高一数学人教a版必修三练习:第一章_算法初步1.1.1_word版含解析
高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 1.1.1 Word版含答案
第一章算法初步1.1.1算法的概念课时目标通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法.112世纪的指的是用阿拉伯数字进行算术运算的过程算法数学中的通常是指按照一定规则解决某一类问题的明确和有限的步骤算法现代算法通常可以编成计算机程序,让计算机执行并解决问题2.计算机解决任何问题都要依赖于算法,只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.一、选择题1.下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭B.做米饭需要刷锅、淘米、添水、加热这些步骤C.在野外做饭叫野炊D.做饭必须要有米答案 B解析算法是解决一类问题的程序或步骤,A、C、D均不符合.2.下列对算法的理解不正确的是()A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)B.算法要求是一步步执行,每一步都能得到唯一的结果C.算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法D.任何问题都可以用算法来解决答案 D3.下列关于算法的描述正确的是()A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果答案 C解析算法与求解一个问题的方法既有区别又有联系,故A不对;算法能重复使用,故B不对;每个算法执行后必须有结果,故D不对;由算法的有序性和确定性可知C正确.4.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N *) A .①② B .①③ C .②③ D .①②③答案 B解析 因为算法的步骤是有限的,所以②不能设计算法求解.5.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法答案 B解析 算法具有不唯一性,对于一个问题,我们可以设计不同的算法.6.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数答案 A解析 此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.二、填空题7.已知直角三角形两条直角边长分别为a ,b .写出求斜边长c 的算法如下:第一步,输入两直角边长a ,b 的值.第二步,计算c =a 2+b 2的值.第三步,________________.将算法补充完整,横线处应填____________.答案 输出斜边长c 的值8.下面给出了解决问题的算法:第一步:输入x .第二步:若x ≤1,则y =2x -1,否则y =x 2+3.第三步:输出y .(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.答案 (1)求分段函数y =⎩⎪⎨⎪⎧2x -1(x ≤1),x 2+3(x >1)的函数值 (2)1 9.求1×3×5×7×9×11的值的一个算法是:第一步,求1×3得到结果3;第二步,将第一步所得结果3乘5,得到结果15;第三步,____________________;第四步,再将105乘9得到945;第五步,再将945乘11,得到10 395,即为最后结果.答案 将第二步所得的结果15乘7,得结果105三、解答题10.已知某梯形的底边长A B =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法. 解 第一步,输入梯形的底边长a 和b ,以及高h .第二步,计算a +b 的值.第三步,计算(a +b )×h 的值.第四步,计算S =(a +b )×h 2的值. 第五步,输出结果S .11.函数y =⎩⎪⎨⎪⎧ -x +1 (x >0)0 (x =0)x +1 (x <0),写出给定自变量x ,求函数值的算法. 解 算法如下:第一步,输入x .第二步,若x >0,则令y =-x +1后执行第五步,否则执行第三步.第三步,若x =0,则令y =0后执行第五步,否则执行第四步.第四步,令y =x +1;第五步,输出y 的值.能力提升12.某铁路部门规定甲、乙两地之间旅客托运行李的费用为:c =⎩⎪⎨⎪⎧0.53×ω, ω≤50,50×0.53+(ω-50)×0.85, ω>50. 其中ω(单位:kg)为行李的质量,如何设计计算托运费用c (单位:元)的算法.解 第一步,输入行李的质量ω.第二步,如果ω≤50,则令c=0.53×ω,否则执行第三步.第三步,c=50×0.53+(ω-50)×0.85.第四步,输出托运费c.13.从古印度的汉诺塔传说中演变了一个汉诺塔游戏:(1)有三根杆子A,B,C,B杆上有三个碟子(大小不等,自上到下,由小到大),如图.(2)每次移动一个碟子,小的只能叠在大的上面.(3)把所有碟子从A杆移到C杆上.试设计一个算法,完成上述游戏.解第一步,将A杆最上面碟子移到C杆.第二步,将A杆最上面碟子移到B杆.第三步,将C杆上的碟子移到B杆.第四步,将A杆上的碟子移到C杆.第五步,将B杆最上面碟子移到B杆.第六步,将B杆上的碟子移到C杆.第七步,将A杆上的碟子移到C杆.1.算法的特点(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且能得到确定的结果,而不应当是模棱两可的.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.2.算法与数学问题解法的区别与联系(1)联系算法与解法是一般与特殊的关系,也是抽象与具体的关系.(2)区别算法是解决某一类问题所需要的程序和步骤的统称,也可理解为数学中的“通法通解”;而解法是解决某一个具体问题的过程和步骤,是具体的解题过程.。
高中数学人教a版高一必修三_第一章_算法初步_学业分层测评1_word版有答案
高中数学人教a 版高一必修三_第一章_算法初步_学业分层测评1_word 版有答案学业分层测评(一) 算法的概念(建议用时:45分钟)[学业达标]一、选择题1.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米【解析】 算法是做一件事情或解决一类问题的程序或步骤,故选B.【答案】 B2.下列问题中,不可以设计一个算法求解的是( )A .二分法求方程x 2-3=0的近似解B .解方程组⎩⎪⎨⎪⎧x +y +5=0x -y +3=0 C .求半径为3的圆的面积D .判断函数y =x 2在R 上的单调性【解析】 A 、B 、C 选项中的问题都可以设计算法解决,D 选项中的问题由于x 在R 上取值无穷尽,所以不能设计一个算法求解.【答案】 D3.(2016·东营高一检测)一个算法步骤如下:S 1,S 取值0,i 取值1;S 2,如果i ≤10,则执行S 3,否则执行S 6;S 3,计算S +i 并将结果代替S ;S 4,用i +2的值代替i ;S 5,转去执行S 2;S 6,输出S .运行以上步骤后输出的结果S =( )A .16B .25C .36D .以上均不对【解析】 由以上计算可知S =1+3+5+7+9=25.【答案】 B4.有如下算法:第一步,输入不小于2的正整数n .第二步,判断n 是否为2.若n =2,则n 满足条件;若n >2,则执行第三步. 第三步,依次从2到n -1检验能不能整除n ,若不能整除,则n 满足条件. 则上述算法满足条件的n 是( )A .质数B .奇数C .偶数D .约数【解析】 根据质数、奇数、偶数、约数的定义可知,满足条件的n 是质数.【答案】 A5.下列各式中T 的值不能用算法求解的是( )A .T =12+22+32+42+…+1002B .T =12+13+14+15+…+150C .T =1+2+3+4+5+…D .T =1-2+3-4+5-6+…+99-100【解析】 根据算法的有限性知C 不能用算法求解.【答案】 C二、填空题6.求过P (a 1,b 1),Q (a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整:第一步,令x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.第二步,若x 1=x 2,则输出斜率不存在,结束算法;否则,________. 第三步,输出结果k .【答案】 k =y 1-y 2x 1-x 27.给出下列算法:第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则执行下一步.第三步,计算y =4-x .第四步,输出y .当输入x =0时,输出y =________.【解析】 因为0<4,执行第三步,所以y =4-0=2.【答案】 28.如下算法:第一步,输入x 的值.第二步,若x ≥0成立,则y =x ;否则执行下一步.第三步,计算y =x 2.第四步,输出y 的值.若输入x =-2,则输出y =________.【解析】 输入x =-2后,x =-2≥0不成立,则计算y =x 2=(-2)2=4,则输出y =4.【答案】 4三、解答题9.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.【解】 算法如下:第一步,输入梯形的底边长a 和b ,以及高h .第二步,计算a +b 的值.第三步,计算(a +b )×h 的值.第四步,计算S =(a +b )×h 2的值. 第五步,输出结果S .10.设计一个解方程x 2-2x -3=0的算法.【解】 算法如下:第一步,移项,得x 2-2x =3. ①第二步,①式两边加1,并配方得(x -1)2=4. ②第三步,②式两边开方,得x -1=±2.③ 第四步,解③得x =3或x =-1.第五步,输出结果x =3或x =-1.[能力提升]1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为( )A .13B .14 C.15 D .23【解析】 ①洗锅盛水2分钟,②用锅把水烧开10分钟(同时②洗菜6分钟,③准备面条及佐料2分钟),⑤煮面条3分钟,共为15分钟.【答案】 C2.已知一个算法如下:第一步,令m =a .第二步,如果b <m ,则m =b .第三步,如果c <m ,则m =c .第四步,输出m .如果a =3,b =6,c =2,则执行这个算法的结果是________.【解析】 这个算法是求a ,b ,c 三个数中的最小值,故这个算法的结果是2.【答案】 23.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只. 【导学号:28750002】【解】 第一步,设有x 只鸡,y 只兔,列方程组⎩⎪⎨⎪⎧x +y =30,①2x +4y =100.② 第二步,②÷2-①,得y =20.第三步,把y =20代入①,得x =10.第四步,得到方程组的解⎩⎪⎨⎪⎧x =10,y =20. 第五步,输出结果,鸡10只,兔20只.4.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?【解】 法一 算法如下:第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.法二 算法如下:第一步,把9枚银元平均分成3组,每组3枚.第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.。
高中数学人教A版必修三习题第一章-算法的概念含答案
答案:C
2.求过 P(a1,b1),Q(a ,b2)两点的直线斜率有如下的算法,请将算法补充完整: 2
S1 取 x1=a1,y1=b1,x2=a ,y2=b2. 2
S2 若 x1=x ,则输出斜率不存在;否则,________. 2
S 输出计算结果 k 或者无法求解信息.
3
解析:根据直线斜率公式可得此步骤.
第三步,依次从 2 到(n-1)检验能不能整除 n,若不能整除 n,则执行第四步;若能整
除 n,则执行第一步.
第四步,输出 n.
满足条件的 n 是( )
A.质数
B.奇数
C.偶数
D.约数
解析:此题首先要理解质数,只能被 1 和自身整除的大于 1 的整数叫质数.2是最小的
质数,这个算法通过对 2 到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.
B 级 能力提升 1.结合下面的算法: 第一步,输入 x.
3
第二步,判断 x 是否小于 0,若是,则输出 x+2;否则,执行第三步.
第三步,输出 x-1.
当输入的 x 的值为-1,0,1 时,输出的结果分别为( )
A.-1,0,1
B.-1,1,0
C.1,-1,0
D.0,-1,1
解析:根据 x 值与 0 的关系选择执行不同的步骤.
第四步,得到方程组的解{x=10,)
y=20. 第五步,输出结果,鸡 10只,兔 20只.
4
答案:A
二、填空题
6.给出下列算法:
第一步,输入 x 的值.
第二步,当 x>4时,计算 y=x+2;否则执行下一步.
第三步,计算 y= 4-x.
第四步,输出 y.
当输入 x=0 时,输出 y=________.
2020高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 §1.1 习题课 Word版含答案
§1.1 习题课1.下列关于程序框图的描述①对于一个算法来说程序框图是唯一的;②任何一个框图都必须有起止框;③程序框图只有一个入口,也只有一个出口;④输出框一定要在终止框前.其中正确的有( )A.1个B.2个C.3个D.4个答案 B解析②、③正确,对于一个算法来说,程序框图不唯一,与设计有关,故①错.输入输出的位置,不一定在开始和结束处,故④错.2.某程序框图如图所示,该程序运行后输出的k的值是( )A.4 B.5C .6D .7 答案 A解析 当k =0时,S =0S =1k =1,当S =1时,S =1+21=3k =2,当S =3时,S =3+23=11<100k =3,当S =11时,k =4,S =11+211>100,故k =4.3.如图是一个算法的程序框图,该算法所输出的结果是( )A.12B.23C.34D.45 答案 C解析 运行第一次的结果为n =0+11×2=12;第二次n =12+12×3=23;第三次n =23+13×4=34.此时i =4程序终止, 即输出n =34.4.阅读下边的程序框图,若输出s 的值为-7,则判断框内可填写( )A .i <3?B .i <4?C .i <5?D .i <6? 答案 D解析 i =1,s =2;s =2-1=1,i =1+2=3;s =1-3=-2,i =3+2=5; s =-2-5=-7,i =5+2=7.因输出s 的值为-7,循环终止,故判断框内应填“i <6?”. 5.求边长为3,4,5的直角三角形的内切圆半径的算法为: 第一步 输入__________________; 第二步 计算r =a +b -c2;第三步 输出r . 答案 a =3,b =4,c =56.根据下面的程序框图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则框1中填________,框2中填________.答案是否解析由x≥60与及格对应知1处填是,则2处填否.一、选择题1.一个完整的程序框图至少包含( )A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框答案 A解析一个完整的程序框图至少需包括终端框和输入、输出框.2.下列程序框图表示的算法是( )A.输出c,b,a B.输出最大值C.输出最小值D.比较a,b,c的大小答案 B解析根据程序框图可知,此图应表示求三个数中的最大数.3.用二分法求方程的近似根,精确度为δ,用直到型循环结构的终止条件是( )A.|x1-x2|>δB.|x1-x2|<δC.x1<δ<x2D.x1=x2=δ答案 B解析直到型循环结构是先执行、再判断、再循环,是当条件满足时循环停止,因此用二分法求方程近似根时,用直到型循环结构的终止条件为|x1-x2|<δ.4.阅读如图所示的程序框图,运行相应的程序,则输出的i 值等于( )A .2B .3C .4D .5 答案 C S=0→i =1→a =2 →S =2→i =2→a =8 →S =10→i =3→a =24 →S =34→i =4→输出i =4.5.如图给出的是计算12+14+16+…+1100的值的一个程序框图,其中判断框内应填入的条件是( )A .i ≥49?B .i ≥50?C .i ≥51?D .i ≥100? 答案 C解析 i =1时,S =0+12=12,i =2时,S =12+14,…,i =50时,S =12+14+16+…+1100,当i =51时结束程序,故选C.6.读如图所示的程序框图则循环体执行的次数为( )A.50 B.49 C.100 D.99答案 B解析∵i=i+2,∴当2+2n≥100时循环结束此时n=49,故选B.二、填空题7.直到型循环结构框图为________.答案②8.已知下列框图,若a=5,则输出b=________.答案 26解析 因a =5,所以5>5不成立, 判断框执行“否”,即b =52+1=26.9.执行如图所示的程序框图,若输入x =4,则输出y 的值为________.答案 -54解析 当输入x =4时, 计算y =12x -1,得y =1.不满足|y -x |<1.于是得x =1,此时y =12-1=-12,不满足|-12-1|<1,此时x =-12,又推得y =-54.这样|y -x |=|-54+12|=34<1,执行“是”,所以输出的是-54.三、解答题10.已知点P 0(x 0,y 0)和直线l :Bx +By +C =0,写出求点P 0到直线l 的距离d 的算法并画出程序框图. 解 (1)用数学语言来描述算法:第一步,输入点的坐标x 0,y 0,输入直线方程的系数即常数B ,B ,C ;第二步,计算z 1=Bx 0+By 0+C ; 第三步,计算z 2=B 2+B 2; 第四步,计算d =|z 1|z 2;第五步,输出d .(2)用程序框图来描述算法,如图:11.画出求满足12+22+32+…+i2>106的最小正整数n的程序框图.解程序框图如下:能力提升12.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸,并将这个算法用程序框图表示.解第1步,两个儿童将船划到右岸;第2步,他们中一个上岸,另一个划回来;第3步,儿童上岸,一个士兵划过去;第4步,士兵上岸,让儿童划回来;第5步,如果左岸没有士兵,那么结束,否则转第1步.程序框图如图所示.。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
2017-2018学年高中数学人教A版必修三练习:第1章 算法初步1-1-1 含解析 精品
第一章 1.1 1.1.1A级基础巩固一、选择题1.下列语句中是算法的是导学号93750018(A)A.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1B.吃饭C.做饭D.写作业[解析]选项A是解一元一次方程的具体步骤,故它是算法,而B、C、D是说的三个事实,不是算法.2.以下关于算法的说法正确的是导学号93750019(A)A.描述算法可以有不同的方式,可用形式语言也可用其他语言B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果D.算法要求按部就班地做,每一步可以有不同的结果[解析]算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,必须确切,只能有唯一结果,而且经过有限步后,必须有结果输出后终止,描述算法可以有不同的语言形式,如自然语言、框图语言及形式语言等.3.使用计算机解题的步骤由以下哪几部分构成:①寻找解题方法;②调试运行;③设计正确算法;④正确理解题意;⑤编写程序.正确的顺序为导学号93750020(B)A.④①③②⑤B.④①③⑤②C.④③②①⑤D.④①②③⑤[解析]根据题意知,应先进行④,然后是①,再就是③⑤,最后是②,故顺序为④①③⑤②.4.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2min;②洗菜6min;③准备面条及佐料2min;④用锅把水烧开10min;⑤煮面条3min. 以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为导学号 93750021( C )A .13B .14C .15D .23[解析] ①洗锅盛水2min 、②用锅把水烧开10min(同时②洗菜6min 、③准备面条及佐料2min)、⑤煮面条3min ,共为15min .二、填空题5.判断5是否为质数的算法步骤如下:导学号 93750022第一步:用2除5,得余数为1. 因为余数不为0,所以2不能整除5. 第二步:__用3除5,得余数为2. 因为余数不为0,所以3不能整除5__.第三步:用4除5,得余数为1. 因为余数不为0,所以4不能整除5. 因此,5是质数. 6.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99. 求他的总分和平均分的一个算法为:导学号 93750023第一步:令A =89,B =96,C =99. 第二步,计算总分S =__A +B +C __. 第三步,计算平均分M =__S3__.第四步,输出S 和M . 三、解答题7.写出求过两点M (-2,-1)、N (2,3)的直线与坐标轴围成的图形的面积的一个算法. 导学号 93750024[解析] 第一步,取x 1=-2,y 1=-1,x 2=2,y 2=3. 第二步:计算y -y 1y 2-y 1=x -x 1x 2-x 1.第三步:在第二步结果中令x =0得到y 的值为m ,得直线与y 轴交点为(0,m ). 第四步:在第二步结果中令y =0得到x 的值为n ,得直线与x 轴交点为(n,0). 第五步:计算S =12|m |·|n |.第六步:输出运算结果S .8.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸. 导学号 93750025[解析] 第一步,两个小孩将船划到右岸. 第二步,他们中一个上岸,另一个划回来.第三步,小孩上岸,一个士兵划过去.第四步,士兵上岸,让小孩划回来.第五步,如果左岸没有士兵,那么结束,否则转第一步.B级素养提升一、选择题1.给出下列算法:第一步,输入正整数n(n>1).第二步,判断n是否等于2,若n=2,则输出n;若n>2,则执行第三步.第三步,依次从2到n-1检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.第四步,输出n.则输出的n的值是导学号93750026(C)A.奇数B.偶数C.质数D.合数[解析]根据算法可知n=2时,输出n的值2;若n=3,输出n的值3;若n=4,2能整除4,则重新输入n的值……,故输出的n的值为质数.2.阅读下面的算法:第一步,输入两个实数a,b.第二步:若a<b,则交换a,b的值,否则执行第三步.第三步,输出a.这个算法输出的是导学号93750027(A)A.a,b中的较大数B.a,b中的较小数C.原来的a的值D.原来的b的值[解析]第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;否则a<b不成立,即a≥b,那么a也是a,b中的较大数.二、填空题3.给出下列算法:导学号93750028第一步,输入x的值.第二步,当x>4时,计算y=x+2;否则执行下一步.第三步,计算y=4-x.第四步,输出y.当输入x=0时,输出y=__2__.[解析]由于x=0>4不成立,故计算y=4-x=2,输出y=2.4.已知点P (x 0,y 0)和直线l :Ax +By +C =0,写出求点到直线距离的一个算法. 导学号 93750029有如下步骤:①输入点的坐标x 0,y 0. ②计算z 1=Ax 0+By 0+C .③计算z 2=A 2+B 2. ④输入直线方程的系数A ,B 和常数C .⑤计算d =|z 1|z 2. ⑥输出d 的值. 其中正确的顺序为__①④②③⑤⑥__.[解析] (1)算法步骤应先输入相关信息最后输出结果;(2)d =|Ax 0+By 0+C |A 2+B 2,应先将分子、分母求出,再代入公式.三、解答题5.写出一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积. 导学号 93750030[解析] 算法1:第一步,令a =42,l =5. 第二步,计算R =2·a2.第三步,计算h =l 2-R 2. 第四步,计算S =a 2. 第五步,计算V =13Sh .第六步,输出运算结果V .算法2:第一步,令a =42,l =5. 第二步,计算V =13a 2t 2-a 22.第三步,输出运算结果V .C 级 能力拔高1.设计一个算法,找出闭区间[20,25]上所有能被3整除的整数. 导学号 93750031 [解析] 第一步,用20除以3,余数不为0,故20不能被3整除; 第二步,用21除以3,余数为0,故21能被3整除; 第三步,用22除以3,余数不为0,故22不能被3整除; 第四步,用23除以3,余数不为0,故23不能被3整除;第五步,用24除以3,余数为0,故24能被3整除; 第六步,用25除以3,余数不为0,故25不能被3整除; 第七步,指出在闭区间[20,25]上能被3整除的整数为21和24. 2.下面给出一个问题的算法:导学号 93750032 第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步. 第三步,输出2x -1结束. 第四步,输出x 2-2x +3结束. 问:(1)这个算法解决的问题是什么?(2)当输入的x 的值为多少时,输出的数值最小?[解析] (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1 (x ≥4)x 2-2x +3 (x <4)的函数值的问题.(2)本问的实质是求分段函数最小值的问题. 当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.。
人教版A版式高中数学必修三第一章同步训练《算法初步》及答案
第一章 算法初步1.1算法与程序框图 1.1.1算法的概念1.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步: ①计算22c a b =+a ,b 的值;③输出斜边长c 的值,其中正确的顺序是 【 】 A.①②③ B.②③① C.①③② D.②①③2.若()f x 在区间[],a b 内单调,且()()0f a f b <,则()f x 在区间[],a b 内 【 】 A.至多有一个根 B.至少有一个根 C.恰好有一个根 D.不确定3.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为: 第一步:取A =89 ,B =96 ,C =99; 第二步:____①______; 第三步:_____②_____; 第四步:输出计算的结果.4.写出按从小到大的顺序重新排列,,x y z 三个数值的算法.1.1.2 程序框图1.在程序框图中,算法中间要处理数据或计算,可分别写在不同的 【 】 A .处理框内 B .判断框内 C .终端框内 D .输入输出框内2.将两个数a=10,b=18交换,使a=18,b=10,下面语句正确一组是 【 】A. B. C. D.(1)A =B =50(2)x =1,y =2,z =3(3)INPUT “How old are y ou” x (4)INPUT ,x(5)PRINT A +B =;C (6)PRINT Good-b y e!4.2000年我国人口为13亿,如果人口每年的自然增长率为7‰,那么多少年 后我国人口将达到15亿?设计一个算法的程序.5.儿童乘坐火车时,若身高不超过1.1 m ,则不需买票;若身高超过1.1 m 但不超过1.4 m ,则需买半票;若身高超过1.4 m ,则需买全票.试设计一个买票的算法,并画出相应的程序框图及程序。
a=b b=a c=b b=a a=c b=a a=ba=cc=b b=a1.2基本算法语句1.2.1输入语句、输出语句和赋值语句1 .在输入语句中,若同时输入多个变量,则变量之间的分隔符号是【】A.逗号B.空格C.分号D.顿号a=2 . 34b==a bb a=输出,a b以上程序输出的结果是【】A.3,4B. 4,4C.3,3D.4,33 请从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内.4. 设计一个算法,要求输入一个圆的半径,便能输出该圆的周长和面积(π取3.14)。
人教版高中数学必修三 第一章 算法初步 Word版含解析
重点列表:重点详解:1.算法的概念及特点(1)算法的概念在数学中,算法通常是指按照一定______解决某一类问题的________和________的步骤.(2)算法的特点之一是具有______性,即算法中的每一步都应该是确定的,并能有效的执行,且得到确定的结果,而不应是模棱两可的;其二是具有______性,即算法步骤明确,前一步是后一步的前提,只有执行完前一步才能进行后一步,并且每一步都准确无误才能解决问题;其三是具有______性,即一个算法应该在有限步操作后停止,而不能是无限的;另外,算法还具有不唯一性和普遍性,即对某一个问题的解决不一定是唯一的,可以有不同的解法,一个好的算法应解决的是一类问题而不是一两个问题.2.程序框图(1)程序框图的概念程序框图又称流程图,是一种用、及来表示算法的图形.(2)构成程序框图的图形符号、名称及其功能3. 算法的基本逻辑结构 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按__________的顺序进行的.它是由若干个__________的步骤组成的,它是任何一个算法都离不开的基本结构.顺序结构可用程序框图表示为如图所示的形式:(2)条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.常见的条件结构可以用程序框图表示为如图所示的两种形式:程序语句1.输入(INPUT)语句输入语句的一般格式: . 要求:(1)输入语句要求输入的值是具体的常量;(2)提示内容提示用户输入的是什么信息,必须加双引号,“提示内容”原原本本地在计算机屏幕上显示,提示内容与变量之间要用分号隔开;(3)一个输入语句可以给多个变量赋值,中间用“,”分隔. 2.输出(PRINT)语句输出语句的一般格式:.功能:实现算法输出信息(表达式).要求:(1)表达式是指算法和程序要求输出的信息;(2)提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开;(3)如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.3.赋值语句赋值语句的一般格式:.赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样.作用:赋值语句的作用是将表达式所代表的值赋给变量.要求:(1)赋值语句左边只能是变量,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的;(2)赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”、“B=A”的含义和运行结果是不同的,如x=5是对的,5=x是错的,A+B=C 是错的,C=A+B是对的;(3)不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等).4.条件语句(1)“IF—THEN”语句格式:____________________.说明:当计算机执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END IF之后的语句.(2)“IF—THEN—ELSE”语句格式:____________________.说明:当计算机执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2.【答案】1.(1)规则明确有限(2)确定有序有穷2.(1)程序框流程线文字说明(2)①终端框(起止框)②输入、输出框③处理框(执行框) ④判断框 ⑤流程线 ⑥连接点3.(1)从上到下 依次执行 程序语句1.INPUT “提示内容”;变量 2.PRINT “提示内容”;表达式 3.变量=表达式4.(1)IF 条件 THEN语句体END IF(2)重点1:算法的概念 【要点解读】算法是指按照一定规则解决某一类问题的明确和有限的步骤. 【考向1】算法的概念【例题】下列语句是算法的个数为( )①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎; ②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否为大树;④已知三角形的两边及夹角,利用三角形的面积公式求出该三角形的面积. A .1B .2C .3D .4【评析】算法过程要做到一步一步地执行,每一步执行的操作必须确切,不能含糊不清,且在有限步后必须得到问题的结果. 【考向2】经典算法【例题】“韩信点兵”问题.韩信是汉高祖刘邦手下的大将,为了保守军事机密,他在点兵时采用下述方法:先令士兵从1~3报数,结果最后一个士兵报2;再令士兵从1~5报数,结果最后一个士兵报3;又令士兵从1~7报数,结果最后一个士兵报4.这样,韩信很快就知道了自己部队士兵的总人数.请设计一个算法,求出士兵至少有多少人.解:在本题中,士兵从1~3报数,最后一个士兵报2,说明士兵的总人数是除以3余2,其他两种情况依此类推.(算法一)步骤如下:第一步:先确定最小的满足除以7余4的数是4;第二步:依次加7就得到所有满足除以7余4的数:4,11,18,25,32,39,46,53,60,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:18;第四步:依次加上35,得18,53,88,…;第五步:在第四步得到的一列数中,找到最小的满足除以3余2的正整数:53,这就是我们要求的数.(算法二)步骤如下:第一步:先确定最小的满足除以3余2的数是2;第二步:依次加3就得到所有满足除以3余2的数:2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:8;第四步:然后依次加15就得8,23,38,53,…,不难看出,这些数既满足除以3余2,又满足除以5余3;第五步:在第四步所得的一列数中找到满足除以7余4的最小数是53,这就是我们要求的数.【评析】给出一个问题,设计算法时要注意:(1)认真分析问题,研究解决此问题的一般方法;(2)将解决问题的过程分解成若干步骤;(3)用简练的语言将各步骤表示出来;(4)把解题过程条理清楚地表达出来,就得到一个明确的算法.对于同一问题,可以设计不同的算法,其最终的结果是一样的,但解决问题的繁简程度不同,我们要寻找最优算法.重点2:顺序结构【要点解读】(1)程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.(2)程序框图通常由程序框和流程线组成.(3)基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框.输入语句、输出语句、赋值语句的格式与功能【例题】已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出流程图.解:算法如下:第一步:输入x0,y0及直线方程的系数A,B,C.第二步:计算z1=Ax0+By0+C.第三步:计算z2=A2+B2.第四步:计算d=||z1 z2.第五步:输出d.流程图如图所示:【评析】顺序结构是一种最简单、最基本的结构,可严格按照传统的解题思路写出算法步骤,画出程序框图.注意语句与语句之间,框与框之间是按从上到下的顺序进行的.【考向2】顺序结构语句【例题】请写出下面运算输出的结果.(1)a=5b=3c=(a+b)/2d=c*cPRINT“d=”;d(2)a=1b=2c=a+bb=a+c-bPRINT“a=,b=,c=”;a,b,c(3)a=10b=20c=30a=bb=cc=aPRINT“a=,b=,c=”;a,b,c解:(1)语句“c=(a+b)/2”是将a,b之和的一半赋值给变量c,语句“d=c*c”是将c的平方赋值给d,最后输出d的值.故输出结果为d=16.(2)语句“c=a+b”是将a,b之和赋值给c,语句“b=a+c-b”是将a+c-b的值赋值给了b.故输出结果为a=1,b=2,c=3.(3)经过语句“a=b”后a,b,c的值是20,20,30,经过语句“b=c”后a,b,c的值是20,30,30,经过语句“c=a”后a,b,c的值是20,30,20.故输出结果为a=20,b=30,c=20.【评析】①将一个变量的值赋给另一个变量,前一个变量的值保持不变;②可先后给一个变量赋多个不同的值,但变量的取值总是最后被赋予的值.重点3:分支结构【要点解读】条件语句(1)算法中的条件结构与条件语句相对应.(2)条件语句的格式及框图①IF-THEN格式②IF-THEN-ELSE格式【考向1】分支机构程序框图【例题】某铁路客运部门规定甲、乙两地之间旅客托运行李的费用c(单位:元)与行李的重量w(单位:kg)之间的关系为c =⎩⎪⎨⎪⎧0.53w ,w ≤50,50×0.53+(w -50)×0.85,w >50.写出计算费用c 的算法并画出程序框图. 解:算法如下:第一步:输入行李的重量w ; 第二步:如果w ≤50,那么c =0.53w , 否则c =50×0.53+(w -50)×0.85; 第三步:输出托运费c . 程序框图如图所示:【评析】条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构. 【考向2】条件语句【例题】设计算法,求关于x 的方程ax +b =0的解. 解:程序框图如图所示.根据框图可写出程序语言:INPUT a ,b IF a 〈〉0 THEN PRINT “x =”;-b/a ElSEIF b =0 THENPRINT “解集为R”ELSEPRINT “此方程无解”END IFEND IFEND【评析】对于三段或三段以上的分段函数求函数值的问题,通常需用条件语句的嵌套结构.本例是条件语句内套条件语句,即用了两个条件语句,必须有两个END IF,请读者指出前后END IF分别结束的条件语句.难点列表:难点详解:循环结构在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是.反复执行的步骤称为.循环结构有如下两种形式:①如图1,这个循环结构有如下特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.因此,这种循环结构称为____________.②如图2表示的也是常见的循环结构,它有如下特征:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.因此,这种循环结构称为____________.循环语句(1)当型循环语句当型(WHILE型)语句的一般格式为:________________.(2)直到型循环语句直到型(UNTIL 型)语句的一般格式为: ______________.【答案】循环结构 循环体 ①直到型循环结构 ②当型循环结构(1)WHILE 条件循环体WEND (2)DO 循环体LOOP UNTIL 条件难点1:循环结构 【要点解读】 循环语句(1)算法中的循环结构与循环语句相对应. (2)循环语句的格式及框图. ①UNTIL 语句②WHILE 语句【考向1】循环结构程序框图【例题】设计一个算法求1+12+…+19+110的值,并画出程序框图.解:当型循环: 算法如下:第一步:令i =1,S =0;第二步:若i ≤10成立,则执行第三步,否则,输出S ; 第三步:计算S =S +1i ,i =i +1,返回第二步.程序框图如图所示:直到型: 算法如下:第一步:令i =1,S =0; 第二步:计算S =S +1i,i =i +1;第三步:若i >10,则输出S ,否则,返回第二步. 程序框图如图所示:【评析】如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要使条件的表述恰当、准确. 【考向2】循环语句 【例题】读下面的程序:INPUT n i =1 S =1 WHILE i<=n S =S*i i =i +1WENDPRINT SEND上面的程序在执行时输入6,那么输出的结果为()A.6 B.720 C.120 D.1【评析】计算机执行此程序时,遇到WHILE语句,先判断条件是否成立,如果成立,则执行WHILE和WEND之间的循环体,然后返回到WHILE语句再判断上述条件是否成立,直至返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而执行WEND后面的语句,这是当型循环.难点2:算法案例【要点解读】算法案例(1)辗转相除法辗转相除法是用于求两个正整数的最大公约数的一种方法,这种算法是由欧几里得在公元前330年左右首先提出的,因此又叫欧几里得算法.(2)更相减损术的定义任给两个正整数(若是偶数,先用2约数),以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数,直到所得的数相等为止,则这个数(等数)(或这个数与约简的数的乘积)就是所求的最大公约数.(3)秦九韶算法秦九韶算法是我国南宋数学家秦九韶在他的代表作《数书九章》中提出的一种用于计算一元n 次多项式的值的方法.【考向1】辗转相除法与更相减损术【例题】用更相减损术求120与75的最大公约数时,反复相减,直至求出结果,进行减法运算的次数为()A.4 B.5C.6 D.3解析:∵120-75=45,75-45=30,45-30=15,30-15=15,∴120与75的最大公约数是15,共进行4次减法运算.答案:A【考向2】秦九昭算法【例题】用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x+8的值,当x=3时,v3的值为()A .27B .86C .262D .789答案:B【趁热打铁】1.用辗转相除法求108和45的最大公约数为( ) A .2 B .9 C .18D .272.已知程序如下:当输入x 的值为5时,输出的结果为( ) A .15 B .76 C .84D .343.某程序框图如图所示,该程序运行后输出S 的结果是( )A.32B.16C.2512D.137604.下列程序运行后的输出结果是()A.17 B.19C.21 D.235.计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号,与10进制的对应关系如下表:A.1 612 B.364C.5 660 D.3606.如下框图,当x1=6,x2=9,p=8.5时,x3等于()A.7 B.8C.10 D.117.如图框图(1)若输入4,则输出的是________;(2)若输出32,则输入的是________.8.阅读如图所示的程序框图,运行相应的程序,输出的结果S=________.9.根据如图所示的框图,说明该流程图解决什么问题,写出相应的算法,并回答下列问题:(1)若输入x的值为5,则输出的结果是什么?(2)若输出的值为8,则输入的x的值是什么?(3)要使输出的值最小,输入的x的值应是多少?10.如图是为求310的值而设计的程序框图,请回答下列问题.(1)将空白处补上,指明它是循环结构中的哪一种类型; (2)画出它的另一种循环结构框图.第一章1解析:∵108=2×45+18,45=2×18+9,18=9×2, ∴108和45的最大公约数为9. 答案:B2解析:该程序表示的是输入x 输出函数y =⎩⎪⎨⎪⎧3x , x ≤5,5.5×10+x -, x >5的值. 答案:A答案:C5解析:16C (16)=1×162+6×16+12×160=256+96+12=364. 答案:B6解析:当x 3=7时,|6-9|<|9-7|,即3<2,此时p =9+72=8,输出p =8,A 不正确;当x 3=8时,|6-9|<|9-8|,即3<1,此时p =9+82=8.5,输出p =8.5,B 正确.同理可验证C 、D不正确.答案:B7解析:(1)若输入4,∵4>1,∴y=-2×4+32=24.(2)若输出32,当x2+4x=32时,x1=4,x2=-8;当32=-2x+32时x=0,∵4>1,-8<1,当x=0时,y=02+4×0=0≠32,∴x=-8.答案:(1)24(2)-88解析:第一次循环S=1,a=3,n=2,第二次循环S=4,a=5,n=3,第三次循环S=9,a=7,跳出循环.故输出的值为9.答案:910解:(1)空白部分应填:i≤10?,它为当型循环结构;(2)直到型循环结构的程序框图如下图所示:。
高一数学人教A版必修三练习第一章 算法初步1.1.2.2 Word版含解析
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题分,共分)
.下列四种说法中正确的有( )
①
任何一个算法都离不开顺序结构;②程序框图中,根据条件是否成立有不同的流向;③循环体是指按照一定条件,反复执行某一处理步骤;④循环结构中有条件结构,条件结构中有循环结构.
.个.个
.个.个
解析:因为顺序结构是任何一个算法都离不开的基本结构,所以①正确;在一个算法中,经常会遇到一些条件的判断,算法流程根据条件是否成立有不同的流向,因此②正确;根据循环体的定义知,③正确;④不正确.因为在条件结构中可以不含循环结构.综上分析知①②③正确,④不正确.故选.
答案:
.(·四川卷)执行如图所示的程序框图,输出的值为( )
.-
.-
解析:根据题中程序框图,可知=,=+=<,=+=<,=+=,=+=>,==.故输出的值为.故选.
答案:
.(·天津卷)阅读如图的程序框图,运行相应的程序,则输出的值为( )
..
..
解析:第一次执行,=,=-=;第二次执行,=,=-=;第三次执行,=,=-=;第四次执行,=,=-=,满足条件,则退出循环,所以输出的值为.故选.
答案:
.(·菏泽模拟)如图是求,,…,的乘积的程序框图,图中空白框中应填入的内容为(
)
.=(+) .=+
.=.=
解析:赋值框内应为累乘积,累乘积=前面项累乘积×第项,即=,故选.
答案:
二、填空题(每小题分,共分)
.阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数后,输出的∈(,。
高中数学(人教版A版必修三)配套课时作业第一章 算法初步 1.1.1 Word版含答案
第一章算法初步算法的概念课时目标通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法..算法的概念世纪的指的是用阿拉伯数字进行算术运算的过程算法数学中的通常是指按照一定规则解决某一类问题的明确和有限的步骤算法现代算法通常可以编成计算机程序,让计算机执行并解决问题.算法与计算机计算机解决任何问题都要依赖于算法,只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.一、选择题.下面四种叙述能称为算法的是().在家里一般是妈妈做饭.做米饭需要刷锅、淘米、添水、加热这些步骤.在野外做饭叫野炊.做饭必须要有米答案解析算法是解决一类问题的程序或步骤,、、均不符合..下列对算法的理解不正确的是().算法有一个共同特点就是对一类问题都有效(而不是个别问题).算法要求是一步步执行,每一步都能得到唯一的结果.算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法.任何问题都可以用算法来解决答案.下列关于算法的描述正确的是().算法与求解一个问题的方法相同.算法只能解决一个问题,不能重复使用.算法过程要一步一步执行,每步执行的操作必须确切.有的算法执行完后,可能无结果答案解析算法与求解一个问题的方法既有区别又有联系,故不对;算法能重复使用,故不对;每个算法执行后必须有结果,故不对;由算法的有序性和确定性可知正确..计算下列各式中的值,能设计算法求解的是()①=+++…+②=+++…++…③=+++…+ (≥且∈*).①②.①③.②③.①②③答案解析因为算法的步骤是有限的,所以②不能设计算法求解..关于一元二次方程-+=的求根问题,下列说法正确的是().只能设计一种算法.可以设计两种算法.不能设计算法。
高中数学 人教A版 必修3 第一章 算法初步 高考复习习题(解答题1-100)含答案解析
高中数学人教A版必修3 第一章算法初步高考复习习题(解答题1-100)含答案解析学校:___________姓名:___________班级:___________考号:___________一、解答题1.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出程序框图.2.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为________.3.如图所示的程序框图,(1)输入x=-1,n=3,则输出的数S是多少?(2)该程序框图是什么型?试把它转化为另一种结构.4.画出计算1+++…+的值的程序框图.5.根据如图算法的程序,画出其相应的算法程序框图,并指明该算法的目的.y 时,输入的x的值. 6.读下列程序,写出此程序表示的函数,并求当输出的67.函数y=试写出给定自变量x,求函数值y的算法.8.写出求任意给出的4个数a,b,c,d的平均数的一个算法.9.下面给出了一个问题的算法:第一步,输入x.第二步,若x≥4,则执行第三步,否则执行第四步.第三步,y=2x-1,输出y.第四步,y=x2-2x+3,输出y.问题:(1)这个算法解决的问题是什么?(2)当输入的x值为多大时,输出的数值最小?10.设计一个算法,找出闭区间上所有能被3整除的整数.11.写出一个算法,求底面边长为,侧棱长为的正四棱锥的体积.12.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸.13.写出求过两点的直线与坐标轴围成的图形的面积的一个算法. 14.从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).编号分组频数1[0,2)122[2,4)163[4,6)344[6,8)44续表编号分组频数5[8,10)506[10,12)247[12,14)128[14,16)49[16,18]4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.15.读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.16.阅读如图所示的程序框图,解答下列问题:(1)求输入的的值分别为,时,输出的的值;(2)根据程序框图,写出函数()的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.17.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)若执行该程序框图,输出的结果为9,求输入的实数x 的值.18.(1)用秦九韶算法求多项式()543254323f x x x x x x =++++-当2x =时的值;(2)用辗转相除法或更相减损术求81和135的最大公约数. 19.阅读如图所示的程序框图,解答下列问题:(1)求输入的x 的值分别为1,2-时,输出的()f x 的值;(2)根据程序框图,写出函数()f x (x R ∈)的解析式;并求当关于x 的方程()0f x k -=有三个互不相等的实数解时,实数k 的取值范围.20.已知函数f(x)=x 2-5,写出求方程f(x)=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.21.高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图. 22.用秦九韶算法计算f(x)=2x 4+3x 3+5x -4在x =2时的值.23.已知函数 ,对每输入的一个x 值,都得到相应的函数值.画出程序框图并写出程序.24.画出计算12+32+52+…+9992的程序框图,并编写相应的程序. 25.25.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.26.函数y =1,0{0,0 1,0x x x x x -+>+<=,写出给定自变量x ,求函数值的算法.27.如图,给出了一个程序框图, 其作用是输入 的值, 输出相应的 的值(1) 若视为自变量,为函数值,试写出函数的解析式;(2)若要使输入的的值与输出的的值相等,则输入的值为多少?28.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.设计安全过河的算法.29.写出解方程x2-2x-3=0的一个算法.30.读框图(如图),说明该程序框图所表示的算法功能,并写出与之对应的程序.31.根除如下一个算法:第一步,输入;第二步,若,则,否则执行第三步;第三步,若,则,否则;第四步,输出.(1)画出该算法的程序框图;(2)若输出的值为1,求输入实数的所有可能的取值.32.分别用辗转相除法和更相减损术求1734,816的最大公约数.33.用辗转相除法求294,84的最大公约数.34.“鸡兔同笼”问题是我国古代著名的趣题之一.《孙子算经》中就记载了这个有趣的问题.书中这样描述:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?试设计一个算法,输入鸡兔的总数量和鸡兔的脚的总数量,分别输出鸡、兔的数量,写出程序语句.并画出相应的程序框图.35.对于任意的实数a,b,定义一种运算a*b=a3-a2b+ab2+b3,试设计一个程序,能够验证该运算是否满足交换律.36.以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.INPUT “ ,y=”; ,yx=x/3y=2*y∧2PRINT x,yx=2*x-yy=y-1PRINT x,yEND37.在R1,R2,R3这三个电阻并联的电路中,电压为U,则电流的公式为I=UI的程序.38.某代销点出售《无线电》《计算机》《看世界》三种杂志,它们的定价分别为1.20元、1.55元、2.00元,编写一个程序,求输入杂志的订购数后,立即输出所付金额. 39.已知直线方程为 A +By+C=0(A·B≠0),试编写一个程序,要求输入符合条件的A,B,C的值,输出该直线在x轴、y轴上的截距和直线的斜率.40.已知函数f(x)=x2-2x+1,y1=f(3),编写一个程序计算f(y1)的值.41.已知函数f(x)=x2+3x+1,编写一个程序来计算f(4)的值.42.2015年春节期间,某水果店的三种水果标价分别为香蕉:2元/千克,苹果:3元/千克,梨:2.5元/千克.请你设计一个程序,以方便店主的收款.43.由程序框图写出程序.44.结合图形,说明下列程序的功能.45.汽车托运重量为P(kg)的货物时,托运每千米的费用(单位:元)标准为:y=()0.220{ 0.2200.112020P P kg P P kg≤⨯+⨯-> 当 当试编写一程序求行李托运费.46.给出如下程序(其中x 满足:0<x<12) 程序: INPUT xIF x>0AND x<=4 THEN y=2x ELSEIF 4<x AND x<=8 THEN y=8 ELSE y=24-2x END IF END IF PRINT y END(1)该程序用函数关系式怎样表达? (2)画出这个程序的程序框图.47.已知函数y=3,0,{3,0,x xx x->+≤设计程序,使输入x的值,输出相应的y值.48.读下面所给的程序,依据程序画出程序框图,并说明其功能:INPUT xIF x>1 OR x<-1 THENy=1ELSE y=0END IFPRINE yEND.49.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2当x=-2时的值.50.已知函数y.51.(1)用辗转相除法求567与405的最大公约数;(2)用更相减损术求2 004与4 509的最大公约数.52.儿童乘坐火车时,若身高不超过1.1 m,则无须购票;若身高超过1.1 m但不超过1.4 m,可买半票;若超过1.4 m,应买全票.试写出一个购票算法程序.53.给出一个算法的程序框图(如图所示).(1)说明该程序的功能;(2)请用WHILE型循环语句写出程序.54.编写程序,使得任意输入2个整数按从大到小的顺序输出.55.已知函数f (x )=(x+1)2,将区间[1,10]九等分,画出求函数在各等分点及端点处所取得函数值算法的程序框图.56.画出求12-22+32-42+…+992-1002的值的算法的程序框图. 57.(1)将137化为六进制数. (2)将53(8)转化为三进制数.58.用辗转相除法求888与1 147的最大公约数.59.利用秦九韶算法求多项式f(x)=3x 6+12x 5+8x 4-3.5x 3+7.2x 2+5x-13当x=6时的值,写出详细步骤.60.分别用辗转相除法和更相减损术求261与319的最大公约数. 61.把三进制数2101211(3)转化为八进制的数.62.已知()()10175125r =,求在这种进制里的数()76r 应记成十进制的什么数? 63.学习优秀奖的条件如下: (1)五门课的成绩总分不低于500分. (2)每门课成绩都不低于90分.(3)三门主课每门的成绩都不低于100分,其他两门课的成绩都不低于90分. 输入某学生的五门课的成绩,问他是否够优秀条件.画出程序框图. 64.阅读如图程序框图,并根据该框图回答以下问题.(1)分别求f (-1),f (0),f ,f (3)的值. (2)写出函数f (x )的表达式.65.在音乐唱片超市里,每张唱片售价25元,顾客如果购买5张以上(含5张)唱片,则按照九折收费;如果顾客购买10张以上(含10张)唱片,则按照八五折收费.请设计一个完成计费工作的算法,并画出程序框图.66.画出输入一个数x ,求分段函数y .67.设计一个算法计算1×3×5×7×…×99值的算法,画出程序框图,写出程序.68.设计一个算法,求使1+2+3+4+…+n>2 017成立的最小自然数,画出程序框图,并写出程序语句.69.已知f(x)=x2-2x-3,求f(3),f(-5),f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出程框图.70.已知一个直角三角形的两条直角边长为a、b,斜边长为c,写出它的外接圆和内切圆面积的算法,并画出程序框图.71.已知两个单元分别存放了变量x和y,试变换两个变量的值,并输出x和y,请写出算法并画出程序框图.72.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.73.已知x=10,y=2,画出计算w=5x+8y值的程序框图.74.如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并画出程序框图.75.76.求函数()()222y={22x x xx-≥-<的值的程序框图如图所示.(1)指出程序框图中的错误,并写出算法;(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.①要使输出的值为正数,输入的x的值应满足什么条件?②要使输出的值为8,输入的x值应是多少?③要使输出的y值最小,输入的x值应是多少?77.用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.78.如图是为求1~100中所有自然数的平方和而设计的程序框图,将空补上,指明它是循环结构中的哪一种类型,并画出它的另一种循环结构框图.79.在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a,输出顾客要缴纳的金额C.并画出程序框图.80.下列是某个问题的算法程序,将其改为程序语言,并画出程序框图.算法:第一步,令i=1,S=0.第二步,若i≤999成立,则执行第三步;否则,输出S,结束算法.第三步,S=S.第四步,i=i+2,返回第二步.81.分别用辗转相除法和更相减损术求282与470的最大公约数.82.如图所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件解答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为3时,求输出的f(x)的值;(3)要想使输出的值最大,求输入的x的值.83.如图所示的程序框图,要使输出的y的值最小,则输入的x的值应为多少?此时输出的y的值为多少?84.已知一个三角形的三边边长分别为2,3,4,设计一个算法,求出它的面积,并画出程序框图.85.给出20个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推,如图所示的程序框图的功能是计算这20个数的和.(1)请在程序框图中填写两个(_______)内缺少的内容;(2)请补充完整该程序框图对应的计算机程序(用WHILE语句编写).86.阅读程序框图,并完成下列问题:(1)若输入x=0,求输出的结果;(2)请将该程序框图改成分段函数解析式;(3)若输出的函数值在区间11,42⎡⎤⎢⎥⎣⎦内,求输入的实数x的取值范围.87.编写一个程序计算12+32+52+…+992,并画出相应的程序框图.88.用辗转相除法和更相减损术求1734和816的最大公约数(写出过程)89.《中国诗词大会》第二季总决赛已于2017年2月初完美收官,来自全国各地的选手们通过答题竞赛的方式传播中国古诗词,从诗经、汉魏六朝诗、唐宋诗词、明清诗词―直到毛泽东诗词,展现了对中国传统文化经典的传承与热爱,比赛采用闯关的形式,能闯过上一关者才能进人下一关测试,否则即被淘汰.已知某选手能闯过笫一、二、三关.(1)求该选手在第3关被淘汰的概率;(2)该选手在测试中闯关的次数记为X,求随机变量X的分布列与数学期塑. 90.根据下面的要求,求13599++++的值.(1)请完成执行该问题的程序框图;(2)请用for语句写出该算法.91.已知175(r)=125(10),求在这种进制里的数76(r)应记成十进制的什么数?92.分别用当型和直到型循环语句编写一个程序,计算2×4×6×…×100的值.93.199100++⨯并画出程序框图及编写程序.94.编写一个程序计算12+32+52+…+992,并画出相应的程序框图.95.读下列各题所给的程序,依据程序画出程序框图,并说明其功能:(1)INPUT “x=”;xIF x>1 OR x<-1 THENy=1ELSE y=0END IFPRINE yEND(2)INPUT “输入三个正数a,b,c=”;a,b,cIF a+b>c AND a+c>b AND b+c>a THENp=(a+b+c)/2S=SQR(p*(p-a)*(p-b)*(p-c))PRINT “三角形的面积S=”SELSEPRINT “构不成三角形”END IFEND96.某商场为迎接店庆举办促销活动,活动规定:购物额在100元及以内不予优惠,在100~300元之间优惠5%,超过300元之后,超过部分优惠8%,原优惠条件仍然有效.写出顾客的购物额与应付金额之间的程序,要求输入购物额能够输出实付货款,并画出程序框图.97.已知函数y=f(x)的程序框图如图所示.(1)求函数y=f(x)的表达式;(2)写出输入x的值计算y的值的程序.98.编写一个程序,求用长度为L的细铁丝分别围成一个正方形和一个圆时所围成的正方形和圆的面积.要求输入L的值,输出正方形和圆的面积,并画出程序框图.(π取3.14)99.中秋节到了,糕点店的售货员很忙,请设计一个程序,帮助售货员算账,已知豆沙馅的月饼每千克25元,蛋黄馅的月饼每千克35元,莲蓉馅的月饼每千克30元,那么依次购买这三种月饼a、b、c千克,应收多少钱?100.“鸡兔同笼”问题是我国古代著名的趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中这样描述:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?试设计一个算法,输入鸡兔的总数和鸡兔的脚的总数,分别输出鸡、兔的数量.参考答案1.见解析.【解析】试题分析:由题意,从成绩中搜索出大于等于60的成绩,由此可得选择结构的判断框的条件,再依据搜索数据的个数确定循环的条件,得到算法,即可画出相应框图试题解析:算法如下:第一步:i=1.第二步,输入x.第三步,若x≥60则输出.第四步,i=i+1.第五步,判断i>50,是,结束;否则执行第二步.程序框图如图所示:2.9【解析】试题分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.试题解析:第一次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,满足退出循环的条件,故输出的值为9,故答案为93.(1);(2)见解析.【解析】试题分析:(1)列出循环过程中与的数值,满足判断框的条件即可结束循环.(2)原图是当型循环,改为直到型试题解析:(1)当n=3时,i=3-1=2,满足i≥0,故S=6×(-1)+2+1=-3;执行i=i-1后i的值为1,满足i≥0,故S=(-3)×(-1)+1+1=5;再执行i=i-1后i的值为0,满足i≥0,故S=5×(-1)+0+1=-4;继续执行i=i-1后i的值为-1,不满足i≥0,故输出S=-4.(2)原图是当型循环,改为直到型(如图):4.见解析.【解析】试题分析: 由已知中程序的功能为用循环结构计算1+++…+的值,为累加运算,且要反复累加10次,可令循环变量的初值为1,终值为10,步长为1,由此确定循环前和循环体中各语句,即可得到相应的程序框图.试题解析:程序框图如下图所示:【点睛】本题考查设计程序框图解决实际问题,其中熟练掌握利用循环进行累加和累乘运算的方法,是解答本题的关键.5.见解析【解析】分析:根据已知中的程序语句可知,该程序是一个直到型循环结构,进而可画出程序的框图,进而根据循环条件及输出项,可判断出程序的功能,进而构造满足条件的不等式,解不等式,可得答案.详解:画出的其相应的算法程序框图如下:该算法的目的:求使1+2+3+…+n>2010成立的最小自然数n.(或1+2+3+…+n≤2010的最大正整数n的值再加1)点睛:该题考查的是有关程序框图的问题,在解题的过程中,需要先从题中所给的程序中判断该程序所要解决的问题,即其运行的目的,之后根据题意求得结果.6.2,0{1,0 2,0x x y x x x <=-=>,或3x =.【解析】试题分析: 分析此程序框图表示的函数是分段函数, 讨论x 的取值范围,求出6y =时x 的值.试题解析:根据程序图,可知此程序框图表示的函数为2,0{1,0 2,0x x y x x x <=-=>, 当0x <时,由26x =当0x >时,由26x = 得, 3x =.; 故当输出的6y =时,输入的或3x =.7.见解析【解析】试题分析:本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中分段函数的解析式y=,然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可写出算法.试题解析:因为函数是分段函数,故要先输入变量值,再进行判断,分别进行不同的计算.算法如下:第一步,输入x.第二步,若x>0,则令y=-x+1后执行第五步;否则执行第三步.第三步,若x=0,则令y=0后执行第五步;否则执行第四步.第四步,令y=x+1.第五步,输出y 的值.点睛:分析题意,解答此类问题,可以依据已知的分段函数,将x 的取值范围作为条件设计算法;联系题设,依据不同x 的取值范围下对应不同的函数式结合算法的概念写出算法过程.8.见解析【解析】试题分析:熟悉并掌握算法的步骤,分解平均数的计算步骤即可作答.试题解析:第一步,输入a,b,c,d的值;第二步,计算S=a+b+c+d;第三步,计算V=;第四步,输出V的值.9.(1)见解析(2)当输入的x的值为1时,输出的数值最小.【解析】试题分析:本题考查了一个条件分支结构的算法,可分为和,执行不同的计算,即可得到结论.试题解析:(1)这个算法解决的问题是求分段函数y的函数值的问题.(2)本问的实质是求分段函数最小值的问题.当x≥4时,y=2x-1≥7;当x<4时,y=x2-2x+3=(x-1)2+2≥2.∴函数最小值为2,当x=1时取到最小值.∴当输入x的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.10.见解析【解析】试题分析:可通过循环结构的算法实现求闭区间上所有能被整除的整数.试题解析:第一步,用20除以3,余数不为0,故20不能被3整除;第二步,用21除以3,余数为0,故21能被3整除;第三步,用22除以3,余数不为0,故22不能被3整除;第四步,用23除以3,余数不为0,故23不能被3整除;第五步,用24除以3,余数为0,故24能被3整除;第六步,用25除以3,余数不为0,故25不能被3整除;第七步,指出在闭区间[20,25]上能被3整除的整数为21和24.11.见解析【解析】试题分析:求解正四棱锥的体积,先求出棱锥的高与底面面积和高,再利用体积公式求出体积.试题解析:第一步,令a=4,l=5.第二步,计算R=.第三步,计算h=.第四步,计算S=a2.第五步,计算V=Sh.第六步,输出运算结果V.12.见解析【解析】试题分析:根据算法的概念和算法的流程为一个循环结构的算法,可把该算法分为五步,即可写出算法.试题解析:第一步,两个小孩将船划到右岸.第二步,他们中一个上岸,另一个划回来.第三步,小孩上岸,一个士兵划过去.第四步,士兵上岸,让小孩划回来.第五步,如果左岸没有士兵,那么结束,否则转第一步点睛:本题考查了算法的一个实际应用问题,解题时要主语熟练掌握循环结构算法的性质和应用是解答的关键,算法时新课标中新增内容,也一直是命题的一个热点,试题比较基础,属于基础题.13.见解析【解析】试题分析:根据算法的概念和算法的流程即可写出该算法.试题解析:第一步,取x1=-2,y1=-1,x2=2,y2=3.第二步:计算y y.y y第三步:在第二步结果中令x=0得到y的值为m,得直线与y轴交点为(0,m).第四步:在第二步结果中令y=0得到x的值为n,得直线与x轴交点为(n,0).第五步:计算S=|m|·|n|.第六步:输出运算结果S.14.(1)0.9(2)0.125(3)4【解析】试题分析:(1)求出对应情况下出现的频数,频数与总数之比为频率;(2)根据频数求出频率,频率乘以组距得出a,b的值;(3)结合频率分布直方图根据题意算出平均数.试题解析:(1)由频率分布表可知该周课外阅读时间不少于12 h的频数为12+4+4=20,故可估计该周课外阅读时间少于12 h的概率为1-=0.9.(2)由频率分布表可知数据在[4,6)的频数为34,故这一组的频率为0.17,即a=0.085,数据在[8,10)的频数为50,故这一组的频率为0.25,即b=0.125.(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(h),故样本中的200名学生该周课外阅读时间的平均数在第四组.15.【解析】试题分析:阅读程序框图可知,此程序表示的函数为,当时,得.当时,得.试题解析:此程序表示的函数为,当时,得.当时,得.故当输出的时,输入的,故答案为.16.(1),;(2).【解析】试题分析:(1)根据框图中条件语句,判断变量执行哪个函数,计算求解即可;(2)由框图可知,分析分段函数的单调性,进而可得解.试题解析:(1)当输入的 的值为 时,输出的 . 当输入的 的值为2时,输出的 .(2)根据程序框图,可得, 当 时, ,此时 单调递增,且 ;当 时, ;当 时, 在 0 1 上单调递减,在 上单调递增,且 .结合图象,知当关于 的方程 有三个不同的实数解时,实数 的取值范围为 0 1 .17.(1)2,1{ 21,1x x x y x -<=+≥;(2)7x =-或3. 【解析】试题分析:(1)利用条件结构框图得到函数的解析式;(2)分两种情况解得输入的实数x 的值.试题解析:(1)2,1{ 21,1x x x y x -<=+≥.(2)当1x <时, 29x -=, 7x =-; 当1x ≥时, 2+1=9x , 3x =, 所以7x =-或3.18.(1)255;(2)27【解析】试题分析:(1)把所给的函数式变化成都是一次式的形式,逐一求出从里到外的函数值的值,最后得到当2x =时的函数值;(2)用辗转相除法求81与135的最大公约数,写出135=81×1+54=27×2+0,得到两个数字的最大公约数.试题解析:(1)()()()()()543213f x x x x x x =++++-05v =; 152414v =⨯+=; 2142331v =⨯+=; 3312264v =⨯+=46421129v =⨯+=; 512923255v =⨯-=所以,当2x =时,多项式的值为255.(2)13581154=⨯+8154127=⨯+,542720=⨯+,则81与135的最大公约数为27点睛:本题主要考查辗转相除法和更相减损术求最大公约数,属于中档题. 辗转相除法和更相减损术是求两个正整数的最大公约数的方法,辗转相除法是当大数被小数除尽时,结束除法运算,较小的数就是最大公约数;更相减损术是当大数减去小数的差等于小数时停止减法运算.较小的数就是最大公约数.一般情况下,用辗转相除法得到最大公约数的步骤较少,而用更相减相术步骤较多.但运算简易.解题时要灵活运用.19.(1)见解析(2)()0,1.【解析】试题分析:(1)根据输入的x 的值为1-时,输出结果;当输入的x 的值为2时,输出结果;(2)根据程序框图,可得()f x ,结合函数图象及()0f x k -=有三个互不相等的实数解即可求出实数k 的取值范围.试题解析:(1)当输入的x 的值为1-时,输出的 当输入的x 的值为2时,输出的()222211f x =-⨯+= (2)根据程序框图,可得()22,0{2,0 21,0x x f x x x x x <==-+>当0x <时, ()2xf x =,此时()f x 单调递增,且()01f x <<; 当0x =时, ()2f x =;当0x >时, ()()22211f x x x x =-+=-在()0,1上单调递减,在()1,+∞上单调递增,且()0f x ≥.结合图象,知当关于x 的方程()0f x k -=有三个互不相等的实数解时,实数k 的取值范围为()0,1.20.见解析【解析】试题分析:本题可用二分法来解决,设,,算法如下,第一步,,,第二步,第三步,计算,如果,则输出,如果,则,否则第四步,若,则输出,否则返回第二步解析:点睛:本题考查了用二分法求解函数零点的近似解,按照精确条件,设计出循环结构图,通过限制条件做运算,本题在求解的过程中需要很好的理解二分法的做法,以及确定好限制条件。
高一数学人教a版必修三练习:第一章_算法初步1_章末高效整合_word版含解析
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同解析:算法的特点:有穷性、确定性、顺序性、正确性、不唯一性与普遍性.答案: C2.如图是某算法流程图的一部分,其算法的逻辑结构为()A.顺序结构B.判断结构C.条件结构D.循环结构解析:条件结构是处理逻辑判断并根据判断结果进行不同处理的结构,由算法流程图知,该算法的逻辑结构为条件结构,故选C.答案: C3.下面的程序:a=1WHILE a<100a=a+1WEND执行完毕后a的值为()A.99B.100C.101D.102解析:a=99+1=100.答案: B4.下列语句中:①m=x3-x2②T=T×I③32=A④A=A+2⑤a=b=4,其中是赋值语句的个数为()A.5B.4C.3D.2解析:①m=x3-x2为赋值语句;②T=T×I为赋值语句;③32=A,因为左侧为数字,故不是赋值语句;④A=A+2为赋值语句;⑤a=b=4,因为是连等,故不是赋值语句.故赋值语句个数为3,故选C.答案: C5.阅读下列程序:A的值为()A.5B.6C.15D.120解析:执行赋值语句后A的值依次为2,6,24,120,故最后A的值为120.答案: D6.执行如图的程序框图,如果输入的n是4,则输出的p是()A.8B.5C.3D.2解析:运行过程如下:n=4,s=0,t=1,k=1,p=1,k=1<n,p=0+1=1,s=1,t=1,k=1+1=2<n,p=1+1=2,s=1,t=2,k=2+1=3<n,p=1+2=3,s=2,t=4,k=3+1=4<n不成立,所以输出p=3.答案: C7.4 830与3 289的最大公约数是()A.13B.35C.12D.23解析:用辗转相除法,4 830=3 289×1+1 541,3 289=1 541×2+207,1 541=207×7+92,207=92×2+23,92=23×4,所以23是4 830与3 289的最大公约数.答案: D8.下面进位制之间转化错误的是()A.101(2)=5(10)B.27(8)=212(3)C.119(10)=315(6)D.31(4)=62(2)解析:101(2)=1×22+0×2+1=5,故A对;27(8)=2×8+7=23,212(3)=2×32+1×3+2=23,故B对;315(6)=3×62+1×6+5=119,故C对;31(4)=3×4+1=13,62(2)=6×2+2=14,故D错.答案: D9.某程序框图如图所示,若输出结果是126,则判断框中可以是()A.i>6?B.i>7?C.i≥6?D.i≥5?解析:根据程序框图可知,该程序执行的是2+22+23+24+25+26,所以判断框中应该填i>6?.答案: A10.给出30个数:1,2,4,7,11,…,其规律是第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A.i≤30;p=p+i-1B.i≤29;p=p+i+1C.i≤31;p=p+iD.i≤30;p=p+i解析:将p=p+i-1,p=p+i+1,p=p+i依次代入执行框②处验证可知只有p=p+i符合给定的前五项,判断框①处代入i≤30验证正好符合30个数求和.答案: D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.204与85的最大公因数是W.解析:∵204÷85=2……34,85÷34=2……17,34÷17=2,204与85的最大公因数是17,故答案为17.答案:1712.已知多项式p(x)=3x5+9x4+x3+kx2+4x+11,当x=3时值为1 616,则k=W.解析:由秦九韶算法,得p(x)=((((3x+9)x+1)x+k)x+4)x+11.则当x=3时,p(3)=(((54+1)×3+k)×3+4)×3+11.=(495+3k+4)×3+11=9k+1 508=1 616,所以k=12.答案:1213.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8当x=5时的值的过程中v3=W.解析:∵f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,∴v3=((5x+2)x+3.5)x-2.6将x=5代入得v3=((5×5+2)×5+3.5)×5-2.6=689.9.答案:689.914.对任意非零实数a ,b ,若a ⊗b 的运算原理如下图所示,则log 28⊗⎝⎛⎭⎫12-2= W.解析: log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么? (2)根据框图用当型循环语句编写程序. 解析: (1)①k <101?(k ≤100?) ②s =s +1k(2)16.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧x 2-1,x <-1,|x |+1,-1≤x ≤1,3x +3,x >1,编写一个程序求函数值.解析: 程序如下:f (x )=2x 4+3x 3+5x -4在x =2时的值. 解析: f (x )改写为f (x )=(((2x +3)x +0)x +5)x -4, ∴v 0=2, v 1=2×2+3=7, v 2=7×2+0=14, v 3=14×2+5=33, v 4=33×2-4=62, ∴f (2)=62.18.(本小题满分14分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.解析: 算法如下:第一步,a 1=1. 第二步,i =9.第三步,a 0=2×(a 1+1). 第四步,a 1=a 0. 第五步,i =i -1.第六步,若i =0,执行第七步,否则执行第三步. 第七步,输出a 0的值. 流程图和程序如下:。
高中数学人教A版必修三课时习题:第1章算法初步1.1.1含答案
1. 1.1算法的观点课时目标1.认识详细算法的基本过程与主要特色;2.能应用算法思想解决相关的详细问题;3.能按步骤用自然语言写出简单问题的算法过程.识记加强1.算法往常能够编成计算机程序,让计算机履行并解决问题,计算机解决任何问题都要依靠于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”正确地描绘出来,计算机才能够解决问题.2.算法的五个特色为归纳性、逻辑性、有穷性、不独一性、广泛性.课时作业一、选择题1.算法的有穷性是指()A.算法一定包括输出步骤B.算法中每个操作步骤都是可履行的C.算法一定在有穷步内结束D.以上说法均不正确答案: C分析:算法的有穷性是指一个算法的步骤序列是有限的,它应在有限步骤以后停止,而不可以是无穷的.2.以下对于算法的描绘正确的是()..A.算法与求解一个问题的方法同样B.算法只好解决一个问题,不可以重复使用C.算法过程要一步一步履行,每步履行的操作一定切实D.算法要求循规蹈矩做,每一步能够有不一样的结果答案: C分析: A 中算法能够解决一类问题而不是一个问题,同理 B 也不正确, D 中每一步履行的操作,只好有独一的结果,故 D 错误.3.利用计算机进行运算,第一一定()A.编程 B .人机对话C.计算机自动达成 D .没法进行答案: A分析:编程就是设计算法.4.对算法的理解不正确的选项是()A.一个算法应包括有限的操作步骤,而不可以是无穷的B.算法中的每一个步骤都应该是确立的,而不该该是含糊的、含糊其词的C.算法中的每一个步骤都应该有效地履行,并获得确立的结果D.一个问题只好设计出一种算法答案: D分析:算法是不独一的.5.看下边的四段话,此中不是解决问题的算法是()A.方程x2- 100=0 有两个实根± 10B.解一元一次方程的步骤是去分母、去括号、移项、归并同类项、系数化为1C.某人去深圳打工,先步行到县城,再乘火车到省城,最后坐飞机到达D.求 1+2+ 3+ 4+ 5 的值:先计算1+ 2=3,再计算3+ 3= 6,6 + 4= 10,10 + 5=15,最后结果为15答案: A6.对于算法:第一步:输入n第二步:判断n 能否等于2,若 n=2,则 n 知足条件;若n>2,则履行第三步第三步:挨次从 2 到n- 1 查验能不可以整除n,若不可以整除n,则履行第四步;若能整除n,则履行第一步第四步:输出n知足条件的n 是()A.质数 B .奇数C.偶数 D .约数答案: A分析:本题第一要理解质数,除 1 和它自己外没有其余约数的正整数叫做质数, 2 是最小的质数,这个算法经过对 2 到( n- 1) 一一考证,看能否有其余约数来判断其能否为质数.二、填空题7.已知一个学生的语文成绩为98,数学成绩为87,外语成绩为92,以下是他的总分和均匀成绩的一个算法:( 在横线上填入算法中缺的两个步骤)第一步:取A=98, B=87, C=92;第二步: ________;第三步: ________;第四步:输出计算的结果.答案:计算总分D= A+ B+ CD计算均匀成绩E= .38.求 1×3×5×7×9×11 的值的一个算法是:第一步:求1×3获得结果 3.第二步:将第一步所得结果 3 乘 5,获得结果15.第三步: _______________________________________________.第四步:再将105 乘 9 获得 945.第五步:再将945×11,获得10395,即为最后结果.答案:将第二步所得的结果15 乘 7,获得结果 105.9.下边给出一个问题的算法:第一步:输入 x.第二步:假如≥2014,那么y =- 2014,不然y= 2014-.x x x第三步:输出y.则这个算法解决的问题是________________________________ .答案:求 x 与2014的差的绝对值.三、解答题10.下边给出了一个问题的算法:第一步,输入a.第二步,若a≥4,则履行第三步,不然履行第四步.第三步,输出2a- 1.第四步,输出a2-2a+3.: (1) 个算法解决的是什么?(2)当入的 a 多大,出的数最小?解: (1) 个算法解决的是求分段函数f (x) =2x- 1,x≥4,的函数的.x2-2x+3, x<4(2)a=1出的数最小.11.写出求解一元二次方程ax2+ bx+ c=0( a≠0)的根的算法.解:第一步:算=b2-4ac;第二步:若<0;行第三步;否行第四步;第三步:出方程无根;-b± b2-4ac第四步:算并出方程根x1,2=2a.能力提高12.写出求 2+ 4+ 6+⋯+ 200 的一个算法.能够运用公式2+ 4+ 6+⋯+ 2n=n( n+ 1)直接算.第一步__① __;第二步__② __;第三步出运算果.答案:①取 n=100② 算n(n+1)分析:本考算法步.解此第一求出算式中n 的取,而后将 n 的取代入公式 n( n+1)行算,即可得此的一个算法.13.写出求两点M(-2,-1), N(2,3)的直与坐成面的一个算法.解:第一步:取x1=-2,y1=-1, x2=2, y2=3;第二步:算y- y1=x- x1;y2-y2x2- x1第三步:在第二步果中令x = 0获得y的,得直与y交点(0, );m m第四步:在第二步果中令y=0获得 x 的 n,得直与 x 交点( n, 0);第五步:算=1||·||;S2m n第六步:出运算果.。
高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3
1.1 算法与程序框图1.1.1算法的概念内容标准学科素养1。
通过回顾解二元一次方程组的方法,了解算法的思想。
2。
了解算法的含义和特征。
3.会用自然语言表述简单的算法。
提升数学运算发展逻辑推理应用数学抽象授课提示:对应学生用书第1页[基础认识]知识点一算法的概念预习教材P2-3,思考并完成以下问题一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.(1)试问他们怎样渡过河去?提示:第一步,两个小孩同船过河去;第二步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.(2)设计的过河方法有什么特点?提示:由于船小,不能同时坐三个人,这样就需要遵循这一规则,然后按照一定的步骤一步一步的把三人运到河对岸.知识梳理在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.知识点二算法与计算机知识梳理计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.思考:与一般的解决问题的过程相比,算法最重要的特征是什么?提示:最重要的特征是步骤的有序性、明确性和有限性.[自我检测]下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:A、B两选项给出了解决问题的方法和步骤,是算法.C项,利用公式计算也属于算法.D项,只提出问题没有给出解决的方法,不是算法.答案:D授课提示:对应学生用书第2页探究一算法的概念[例1]下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4[解析]由于算法具有有限性、确定性、输出性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.[答案] C方法技巧1。
高中数学(人教版A版必修三)配套课时作业第一章 算法初步 §1.1 习题课 Word版含答案
§习题课
课时目标
.理解并掌握画程序框图的规则.
.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构.
.能正确选择并运用三种逻辑结构框图表示具体问题的算法.
.下列关于程序框图的描述
①对于一个算法来说程序框图是唯一的;
②任何一个框图都必须有起止框;
③程序框图只有一个入口,也只有一个出口;
④输出框一定要在终止框前.
其中正确的有()
.个.个
.个.个
答案
解析②、③正确,对于一个算法来说,程序框图不唯一,与设计有关,故①错.输入
输出的位置,不一定在开始和结束处,故④错.
.某程序框图如图所示,该程序运行后输出的的值是()
..
..
答案
解析当=时,===,
当=时,=+==,
当=时,=+=<=,
当=时,=,=+>,故=.
.如图是一个算法的程序框图,该算法所输出的结果是()
答案
解析运行第一次的结果为=+=;
第二次=+=;
第三次=+=.
此时=程序终止,
即输出=.
.阅读下边的程序框图,若输出的值为-,则判断框内可填写()。
最新人教A版高中数学必修三第一章《算法初步》Word版含解析
第一章过关检测(时间:90分钟,满分:100分)知识点分布表一、选择题(本大题共10小题,每小题4分,共40分)1.下列给出的输入语句、输出语句和赋值语句:(1)输出语句INPUT a,b,c(2)输入语句INPUT x=3(3)赋值语句3=A(4)赋值语句A=B=C其中正确的个数是()A.0B.1C.2D.3答案:A解析:(1)应为输入语句;(2)不能输入表达式;(3)不能变量赋值给常数;(4)不能连续赋值.2.以下程序中,输出时A的值是输入时A的值的()A.1倍B.2倍C.3倍D.4倍答案:D解析:令初始值A=a,则A=2(a+a)=4a.3.如果用辗转相除法求168与72的最大公约数要做n次除法运算,那么n的值为()A.2B.3C.4D.5答案:A解析:因为168=72×2+24,72=24×3,所以应做2次除法,即可求出168与72的最大公约数为24.故选A.4.在四位八进制数中,能表示的最小十进制数是()A.585B.576C.584D.512答案:D解析:1 000(8)是四位八进制数中最小的,又1 000(8)=1×83=512,故选D.5.(2015安徽高考,文7)执行如图所示的程序框图(算法流程图),输出的n为()A.3B.4C.5D.6答案:B解析:当a=1,n=1时,进入循环,a=1+,n=2;此时|a-1.414|>0.005,继续循环,a=1+=1+,n=3;此时|a-1.414|>0.005,继续循环,a=1+=1+,n=4;此时|a-1.414|≈0.003<0.005,退出循环,因此n的值为4.6.如图所示,该程序的输出结果为()。
【专业资料】新版高中数学人教A版必修3习题:第一章算法初步 1.1.2.1 含解析
第1课时程序框图与顺序结构课时过关·能力提升一、基础巩固1.对终端框叙述正确的是()A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是2.如图所示的程序框图中不含有的程序框是()A.终端框B.输入、输出框C.判断框D.处理框,输入、输出框和处理框,不含有判断框.3.阅读如图所示的程序框图,若输入x=3,则输出y的值为()A.33B.34C.40D.45x=3时,执行的过程是:x=3,a=2×32-1=17,b=a-15=2,y=ab=17×2=34,输出y=34.4.执行如图所示的程序框图后,输出的结果为5,则输入的x值为()A.2B.3C.5D.9,当y=5时,2x-1=5,∴x=3.5.如图,若输出的结果为2,则①处的执行框内应填的是()A.x=2B.b=2C.x=1D.a=5b=2,所以2=a-3,即a=5.所以5=2x+3,x=1.6.如图,若输入a=10,则输出a=.a=10,该程序框图的执行过程是:a=10,b=10-8=2,a=10-2=8,输出a=8.7.执行如图的程序框图,若R=8,则a=.:输入R=8,b=√R2=√4=2,a=2b=4,输出a=4.8.如图是求长方体的体积和表面积的一个程序框图,将该程序框图补充完整,横线处应填.答案:9.执行如图所示的程序框图后的结果为.S=42+24=2.5..510.如图所示的程序框图,要使输出的y的值最小,则输入的x的值应为多少?此时输出的y的值为多少?x的值,求函数y=x2+2x+3的值.将y=x2+2x+3配方,得y=(x+1)2+2,要使y的值最小,需x=-1,此时y min=2.故输入的x的值为-1时,输出的y的值最小为2.二、能力提升1.下列所画程序框图是已知三角形的一边a及这边上的高h,求三角形面积的算法,其中正确的是()选项流程线没有箭头,故不正确;B选项输出框应为平行四边形,故不正确;D中没有输出框,故不正确.2.阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是()A.75,21,32B.21,32,75C.32,21,75D.75,32,21:输入21,32,75.x=21.a=75.c=32.b=21.输出75,21,32.3.如图所示的是一个算法的程序框图,已知a1=3,输出的b=7,则a2的值是()A.5B.7C.11D.13,该算法是计算a1+a22的值,故3+a22=7,得a2=11.4.阅读如图所示的程序框图,若输出y=3,则输入的x的值为.,当y=3时,log2b=3,∴b=8.∴a÷10=8.∴a=80.∴x2-1=80.∴x=-9或x=9.9或95.根据下面的程序框图所表示的算法,输出的结果是.1步分别将X,Y,Z赋予1,2,3三个数,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.★6.图①是计算图②中阴影部分面积的一个程序框图,则图①中(1)处应填.图①图②②中,正方形的面积为S1=a2,扇形的面积为S2=14πa2,则阴影部分的面积为S=S1-S2=a2−π4a2=4-π4a2.因此题图①中(1)处应填S=4-π4a2.=4-π4a27.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.R、高h代入圆柱的体积公式V=πR2h,最后输出结果即可,所以只用顺序结构就能解决该问题.:第一步,输入R,h.第二步,计算V=πR2h.第三步,输出V.程序框图:★8.一城市在法定工作时间内,每小时的工资为8元,加班工资为每小时10元,一人一周内工作60小时,其中加班20小时,写出这人一周内所得工资的算法,并画出算法的程序框图.:第一步,计算法定工作时间内工资a(a=8×(60-20)=320(元)).第二步,计算加班工资b(b=10×20=200(元)).第三步,计算一周内工资总数c(c=a+b=320+200=520(元)).第四步,输出c.程序框图:。
2021-2022学年人教A版数学必修3习题精选:第一章 算法初步 1.1.2.2 Word版含解析
第2课时条件结构课后篇巩固探究1.给出以下四个问题:①输入一个数x,输出它的确定值;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数f(x)=的函数值.其中需要用条件结构来描述其算法的程序框图的有()A.1个B.2个C.3个D.4个解析:程序框图是否需要条件结构取决于算法中是否需要进行规律推断,并依据推断的结果进行不同的处理.所给的四个问题中,只有②只需计算求值,不需要推断,故选C.答案:C2.已知函数f(x)=在求f(a)(0<a<14)的算法中,需要用到条件结构,其中推断框的形式是()解析:本题给定的分段函数有三个选择,所以要在条件结构内嵌套条件结构,符合这一条件的只有D.答案:D3.已知程序框图如图所示,若输入x=2,则输出的结果是()A.1B.2C.3D.4解析:输入x=2后,该程序框图的执行过程是:x=2>1成立,y==2,输出y=2.答案:B4.执行如图所示的程序框图,若输出的结果是8,则输入的数是()A.2或-2B.2或-2C.-2或-2D.2或2解析:当x3=8时,x=2,a=4,b=8,b>a,输出8;当x2=8时,x=±2,a=8,b=±16,又a>b时输出8,所以x=-2,故选A.答案:A5.如图所示的程序框图,假如输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的推断框中,应当填入下面四个选项中的()A.c>x?B.x>c?C.c>b?D.b>c?解析:变量x的作用是保留3个数中的最大值,所以其次个条件结构的推断框内语句为“c>x?”,满足“是”则交换两个变量的数值,输出x的值后结束程序,满足“否”直接输出x的值后结束程序,故选A.答案:A6.对任意非零实数a,b,若a*b的运算原理如图所示,则(log28)*=.解析:∵log28=3,=4,∴a=3,b=4.∵a≤b,∴输出=1.答案:17.若f(x)=a x(a>0,且a≠1),定义由如图所示的框图表述的运算(函数f-1(x)是函数f(x)的反函数),若输入x=-2时,输出y=,则输入x=时,输出y=.解析:函数f(x)=a x的反函数为y=log a x.由题意知当x=-2时,f(x)=,∴a-2=,∴a=2,∴f-1(x)=log2x,∴当x=时,y=log2=-3.答案:-3 8.已知函数y=如图所示的是给定x的值,求其对应的函数值y的程序框图.①处应填写;②处应填写.解析:∵满足推断框中的条件执行y=2-x,∴①处应填“x<2?”,不满足x<2,即x≥2时,y=log2x,故②处应填“y=log2x”.答案:x<2?y=log2x9.(2021山东泰安期末)设计一个算法,求实数x的确定值,并画出程序框图.解:第一步,输入一个实数x,其次步,推断x的符号.若x≥0,则输出x,否则,输出-x.程序框图如下:10.导学号38094005儿童乘坐火车时,若身高h不超过1.2 m,则无需购票;若身高h超过1.2 m,但不超过1.5 m,则可买半票;若身高h超过1.5 m,则应买全票.请设计一个算法,输入儿童的身高,输出购票状况,并画出程序框图.解:算法如下:第一步,输入身高h.其次步,推断h≤1.2是否成立.若成立,则输出“免费”,结束算法;若不成立,则执行第三步.第三步,推断h≤1.5是否成立.若成立,则输出“半票”,结束算法;若不成立,则输出“全票”,结束算法.程序框图如图所示.。
2021-2022学年人教A版数学必修3习题精选:第一章 算法初步 1.1.1 Word版含解析
第一章DIYIZHANG算法初步1.1算法与程序框图1.1.1算法的概念课后篇巩固探究1.(2021广西钦州期末)下列所给问题中,不行以设计一个算法求解的是()A.求1+2+3+…+10的值B.解方程组C.求半径为3的圆的面积D.求全部奇数的和解析:A.利用累加可得到解决问题的算法步骤;B.通过加减消元法可得到解决问题的相应的算法;C.已知半径,依据圆的面积公式可得到解决问题的步骤,从而得到相应的算法;D.奇数有无穷多个,由算法的有限性知它们的和不能设计算法求解.故选D.答案:D2.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③预备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用()A.13分钟B.14分钟C.15分钟D.23分钟解析:①洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③预备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是唯一的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.答案:C3.一个算法的步骤如下:第一步,输入x的值.其次步,计算x的确定值y.第三步,计算z=2y-y.第四步,输出z的值.若输入x的值为-3,则输出z的值为()A.4B.5C.6D.8解析:∵x=-3,∴y=|x|=3,∴z=23-3=5.答案:B4.如下算法:第一步,输入x的值.其次步,若x≥0,则y=x;否则,y=x2.第三步,输出y的值.若输出y的值是9,则x的值是()A.3B.-3C.3或-3D.-3或9解析:依据题意,可知此为分段函数y=的算法.当x≥0时,x=9;当x<0时,x2=9,x=-3.答案:D5.已知一个算法:第一步,m=a.其次步,若b<m,则m=b,输出m,结束算法;否则,执行第三步.第三步,若c<m,则m=c,输出m,结束算法.假如a=3,b=6,c=2,那么执行这个算法的结果是()A.3B.6C.2D.m解析:当a=3,b=6,c=2时,依据算法执行后,m=a=3<b=6,c=2<3=m,则m=c=2,即输出m的值为2.答案:C6.给出下列算法:第一步,输入x的值.其次步,当x>4时,计算y=x+2;否则,计算y=.第三步,输出y的值.当输入x=0时,输出y=.解析:由于x=0>4不成立,故计算y==2,输出y=2.答案:27.已知A(-1,0),B(3,2),下面是求直线AB 的方程的一个算法,请将其补充完整:第一步,.其次步,用点斜式写出直线AB的方程y-0=[x-(-1)].第三步,将其次步的方程化简,得到方程x-2y+1=0.解析:该算法的功能是用点斜式方法求直线方程,第一步应求直线的斜率,为“计算直线AB的斜率k=”.答案:计算直线AB的斜率k=8.下面是解二元一次方程组的一个算法,请将该算法补充完整.第一步,①②两式相加,得3x+9=0.③其次步,由③式可得.④第三步,将④式代入①式,得y=0.第四步,输出方程组的解.解析:由解二元一次方程组的步骤知,其次步应为解③得x的值为x=-3,第四步是输出方程组的解答案:x=-39.设计一个算法,求两底半径分别为2和4,高为4的圆台的表面积和体积.解:第一步,输入r1=2,r2=4,h=4.其次步,计算l=.第三步,计算S=π+π+π(r1+r2)l和V=π(+r1r2)h.第四步,输出计算结果.10.导学号38094001一位商人有9枚银元,其中有1枚略轻的是假银元.你能用天平(无砝码)将假银元找出来吗?写出解决这一问题的一种算法.解:能.方法一算法步骤如下:第一步,任取2枚银元分别放在天平的两边,假如天平左右不平衡,则轻的那一边就是假银元;假如天平平衡,则进行其次步.其次步,取下右边的银元,放在一旁,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一边就是假银元.方法二算法步骤如下:第一步,把9枚银元平均分成三组,每组3枚.其次步,先将其中两组分别放在天平的两边,假如天平不平衡,那么假银元就在轻的那一组;假如天平左右平衡,那么假银元就在未称量的那一组里.第三步,取出含假银元的那一组,从中任取2枚银元放在天平的两边进行称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称的那一枚就是假银元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.算法的有穷性是指()
A.算法的步骤必须有限
B.算法中每个操作步骤都是可执行的
C.算法的最后应有输出
D.以上说法都不正确
解析:由算法的概念,知应选A项.
答案: A
2.下列关于算法的说法中,正确的是()
A.算法就是某个问题的解题过程
B.算法执行后可以不产生确定的结果
C.解决某类问题的算法不是唯一的
D.算法可以无限地操作下去不停止
解析:算法与一般意义上具体问题的解法既有区别,又有联系,算法的获得要借助一类问题的求解方法,而这一类任何一个具体问题都可以用这类问题的算法来解决,因此A选项错误;算法中的每一步,都应该是确定的,并且能有效地执行,得到确定的结果,因此选项B错误;算法的操作步骤必须是有限的,所以D项也不正确,故选C.
答案: C
3.下列语句表达中有算法的是()
①从郑州去纽约,可以先乘火车到北京,再坐飞机抵达;
②利用公式S=
3
4a
2计算边长为4的正三角形的面积;
③2x>3(x-1)+5;
④求经过M(-1,3)且与直线2x+y-3=0平行的直线,可以直接设直线方程为2x+y+c=0,将M(-1,3)坐标代入方程求出c值,再写出方程
A.①②③B.①③④
C.①②④D.②③④
解析:判断算法的标准是“解决问题的有效步骤或程序”,解决的问题不仅仅限于数学问题,①②④都表达了一种算法;对③只是一个纯数学问题,没有解决问题的步骤,不属于算法范畴.故选C.
答案: C
4.(2015·温州高一期中)阅读下面的算法:
第一步,输入两个实数a ,b .
第二步:若a <b ,则交换a ,b 的值,否则执行第三步.
第三步,输出a .
这个算法输出的是( )
A .a ,b 中的较大数
B .a ,b 中的较小数
C .原来的a 的值
D .原来的b 的值
解析: 第二步中,若a <b ,则交换a ,b 的值,那么a 是a ,b 中的较大数;否则a <b 不成立,即a ≥b ,那么a 也是a ,b 中的较大数.故选A.
答案: A
二、填空题(每小题5分,共15分)
5.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用________分钟.
解析: ①洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是唯一的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.
答案: 15
6.(2015·泗水一中月考)有如下算法:
第一步,输入x 的值.
第二步,若x ≥0成立,则y =x .
否则,y =x 2.
第三步,输出y 的值.
若输出y 的结果是4,则输入的x 的值是________.
解析: 该算法是求分段函数
y =⎩⎪⎨⎪⎧x (x ≥0),
x 2(x <0)
的函数值. 当y =4时,易知x =4,或x =-2.
答案: 4或-2
7.求过P (a 1,b 1),Q (a 2,b 2)两点的直线的斜率有如下算法,请在横线上填上适当的步骤:
第一步,取x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.
第二步,判断“x 1=x 2”是否成立.若是,则输出“斜率不存在”;否则,执行第三步.
第三步,________________________________________________________________________. 第四步,输出k .
解析: 根据题意,当“x 1≠x 2”时执行第三步,即计算斜率k ,此时只需用两点间的斜率公式即可求解. 答案: 计算k =y 2-y 1
x 2-x 1
三、解答题(每小题10分,共20分)
8.已知直角坐标系中的点A (-1,0),B (3,2),写出求直线AB 的方程的一个算法.
解析: 解答本题可先确定直线方程的形式,再利用条件求出直线方程,进而确定相应的算法. 方法一:第一步,求出直线AB 的斜率k =2-03-(-1)=12.
第二步,选定点A (-1,0),用点斜式写出直线AB 的方程y -0=12[x -(-1)].
第三步,将第二步的运算结果化简,得到方程x -2y +1=0.
第四步,输出结果x -2y +1=0.
方法二:第一步,设直线AB 的方程为y =kx +b .
第二步,将A (-1,0),B (3,2)代入第一步设出的方程,得到-k +b =0,3k +b =2.
第三步,解第二步所得的两方程组成的方程组,得到k =12,b =12.
第四步,把第三步得到的运算结果代入第一步所设的方程,得到y =12x +12.
第五步,将第四步所得结果整理,得到方程x -2y +1=0.
第六步,输出结果x -2y +1=0.
9.设计一个求1×3×5×7×9×11的算法.
解析: 方法一:第一步,先求1×3,得到结果3.
第二步,将第一步得到的乘积3再乘5,得到结果15.
第三步,将15再乘7,得到105.
第四步,将105再乘9,得到945.
第五步,将945再乘11,得到10 395.
结束算法.
方法二:第一步,令P =1,i =3.
第二步,将P 乘i 的结果计算出来,并用P 表示结果.
第三步,将i的值加2,并仍用i表示.
第四步,若i≤11,则转至第二步;否则,结束算法.。