=cn j0i with mass di-mension d n describe the evolution of Q"Q into J=c.The subscript n represents the configuration in which the c"c pair can be for the J=c Fock state expansion,and it isusually denoted as n¼2Sþ1L½1;8J .Here,S,L,and J standfor spin,orbital,and total angular momentum of the heavy quarkonium,respectively.Superscript1or8means the color-singlet or color-octet state.For the color-singlet3S1c"c production,there are only two matrix elements contributing up to Oðv2Þ:the leading-order term h0j O J=cð3S½1 1Þj0i and the relativistic correction term h0j P J=cð3S½1 1Þj0i.Therefore the differential cross section takes the following form:d dt ðgþg!J=cþgÞ¼Fð3S½11Þm2ch0j O J=cð3S½1 1Þj0iþGð3S½11Þm4ch0j P J=cð3S½1 1Þj0iþOðv4Þ;(2)and the explicit expressions of the matrix elements are[1]h0j O J=cð3S½1 1Þj0i¼h0j y i cða y c a cÞc y i j0i;h0j P J=cð3S½1 1Þj0i¼12y i cða y c a cÞc y iÂÀi2D$2þH:c:;(3)where c annihilates a heavy quark, creates a heavy antiquark,a y c and a c are operators creating and annihilat-ing J=c in thefinal state,and D$¼~DÀD.In order to determine the short-distance coefficients Fð3S½1 1Þand Gð3S½1 1Þ,the matching condition of full QCD and NRQCD is needed:ddtðgþg!J=cþgÞj pert QCD¼Fð3S½11Þm2ch0j O J=cð3S½1 1Þj0iþGð3S½11Þm4ch0j P J=cð3S½1 1Þj0ij pert NRQCD:(4)The differential cross section for the production of char-monium J=c on the left-hand side of Eq.(4)can be calculated in perturbative QCD.On the right-hand side the long-distance matrix elements are extracted from ex-perimental data.Quantities on both sides of the equation are expanded at leading order of s and next-to-leading order of v2.Then the short-distance coefficients Fð3S½1 1Þand Gð3S½1 1Þcan be obtained by comparing the terms with powers of v2on both sides.A.Perturbative short-distance coefficientsWe now present the calculation of relativistic correction to the process gþg!J=cþg.In order to determine the Oðv2Þcontribution in Eq.(2),the differential cross section on the left-hand side of Eq.(4)or equivalently the QCD amplitude should be expanded up to Oðv2Þ.We use FeynArts[29]to generate Feynman diagrams and am-plitudes,FeynCalc[30]to handle amplitudes,and FORTRAN to evaluate the phase space integrations.A typi-cal Feynman diagram for the process is shown in Fig.1.FIG.1.Typical Feynman diagram for3S½1 1c"c hadroproduction at LO.YING FAN,YAN-QING MA,AND KUANG-TA CHAO PHYSICAL REVIEW D79,114009(2009)The momenta of quark and antiquark in the lab frame are [26,31,32]:12Pþq ¼L ð12P rþq r Þ;12PÀq ¼L ð12P rÀq r Þ;(5)where L is the Lorenz boost matrix from the rest frame ofthe J=c to the frame in which it moves with four momen-tum P .P r ¼ð2E q ;0Þ,E q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffim 2c þj ~qj 2p ,and 2q r ¼2ð0;~qÞis the relative momentum between heavy quark and antiquark in the J=c rest frame.The differential cross section on the left-hand side of Eq.(4)isddtðg þg !J=c þg Þj pert QCD ¼12"X j M ðg þg !J=c þg Þj 2h 0j O J=c ð3S ½1 1Þj 0i ;(6)where h 0j O J=c ð3S ½11Þj 0i is the matrix element evaluated at tree level,and the summation/average of the color and polarization degrees of freedom for the final/initial statehas been implied by the symbol "P.The amplitude for the color-singlet process g ðp 1Þþg ðp 2Þ!J=c ðp 3¼P Þþg ðp 4ÞisM ðg þg !J=c þg Þ¼ffiffiffiffiffiffi1E q s Tr ½C ½1 Åð1ÞM am ;(7)where M am denotes the parton-level amplitude amputatedof the heavy quark spinors.The factor ffiffiffiffi1E q q comes from the normalization of the composite state j 3S ½11i[5].Here the covariant projection operator method [33,34]is adopted.For a color-singlet state,the color projector C ½1 ¼ ijffiffiffiffifficp .The covariant spin-triplet projector Åð1Þin (7)is defined byÅð1Þ¼X s "s v ðs Þ"u ð"s Þ 12;s ;12;"s j 1;S z ;(8)with its explicit formÅð1Þ¼1ffiffiffi2p ðE q þm c Þ P 2Àq Àm cÂP À2E q 4E qP 2þq þm c;(9)where the superscript (1)denotes the spin-triplet state andis the polarization vector of the spin 1meson.The Lorentz-invariant Mandelstam variables are defined bys ¼ðp 1þp 2Þ2¼ðp 3þp 4Þ2;t ¼ðp 1Àp 3Þ2¼ðp 2Àp 4Þ2;u ¼ðp 1Àp 4Þ2¼ðp 2Àp 3Þ2;(10)and they satisfys þt þu ¼P 2¼4E 2q ¼4ðm 2c þj ~qj 2Þ:(11)Furthermore,the covariant spinors are normalized relativ-istically as "uu¼À"vv ¼2m c .Let M be short for the amplitude M ðg þg !J=c þg Þin Eq.(7),and it can be expanded in powers of v orequivalently j ~qj .That is M ¼ M¼ M ð0Þþ1q q @2M @q @q q ¼0þO ðq 4Þ;(12)where high order terms in four momentum q have been omitted.Terms of odd powers in q vanish because the heavy quark pair is in an S-wave configuration.Note that the polarization vector also depends on q ,but it only has even powers of four momentum q ,and their expressions may be found e.g.in the appendix of Ref.[35].Therefore expansion on q 2of can be carried out after amplitude squaring.The following substitute is adopted:q q¼13j ~q j 2 Àg þP P P 213j ~q j 2Á :(13)This substitute should be understood to hold in the inte-gration over relative momentum ~qand in the S-wave case.Here,j ~qj 2can be identified as [33,36]j ~qj 2¼jh 0j y ðÀi2D $Þ2c j c ð3S ½1 1Þijjh 0j y c j c ð3S 1Þij ¼h 0j P J=c ð3S ½1 1Þj 0i h 0j O J=c ð3S ½1 1Þj 0i½1þO ðv 4Þ :(14)Then the amplitude squared defined in Eq.(6)up to O ðv 2Þis Xj M j 2¼Mð0ÞM Ãð0ÞXÃþ16j ~q j 2 Á @2M @q @q q ¼0M Ãð0Þþ Á @2M Ã@q @q q ¼0M ð0Þ X à þO ðv 4Þ:(15)The heavy quark and antiquark are taken to be on shell,which means that P Áq ¼0,and then gauge invariance is maintained.The polarization sum in Eq.(15)isXà ¼Àg þP PP 2:(16)RELATIVISTIC CORRECTION TO J=c PRODUCTION ...PHYSICAL REVIEW D 79,114009(2009)It is clearly seen that the polarization sum above only contains even order powers of four momentum q,therefore it will make a contribution to the relativistic correction at Oðv2Þin thefirst term on the right-hand side of Eq.(15)when the contraction over indices and is carried out. However,since the second term on the right-hand side of Eq.(15)already has a term proportional to q2,i.e.j~q j2,the four momentum q can be set to zero throughout the index contraction.Then we haveXj M j2¼AþB j~q j2þOðv4Þ;(17)where A and B are independent of j~q j.By comparing Eqs.(4)and(6),we obtain the short-distance coefficients shown explicitly below.The leading-order one isFð3S½1 1Þm2c ¼12111c1A¼12111c1ð4 sÞ35120m c½16ðs2þtsþt2Þm4cÀ4ð2s3þ3ts2þ3t2sþ2t3Þm2cþðs2þtsþt2Þ2 =½9ðsÀ4m2cÞ2ðtÀ4m2cÞ2ðsþtÞ2 ;(18)and the relativistic correction term isGð3S½1 1Þm4c ¼116 s21641412N c13B¼116 s21641412N c13ð4 sÞ3ðÀ2560Þ½2048ð3s2þ2tsþ3t2Þm10cÀ256ð5s3À2ts2À2t2sþ5t3Þm8cÀ320ð3s4þ10ts3þ10t2s2þ10t3sþ3t4Þm6cþ16ð21s5þ63ts4þ88t2s3þ88t3s2þ63t4sþ21t5Þm4cÀ4ð7s6þ18ts5þ23t2s4þ28t3s3þ23t4s2þ18t5sþ7t6Þm2cÀstðsþtÞðs2þtsþt2Þ2 =½27m cð4m2cÀsÞ3ð4m2cÀtÞ3ðsþtÞ3 :(19)Each of the factors has its own origin:1=16 s2isproportional to the inverse square of the Møller’s invariantflux factor,1=64and1=4are the color average andspin average of initial two gluons,respectively,1=2N ccomes from the color-singlet long-distance matrix elementdefinition in Eq.(3)with N c¼3,1=3is the spin average for total spin J¼1states,andð4 sÞ3quantifies the coupling in the QCD interaction vertices.Further-more the variable u has been expressed in terms of sand t through Eq.(11).To verify our results,wefindthat those in Ref.[31]discussed for J=c photoproduction are consistent with ours under replacementð4 Þe2c!ð4 sÞ,and the result in Ref.[37]agrees with ours at leading order after performing the polarization summation.B.Nonperturbative long-distance matrix elements The long-distance matrix elements may be determined by potential model[25,36]or lattice calculations[38],and by phenomenological extraction from experimental data. Here wefirst extract the decay matrix elements from experimental data.Up to NLO QCD and v2relativistic corrections,decay widths of the color-singlet J=c to light hadrons(LH)and eþeÀcan be expressed analytically as follows[33]:À½J=c!LH ¼F LHð3S½1 1Þm2ch H j O J=cð3S½1 1Þj H iþG LHð3S½1 1Þm4ch H j P J=cð3S½1 1Þj H i;À½J=c!eþeÀ ¼F eþeÀð3S½1 1Þm2ch H j O J=cð3S½1 1Þj H iþG eþeÀð3S½1 1Þm4ch H j P J=cð3S½1 1Þj H i;(20)where the short-distance coefficients are[33]F LHð3S½1 1Þ¼ðN2cÀ1ÞðN2cÀ4ÞN3cð 2À9Þ3sð2m cÞÂ1þðÀ9:46C Fþ4:13C AÀ1:161N fÞ sþ2 e2QX Nfi¼1Q2i2e1À134C Fs;G LHð3S½1 1Þ¼À5ð19 2À132Þ7293sð2m cÞ;F eþeÀð3S½1 1Þ¼2 e2Q 2e31À4C F sð2m cÞ;G eþeÀð3S½1 1Þ¼À8 e2Q 2e9:(21)YING FAN,YAN-QING MA,AND KUANG-TA CHAO PHYSICAL REVIEW D79,114009(2009)Then,the production matrix elements can be related to the decay matrix elements through vacuum saturation approxi-mationh 0j O J=c ð3S ½1 1Þj 0i ¼ð2J þ1Þh H j OJ=c ð3S ½11Þj H i ½1þO ðv 4Þ ¼3h H j O J=c ð3S ½11Þj H i½1þO ðv 4Þ :(22)Combining the above equations and the experimental data in [28],i.e.,À½J=c !LH ¼81:7KeV and À½J=c !e þe À ¼5:55KeV and excluding the NLO QCD radiative corrections in (21),we get the solutions accurate at leading order in sh 0j O J=c ð3S ½1 1Þj 0i ¼0:868GeV 3;h 0j P J=c ð3S ½1 1Þj 0i ¼0:190GeV 5;(23)and the enhanced matrix elements accurate up to NLO ins can be obtained by including NLO QCD radiative corrections in (21)h 0j O J=c ð3S ½1 1Þj 0i ¼1:64GeV 3;h 0j P J=c ð3S ½11Þj 0i¼0:320GeV 5:(24)The strong coupling constant evaluated at the charm quarkmass scale is s ð2m c Þ¼0:250for m c ¼1:5GeV .The other input parameters are chosen as follows:the QCD scale parameter ÃQCD ¼392MeV ,the number of quarks with mass less than the energy scale m c is N f ¼3,color factor C F ¼4=3and C A ¼3,the electric charge of the charm quark is e Q ¼2=3,Q i are the electric charges of the light quarks and fine structure constant e ¼1=137.Our numerical values for the production matrix elementsh 0j O J=c ð3S ½1 1Þj 0i and h 0j PJ=c ð3S ½11Þj 0i are accurate up to NLO in v 2with uncertainties due to experimental errors and higher order corrections.C.Cross sections for p þ pðp Þ!J=c þX and phase space integration Based on the results obtained for the subprocess g þg !J=c þg we further calculate the production cross sections and relativistic corrections in the process p þ"pðp Þ!J=c þX ,which involves hadrons as the initial states.In order to get the cross sections at the hadron level,the partonic cross section defined in Eq.(6)has to be convoluted with the parton distribution function (PDF)f g=p ðx ÆÞ,where x Ædenotes the fraction of the proton or antiproton beam energy carried by the gluons.We will work in the p "p center-of-mass (CM)frame and denote the p "penergy by ffiffiffiS p ,the rapidity of J=c by y C ,and that of the gluon jet by y D .The differential crosssection of p þ"pðp Þ!J=c þX can be written as [39]d 3 ðp þ"pðp Þ!J=c þX Þdp 2t dy C dy D ¼x þf g=p ðx þÞx Àf g="p ðp Þðx ÀÞd ðg þg !J=c þg Þdt;(25)wherex Ƽm C t exp ðÆy C Þþm Dt exp ðÆy D ÞffiffiffiSp ;(26)with the transverse mass m C;D t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffim 2C;D þp 2t q ,the mesonmass m C ¼2m c ,the gluon mass m D ¼0,and the trans-verse momentum p t .The Mandelstam variables can be expressed in terms of p t ,y C ,and y Ds ¼x þx ÀS;t ¼Àp 2t Àm C t m Dt exp ðy D Ày C Þ;u ¼Àp 2t Àm C t m D t exp ðy C Ày D Þ:(27)The accessible phase space puts kinetic constraints onvariables p t ,y C ,and y D for a fixed value of two colliding hadron center-of-mass energy ffiffiffiSp 0 p t12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðS;m 2C ;m 2D ÞSs ;j y C j Arcosh S þm 2C Àm 2D2ffiffiffiS p m C t;Àln ffiffiffiS p Àm C t exp ðÀy CÞm D t y Dln ffiffiffiS p Àm C t exp ðy C Þm D t ;(28)where ðx;y;z Þ¼x 2þy 2þz 2À2ðxy þyz þzx Þ.Thedistribution over p t of the differential cross section can be obtained after phase space integration.III.NUMERICAL RESULTS AND ANALYSIS The CTEQ6PDFs [40]are used in our numerical cal-culation.We present the distribution of J=c production differential cross section d =dp t over p t at the Tevatron with ffiffiffiS p ¼1:96TeV and at the LHC with ffiffiffiS p ¼14TeV in Figs.2–5.The solid line represents the distribution at leading order in O ðv 2Þ,and the dotted line describes the relativistic correction at next-to-leading order in O ðv 2Þ(excluding the leading-order result).The long-distance matrix elements are accurate up to leading order in s from Eq.(23)or next-to-leading order in s from Eq.(24).The variable p t is set to be from 5GeV to 30GeV (50GeV)for the Tevatron (LHC),and the distri-butions are depicted in logarithm unit along the vertical axis.All curves decrease rather rapidly as the transverse momentum p t increases,and the leading-order d =dp t behavior is not changed by the relativistic corrections.It can be seen that the ratio of relativistic correction to leading-order term is 1%or so,and less than 2%,which is insignificant and negligible.RELATIVISTIC CORRECTION TO J=c PRODUCTION ...PHYSICAL REVIEW D 79,114009(2009)The tiny effect of relativistic corrections is partly due to the smallness of the short-distance coefficient correction.In fact,the ratio of the NLO short-distance coefficient to the LO one from Eqs.(18)and (19)can be expanded as a series of the small quantity m c ,as compared with ffiffiffis p ,and this series reduces to a fixed small number 16if only the leading-order term is kept,i.e.,G ð3S ½11ÞF ð3S 1Þ!16;as 2mc ffiffiffis p !0;2m cffiffitp !0:(29)Together with the suppression from long-distance matrix elements,the tiny effect of relativistic corrections can be accounted for.Our results for relativistic corrections in theprocess p þ"pðp Þ!J=c þX are similar to that in the J=c photoproduction process discussed in Ref.[31].These results may indicate that the nonrelativistic approxi-mation in NRQCD is good for charmonium production at high energy collisions,and relativistic corrections are not important.This is in contrast to the case of double char-monium production in e þe Àannihilation at B factories,where relativistic corrections may be significant.IV .SUMMARYIn this paper,relativistic corrections to the color-singlet J=c hadroproduction at the Tevatron and LHC are calcu-lated up to O ðv 2Þin the framework of the NRQCD facto-rization approach.The perturbative short-distance coefficients are obtained by matching the full QCDdiffer-FIG.3.The p t distribution of d ðp þ"p !J=c þX Þ=dp t(with enhanced matrix elements)at the Tevatron with ffiffiffiS p ¼1:96TeV .The O ðv 0Þand O ðv 2Þresults are represented by the solid and dotted lines,respectively.FIG.4.The p t distribution of d ðp þp !J=c þX Þ=dp t at the LHC with ffiffiffiS p¼14TeV .The O ðv 0Þand O ðv 2Þresults are represented by the solid and dotted lines,respectively.FIG.5.The p t distribution of d ðp þp !J=c þX Þ=dp t (with enhanced matrix elements)at the LHC with ffiffiffiS p ¼14TeV .The O ðv 0Þand O ðv 2Þresults are represented by the solid and dotted lines,respectively.FIG.2.The p t distribution of d ðp þ"p !J=c þX Þ=dp t at the Tevatron with ffiffiffiS p ¼1:96TeV .The O ðv 0Þand O ðv 2Þresults are represented by the solid and dotted lines,respectively.YING FAN,YAN-QING MA,AND KUANG-TA CHAO PHYSICAL REVIEW D 79,114009(2009)ential cross section with the NRQCD effectivefield theorycalculation for the subprocess gþg!J=cþg.The nonperturbative long-distance matrix elements are ex-tracted from experimental data for J=c hadronic and leptonic decay widths up to Oðv2Þwith an approximate relation between the production matrix elements and decaymatrix ing the CTEQ6parton distributionfunctions,we then calculate the LO production cross sec-tions and relativistic corrections for the process pþ"pðpÞ!J=cþX at the Tevatron and LHC.Wefind that the Oðv2Þrelativistic corrections to the differential cross sections over a wide range of large transverse momentum p t are tiny and negligible,only at a level of about1%.The tiny effect of relativistic corrections is due to the smallness of the short-distance coefficient correction and the sup-pression from long-distance matrix elements.These results may indicate that the nonrelativistic approximation in NRQCD is good for charmonium production at high en-ergy hadron-hadron collisions,and relativistic corrections cannot offer much help to resolve the large discrepancy between the leading-order prediction and experimental data for J=c production at the Tevatron.Other mecha-nisms such as those suggested in[41–43]may need to be considered,aside from higher order QCD contributions.ACKNOWLEDGMENTSWe would like to thank Dr.Ce Meng for reading the manuscript and helpful discussions.This work was sup-ported by the National Natural Science Foundation of China(No.10675003,No.10721063)and the Ministry of Science and Technology of China(2009CB825200).[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D51,1125(1995);55,5853(E)(1997).[2]Han-Wen Huang and Kuang-Ta Chao,Phys.Rev.D54,3065(1996);56,7472(E)(1997);55,244(1997);54,6850 (1996);56,1821(E)(1997).[3] A.Petrelli,M.Cacciari,M.Greco,F.Maltoni,and M.L.Mangano,Nucl.Phys.B514,245(1998).[4]Zhi-Guo He,Ying Fan,and Kuang-Ta Chao,Phys.Rev.Lett.101,112001(2008).[5]Ying Fan,Zhi-Guo He,Yan-Qing Ma,and Kuang-TaChao,arXiv:0903.4572.[6] E.Braaten and S.Fleming,Phys.Rev.Lett.74,3327(1995).[7]CDF Collaboration,Phys.Rev.Lett.99,132001(2007).[8]Michael Kra¨mer,Prog.Part.Nucl.Phys.47,141(2001).[9]N.Brambilla et al.,arXiv:hep-ph/0412158.[10]nsberg,Int.J.Mod.Phys.A21,3857(2006).[11]Yan-Qing Ma,Yu-Jie Zhang,and Kuang-Ta Chao,Phys.Rev.Lett.102,162002(2009).[12]Bin Gong and Jian-Xiong Wang,Phys.Rev.Lett.102,162003(2009).[13] F.Abe et al.(CDF Collaboration),Phys.Rev.Lett.69,3704(1992).[14] F.Abe et al.(CDF Collaboration),Phys.Rev.Lett.79,572(1997).[15] F.Abe et al.(CDF Collaboration),Phys.Rev.Lett.79,578(1997).[16]J.Campbell,F.Maltoni,and F.Tramontano,Phys.Rev.Lett.98,252002(2007).[17] B.Gong and J.X.Wang,Phys.Rev.Lett.100,232001(2008);Phys.Rev.D78,074011(2008).[18]K.Abe et al.(BELLE Collaboration),Phys.Rev.Lett.89,142001(2002).[19] B.Aubert et al.(BABAR Collaboration),Phys.Rev.D72,031101(2005).[20] E.Braaten and J.Lee,Phys.Rev.D67,054007(2003);72,099901(E)(2005);K.Y.Liu,Z.G.He,and K.T.Chao,Phys.Lett.B557,45(2003);Phys.Rev.D77,014002 (2008);K.Hagiwara,E.Kou,and C.F.Qiao,Phys.Lett.B 570,39(2003).[21]Y.J.Zhang,Y.J.Gao,and K.T.Chao,Phys.Rev.Lett.96,092001(2006).[22]Y.J.Zhang and K.T.Chao,Phys.Rev.Lett.98,092003(2007);B.Gong and J.X.Wang,arXiv:0904.1103. [23] B.Gong and J.X.Wang,Phys.Rev.D77,054028(2008);Phys.Rev.Lett.100,181803(2008);arXiv:0904.1103.[24]Y.J.Zhang,Y.Q.Ma,and K.T.Chao,Phys.Rev.D78,054006(2008).[25]G.T.Bodwin,D.Kang,and J.Lee,Phys.Rev.D74,014014(2006);74,114028(2006).[26]Z.G.He,Y.Fan,and K.T.Chao,Phys.Rev.D75,074011(2007).[27]G.P.Lepage,L.Magnea,C.Nakhleh,U.Magnea,and K.Hornbostel,Phys.Rev.D46,4052(1992).[28] C.Amsler et al.(Particle Data Group),Phys.Lett.B667,1(2008).[29]J.Ku¨blbeck,M.Bo¨hm,and A.Denner,Comput.Phys.Commun.60165(1990);T.Hahn,Comput.Phys.Commun.140,418(2001).[30]R.Mertig,M.Bo¨hm,and A.Denner,Comput.Phys.Commun.64345(1991).[31] C.B.Paranavitane,B.H.J.McKellar,and J.P.Ma,Phys.Rev.D61,114502(2000).[32]Eric Braaten and Yu-Qi Chen,Phys.Rev.D54,3216(1996).[33]G.T.Bodwin and A.Petrelli,Phys.Rev.D66,094011(2002).[34]W.-Y.Keung and I.J.Muzinich,Phys.Rev.D27,1518(1983).[35] C.-H.Chang,J.-X.Wang,and X.-G.Wu,Phys.Rev.D70,114019(2004).[36]G.T.Bodwin,H.S.Chung,D.Kang,J.Lee,and C.Yu,Phys.Rev.D77,094017(2008).[37] A.K.Leibovich,Phys.Rev.D56,4412(1997).RELATIVISTIC CORRECTION TO J=c PRODUCTION...PHYSICAL REVIEW D79,114009(2009)。
l-组氨酸和l-脯氨酸消旋动力学的研究
l-组氨酸和l-脯氨酸消旋动力学的研究
L-组氨酸(L-histidine)和L-脯氨酸(L-proline)是两种常见的天然氨基酸,它们在生物体内起着重要的生理功能。
消旋动力学是研究光学异构体的旋光性质和旋光度变化随时间的动力学过程。
在化学中,旋光性是指物质对偏振光旋光角度的影响。
天然氨基酸存在两种光学异构体:D-型和L-型。
D-型氨基酸的旋光性与L-型相反,但生物体内主要存在L-型氨基酸。
L-组氨酸和L-脯氨酸的消旋动力学研究主要关注以下几个方面:
1. 光学异构体间的互变动力学:在某些条件下,L-组氨酸和L-脯氨酸的光学异构体可能会相互转化。
这种转化可以受到温度、pH值、溶剂和添加剂等因素的影响。
研究人员通过测量旋光度随时间的变化,来研究这种互变动力学过程。
2. 热力学稳定性和反应机制:研究人员通过测定L-组氨酸和L-脯氨酸的旋光度与温度的关系,可以确定它们的热力学稳定性。
此外,还可以使用核磁共振(NMR)和质谱等技术来研究其反应机制。
3. 光学活性和环境影响:L-组氨酸和L-脯氨酸的旋光度可能会受到溶剂、离子强度和pH值等环境因素的影响。
研究人员可以通过改变这些环境条件,并测量旋光度的变化,来研究它们的光学活性和环境影响。
这些研究有助于深入理解L-组氨酸和L-脯氨酸在生物体内的功能和代谢过程。
此外,对它们消旋动力学的研究也对药物设计和合成有着一定的指导意义,特别是对于具有手性中心的化合物的合成和分离工艺的优化。
水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学_英文_(2)
波谱学杂志第26卷第4期2009年12月 Chinese Journal of M agnetic Resonance Vo l.26No.4 Dec.2009Article:1000-4556(2009)04-0437-20High-Resolution Solid-State NMR Spectroscopy ofMembrane Bound Proteins and Peptides Alignedin Hydrated LipidsFU R i-q iang(Center for Interdisciplinary M agnetic Res onance,National Hig h M agnetic Field Lab oratory,1800East Paul Dirac Drive,Tallahassee,Florida,32310,USA)A bstract:Solid-sta te nuclear mag netic r eso nance(N M R)o f alig ned samples has been rapidlyeme rged a s a successful and impor tant spect roscopic appro ach for hig h-resolution str uctural char acte rizatio n o f membrane-bo und pro teins and pe ptides in their“na tive-like”hydra ted lipid bilaye rs.Because the structure s,dynamics,and functions of membrane-bo und pro teins and peptides are highly asso ciated w ith he te rog eneo us native environments,proteins and pe ptides are prepared for so lid-state N M R measurements in the presence o f either bilay ers that are me-chanically alig ned on glass pla te s o r mag netically aligned bicelles.O rienta tion de pendent aniso-tropic spin nuclear interactio ns fro m these aligned pro teins and peptides can be o btained.These orienta tional restr aints can be assembled into hig h-resolution three-dimensional structur es.Driven by sig nificant advances in sample preparation pro tocols as well as N M R probes and o the r metho do lo gy developments in the pa st decade,the alig ned sample N M R appr oach has been w ell developed and become an effective w ay for structural characteriza tion of membrane-bound pro-teins and peptides.T his r eview intr oduces hig h resolution so lid-state N M R spectr osco py o f alig ned samples and summa rizes rece nt methodolog y develo pments in this arena.Key words:so lid-state N M R,membr ane-bound pro tein,o rienta tional co nst raint,hy drated lip-idsC LC number:O482.53 Document co de:AReceived date:3Aug.2009Biography:Fu Ri-qiang(1966-),m ale,major in Nuclear M agnetic Resonance Spectroscopy,T el:+1-8506445044, E-mail:rfu@. *Corresponding au th or.438波 谱 学 杂 志 第26卷 IntroductionThe characterizatio n of membrane bound proteins and peptides is very challenging in structural biology,in part because their structures,dy namics and functions are hig hly related to their biolo gical heterog eneous membrane environments[1-3].As an example, integral m em brane protein structures are severely underrepresented in the Pro tein Data Bank(PDB)(w w w.rcsb.o rg/pdb/),composing as little as about0.5%of protein structures deposited in the PDB,altho ug h they represent as m uch as o ne third of the pro teins from most geno mes[4].These membrane pro teins are bio logically very impo r-tant,carrying out transpo rt and signaling functions o n the surface of cells and organ-elles.M any of these proteins are highly dy namic and inv olve multiple confo rm atio nal and functional sta tes that are sensitive to the pro teins'environment.On the o ther hand, membranes allow fo r the establishment of electric,chemical and m echanical po tentials, w hich can be modulated and conve rted into othe r fo rms o f energy through the action of membrane pro teins.While fo r many amphipa thic ca tionic antimicrobial peptides,the ac-tual m ode of action directly inv olves interactions w ith cell membranes[5-8].Therefo re,it is fundam entally im po rtant to cha racterize the structures of membrane bound pro teins and peptides in their w ell hydrated native membrane enviro nm ent in o rder to understand their structure-functio n relationships that pe rfo rm vital functio ns at cell membranes.In past decades,many spectroscopic me thods,such as X-ray[9,10],Infrared spec-tro scopy[11,12],mag netic resonance spectro sco py[13,14],have been used to characterize the structures of membrane bound pro teins and peptides.Am ong these structural ap-proaches,solid-state nuclear magnetic resonance(NM R)[15]has the inherent ability to detect single atomic sites and hence e xhibits m any advantages for o btaining high-resolu-tion structures of proteins and peptides in their membrane bound states,since they often invo lve multiple confo rm ational and functional states w ith a sig nificant degree of lo cal and do main dy namics.Biolo gical solid-state NM R techniques[16-20]have been rapidly developed in the past few years for structural characterization o f mem brane bound proteins and peptides.Cur-rently,there are tw o complimentary NM R technologies that are primarily used to g ain structural insights:the magic ang le spinning(M AS)and the aligned sample appro ach. Fo r M AS NM R,uno riented samples are spun around the axis tilted at54.7°from the applied external m ag netic field,yielding“so lution-like”hig h-reso lution so lid-state NM R spectra w ithout requiring an isotropic m otio n on a nano second tim escales[21].For the a-lig ned sam ple appro ach,samples that have a unique alig nment with respect to a single axis,such as the m ag netic field axis and the bilaye r no rmal,are prepared so that aniso-tro pic high-reso lution solid-state NM R spectra can be obtained.These orientatio nal de-pendent aniso tropic spin interactions provide bo th mechanisms fo r dispersing the reso-nances in solid-sta te NM R spectra and for providing structural restraints to assem ble hig h-reso lution three-dimensional structures.In the past few years,the alig ned sam pleapproach has been mo re developed for membrane bound pro teins and peptides o riented in hy drated “native -like ”lipid bilay ers ,leading to the depo sit o f ove r ten membrane pro -tein structures in the PDB (i .e .,1M AG ,1PJD ,1EQ8,1M P6,1NYJ ,2H 95,1M ZT ,1PI7,2GOF ,2GOH ,1H 3O )[22-32].This review focuses on recent me thodology devel -o pments in the biological solid -state NM R of alig ned samples .1 Structural constraints in aligned samplesThe primary to ols used fo r the NM R structural determination of alig ned mem brane -bo und pro teins and peptides that have a unique orientation w ith respect to the mag netic field axis of the NM R spectro meter are the measurement of orientatio nal constraints ,derived fro m o bservatio ns of a v ariety o f aniso tropic nuclear spin interactions ,such as chemical shifts ,hetero -nuclear interactions ,and quadrupolar inte ractio ns .Fig .1(a )show s an α-helical seg ment .The enlarged insert illustrates a peptide plane ,the building blo ck of an ideal α-helical structure .Any given alignment o f the α-helical segm ent in the e xternal magnetic field B 0co rrespo nds to a specific o rientation of aniso tropic nuclear spin interactio ns w ith respect to B 0.Fo r instance ,the NH vecto r o f a peptide plane is tilted from B 0by the ang le θ,as indicated in Fig .1(b ).When all of the α-helical seg -m ents are random ly alig ned in B 0,as tho ug h the ang le θfo r the same peptide plane is unifo rmly distributed all o ver the sphere ,the resulting15N -1H dipolar spectrum has a ty pical “Pake -pattern ”lineshape .Ho wever ,w hen all of the α-helical seg ments have the same alig nment in B 0,the o bse rved15N -1H dipolar splitting Δνfro m the sam e peptide plane equals to the m agnitude ν∥of the N -H dipo lar interaction multiplied by the o rien -tation dependence :Δν=ν∥(3co s 2θ-1),(1)as show n in Fig .1(b ).Since the N -H bond in the peptide plane is cov alent ,the magni -tude ν∥is know n ,based on the N -H bond leng th .Therefo re ,the o rientation depend -ent 15N -1H dipola r splitting directly corresponds to the orientatio n of the N -H vector with respect to B 0.Similarly ,fo r a g iven α-helical seg ment ,the amide 15N chemical shift aniso tropy of a peptide plane can be defined by th ree Euler angles θ11,θ22,and θ33,as show n in Fig .1(c ).When the alig nments of all α-helical segm ents are rando mly alig ned w ith respect to B 0,the resulting 15N chemical shift spectrum has a typical chemical shift pow de r pat -tern .Ho wever ,w hen all of the α-helical seg ments have the same alignment in B 0,the observed 15N chemical shift σobs depends o n the three principal elements ,σ11,σ22,and σ33,of the amide 15N chemical shift tensor and their o rientations with re spect to B 0:σob s =σ11cos 2θ11+σ22co s 2θ22+σ33cos 2θ33,(2)as illustrated in Fig .1(c ).A gain ,the three principal elements σ11,σ22,and σ33can be in -dependently obtained .It is w o rth no ting that ,fo r the peptide planes in an ideal α-helix ,439 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipidsthe variatio ns of the amide 15N chemical shift tenso r are very minimal .Co nsequently ,the orientation of the amide 15N chemical shift tenso r w ith respect to B 0can be deter -mined from the orientation dependent 15N chemical shift reso nance of the aligned sam -ples .It is w orth noting that the obse rved anisotropic 15N chemical shift resonance fro m the alig ned sample is dispersed over the entire w idth of the amide 15N chem ical shift ani -sotropy (~200),rather than the iso tro pic chemical shift rang e (<10)in the M AS NM R spectra .Therefo re ,the data from the o rientation dependent nuclear spin interac -tions co nstrain the orientation of a specific m olecular site w ith respect to B 0.By obtai -ning numerous restraints ,all with respect to the sam e alig nment axis ,high -reso lution three -dim ensio nal structure s can be achieved .Fo r example ,the very first hig h resolu -tion three -dimensional structure of the g ramicidin A (gA )aligned in lipid bilayers (the PDB #1M AG )w as characterized by solid -state NM R using 120precise o rientational re -straints from numerous specifically labeled sites [22,23].Fig .1 NM R spectra of anisotropic spin interactions from α-helical segm ents under differen t alignmen ts .(a )A α-heli -cal segment .For an ideal α-helical structure ,the buildin g block is a peptide plane ,as illustrated in the enlarged insert ;(b )The orientation of the15N -1H vector w ith respect to the m agnetic field B 0,as defined by the angle θ,and the 15N -1H dipolar spectra at differen t alignment conditions ;(c )Orientation of the amide15N ch emical shift anisotropy w ith respect to B 0,as defined by three Euler angles θ11,θ22,and θ33,and the15N chemical shift spectra at differentalign men t conditions .Since the orientatio nal restraints result fro m aniso tropic nuclear spin interactions with respect to the same alig nment axis (e .g .,B 0),they are abso lute and independent with each other ,meaning that the er rors associated w ith individual restraints do not sum w hen multiple restraints are used for defining helical structures .Ho wever ,the o rien -taional restraints can no t be used to define the relative position between helices ,w hich can only be o btained by distance restraints ,ano ther type of structural constraints based on the spatial distances betw een tw o nuclei .Distances repre sent relative constraints in that they restrict the position of one mo lecule site relative to ano ther .Thus ,precise dis -tance restraints a re an impor tant com plement to orientational restraints fo r defining ter -tiary and quarte rnary pro tein structure [15].For instance ,g A mo nom eric structure in phospholipids bilayers is know n to have very hig h re solutio n through the extensive use 440波 谱 学 杂 志 第26卷 of o rientational restraints [22,23],but the dimme r interface can o nly be modeled in a lipid enviro nment throug h sym metric and absolute nature of the o rientational restraints .Fig .2(a )show s the positions o f the specifically labeled 13C -Val 1,15N -Ala 5gA in hy drated dimy ristoy lphosphatidy lcho line (DMPC )bilay ers and the 13C cross polarized MAS (CP -M AS )spectrum .Fo r these labels ,the distance betw een the intramo nom er13C and 15N sites is 0.82nm ,based on the hig h resolutio n gA m onomeric structure ,too lo ng to y ield any detectable dipolar co upling .On the o ther hand ,the intermo nome r 13C and 15N sitesacro ss the dimmer interface appear to be much closer .Fig .2(b )show s that the sig nal intensities at δC 171.0and 172.6,the tw o resonances from the peptide13C label ,are clearly dephased by the simultaneous frequency and amplitude m odulatio n (SFAM )[33]irradiatio ns on the 15N channel ,as indicated by ho rizontal dashed lines .When co nsider -ing the fast mo tio n around the channel ax is ,the dephasing ra te yields a motionally aver -aged distance of 0.43±0.01nm betw een these 13C and 15N sites acro ss the monome r -monomer junction ,w hich provides a direct evidence of the m onomer -m onomer g eo metry in the g A channel structure [34].A sy nergic use o f the aligned sam ple approach and the MAS measurements has been w idely used as a pow erful tool to cha racterize helical bund -ling and channel gating mechanism [27,35-39].Fig .2 (a )Position s of th e specifically labeled 13C -Val 1and 15N -Ala 5gramicidin A (gA )in hyd rated dimyristoylph os -ph atidylcholine (DM PC )bilayers and the corresponding13C CPM AS NM R spectrum .(b )A set of 13C CPM AS spectra at different dephasing times w ith (righ t )and w ithou t (left )the simultaneou s frequency and amp l itude modulation (S FAM )irradiation on the 15N ch annel .T he spectra w ere recorded at 315K (above th e phase transition temperature of DM PC ).T he peak at δC 174results from the carb onyl group of the lipids and is not affected by dephasing ,w hile the tw o res onances at δC 172.6and 171.0are deph ased by the S FAM irradiations on th e 15N spin .441 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipids442波 谱 学 杂 志 第26卷 2 Solid-state NMR of align ed samplesSince the earliest demo nstration[40]that high-re solutio n structural constraints could be o btained by solid-state NM R o f pro teins and peptides in hydrated but anisotropic en-vironm ents,the biolog ical solid-state NM R of aligned sample s has been rapidly emer-g ing as a successful and important technique fo r structural and dynamic characterization of membrane bo und pro teins and peptides in“native-like”hy drated lam ellar phase lipid enviro nments[14,26,29,30,41-46];this is driven by sig nificant advances in sam ple prepara-tions as well as N M R probe and methodo logy developments.2.1 Sample alignmentsMechanical and m ag netic alig nm ents are the tw o prim ary approaches fo r the uni-fo rm alig nment of mem brane bound proteins and peptides,bo th of w hich use a lipid bi-laye r enviro nment above the phase transition tem perature.Fig.3(a)outlines the sche-m atics fo r aligned sample preparation in a hydrated lipid environment.Once the labeled pro tein/peptide is incorporated into lipids,the lipo some is spread onto thin g lass slides. S uch slides are then stacked in a glass tube,hy drated and sealed.Several thousand hy-drated lipid bilayers can thus be alig ned mechanically betw een a pair o f g lass surfaces.A stack o f~50such slides alig ned with the bilayer no rm al pa rallel to B0makes fo r a high sensitivity sam ple using5~10mg of pro tein.Fig.3(b)show s the31P spectrum of an alig ned protein in hy drated DPM C bilay ers contained in a g lass tube.The31P sig nals re-sult from the head g roup of the lipids.The narrow resonance peak at the left side indi-cates that the majority of the lipids are w ell aligned betw een glass slides,w hile the w eak resonance at the right side implies that a small portion o f the lipids is still uno riented, w hich could be par tly from tho se at the edge of the glass slides.Recently,anodic aluminum oxide(AAO)substrates w ith flow-throug h nanopo res have been used to provide m acro sco pically aligned peptide-co ntaining lipid bilayers[47]. The mo st striking advantage with these flow-through lipid nano tube arrays is that high hy dration levels as w ell as pH and desirable ion and/o r drug concentrations co uld be eas-ily maintained and modified in a series of expe riments w ith the same sam ple w itho ut lo s-ing the lipid alig nm ent o r bilay ers fro m the nanopo res,avoiding any uncertainty during the sample preparation at those various conditions.The mag netic alig nment takes advantag e of bicelles,discoidal lipid ag gregates that are edge stabilized by sho rt chain lipids.So lutions o f these bicelles can be prepared in such a w ay that they are unifo rmly alig ned with the bilay er no rmal perpendicular or par-allel to B0,w itho ut the aid of g lass slides.In recent years,magnetically aligned bicelles have also become an im po rtant bilayer preparatio n fo r bio logical solid-state NM R of alig ned sam ples[48-51].Since any dispersio n o f m olecular o rientations w ith respect to B0will broaden the observed resonance s,much effo rt has gone into the improvement of sample alig nment. This includes:i)choices o f lipids;ii)improved protoco ls fo r aligned sam ple prepara-tions ;and iii )the availability of higher mag netic fields .Early on in the development of solid -sta te NM R structural biology ,mo st of the alig ned samples w ere prepared with DM PC .No w aday s ,a range o f diffe rent lipids and mix tures o f lipids have been used ,in -cluding saturated and unsaturated fatty acids as w ell as charged and zwitterionic lipids .Altho ug h so lid state NM R bilayer sam ples are far less co mplex than nativ e mem branes (e .g .,typically m ore than 100lipids of even a bacterial membrane ),they represents themost native -like membrane environm ents in many aspects [1-3](e .g .,by providing a het -erog eneous environment ,dielectric gradient from the lipid interfacial regio n to the low dielectric lipid interior ,and so on ).Sam ple preparatio n pro to cols have been g reatly im -proved over years with different types of lipids and lipids mix ture and will co ntinue to be improving .It has been sho w n very recently that high reso lution MAS spectra of m em -brane pro teins can be achieved with the use o f viral lipids [38,52].Furthermo re ,it is also evident that hig h B 0improves sample alignment [53,54],in part because it enlarges the an -isotropy of the diam ag netic o r paramag netic susceptibility [55-57],w hich either aids uni -fo rm alig nment of lipid bilayers o r minimizes the defects of lipid bilaye rs due to their flu -idity nature.Fig .3 (a )S chematics of sample p reparation for an al igned p rotein /pep tide in a hydrated lipid environment .(b )31P NM R spectrum of a p rotein sam ple oriented in hydrated DM PC bilayers .2.2 NMR probe developmentT raditionally ,solid -state NM R probes used a m ultiply turned solenoid coil as a sample coil ,tuned to different frequencies simultaneously (kno w n as sing le -coil double -resonances circuits fo r H -X probes )[58,59].H ow ev er ,this ty pe of probe desig ns is no longer efficient fo r biological so lid -state NM R ,especially at hig h fields .Biolog ical sam -ples are ty pically hy drated so that the heating associated w ith the electric fields genera -ted during high pow er 1H decoupling is sig nificant ,par ticularly at hig h fields ,resulting in sample dehydratio n or even destruction of the samples [60].The electric fields are pro -duced by the hig h voltage across the sam ple coil .A lthough the use of a balanced circuit 443 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipids444波 谱 学 杂 志 第26卷 moves the g rounding point fro m o ne end of the so lenoid coil to the center of the solenoid leading to a bette r B1homo geneity[61,62],it does not reduce the v oltage across the sole-noid,thus it has limited effects to prevent sample heating.Several clever desig ns have been propo sed to reduce sample heating by moving the large electric field aw ay from the sample.In the“scro ll”coil desig n[63],the electric field of the scroll is largely confined between concentric turns of foil,so it g reatly reduces sample heating.The scro ll's low inductance tends to reduce the1H drive vo ltag e,yet it presents a challenge[64]to the ef-ficient tuning and m atching of a low frequency channel such as15N.A slo tted Faraday shield betw een the coil and the sample can also reduce the electric fields[65].The fundamental problem invo lves using the same sample coil for both the hig h fre-quency(1H)and m uch lowe r frequency(e.g.,15N).It is very hard to have the same sample coil w orking efficiently at tw o very diffe rent frequencies.Fo r instance,sensitivi-ty at the low frequency larg ely depends on having relatively m ore turns.H owever,more turns lead to a large inductance fo r hig he r frequency thus leading to hig h voltages across the sample coil,w hich require the use o f hig h-voltage capacito rs in the circuitry and re-sult in a large electric field fo r sample heating.In addition,a1H frequency trap is re-quired for the lo w frequency channel,w hich furthe r reduces sensitivity.For aligned samples,due to the presence of g lass tube,glass slides and a significant po rtion of lipids and hy dration,the pro tein sample s being investig ated are limited,resulting in low sensi-tivity.Therefo re,it is desirable to have a bigg er sample coil so that m ore samples can be av ailable for detectio n in orde r to im pro ve the sensitivity.Again,a la rg e sample coil po-ses significant problem s asso ciated w ith the w aveleng th effects.Recently,the cro ssed-coil design[66]has been very successful in term s of reducing e-lectric fields and improving sensitivity on both hig h and low frequency channels.A par-ticularly efficient design for large vo lume,hig h field,static applications is know n as low electric field coil,o r“low-E”coil[67].The low-E coil assembly co nsists of a low-frequen-cy coil(e.g.,15N)nested w ithin a1H lo op gap resonato r(LGR).The15N coil and1H LG R are oriented in such a w ay that they produce B1fields in o rthog onal directio ns. Therefo re,no additio n trap is needed in the circuitries to isolate the tw o channels.For each channel,a sing le-coil sing le reso nance circuitry is established,so that each channel can be independently optimized.The1H LG R's inherently low electric field is further re-duced by Fa raday screening by the inner coil.I t has been demo nstrated that this desig n dramatically decreases sam ple heating fo r hydrated biological sam ples[67].2.3 Polarization inversion spin exchange at the magic angle(PISEMA)In aligned samples that have unique o rientation with respect to B0,the data from o-rientation-dependent nuclear spin interactions within a peptide plane permit the charac-terization of this peptide plane orientatio n w ith respect to the alignment axis,as long as the relativ e orientatio n of tho se spin interactions in the m olecular frame becom es know n.In a peptide plane,the15N chemical shift tenso r has been w ell characterized in- Fig .4 Relative orientation of the 15N chem ical shift tensor and the 15N -1H dipolar in teraction in a peptide planedependently with respect to the 15N -1Hdipo lar interaction ,as show n in Fig .4.Therefo re ,traditional sepa rated -local -field(SLF )ex periments [68]can be used to cor -relate the o rienta tion -dependent ,aniso -tro pic 15N -1H dipolar coupling w ith 15Nchemical shift from a peptide plane ,thusto define the orientatio n of this peptideplane w ith respect to the alig nment axis .By obtaining the orientations o f all peptideplanes with respect to the sample alig n -m ent axis ,three -dimensional backbone conformation and to polo gy o f the alig ned samples can be achieved [69].Ho wever ,spec -tral resolution is the key to the success of using such S LF experiments.Fig .5 (a )Pu lse sequence for PIS EM A experim en ts ;(b )Tw o -dimensional PISEAM spectrum of 15N 1,3,5,7-labeled gramicidin A oriented in hydrated DM PC bilayers (at apep tide ∶lipid molar ratio of 1∶8)recorded on a 400M H z NM R spectrometer at 40℃.The first and mo st sig nificant ex peri -ment to im pro ve the S LF spectral resolu -tion w as polarizatio n inve rsion spin ex -chang e a t the m ag ic angle (PIS EM A )[70],as show n in Fig .5(a ).After cross polari -zatio n ,the pro to n magnetization is flippedto the magic ang le by a 35°pulse ,alongw hich the polarizatio n inversio n spin ex -chang e is established by applying a fre -quency switched Lee -Goldburg (FS LG )homo nuclear decoupling sequence [71]to theproton channel in sy nchronizatio n with180°phase alternation o f the spin -lockingfield applied to the 15N channel .The spinexchange takes place w hen the effective field in the proton channel and the applied15N spin -locking field fulfill the H artman -H ahn co nditio n .Fo r the traditional SLFexperiments ,the 15N sig nals a re evolved inthe x y plane during the indirect t 1dimension and thus affected no t o nly by the dipolar coupling s w ith directly bonded amide pro to ns but also by the dipolar inte ractio ns with other remote pro to ns .The latter leads to additio nal line broadening in the dipolar di -m ensio n .While fo r the PISEMA experim ents ,the dipolar flip -flo p te rm of the directly bo nded 15N -1H dipo lar co upling s are evo lved in the ro ta ting frame during the spin ex -change period w hile the couplings to o ther rem ote pro tons are effectively truncated [72].445 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipidsCo nsequently ,the spectral reso lution in the dipo lar dimension is improved dram atically ,as demonstrated in Fig .5(b ).Furtherm ore ,the 15N -1H dipolar coupling s are scaled by a large facto r (0.82)in the PIS EM A experim ents ,com pared to the traditional SLF exper -iments [71,73-75](0.57at mo st depending on hom onuclear deco upling sequences used in the indirect t 1dimensio n ).With the g reatly improved resolution ,the PISEMA ex peri -m ents have become a powe rful tool to obtain o rientational constraints fro m uniform ly la -beled pro teins and peptides .Since the building block of an ideal α-helical structure is a sing le peptide plane ,the PISEM A resonance patterns of a tilted helix ,as illustrated in Fig .6(a ),can be calculat -ed by sim ply rotating the peptide plane about its helical axis ,w hile calculating the 1H -15N dipolar coupling and 15N chemical shift observables .As show n in Fig .6(b ),the PISEM A resonances o f ideal α-helix clearly fo rm characte ristic w heels ,the so -called PI -SA w heels (polarity index slant ang le )[76,77],w hose size and po sitio n uniquely define the helical tilt with respect to B 0and the bilayer no rmal without reso nance assignments .The ro tation ρabo ut the helical axis h does no t affect the PISA w heel ,but does change the resonance positions of individual peptide planes on the w heels.Fig .6 (a )Definitions of helix tilt τand rotation ρaround the hel ical axis h in the laboratory frame .(b )Simu lated “w h eels ”rep resenting PISE M A resonance pattern of an ideal α-helix at differen t tilt angles τusing the 15N chemical shift tensors 'principal elements (σ11=31,σ22=54,σ33=202)and the relative orientation of th e dipolar and chemical shift tensors ,given by θ=17°,as sh own in Fig .4.For each tilt angle ,th ere are tw o symmetric w heels (b lack and g rey )mirrored along the zero frequency in the dipolar dimen sion .2.4 Other PISEMA type experimentsThe pe rfo rm ance o f the PISEM A ex periments largely depends o n the decoupling ef -ficiency of the FSLG o ff -resonance irradiatio n ,w hich is very sensitive to the setting of 1H carrier frequency .In the PISEM A spectra ,the 1H offse t effects include [78],1)the bro adening and thus attenuation of the dipolar oscillatio n peaks in the dipolar dimen -sion ;2)increase of unwanted artifacts at zero -frequency of the dipolar dimension ,and3)e xperimental 1H -15N dipolar coupling s la rg er than w hat they should be .S uch effects greatly co mpromise the reso lution of the PISEMA spectra ,especially at hig h fields ,446波 谱 学 杂 志 第26卷 。
RoleofPOLEmutationsintheoccurrenceand-临床与病理杂志
临床与病理杂志J Clin Pathol Res2015, 35(12) 2173POLE 突变在肿瘤发生发展中的作用黄茜 综述 张声 审校(福建医科大学附属第一医院病理科,福州 350005)[摘 要] POLE 为DNA 聚合酶ε的催化亚基,具有5'→3'DNA 聚合酶活性和3'→5'核酸外切酶活性,对DNA 复制和校正具有重要作用。
POLE 突变将引起校正功能缺失,可能导致肿瘤发生。
近年来,TCGA 在多种肿瘤中检出POLE 突变,POLE 突变的肿瘤以其独特超强突变分子表型及良好的预后成为近期研究热点。
本文综述POLE 的结构、功能及其突变在肿瘤发生发展中的作用的研究进展。
[关键词] POLE ;肿瘤;预后Role of POLE mutations in the occurrence and developmentof tumorsHUANG Qian, ZHANG Sheng(Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China)Abstract POLE is the catalytic subunit of DNA polymerase ε which has 5'-3' DNA polymeriztion and 3'-5' proofreading exonulease activities, so it plays an important role in DNA replication and proofreading. POLE mutations would cause deficiency of proofreading activity which may leads to tumor occurrence. In recent years, the Cancer Genome Atlas (TCGA) reported multiple human tumors that associated with POLE mutations. For its unique molecular phenotype and favorable prognosis, research on POLE mutations tumors has become a hot focus. In this paper, studies on structure and function of POLE, and the role of POLE mutations in the tumor occurrence are reviewed.Keywords POLE; tumor; prognosis收稿日期(Date of reception):2015–09–30通信作者(Corresponding author):张声,Email: zhgshg@人类基因组中至少有15种D N A 聚合酶,共同参与基因组的复制与修复[1]。
琼脂糖-普鲁兰凝胶体系中羟基磷灰石的仿生合成
Bi m i ei y t e i fHy r x a a ie i h y tm f o m tc S n h sso d 0 y p tt n t e S se o
Ag r s — ul l n G e a o e— P l a l u
F n i g Xi o Xi f n Li r n f n u Ha p n a ue g u o ga g ( o eeo h m s yad M t as ce c ,F j nN r l nvr y F j nF zo 5 0 7 C l g f e i r n ae l S i e ui oma U i s , ui uh u3 0 0 ) l C t i r n a et a A s at B sdo ep n il f i nrl a o ,uigbn r e m to ,C ( O ) n N 4 3 O b t c ae nt r cpe o o ea zt n s iaygl ehd a N 3 2 d( H 4 r h i s b mi i i n a P a esuc f a im a d p op ou ,f w rc s r o y rx aa ts( A)w r sn ei d truh du l s o reo l u n hsh rs l e l t s fhdoyp te H h t cc o u e i ee yt s e o g obe h z h
第2 4卷第 7期 21 0 来自年 7月 化工 时刊
Ch m ia n u tyTi e e c l d s r m s I
V 12 No. o . 4, 7 J 17. 01 u. 2 0
d i1 .9 9 ji n 1 0 o :0 3 6 /.s . 0 2—1 4 2 1 . 7 0 2 s 5 X.0 0 0 .0
L-脯氨酸聚合物键合手性配体交换色谱固定相Ⅰ的制备及应用
酸) 记 的死 时 间;手 性 分离 因子 a = k ’ k ’ ,其 中k , 标 2/l 1 是先 洗 脱 对 映体 的容 量 因子 ;
13 色 谱 固定 相 的 制备 . 1 31 L脯氨酸与单分散PM /D A .. - GA EM 微球反应 在三颈瓶 中加入30 . g 单 分散P M /D A 脂 ,2m  ̄ 氧六 环 ,30 L 羟脯 氨酸 ( 2 GA EM 树 0L . g- 用 3 L o/N 。O水 ,于5 ℃恒 温 水浴 反应 2 小时 。反 应 0 4 体交 换 色 谱 固定 相 拆 分机 理 是 基 于 固定 相 手性 配 体 、金 属 离 子 与 m lm l LaC 溶液 溶解 ) 被 分 离 溶 质对 映体 形 成一 对 非 对 映 的配 合 物 ,二 者 的热 力 学 稳 定 产 物 依次 用水 和 丙酮洗 涤 ,真 空干 燥 。 13 2L 脯氨 酸 手性键 合 固定相 与C .. 一 u 络合 在 三 颈瓶 中加 入 30 g . 性 差异 导 致 了色 谱分 离 。 上 步 反应 的产 物 ,0 1 o / C (c。 泡 l 时 后于 室温 下搅 拌 . m l L u A )浸 小 1实验 部 分 络合 4 d 时 ,产 物 用 蒸馏 水 洗 至 无c 离 子 检 出 。再 依 次用 乙醇 和 8, u 1 1仪 器 与 试 剂 . 丙酮 洗涤 ,真 空 干燥 。总 的 反应 式如 图 1 所示 : 高效 液 相 色 谱 仪 ( 岛津 一 C 0 ) G 一 0 型 高 压 气 动 泵 ; L 2 A ;C Y 1 0
2 1年 第 l 期 01 2 ( 总第2 2 ) 6期
吉 林 农 业
J L N AGRI II CULTURE
N O . 2. 2 1 1 01
羟基磷灰石纳米带作为蛋白质药物载体的研究
摘 要 : 研 究 采 用 水 热 合 成 法 ,在 不 添 加 任 何 模 板 剂 的 情 况 下 制 备 出 分 散 均 匀 的 羟 基 磷 灰 石 纳 米 带 (HNBs),并
采用 XRD、FTIR 和SEM 对其进行表征.然后将 HNBs作为蛋白质药物载体,在不同实验条件下,对牛血清白蛋
1 实 验
1.1 实 验 试 剂 和 仪 器 实验试剂为 四 水 硝 酸 钙 (Ca(NO3)2 ������4H2O)、十
二水 合 磷 酸 氢 二 钠 (Na2HPO4 ������12H2O)、无 水 乙 醇 (C2H6O),以上试剂均为分析纯级,且均购自国药集 团 化 学 试 剂 有 限 公 司,牛 血 清 蛋 白 (BSA,分 子 量 68000),购 自 武 汉 华 顺 生 物 技 术 有 限 公 司 .
偶氮聚合物光致异构效应实验的分析研究
中国科披大学颂士论文掺杂银纳米粒子对光致异构效应的影响
布的形状和尺寸。
对于给定波长的激发光来况,这种增强效应一般在纳米粒子I'D]距为某一特定间距附近时,达到最大。
图22(a)给出了当激发光波长为442nm,Ag纳米粒子直径为50nm时,不同纳米粒子问距一F等离子共振效应的变化趋势;图2-2(b)为不同波长激发光照射下纳米Ag粒子间的电磁场分布模拟计算结果㈣㈤。
3∞350450500
Nanoparticlesdislance(nm)
(a)
图22纳米Ag粒子周围电磁场能量的增强现象
(a、粒子间隔对电磁场的影响;b、激发光波长对电磁场的影响)
2.2掺银偶氮聚合物材料制各
2.2.1偶氨聚合物的合成
偶氮聚合物可以采用对硝基苯甲腈在酸催化下,由铁和水还原得到(图23)。
羟基磷灰石在聚酰亚胺酸薄膜表面的生长
K2 H PO4 ·3 H2 O 溶液中的两种方法 ,研究了羟基磷灰石的形成和生长. PAA 薄膜在 SB F 中长时间的浸泡 ,难以促使 磷灰石在其表面生成. 而采用交互浸渍法 ,羟基磷灰石可以沉积在 PAA 薄膜的表面. 所生成的羟基磷灰石通过扫描电 子显微镜 (SEM) 、X 射线衍射仪 ( XRD) 、傅里叶变换红外光谱 ( F T2IR) 作了表征.
范托夫——精选推荐
范托夫
范托夫(1852~1911)
van’t Hoff,Jacobus Henricus
荷兰化学家。
1852年8⽉30⽇⽣于⿅特丹,1911年3⽉ 1 ⽇卒于柏林。
1874年于荷兰⾸都乌德勒⽀⼤学获博⼠学位。
1878~1896年,任阿姆斯特丹⼤学化学教授,随后去柏林⼤学任教授,并任普鲁⼠科学院教授。
1874年范托夫在研究有机化合物的三维空间结构(⽴体化学)时,与J. - A.勒贝尔各⾃独⽴地发表了⼀个碳原⼦具有四⾯体结构的概念,碳原⼦的四个价键指向四⾯体的四个顶端。
在这个概念的基础上开辟了⽴体化学的新篇章,在整个化学领域内起着极为重要的作⽤。
他解开了某些有机化合物具有光学活性的奥秘,提出了分⼦内部存在不对称因素,从⽽解释了这类化合物能使平⾯偏振光旋转的道理(见旋光异构)。
范托夫还研究了渗透压现象。
他发现溶解在溶液中的物质的渗透压与理想⽓体的压⼒相似,遵守同样的定律。
1884年他发表了《化学动⼒学研究》论⽂,其中包含化学热⼒学的原理。
他推导出反应速率的公式,从⽽可以测定反应的级数。
他还将热⼒学应⽤于化学平衡,并提出了近代化学中亲和⼒的概念。
1886年他发表了稀溶液理论,说明在稀溶液中分⼦的⾏为与⽓体之间的相似性。
范托夫因发现化学动⼒学和渗透压某些定律⽽于1901年获得第⼀个诺贝尔化学奖。
1887年和W.奥斯特⽡尔德共同创办了有影响的杂志《物理化学》,促进了这门新学科的发展。
拟晶体的名词解释
拟晶体的名词解释拟晶体(quasicrystal)是一种具有非周期性长程有序结构的固体材料。
它的发现颠覆了传统晶体学中“周期性结构”的概念,为材料科学带来了新的研究方向和挑战。
拟晶体的特殊结构和性质使其成为了科学界关注的焦点,并在多个领域展示了潜在的应用前景。
一、拟晶体的发现拟晶体最初在1982年由丹麦物理学家丹尼斯·谢伯诺夫斯基(Dan Shechtman)首次发现。
当时,他对铝-锰-合金进行高温冷却实验,意外观察到了一种不规则的、五角星形的模式。
根据传统晶体学的观点,这种非周期性的结构理论上是不可能存在的,因此遭遇到了科学界的质疑和反对。
然而,经过进一步实验证实和理论分析,谢伯诺夫斯基却成功证明了这种新型结构的存在,并于2011年获得了诺贝尔化学奖。
这个重大发现引起了广泛的兴奋和研究热潮,也为拟晶体的研究奠定了基础。
二、拟晶体的结构特点拟晶体的结构具有多面体对称性,一般表现为五角形、六角形、十二面体等不规则形态,而不像晶体那样有明显的周期性。
拟晶体中的原子或分子排列方式遵循一定的规则,但这种规则并不像晶体那样精确地重复。
拟晶体的结构包含了不同长度尺度的重复单元,这使得它具备了多样的物理和化学性质。
三、拟晶体的物理性质拟晶体的非周期性结构赋予了它独特的物理性质。
首先,拟晶体具有良好的电学导性,可用于制备高性能的电子器件。
其次,拟晶体在光学领域也有广泛的应用,拥有宽波长范围内的光学散射效应,可以用于制备不同波长的光学器件。
此外,拟晶体还具备较好的热导性、力学性能和磁学性质,为材料科学和工程领域提供了新的研究方向。
四、拟晶体的应用前景由于其特殊的结构和性质,拟晶体在多个领域展示了潜在的应用前景。
在材料科学领域,拟晶体可用于制备高性能的金属合金和陶瓷材料,具备优异的力学性能、耐热性和电学导性。
在能源领域,拟晶体也被用于改善材料的热导性,为热能转换和热管理提供新的解决方案。
此外,拟晶体还在催化、药物输送和生物材料等领域展示了独特的应用潜力。
l-阿拉伯糖晶体结构
l-阿拉伯糖晶体结构L-阿拉伯糖晶体结构L-阿拉伯糖是一种常见的单糖,也是葡萄糖的异构体之一。
它的分子式为C6H12O6,具有一个醛基和五个羟基。
L-阿拉伯糖的晶体结构对于研究其性质和应用具有重要意义。
下面将对L-阿拉伯糖晶体的结构进行详细介绍。
L-阿拉伯糖属于六碳糖,其晶体结构是由多个分子通过氢键相互作用而形成的。
在L-阿拉伯糖晶体中,分子间的氢键主要是通过羟基上的氧原子与其他分子的氢原子之间的相互作用而形成的。
这种氢键是弱作用力,但是由于晶体中存在大量的氢键,所以整体上能够保持晶体的稳定性。
L-阿拉伯糖晶体具有明确的晶体结构,一般为斜方晶系。
晶胞中包含了多个L-阿拉伯糖分子,每个分子都占据着特定的位置。
晶体结构中的分子排列方式对晶体的性质和稳定性起着重要的影响。
L-阿拉伯糖晶体中的分子排列呈现出复杂的空间结构。
每个L-阿拉伯糖分子通过氢键与周围的分子相连,形成一个三维网络。
这个网络中的分子间距和角度是由晶胞的尺寸和几何结构所决定的。
在L-阿拉伯糖晶体中,分子之间的距离和角度是有一定的约束的。
晶胞中的分子排列会受到晶胞尺寸和晶体结构的限制。
当晶胞尺寸发生变化时,晶体结构也会随之改变。
这种晶体结构的变化可能会导致晶体的性质发生改变。
L-阿拉伯糖晶体的结构对其性质和应用具有重要影响。
晶体结构决定了晶体的物理性质,如硬度、熔点和溶解度等。
此外,晶体结构还影响晶体的化学性质,如反应活性和光学性质等。
因此,了解L-阿拉伯糖晶体的结构对于研究其性质和应用具有重要意义。
L-阿拉伯糖晶体是由多个分子通过氢键相互作用而形成的。
晶体结构对于L-阿拉伯糖的性质和应用具有重要影响。
了解L-阿拉伯糖晶体的结构有助于深入研究其性质和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r Xiv:h ep-ph/972352v117Fe b1997Gluon polarization in transversely polarized nucleons and jet spin asymmetries at RHIC J.Soffer a Centre de Physique Th´e orique -CNRS -Luminy,Case 907F-13288Marseille Cedex 9-France and O.V.Teryaev b Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research,Dubna,141980,Russia Abstract We derive the analog of the Wandzura-Wilczek relation for the light-cone distributions of polarized gluons in a transversely polarized nucleon.The short distance cross-section is entirely due to the intrinsic transverse momenta of gluon in the nucleon,in complete analogy to the quark case.Numerical estimate for the double spin transverse asymmetries at RHIC are presented.PACS.12.38.Bx,13.88.+eTypeset using REVT E XThe spin properties of gluons and quarks are rather different.In particular,this is manifested in the fact,that there is no analog of the twist-two transversity distributions for gluons and their contribution to transverse asymmetry starts at twist-three level.This is leading,generally speaking,to the relative suppression of gluon transverse asymmetries with respect to the quark ones,which was used recently to formulate the selection rule[1] in QCD,which is of direct relevance for the physics programme of the future polarized pp collider at RHIC.However,the detailed analysis of the quark contribution to the double transverse spin asymmetries A T T using the Monte-Carlo simulation[2],resulted in rather small numbers of the order of1%,and therefore it seems natural to question the role of gluon corrections. This is a subject of the present paper.The transverse polarization effects are arising from two basic sources:the leading twist transversity distribution,resulting in the correlation of transverse polarizations,and the twist-three parton correlations,suppressed by hadron mass.While thefirst are absent for gluons,the gluon correlations are,generally speaking,rather complicated[3].At the same time,the experimental data on the g2structure function[4]do not deviate strongly from the twist-two approximation,suggested by Wandzura and Wilczek(WW)[5],whose physical meaning is just the dominance of the effect of transverse motion of the quark over that of the gluonfield[6].This is the reason,why we are suggesting here a generalization of the WW approximation to the case of gluons.To do this,let us start from the light-cone density matrix of gluon,where we ignore twist-four term,namely:dλare the familiar unpolarized gluon distribution and gluon helicity distribution,respectively. The transverse gluon distribution∆G T is the most natural measure of transverse polariza-tion,analogous to the quark structure function g T=g1+g2,since in the quark case we have:12πe iλx p,s|¯ψ(0)γµγ5ψ(λn)|p,s =g1(x)(sn)pµ+g T(x)sµT.(2)The quantity g T was shown to be the good variable to study the generalized Gerasimov-Drell-Hearn sum rule,and the x−dependence of the anomalous gluon contribution[7].The latter result was recently confirmed[8].The light-cone distributions∆G and∆G T can be easily obtained by the projection of gluon density matrix,so we have,∆G(x)=12πe iλx p,s|Aρ(0)Aσ(λn)|p,s ǫρσpn,∆G T(x)=12πe iλx p,s|Aρ(0)Aσ(λn)|p,s ǫρσps.(3)Now by making use of the axial gauge An=0,one may express their moments1in terms of gluonfield strength Gµν,according to1 0dxx k∆G(x)=14M(s2)p,s|Gρn(0)(i∂n)k−1Gσn(0)|p,s ǫρσps.(4)We denote here Gµn=Gµνnν,∂n=nµ∂µ,and we recall that in configuration space x k= (i∂n)k.The kinematical identities,implied by the vanishing of the totally antisymmetric tensor of rank5in four-dimensional space,nµǫρσpn−nσǫρµpn+nρǫσµpn=ǫρσµn and nµǫρσps−nσǫρµps+nρǫσµps=ǫρσµsT(5)allow one to come to the standard gluonic operators,used in the operator product expansion for spin-dependent case[12]1 0dxx k∆G(x)=i k−12M(s2)p,s|˜Gσα(0)∂µ1...∂µk−1Gσβ(0)|p,s sαT nβnµ1...nµk−1,(6)where˜Gσα=1zdz.(9) The existence of this relation is very natural because of the similarity between quark and gluon density matrices(see eqs.(2)and(1)).Our present knowledge on∆G(x),which is not very precise,allows a great freedom,so several different parametrizations have been proposed in the literature[13–16].We show in Figs1a and2a some possible gluon helicity distributions x∆G(x)and in Figs1b and2b the corresponding x∆G T(x)obtained by using (9).It is worth noting from these pictures that,in all cases x∆G(x)and x∆G T(x)are rather similar in shape and magnitude.Let us now move to the calculation of short-distance subprocess.For this,it is instructive to compare the two terms in the gluon density matrix(1).While the longitudinal term is in fact a two-dimensional transverse antisymmetric tensor and corresponds to the density matrix of a circularly polarized gluon∆G(x)ǫρσpn=∆G(x)ǫρσT T,(10)the transverse polarization term generates the circular polarization in the plane,defined by one transverse and one longitudinal directionM∆G T(x)ǫρσs T n=∆G T(x)ǫρσT L,(11)and therefore corresponds to the circular transverse polarization of gluon.Such a polariza-tion state is clearly impossible for on-shell collinear gluons.They should have either nonzero virtuality,or nonzero transverse momentum.Note that one of these effects is required to have nonzero anomalous contribution to thefirst moment of the structure function g1[17,18]. One may consider this similarity as supporting the mentioned relations between∆G T and anomalous gluon contribution[7,8].We should adopt the second possibility,namely a nonzero transverse momentum,because the gluon remains on-shell and the explicit gauge invariance is preserved.In this case,the transverse polarization of nucleon may be converted to the longitudinal circular polarization of gluon.The similar effect for quarks was discussed earlier[19,6].To calculate now the asymmetry in short-distance subprocess it is enough tofind the effective longitudinal polarization by projecting the transverse polarization onto the gluon momentum:s L= s T kk L.(12)The partonic double transverse asymmetry can be easily obtained from the longitudinal one according to,ˆA T T =k T1k T2ˆsˆALL,(14)whereˆs is the partonic c.m.energy.Here we see thatˆA T T is strongly suppressed with respect toˆA LL and even more than in the case of partonic processes with initial quarks andantiquarks[1].If we consider the hadronic double transverse asymmetry A T T for the two-jet production,one can simply relate it,within some approximation,to the corresponding double helicity asymmetry A LL as followsA T T=2 k2T∆G(x1)∆G T(x2)FIGURESFIG.1.Fig.1a.The gluon helicity distributions versus x from ref.[13](soft gluon is dotted curve,hard gluon is dashed curve)and from ref.[14](solid curve).Fig.1b.The transverse polarization of the gluon obtained using eq.(9)with labels corresponding to Fig.1aFIG.2.Fig.2a.The gluon helicity distributions versus x from ref.[15](gluon A is solid curve, gluon B is dashed curve,gluon C is dotted curve)and from ref.[16](standard scenario,dotted dasched curve).Fig.2b.The transverse polarization of the gluon obtained using eq.(9)with labels corresponding to Fig.2aREFERENCESa E-mail:soffer@frcpn11.in2p3.frb E-mail:teryaev@thsun1.jinr.dubna.su[1]R.L.Jaffe and N.Saito,Phys.Lett.B382,(1996)165.[2]O.Martin and A.Sch¨a fer,hep-ph/9607470;V.Barone,T.Calarco and A.Drago,hep-ph/9702239.[3]Xiangdong Ji,Phys.Lett.B289(1992)137.[4]K.Abe et al.(E143Collaboration),Phys.Rev.Lett.76(1996)587.[5]S.Wandzura and F.Wilczek,Phys.Lett.B82,(1977)195.[6]R.D.Tangerman and P.J.Mulders,Nucl.Phys.B461(1996)197.O.V.Teryaev,Proceedings of the Workshop on the Prospects of Spin Physics at HERA, DESY95-200,p.132.(editors J.Bl¨u mlein and W.-D.Nowak).[7]J.Soffer and O.V.Teryaev,Phys.Rev.D51(1995)25.[8]P.Mathews,V.Ravindran,and K.Sridhar,TIFR-TH-96-40,hep-ph/9607385.[9]A.V.Efremov and O.V.Teryaev,JINR Dubna report E2-88-287.[10]I.Balitskii and V.Braun,Phys.Lett.B267(1991)405.[11]A.V.Belitsky,A.V.Efremov and O.V.Teryaev,Phys.Atom.Nucl.58(1995)1333.[12]M.Ahmed and G.G.Ross,Nucl.Phys.B111,(1976)441.[13]C.Bourrely and J.Soffer,Nucl.Phys.B445,(1995)341.[14]C.Bourrely, F.Buccella,O.Pisanti,P.Santorelli and J.Soffer,preprint CPT-96/PE.3327(revised version,Dec.1996).[15]T.Gehrmann and W.Stirling,Phys.Rev.D53(1996)6100.[16]M.Gl¨u ck,E.Reya,M.Stratmann and W.Vogelsang,Phys.Rev.D53(1996)4775.[17]A.V.Efremov,J.Soffer and O.V.Teryaev,Nucl.Phys.B316(1990)97.[18]R.D.Carlitz,J.C.Collins,and A.H.Mueller,Phys.Lett.B214(1988)229.[19]P.G.Ratcliffe,Nucl.Phys.B264(1986)493.A.M.Kotzinian and P.Mulders,Phys.Rev.D54(1996)1229.。