[新人教版]数学教案中考复习20 二次函数(2)
九年级数学下册二次函数复习教案人教新课标版【教案】
( 2)在某次试跳中,测得运动员在空中的运动路线是(
1)中的抛物线,且运动员在空中
调整好入水姿势时, 距池边的水平距离为 并通过计算说明理由.
3 3 m,问此次跳水会不会失误?
5
2、如图 26. 2. 8,在 Rt ⊿ABC中,∠ C=90°, BC=4,AC=8,点 D 在斜边 AB 上,分别作 DE⊥ AC, DF⊥ BC,垂足分别为 E、 F,得四边形 DECF,设 DE=x, DF=y. ( 1)用含 y 的代数式表示 AE; ( 2)求 y 与 x 之间的函数关系式,并求出 x 的取值范围;
式②若图象与 x 轴交于 A、B( A 在 B 左) 与 y 轴交于 C, 顶点 D,求四边形 ABCD的面积。 例 3:探索:
如图,抛物线的对称轴是直线 x=1,它与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,点
A、 C的坐标分别是( -1 ,0)( 0,1.5 )
( 1)求此抛物线的函数关系式。
⑵. 二次函数 y ax2 bx c 与一次函数 y ax c 在同一直角坐标
系中图象大致是
()
x 0
x
x
x
0
0
0
A
B
C
D
总结:抛物线 y ax2 bx c 的图象与 a、 b、 c 及 b2-4ac 的关系是: a: 开口方向; b:
二次函数中考复习专题教案
二次函数中考复习专题教案第一章:二次函数的基本概念1.1 二次函数的定义解释二次函数的一般形式:y = ax^2 + bx + c强调a、b、c系数的含义和作用1.2 二次函数的图像介绍二次函数图像的特点:开口方向、顶点、对称轴、与y轴的交点等利用图形软件绘制几个典型二次函数的图像,让学生观察和分析1.3 二次函数的性质讨论二次函数的增减性、对称性、周期性等性质引导学生通过图像理解二次函数的性质第二章:二次函数的顶点式2.1 顶点式的定义解释顶点式:y = a(x h)^2 + k强调顶点(h, k)对二次函数图像的影响2.2 利用顶点式求解二次函数的图像和性质引导学生通过顶点式确定二次函数的图像和性质举例说明如何利用顶点式求解最值问题2.3 顶点式的应用讨论顶点式在实际问题中的应用,如抛物线运动、几何问题等给出几个实际问题,让学生运用顶点式解决第三章:二次函数的解析式3.1 解析式的定义解释二次函数的解析式:y = ax^2 + bx + c强调解析式与顶点式的关系3.2 利用解析式求解二次函数的图像和性质引导学生通过解析式确定二次函数的图像和性质举例说明如何利用解析式求解最值问题3.3 解析式的应用讨论解析式在实际问题中的应用,如物理、化学等领域的方程求解给出几个实际问题,让学生运用解析式解决第四章:二次函数的图像与性质4.1 图像与性质的关系讨论二次函数图像与性质之间的关系引导学生通过图像判断二次函数的性质4.2 开口方向与a的关系解释开口方向与a的关系:a > 0时开口向上,a < 0时开口向下举例说明如何通过开口方向判断二次函数的性质4.3 对称轴与顶点的关系解释对称轴与顶点的关系:对称轴为x = h举例说明如何通过对称轴判断二次函数的性质第五章:二次函数的实际应用5.1 实际应用的基本形式讨论二次函数在实际应用中的基本形式举例说明如何将实际问题转化为二次函数问题5.2 利用二次函数解决实际问题引导学生运用二次函数解决实际问题,如最值问题、优化问题等给出几个实际问题,让学生运用二次函数解决5.3 实际应用的拓展讨论二次函数在其他领域的应用,如经济学、生物学等引导学生思考如何将二次函数应用于解决其他实际问题第六章:二次函数的综合应用6.1 二次函数与线性函数的组合解释二次函数与线性函数组合的形式,如y = ax^2 + bx + c 与y = dx + e 的组合强调组合函数的图像和性质6.2 利用综合应用解决实际问题引导学生运用综合应用解决实际问题,如函数交点问题、不等式问题等给出几个实际问题,让学生运用综合应用解决6.3 综合应用的拓展讨论综合应用在其他领域的应用,如物理学、工程学等引导学生思考如何将综合应用应用于解决其他实际问题第七章:二次函数与不等式7.1 二次不等式的定义解释二次不等式的形式,如ax^2 + bx + c > 0强调解二次不等式的方法和步骤7.2 利用图像解决二次不等式问题引导学生通过图像解决二次不等式问题,如找出不等式的解集举例说明如何利用图像解决实际问题7.3 二次不等式的拓展讨论二次不等式在其他领域的应用,如经济学、工程学等引导学生思考如何将二次不等式应用于解决其他实际问题第八章:二次函数的最值问题8.1 二次函数最值的概念解释二次函数最值的概念,如最大值、最小值强调最值与对称轴、顶点的关系8.2 利用顶点式求解最值问题引导学生通过顶点式求解二次函数的最值问题举例说明如何利用顶点式求解实际问题中的最值8.3 最值问题的拓展讨论最值问题在其他领域的应用,如物理学、工程学等引导学生思考如何将最值问题应用于解决其他实际问题第九章:二次函数与几何问题9.1 二次函数与几何图形的关系解释二次函数与几何图形的关系,如圆、椭圆、抛物线等强调二次函数在几何问题中的应用9.2 利用二次函数解决几何问题引导学生运用二次函数解决几何问题,如求解三角形面积、距离问题等举例说明如何利用二次函数解决实际问题中的几何问题9.3 几何问题的拓展讨论几何问题在其他领域的应用,如物理学、工程学等引导学生思考如何将几何问题应用于解决其他实际问题第十章:二次函数的综合训练10.1 综合训练的目的强调综合训练的重要性,提高学生对二次函数知识的综合运用能力引导学生通过综合训练巩固所学知识10.2 综合训练的内容设计几个综合训练题目,包括不同类型的二次函数问题,如图像分析、性质判断、实际应用等让学生在规定时间内完成综合训练题目给予学生综合训练的反馈,指出错误和不足之处重点和难点解析1. 第一章中二次函数的基本概念:理解二次函数的一般形式和系数含义是学习二次函数的基础,对于图像的特点和性质的理解也是解决复杂问题的关键。
二次函数中考复习专题教案
二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。
2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。
3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。
4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。
5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。
三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。
五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。
六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。
九年级数学《二次函数》总复习教案
教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。
2.掌握二次函数的基本性质和图像的特点。
3.熟练运用二次函数解决实际问题。
4.理解抛物线的性质及其与二次函数的关系。
一、概念复习1.二次函数:通过变量的平方项表达的函数。
2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。
3.对称轴:二次函数图像的对称轴,表示为x=a。
4.开口方向:二次函数图像的开口方向,由二次项的系数决定。
二、性质复习1.零点:二次函数与x轴交点的横坐标。
2.判别式:用来判断二次函数的零点个数的式子。
当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。
当Δ=b^2-4ac=0时,二次函数有两个相等的零点。
当Δ=b^2-4ac<0时,二次函数没有实数零点。
3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。
当二次函数开口向下时,最大值是顶点的纵坐标。
三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。
当a<0时,二次函数开口向下。
2.对称轴:对称轴与顶点的横坐标相等。
3.零点:零点是二次函数与x轴交点的横坐标。
零点的个数由判别式Δ决定。
四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。
(2)设出二次函数的表达式。
(3)求出二次函数的最值或零点。
(4)用解出的最值或零点回答问题。
2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。
求该商场的最大营业额,并在什么时间实现。
解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。
(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。
五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
《实际问题与二次函数(第2课时)》教学设计【初中数学人教版九年级上册】
第二十二章二次函数22.3实际问题与二次函数教学设计第2课时一、教学目标1.学会将利润问题转化为利润问题.2.掌握用二次函数的知识解决有关的利润问题.二、教学重点及难点重点:利用二次函数的知识对现实问题进行数学分析,即用数学的方式表示问题以及用数学的方法解决问题.难点:从现实问题中建立二次函数模型.三、教学用具多媒体课件。
四、相关资源《市场调查》动画。
五、教学过程【创设情景,揭示课题】问题某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出18件.已知商品的进价为每件40元,如何定价才能使利润最大?【合作探究,形成新知】(1)题目中有几种调整价格的方法?师生活动:教师提出问题,学生回答.小结:调整价格包括涨价和降价两种情况.(2)题目涉及哪些变量?哪一个量是自变量?哪一个量随自变量的变化而变化?哪个量是函数?师生活动:小组合作交流,教师引导学生根据题意设未知数,找出各个量的关系.小结:题目涉及涨价(或降价)与利润两个变量,其中涨价(或降价)是自变量;设每件涨价(或降价)x元,则每星期售出商品的利润y随之变化而变化;y是x的函数.(3)当每件涨价1元时,售价是多少?每星期的销售量是多少?成本是多少?设每件涨价x元,销售额是多少?利润呢?最多能涨多少钱呢?师生活动:一学生回答,全班订正.教师边聆听边板演,不足地方补充总结.小结:当每件涨价1元时,售价是60+1=61元;每星期销售量是300-10=290件,成本是40元;设涨价x元,销售额是(60+x)(300-10x)元,利润是y=(60+x)(300-10x)-40(300-10x)元,即y=-10x2+100x+6 000,其中,0≤x≤30,最多能涨30元.(4)当每件降x元时,售价是多少?每星期的销售量是多少?成本是多少?销售额是多少?利润y呢?师生活动:师生一起完成解答.设每件降价x元时,利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300+18x)元.因此,所得利润y=(60-x)(300+18x)-40(300+18x).(5)由以上四个问题,你能解决问题了吗?请试试看.解:设每件涨价x元,则每星期少卖10x件,实际卖出(300-10x)件,销售额为(60+x)(300-10x)元,买进商品需付40(300-10x)元.因此,所得利润为y=(60+x)(300-10x)-40(300-10x),即y=-10x2+100x+6000,其中,0≤x≤30.当定价为60+5=65元时,y有最大值6 250元.设每件降价x元时,利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300+18x)元,因此,所得利润y=(60-x)(300+18x)-40(300+18x),即y=-18x2+60x+6 000,其中0≤x≤20.当定价为x=51605833-=元时,y有最大值6 050元.故要使利润最大,应每件定价为65元.设计意图:通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值.【例题分析,深化提高】例一件工艺品进价为100元,标价135元售出,每天可售出100件.市场调查发现:一件工艺品每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价的钱数为( ).A.5元B.10元C.0元D.36元【解析】设每件降价的钱数为x元,每天获利y元,则y=(135-x-100)(100+4x),即y=-4(x-5)2+3600.∵-4<0,∴当x=5时,每天获得的利润最大.故选A.【练习巩固,综合应用】1.出售某种手工艺品,若每个手工艺品获利x元,一天可售出(8-x)个,则当x=元时,一天的利润最大.2.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?3.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,每天可全部租出;当每辆车的日租金每增加50元时,每天未租出的车将增加1辆;公司平均每日的各项支出共4 800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆车时,租赁公司的日收益最大?最大是多少元?(3)当每日租出多少辆车时,租赁公司的日收益不盈也不亏?参考答案1.4 2.每件65元3.(1)400+50(20-x )=1 400-50x (0<x ≤20).答案:1 400-50x (0<x ≤20).(2)根据题意,得y =x (-50x +1 400)-4 800=-50x 2+1 400x -4 800=-50(x -14)2+5 000.当x =14时,y 有最大值5 000.∴当每日租出14辆车时,租赁公司的日收益最大,最大值为5 000元.(3)要使租赁公司的日收益不盈也不亏,即y =0.也就是-50(x -14)2+5 000=0.解得x 1=24,x 2=4.∵x =24不合题意,应舍去.∴当每日租出4辆车时,租赁公司的日收益不盈也不亏.设计意图:通过练习,及时反馈学生的学习情况,培养学生把实际问题转化为数学问题的能力,并使学生从中获得成功的体验.六、课堂小结1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当2b x a=-时,二次函数y =ax 2+bx +c 有最小值244ac b a -. 当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当2b x a=-时,二次函数y =ax 2+bx +c 有最大值244ac b a -. 2.解决二次函数最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,求出二次函数的最大值或最小值.设计意图:总结、归纳学习内容,帮助学生加深对数形结合思想的理解,培养学生的数学应用意识.七、板书设计22.3 实际问题与二次函数(2)1.用二次函数的知识解决利润问题。
人教版数学九年级上册26.2.2《二次函数复习》教学设计2
人教版数学九年级上册26.2.2《二次函数复习》教学设计2一. 教材分析人教版数学九年级上册26.2.2《二次函数复习》是对九年级学生学习二次函数知识的总结和提升。
本节内容主要包括二次函数的图像和性质,以及二次函数的应用。
通过复习,使学生掌握二次函数的基本知识,能够熟练运用二次函数解决实际问题。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解,但部分学生对二次函数的应用还比较陌生。
因此,在教学过程中,需要关注学生的学习差异,有针对性地进行教学,提高学生的学习效果。
三. 教学目标1.了解二次函数的图像和性质,掌握二次函数的基本知识。
2.能够运用二次函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力,提高学生的学习兴趣。
四. 教学重难点1.二次函数的图像和性质2.二次函数的应用五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数的图像和性质。
2.利用案例教学,让学生通过实际问题,掌握二次函数的应用。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学案例,用于讲解二次函数的应用。
2.准备多媒体教学设备,用于展示二次函数的图像。
七. 教学过程1.导入(5分钟)通过提问方式,回顾二次函数的基本知识,引导学生进入复习状态。
2.呈现(10分钟)利用多媒体展示二次函数的图像,让学生观察和分析二次函数的性质。
3.操练(10分钟)让学生通过计算器,绘制二次函数的图像,加深对二次函数性质的理解。
4.巩固(10分钟)让学生解决一些与二次函数有关的实际问题,巩固二次函数的应用。
5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,进行知识拓展。
6.小结(5分钟)对本节课的内容进行总结,强调二次函数的图像和性质,以及应用。
7.家庭作业(5分钟)布置一些有关二次函数的练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的主要内容,方便学生复习。
中考复习二次函数教案
中考复习二次函数教案教案一:二次函数的概念和性质教学目标:1.了解二次函数的定义和性质;2.掌握寻找二次函数的顶点、对称轴以及开口方向;3.理解二次函数与图像的关系。
教学重点:1.二次函数的定义和性质;2.二次函数的图像与函数解析式的关系。
教学难点:1.理解寻找二次函数的顶点和对称轴的方法;2.分析二次函数图像与函数解析式的关系。
教学准备:1.PPT;2.笔记本和书写工具;3.教学板书。
教学过程:Step 1 引入新课1.引入:通过一个具体的问题引入。
如:小明在高空抛物运动中,发现物体的高度与时间之间的关系可以用一个函数来表示,这个函数为什么是二次函数呢?2.提问:大家知道什么是二次函数吗?3.学生回答。
4. 教师解释:二次函数是指形如y=ax²+bx+c(其中a≠0)的函数。
Step 2 二次函数的性质1.介绍二次函数的性质:(1)首先解释二次函数的各个参数的含义:a、b、c。
(2)探讨二次函数的开口方向与a的关系:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
(3)引导学生思考:二次函数的最高点或最低点在哪里?(4)解释二次函数的最值和顶点的定位。
2.案例分析:(1)通过一个具体的问题案例分析二次函数的性质。
(2)分析二次函数的解析式与图像的关系。
Step 3 寻找二次函数的顶点和对称轴1.引导学生思考:如何寻找二次函数的顶点和对称轴?2.解释顶点和对称轴的含义。
3.示范寻找顶点和对称轴的方法步骤。
4.练习:让学生通过一组二次函数的解析式寻找对应的顶点和对称轴。
Step 4 总结与拓展1.总结二次函数的概念和性质。
2.教师讲解二次函数的应用领域。
3.引导学生思考:如何利用二次函数的性质解决问题?教学反思:通过讲解二次函数的概念和性质,学生能够理解二次函数与图像的关系,并掌握寻找顶点和对称轴的方法。
但是,学生在理解二次函数与高空抛物运动等实际问题的应用过程中,可能会遇到一定的困难。
初中数学二次函数教案(5篇)
初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
二次函数数学教案(优秀6篇)
二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。
课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
九年级数学《二次函数》教案最新3篇
九年级数学《二次函数》教案最新3篇次函数数学教案篇一在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。
那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
二、重视每一个学生学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。
而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点四、要多了解学生。
你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的`改进教学方法。
2二次函数教学方法一一、立足教材,夯实双基:进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要。
并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现二、立足课堂,提高效率:做到教师入题海,学生出题海。
教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果。
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要。
[初中数学]中考复习——二次函数教案2 人教版
《中考复习——二次函数》教案2教学内容:二次函数(1)教学目的:复习巩固二次函数的图象和性质.了解二次函数的解析式的几种形式.并能根据不同条件选择不同方法求出二次函数的解析式教学过程一.知识回顾:1.二次函数的定义:形如y=ax2+bx+c(a≠0,a、b、c为常数)的函数叫做二次函数.2.二次函数解析式的形式:一般式y=ax2+bx+c(a≠0)顶点式y=a(x-h)2+k(a≠0).3.二次函数y=ax2+bx+c(a≠0)的顶点坐标,对称轴,及增减性4.一般的二次函数,都可以变形为y=a(x-h)2+k的形式,具有特点:(1)a>0时,开口向上;a<0时,开口向下.(2)对称轴是直线x=h.(3)顶点坐标是(h,k).二、例题分析例1.下列函数中哪些是二次函数?哪些不是二次函数?若是,指出a、b、c.(1)y=1-3x2;(2)y=x(x-5);(3)y=3x(2-x)+3x2;(4)y=(x+2)(2-x);(5)y=x4+2x2+1.例2.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.例3.已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a、b、c,并写出函数解析式.例4.求经过A(0,-1)、B(-1,2),C(1,-2)三点且对称轴平行于y轴的抛物线的解析式.例5.已知二次函数为x =4时有最小值-3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.例6. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切.(1)求二次函数的解析式;(2)当x 在什么范围时,y 随x 的增大而增大;(3)当x 在什么范围时,y 随x 的增大而减小.例7.已知12212++-=x x y (1)把它配方成y =a(x-h)2+k 形式;(2)写出它的开口方向、顶点M 的坐标、对称轴方程和最值;(3)求出图象与y 轴、x 轴的交点坐标;(4)作出函数图象;(5)x 取什么值时y >0,y <0;(6)设图象交x 轴于A ,B 两点,求△AMB 面积.同步练习:1.在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木板的面积y(cm 2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围.2.已知二次函数y=4x 2+5x +1,求当y=0时的x 的值.3.已知二次函数y=x 2-kx-15,当x=5时,y=0,求k .4.已知二次函数y=ax 2+bx +c 中,当x=0时,y=2;当x=1时,y=1;当x=2时,y=-4,试求a 、b 、c 的值.5.有一个半径为R 的圆的内接等腰梯形,其下底是圆的直径.(1)写出周长y 与腰长x 的函数关系及自变量x 的范围;(2)腰长为何值时周长最大,最大值是多少?6.二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点:① 求这个函数的解析式② 求函数图顶点的坐标③ 求抛物线与坐标轴的交点围成的三角形的面积。
九年级数学二次函数复习教案
一、教学目标:1.知识与能力目标:1.复习二次函数的基本概念、性质及图像;2.复习二次函数的平移、伸缩变换;3.复习解二次函数的相关问题;4.复习利用二次函数解决实际问题。
2.过程与方法目标:1.通过提问、讲解和练习等方式,引导学生复习二次函数的主要知识点;2.引导学生灵活运用所学知识解决实际问题。
3.情感态度价值观目标:1.培养学生对数学的兴趣;2.提高学生的数学思维和解决问题的能力;3.培养学生的合作意识和实际应用能力。
二、教学重点与难点:1.教学重点:1.复习二次函数的基本概念、性质及图像;2.复习二次函数的平移、伸缩变换;3.复习解二次函数的相关问题;4.复习利用二次函数解决实际问题。
2.教学难点:1.通过实际问题解决中运用二次函数;2.灵活运用二次函数的平移、伸缩变换。
三、教学过程设计:1.导入新课进行一个小组讨论,让学生回顾一下二次函数的知识点,并提出自己的问题和疑惑。
然后学生将自己的问题汇报给全班。
2.概念复习与演练1.复习二次函数的基本概念和性质,例如函数的定义域、值域、最值等。
2.复习二次函数的图像和特征,例如开口方向、对称轴、顶点坐标等。
3.利用教材上的例题和习题进行讲解和练习。
3.平移、伸缩变换的复习与演练1.复习并讲解二次函数平移和伸缩的概念和方法。
2.复习并讲解平移后的二次函数的图像和特征。
3.利用教材上的例题和习题进行讲解和练习。
4.解二次函数的复习与演练1.复习二次函数的解的方法,例如配方法、求解方程组等。
2.复习并讲解二次函数解相关问题的方法,例如求最值、求交点等。
3.利用教材上的例题和习题进行讲解和练习。
5.实际问题的解决1.提供一些与实际生活相关的问题,让学生结合所学知识解决问题。
2.分组讨论和汇报,互相学习和交流。
6.小结与反馈对本节课的重点和难点进行小结,并进行学生的反馈和问答环节。
四、教学资源准备:1.教材和课件;2.相关练习题和习题;3.与实际生活相关的问题。
人教版-数学-九年级下册- 《二次函数》教案 新人教版
《二次函数》讲课教师:学科:数学课时:总课时数:教学目标知识与技能1.结合具体情境体会二次函数的意义,理解二次函数的有关概念2.能够表示简单变量之间的二次函数关系过程与方法1.经历探索具体问题中数量关系和变化规律的过程,体会二次函数是刻画现实世界的一个有效的数学模型2.通过二次函数的学习使学生进一步体会建立函数模型的思想情感态度与价值观1.体会数学与人们生活的联系2.在探索二次函数的学习活动中,体会通过探索得到发现的乐趣教材分析教学重点二次函数的意义教学难点寻找,发现实际生活中二次函数问题教学过程教师活动学生活动备注(教学目的、时间分配等)一,设疑启发回忆一次函数和反比例函数的定义,图像特征,它们为解决实际问题起了很大作用,从而导入新课二,探疑互动1.正方体的棱长为x,表面积为y,则y=6x2 (用含x的代数式表示)2.圆的面积为S,半径为R,则S=πR2 (用含R的代数式表示)3.多边形的对角线数d与边数n有什么关系?4.从多边形的一个顶点出发,可以作多少条对角线?从n个顶点出发,又可以作多少条对角线?5.某工厂一种产品现在的年产学生回答学生回答已学知识和新知识有机结合,达到举一反三巩固已学知识量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么,两年后这种产品的产量y将随计划所定的x的值而确定。
y与x之间的关系应怎样表示?二,解疑归类2.二次函数的定义【做一做】观察比较以下关系式(1)y=6 x2;(2)d=1/2n·(n-3),即d=1/2n2-3/2n;(3)y=20(1+x)2,即学生讨论,得出结论y=20x2+40x+20函数(1)(2)(3)有什么共同点与不同点?共同点:A.等式的左边为函数,等式的右边为自变量的二次式。
B。
等式的右边可统一为“ax2+bx+c”的形式二次函数:一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫二次函数。
二次函数中考复习专题教案
二次函数中考复习专题教学目标:(1)了解二次函数的概念,掌握二次函数的图象和性质,能正确画出二次函数的图象,并能根据图象探索函数的性质;(2)能根据具体条件求出二次函数的解析式;运用函数的观点,分析、探究实际问题中的数量关系和变化规律。
教学重点◆二次函数的三种解析式形式◆二次函数的图像与性质教学难点◆二次函数与其他函数共存问题◆根据二次函数图像的对称性、增减性解决相应的综合问题教学过程一、数学知识及要求层次二次函数知识点1、二次函数的解析式三种形式一般式y=ax2 +bx+c(a≠0)顶点式 2()y a x h k =-+ 交点式 12()()y a x x x x =-- 2、二次函数图像与性质 对称轴:2b x a=-顶点坐标:24(,)24b ac b a a-- 与y 轴交点坐标(0,c )增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 二次函数图像画法:勾画草图关键点:○1开口方向;○2对称轴;○3顶点;○4与x 轴交点;○5与y 轴交点。
图像平移步骤(1)配方 2()y a x h k =-+,确定顶点(h,k ); (2)对x 轴 左加右减;对y 轴 上加下减。
二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x +=根据图像判断a,b,c 的符号 (1)a ——开口方向(2)b ——对称轴与a 左同右异 3.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点4.二次函数的应用如物体运动规律、销售问题、利润问题、几何图形变化问题等 【典型例题】题型 1 二次函数的概念例1.二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 例2.下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
九年级数学(二次函数)复习课教案 新人教版 教案
某某省某某市周村区萌水中学九年级数学《二次函数》复习课学案复习目标:知识目标:1、了解二次函数解析式的两种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、利用二次函数解决实际问题。
技能目标:培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。
情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;系,体会到学习数学的乐趣。
复习重、难点:函数综合题型复习方法:自主探究、合作交流复习过程:一、知识梳理1、二次函数解析式的三种表示方法:(1)顶点式:(2)一般式:2、填表:3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而, 在对称轴左侧,y随x的x增大而4、抛物线y=ax 2+bx+c ,当a >0时图象有最点,此时函数有最值;当a <0时图象有最点,此时函数有最值 二、例题讲解例1 二次函数y=x 2-x-6的图象顶点坐标是__________对称轴是_________。
例2二次函数y=ax²+bx+c 的图象如图所示,则在下列各不等式中成立的个数是____________ ②a+b+c < 0 ③a+c > b④2a+b=0⑤例3将 向左平移3个单位,再向下平移2个单位后,所得的抛物线的关系式__________ 例4抛物线 关于x 轴对称的抛物线解析式是__________例5如图,在同一坐标系中,函数y=ax+b 与 y=ax 2+bx(ab ≠0)的图象只可能是( ) 2b -4ac >0221x y =2)3(212-+=x y例6施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM=12米,现以O 点为原点,OM 所在直线为x 轴建立平面直角坐标系,(1)直接写出点M 及抛物线顶点P 的坐标 (2)求出这条抛物线的函数关系式(3)如果现有一辆宽4米,高4问它能顺利通过吗?三、当堂检测1、在 y =-x 2,y =2x 2-+3 ,y =100-5x 2,y=-2x 2+5x 3-3 中,有个是二次函数。
中考数学复习教案二次函数教学设计
中考数学复习教案二次函数教学设计〖大纲要求〗1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容(1)二次函数及其图象如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x 的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向抛物线y=ax2+bx+c(a≠0)的顶点是,对称轴是,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h.〖考查重点与常见题型〗1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数y=kx2+bx-1的图像大致是()y y y y1 10 x o-1 x 0 x 0 -1 xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=,求这条抛物线的解析式。
4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习20 二次函数(2)
知识考点:
1、掌握抛物线解析式的三种常用形式,并会根据题目条件灵活运用,使问题简捷获解;
2、会利用图像的对称性求解有关顶点、与x 轴交点、三角形等问题。
精典例题:
【例1】已知抛物线c bx ax y ++=2与抛物线732+--=x x y 的形状相同,顶点在直线1=x 上,且顶点到x 轴的距离为5,则此抛物线的解析式为 。
解析:1±=a ,顶点(1,5)或(1,-5)。
因此5)1(2+-=x y 或5)1(2--=x y 或5)1(2+--=x y 或5)1(2---=x y 展开即可。
评注:此题两抛物线形状相同,有1-=a ,一般地,已知抛物线上三个点的坐标,选用一般式;已知抛物线的顶点坐标(或对称轴和最值),选顶点式;已知抛物线与x 轴两交点的坐标,选交点式。
【例2】如图是抛物线型的拱桥,已知水位在AB 位置时,水面宽64米,水位上升3米就达到警戒水位线CD ,这时水面宽34米,若洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶?
解析:以AB 所在直线为x 轴,AB 的中点为原点,建立直角坐标系,则抛物线的顶点M 在y 轴上,且A (62-,0),B (62,0),C (32-,3),D (32,3),设抛物线的解析式为)62)(62(-+=x x a y ,代入D 点得64
12
+-=x y ,顶点M (0,
6),所以1225.0)36(=÷-(小时)
例2图
问题图
评注:本题是函数知识的实际应用问题,解决的关键是学会“数学模型”,并合理建
立直角坐标系来解决实际问题。
探索与创新:
【问题】如图,开口向上的抛物线c bx ax y ++=2与x 轴交于A (1x ,0)和B (2x ,0)两点,1x 和2x 是方程0322
=-+x x 的两个根(21x x <),而且抛物线交y 轴于点C ,∠ACB 不小于900。
(1)求点A 、点B 的坐标和抛物线的对称轴; (2)求系数a 的取值范围;
(3)在a 的取值范围内,当y 取到最小值时,抛物线上有点P ,使32=∆APB S ,求所有满足条件的点P 的坐标。
解析:(1)A (-3,0)B (1,0),对称轴1-=x
(2)⎩⎨⎧=++=+-0039c b a c b a 化简得⎩
⎨⎧-==a c a b 32 OC =a 3。
若∠ACB =900,则OB OA OC
⋅=2
,3=OC ,33=
a ;
若∠ACB >900,则3<
OC ,3
3<
a ;所以3
30≤<a
(3)由(2)有a ax ax y 322
-+=,当a 在取值范围内,y 取到最小值时,
3
3=a ,33
323
32
-
+
=x x y ,由AB =413=--,
32=∆APB S 得:3±=P y 。
当3=P y 时,711+=x ,712-=x ,∴1P (71+-,3),2P (71-
-,
3);当3-=P y 时,03=x ,24-=x ,∴3P (0,3-),4P (-2,3-
)。
评注:本问题是一道函数与几何的综合题,后两问需准确把握图形的变化,灵活运用
函数知识求解。
跟踪训练: 一、选择题:
1、已知二次函数的图像与y 轴的交点坐标为(0,a ),与x 轴的交点坐标为(b ,0)和(b -,0),若a >0,则函数解析式为( )
A 、a x b
a y +=
2
2
B 、a x b
a y +-=2
2
C 、a x b
a
y --
=2
2
D 、a x b
a y -=
2
2
2、形状与抛物线22--=x y 相同,对称轴是2-=x ,且过点(0,3)的抛物线是( )
A 、342++=x x y
B 、342+--=x x y
C 、342++-=x x y
D 、342++=x x y 或342+--=x x y 3、已知一次函数32+-=x y 的图像与x 轴、y 轴分别交于A 、C 两点,二次函数c bx x y ++=2
的图像过点C 且与一次函数图像在第二象限交于另一点B ,若AC ∶CB =1∶2,则二次函数图像的顶点坐标为( ) A 、(-1,3) B 、(4
1-
,
4
11) C 、(2
1-
,
4
11) D 、(2
1-
,
8
11)
4、已知二次函数a x ax y 532
+-=的最大值是2,它的图像交x 轴于A 、B 两点,交y 轴于C 点,则ABC S ∆= 。
二、填空题:
1、已抛物线过点A (-1,0)和B (3,0),与y 轴交于点C ,且BC =23,则这条抛物线的解析式为 。
2、已知二次函数的图像交x 轴于A 、B
AB =6,且此二次函数的最大值为5为 。
3度为8米,两侧距地面4铁环的水平距离为6米,则校门的高度为 。
(精确到0.1米)
4、已知抛物线c bx ax y ++=2
与抛物线1272
+--=x x y 的形状相同,顶点在直线1=x ,且顶点到x 轴的距离为3,则此抛物线的解析式为 。
三、解答题:
1、已知抛物线c bx ax y ++=2
交x 轴于A 、B 两点,点A 在y 轴左侧,该图像对称
第3题图
轴为1-=x ,最高点的纵坐标为4,且a
OA
12-
=。
(1)求此二次函数的解析式;
(2)若点M 在x 轴上方的抛物线上,且6=∆MAB S ,求点M 的坐标。
2、如图,直线343
+=
x k
y )0(>k 与x 轴、y 轴分别交于A 、B 两点,点P 是线段AB 的中点,抛物线c bx x y ++-=2
38经过点A 、P 、O (原
点)。
(1)求过A 、P 、O 的抛物线解析式;
(2)在(1)中所得到的抛物线上,是否存在一点Q ,使∠QAO =450,如果存在,求出点Q 的坐标;如果不存在,请说明理由。
3、设抛物线c bx ax y ++=2经过A (-1,2),B (2,-1)两点,且与y 轴相交于点M 。
(1)求b 和c (用含a 的代数式表示);
(2)求抛物线12
-+-=c bx ax y 上横坐标与纵坐标相等的点的坐标;
(3)在第(2)小题所求出的点中,有一个点也在抛物线c bx ax y ++=2
上,试判断直线AM 和x 轴的位置关系,并说明理由。
参考答案
一、选择题:BDCA 二、填空题
1、322++-=x x y 或322
--=x x y ; 2、9
259
20952
+
+
-
=x x y ;
3、9.1米;
4、3)1(2
+--=x y 或3)1(2
-
--=x y 或3)1(2
+
-=x y
或3)1(2-
-=x y
三、解答题:
1、(1)322+--=x x y ;(2)M (0,3)或(-2,3)
第2题图
2、(1)x x y 43
82
--
=;(2)Q (3
8-
,
8
9),(
8
3,8
15-
)
3、(1)1--=a b ,a c 21-=-;(2)(1,1),(-2,-2);
(3)点(1,1)在抛物线c bx ax y ++=2时,直线AM ∥x 轴;点(-2,-2)在抛物线c bx ax y ++=2时,直线AM 与x 轴相交。
更多资源请搜索中国数学资源网:。