江苏省2015高考理科数学二轮专题整合规范练6份

合集下载

2015年全国统一高考数学试卷(理科)(新课标i)附详细解析

2015年全国统一高考数学试卷(理科)(新课标i)附详细解析

2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。

2015届高三人教通用文科数学二轮复习规范练6:函数与导数

2015届高三人教通用文科数学二轮复习规范练6:函数与导数

规范练(六) 函数与导数1.已知函数f (x )=ax 2+x -x ln x . (1)若a =0,求函数f (x )的单调区间;(2)若f (1)=2,且在定义域内f (x )≥bx 2+2x 恒成立,求实数b 的取值范围. 解 (1)当a =0时,f (x )=x -x ln x ,函数定义域为(0,+∞). f ′(x )=-ln x ,由-ln x =0,得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )在(0,1)上是增函数;当x ∈(1,+∞)时,f ′(x )<0,f (x )在(1,+∞)上是减函数. (2)由f (1)=2,得a +1=2,∴a =1, ∴f (x )=x 2+x -x ln x ,由f (x )≥bx 2+2x ,得(1-b )x -1≥ln x . 又∵x >0,∴b ≤1-1x -ln xx 恒成立.令g (x )=1-1x -ln x x ,可得g ′(x )=ln xx 2,由g ′(x )=0,得x =1. ∴g (x )在(0,1]上单调递减,在[1,+∞)上单调递增, ∴g (x )min =g (1)=0,∴b 的取值范围是(-∞,0]. 2.设f (x )=e x (ax 2+x +1). (1)若a >0,讨论f (x )的单调性;(2)x =1时,f (x )有极值,证明:当θ∈⎣⎢⎡⎦⎥⎤0,π2时,|f (cos θ)-f (sin θ)|<2.(1)解 f ′(x )=e x (ax 2+x +1)+e x (2ax +1)=a e x (x +1a )(x +2), 当a =12时,由f ′(x )=12e x(x +2)2≥0,所以f (x )在R 上单增递增; 当0<a <12时,由f ′(x )>0,得x >-2或x <-1a ; 由f ′(x )<0,得-1a <x <-2,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-1a 和(-2,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-1a ,-2上单调递减.当a >12时,由f ′(x )>0,得x >-1a 或x <-2, 由f ′(x )<0,得-2<x <-1a ,∴f (x )在(-∞,-2)和⎝ ⎛-1a ,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2,-1a 上单调递减. (2)证明 ∵x =1时,f (x )有极值, ∴f ′(1)=3e(a +1)=0,∴a =-1,∴f (x )=e x (-x 2+x +1),f ′(x )=-e x (x -1)(x +2). 由f ′(x )>0,得-2<x <1,∴f (x )在[-2,1]上单增. ∵θ∈⎣⎢⎡⎦⎥⎤0,π2,∴sin θ,cos θ∈[0,1],∴|f (cos θ)-f (sin θ)|≤f (1)-f (0)=e -1<2.3.已知函数f (x )=-x 3+ax 2+bx +c 在(-∞,0)上是减函数,在(0,1)上是增函数,函数f (x )在R 上有三个零点,且1是其中一个零点. (1)求b 的值;(2)求f (2)的取值范围;(3)设g (x )=x -1,且f (x )>g (x )的解集为(-∞,1),求实数a 的取值范围. 解 (1)∵f ′(x )=-3x 2+2ax +b∴当x =0时,f (x )取到极小值,即f ′(0)=0,∴b =0. (2)由(1)知,f (x )=-x 3+ax 2+c ,∵1是函数f (x )的一个零点,即f (1)=0,∴c =1-a . ∵f ′(x )=-3x 2+2ax =0的两个根分别为 x 1=0,x 2=2a 3.又∵f (x )在(0,1)上是增函数,且函数f (x )在R 上有三个零点, ∴x 2=2a 3>1,即a >32.∴f (2)=-8+4a +(1-a )=3a -7>-52. 故f (2)的取值范围为(-52,+∞).(3)法一 由(2)知f (x )=-x 3+ax 2+1-a ,且a >32. ∵1是函数f (x )的一个零点,∴f (1)=0,∵g (x )=x -1,∴g (1)=0,∴点(1,0)是函数f (x )和函数g (x )的图象的一个交点结合函数f (x )和函数g (x )的图象及其增减特征可知,当且仅当函数f (x )和函数g (x )的图象只有一个交点(1,0)时, f (x )>g (x )的解集为(-∞,1).即方程组⎩⎨⎧ y =x -1y =-x 3+ax 2+1-a ①只有一解:⎩⎨⎧x =1y =0. 由-x 3+ax 2+1-a =x -1, 得(x 3-1)-a (x 2-1)+(x -1)=0, 即(x -1)[x 2+(1-a )x +(2-a )]=0, ∴x =1或x 2+(1-a )x +(2-a )=0, 由方程x 2+(1-a )x +(2-a )=0②, 得Δ=(1-a )2-4(2-a )=a 2+2a -7, 当Δ<0,即a 2+2a -7<0,又因为a >32,解得32<a <22-1.此时方程②无实数解,方程组①只有一个解⎩⎨⎧x =1,y =0,所以32<a <22-1时,f (x )>g (x )的解集为(-∞,1). 法二 由(2)知f (x )=-x 3+ax 2+1-a ,且a >32. ∵1是函数f (x )的一个零点, ∴f (x )=-(x -1)[x 2+(1-a )x +1-a ] 又f (x )>g (x )的解集为(-∞,1),∴f (x )-g (x )=-(x -1)[x 2+(1-a )x +2-a ]>0的解集为(-∞,1). ∴x 2+(1-a )x +2-a >0恒成立. ∴Δ=(1-a )2-4×1×(2-a )<0. ∴a 2+2a -7<0,∴(a +1)2<8. 又∵a >32,∴32<a <22-1,∴a 的取值范围为⎝ ⎛⎭⎪⎫32,22-1.4.已知函数f (x )=ax +ln x ,其中a 为常数 (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数解. 解 (1)当a =-1时,f (x )=-x +ln x (x >0), f ′(x )=-1+1x =1-xx ,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数,f (x )max =f (1)=-1, (2)∵f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0不合题意. ②若a <-1e ,则由f ′(x )>0⇒a +1x >0, 即0<x <-1a .由f ′(x )<0得a +1x <0,即-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上是增函数,在⎝ ⎛⎭⎪⎫-1a ,e 上是减函数, ∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,则ln ⎝ ⎛⎭⎪⎫-1a =-2,∴-1a =e -2,即a =-e -2.∵-e 2<-1e , ∴a =-e 2为所求.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, ∴|f (x )|≥1又令g(x)=ln xx+12,g′(x)=1-ln xx2.令g′(x)=0,得x=e.当0<x<e时,g′(x)>0,g(x)在(0,e)上单调递增,当x>e时,g′(x)<0,g(x)在(e,+∞)上单调递减,∴g(x)max=g(e)=1e+12<1,∴g(x)<1,∴|f(x)|>g(x),即|f(x)|>ln xx+12,∴方程|f(x)|=ln xx+12没有实数解.。

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为 5 .考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 6 .考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7 .考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解解:根据题意,记白球为A,红球为B,黄球为C1、C2,则答:一次取出2只球,基本事件为AB、AC、AC2、BC1、BC2、C1C2共6种,1其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点本题考查了用列举法求古典概型的概率的应用问题,是基础题目.评:6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3 .平面向量的基本定理及其意义.考点:专平面向量及应用.题:直接利用向量的坐标运算,求解即可.分析:解解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)答:可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.点评:7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考指、对数不等式的解法.点:函数的性质及应用;不等式的解法及应用.专题:分利用指数函数的单调性转化为x2﹣x<2,求解即可.析:解解;∵2<4,答:∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度评:不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为 3 .考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx ﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2 .考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为 4 .考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g (x )与φ(x )=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4.故答案为:4. 点评: 本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k •a k+1)的值为 .考点:数列的求和.专题:等差数列与等比数列;平面向量及应用. 分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 解解:答:=+=++++=++=++,∴(a k•a k+1)=+++++++…+ ++++++…+=+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln (1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C 的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f (x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.数学归纳法.考点:综合题;点列、递归数列与数学归纳法.专题:分(1)f(6)=6+2++=13;析:(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解解:(1)f(6)=6+2++=13;答:(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)重庆万州区教育事业单位考试资料 页脚内容21 +2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立. 综上所述,结论对满足n≥6的自然数n 均成立. 点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏高考数学试题及答案

2015年江苏高考数学试题及答案

(第4题图)绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ参考公式:圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.圆锥的体积公式:V 圆柱=13Sh ,其中S 是圆锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为 ▲ . 2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 ▲ . 3.设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为 ▲ . 4.根据如图所示的伪代码,可知输出的结果S 为 ▲ .5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球, 从中一次随机摸出2只球,则这2只球颜色不同的概率为 ▲ .6.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值 为 ▲ .7.不等式2x 2-x<4的解集为 ▲ .8.已知tan α=-2,tan(α+β)=17,则tan β的值为 ▲ .9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将 它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新 的底面半径为 ▲ .10.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 ▲ .11.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{1a n}的前10项和为 ▲ .12.在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则是实数c 的最大值为 ▲ .13.已知函数f (x )=|l n x |,g (x )=⎩⎨⎧ 0 ,0<x ≤1,|x 2-4|-2, x >1.,则方程|f (x )+g (x )|=1实根的个数为 ▲ .14.设向量a k =(cos k π6,sin k π6+cos k π6)(k =0,1,2,… ,12),则∑11k =0(a k ·a k +1)的值为 ▲ .(第16题图)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; ` (2)求sin2C 的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE //平面AA 1C 1C ; (2)BC 1⊥AB 1.17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连 接两条公路的山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C , 计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5 千米和40千米,点N 到l 1,l 2,的距离分别为20千米和2.5千米,以l 1,l 2,所在的直线分别为 x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b (其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.MNl 2l 1xy O C Pl(第17题图)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平 分线分别交直线l 和AB 于点P ,C ,若PC =2AB , 求直线AB 的方程.19.(本小题满分16分)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ).(1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关常数),当函数f (x )有三个不同零点时,a 的取值 范围恰好是(-∞,-3)∪(1,32)∪(32,+∞),求c 的值.20.(本小题满分16分)设a 1,a 2,a 3,a 4是各项为正数且公差为d(d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次成等比数列,并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n +k ,a 3n+2k,a 4n+3k依次成等比数列?并说明理由.(第18题图)A(第21—A 图)绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,在△ABC 中,AB =AC ,△ABC 的外接圆圆O 的弦AE 交BC 于点D .求证:△ABD ∽△AE B .B .[选修4-2:矩阵与变换](本小题满分10分)已知x ,y ∈R ,向量α=⎣⎡⎦⎤ 1 -1是矩阵A =⎣⎡⎦⎤x 1y 0的属性特征值-2的一个特征向量,矩 阵A 以及它的另一个特征值.PA BCDQ (第22题)C .[选修4-4:坐标系与参数方程] (本小题满分10分)已知圆C 的极坐标方程为ρ2+22ρsin (θ-π4)-4=0,求圆C 的半径.D .[选修4-5:不等式选讲] (本小题满分10分)解不等式x +|2x +3|≥2.[必做题]第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答.解答应写出 文字说明、证明过程或演算步骤.22.如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2.P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长.23.已知集合X ={1,2,3},Y n ={1,2,3,···,n }(n ∈N *),设S n ={(a ,b )|a 整除b ,或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素个数. (1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.。

2015年高考理科数学全国卷(新课标II卷)含答案

2015年高考理科数学全国卷(新课标II卷)含答案

1 2
3 . 2
y
B D
1 2 3 4
O
–1 –2 –3 –4
x
C
15. (a x)(1 x) 的展开式中 x 的奇数次幂项的系数之和为 32,则 a __________.
4
【答案】 3 【解析】 试题分析:由已知得 (1 x) 1 4 x 6 x 4 x x ,故 (a x)(1 x) 的展开式中 x 的奇数次幂项分别
x A O B
【答案】B 【解析】
考点:函数的图象和性质. 11.已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,∆ABM 为等腰三角形,且顶角为 120° ,则 E 的离 心率为( ) A. 5 【答案】D 【解析】 B. 2 C. 3 D. 2
x2 y 2 2 1(a 0, b 0) ,如图所示, AB BM ,ABM 1200 ,过点 M 2 a b 作 MN x 轴,垂足为 N ,在 RtBMN 中, BN a , MN 3a ,故点 M 的坐标为 M (2a, 3a ) ,
4 2 3 4
4
为 4ax , 4ax3 , x , 6 x 3 , x 5 ,其系数之和为 4a 4a 1+6+1=32 ,解得 a 3 . 考点:二项式定理. 16.设 S n 是数列 an 的前 n 项和,且 a1 1 , an1 Sn Sn1 ,则 Sn ________. 【答案】 【解析】 试题分析:由已知得 an1 Sn1 Sn Sn1 Sn ,两边同时除以 Sn 1 Sn ,得 是以 1 为首项, 1 为公差的等差数列,则
1 1 2 1 R R R3 36 , 故 R 6 , 则 球 O 的 表 面 积 为 3 2 6

江苏省2015高考理科数学二轮专题整合:规范练3解析几何问题

江苏省2015高考理科数学二轮专题整合:规范练3解析几何问题

规范练(三) 解析几何问题1.已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E . (1)求E 的方程;(2)若点A ,B 是E 上的两个动点,O 为坐标原点,且OA →·OB →=-16,求证:直线AB 恒过定点.(1)解 设P (x ,y ),则x 2+(y -2)2=(y +1)+1,∴x 2=8y .∴E 的方程为x 2=8y . (2)证明 设直线AB :y =kx +b ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入x 2=8y 中得x 2-8kx -8b =0,所以x 1+x 2=8k ,x 1x 2=-8b .OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 21x 2264=-8b +b 2=-16,∴b =4,所以直线AB 恒过定点(0,4).2.椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且经过点P ⎝ ⎛⎭⎪⎫1,22.过坐标原点的直线l 1与l 2均不在坐标轴上,l 1与椭圆M 交于A ,C 两点,l 2与椭圆M 交于B ,D 两点. (1)求椭圆M 的方程;(2)若平行四边形ABCD 为菱形,求菱形ABCD 面积的最小值.解(1)依题意有⎩⎪⎨⎪⎧c =22a ,1a 2+12b2=1,又因为a 2=b 2+c 2,所以⎩⎨⎧a 2=2b 2=1.故椭圆M的方程为x 22+y 2=1.(2)设直线AC :y =k 1x ,直线BD :y =k 2x ,A (x A ,y A ),C (x C ,y C ).联立⎩⎪⎨⎪⎧x 22+y 2=1y =k 1x,得方程(2k 21+1)x 2-2=0,x 2A =x 2C =22k 21+1,故OA =OC =1+k 21·22k 21+1. 同理,OB =OD =1+k 22·22k 22+1.又因为AC ⊥BD ,所以OB =OD =1+(1k 1)2·22(1k 1)2+1,其中k 1≠0. 从而菱形ABCD 的面积S=2OA ·OB=21+k 21·22k 21+1·1+(1k 1)2·22(1k 1)2+1, 整理得S =412+1(k 1+1k 1)2,其中k 1≠0.故当k 1=1或-1时,菱形ABCD 的面积最小,该最小值为83.3.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →. (1)求椭圆方程;(2)求m 的取值范围.解 (1)由题意知椭圆的焦点在y 轴上 , 设椭圆方程为y 2a 2+x 2b 2=1(a >b >0), 由题意知a =2,b =c ,又a 2=b 2+c 2,则b =2, 所以椭圆方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意,直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,即⎩⎨⎧y 2+2x 2=4,y =kx +m ,则(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0,由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k 2,x 1·x 2=m 2-42+k 2.又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ).∴-x 1=2x 2,∴⎩⎨⎧x 1+x 2=-x 2,x 1x 2=-2x 22.∴m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22,整理得(9m 2-4)k 2=8-2m 2, 又9m 2-4=0时不成立,∴k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0.∴m 的取值范围为⎝ ⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2. 4.已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,CP =1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M . (1)求曲线M 的方程;(2)设直线BC 与曲线M 的另一交点为D ,当点A 在以线段CD 为直径的圆上时,求直线BC 的方程.解 (1)由题知CA +CB =CP +CQ +AP +BQ =2CP +AB =4>AB , 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫AB 22=3,所以曲线M :x 24+y 23=1(y ≠0)为所求.(2)注意到直线BC 的斜率不为0,且过定点B (1,0),设l BC :x =my +1,C (x 1,y 1),D (x 2,y 2), 由⎩⎨⎧x =my +1,3x 2+4y 2=12,消x 得(3m 2+4)y 2+6my -9=0,所以y 1,2=-3m ±6m 2+13m 2+4,所以⎩⎪⎨⎪⎧y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,因为AC →=(my 1+2,y 1),AD →=(my 2+2,y 2),所以AC →·AD →=(my 1+2)(my 2+2)+y 1y 2=(m 2+1)y 1y 2+2m (y 1+y 2)+4=-9(m 2+1)3m 2+4-12m 23m 2+4+4=7-9m 23m 2+4.注意到点A 在以CD 为直径的圆上,所以AC →·AD →=0,即m =±73,所以直线BC 的方程3x +7y -3=0或3x -7y -3=0为所求.。

高考理科数学二轮复习练习:大题规范练1“17题~19题+二选一”46分练

高考理科数学二轮复习练习:大题规范练1“17题~19题+二选一”46分练

大题规范练(一)“17题~19题+二选一”46分练(时间:45 分钟分值:46 分)解答题(本大题共 4 小题,共46 分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知正项等差数列{ a n} 的前n项和为S n,且知足a1+a5=2a723,S7=63.(1)求数列{a n} 的通项公式a n;(2)若数列{b n}知足b1=a1 且b n+1-b n=a n+1,求数列1b n的前n项和T n.【导学号:07804229】[解] (1)法一:(等差数列的基本量)设正项等差数列{a n} 的首项为a1,公差为d,易知a n>0,2a1+a1+4d=1+2d7 a则2,7a1+21d=63a=31解得,d 2=∴a n=2n+1.22法二:(等差数列的性质)∵{ a n} 是等差数列且a1+a5=3,∴2a3=a7 272 a3,又a n>0,∴a3=7.∵S7=a1+a72=7a4=63,∴a4=9,∴d=a4-a3=2,∴a n=a3+( n-3)d=2n+1.+1-b n=a n+1 且a n=2n+1,(2)∵b n∴b n+1-b n=2n+3,当n≥2时,b n=( b n-b n -1-b n-2)+⋯+(b2-b1)+b1=(2 n+1)+(2n-1)+⋯+5+3=-1)+(b nn(n+2),当n=1时,b1=3知足上式,故b n=n( n+2).1 1 ∴=b nn n+=121 1-n n+2.1 ∴T n=+b11+⋯+b21+b n-1-11b n1=2 1-13+1 1-2 4+1-315+⋯+1-n-11n+1+1n-1n+212=1+12-1 1-n+1 n+23 =-42n+3n+n+.18.如图1,已知直角梯形ABCD 中,AB=AD=12CD=2,AB∥DC,AB⊥AD,E为C D 的中点,沿AE 把△DAE 折起到△PAE 的地点(D 折后变成P),使得PB=2,如图2.(1)求证:平面PAE⊥平面ABCE;(2)求直线P B 和平面PCE 所成角的正弦值.[解] (1)证明:如图(1),取AE 的中点O,连结PO,OB,BE.因为在平面图形中,如题图(图1),连结BD,BE,易知四边形ABED为正方形,图(1)因此在立体图形中,△PAE,△BAE为等腰直角三角形,因此PO⊥AE,OB⊥AE,PO=OB=2,因为PB=2,因此PO2+OB2=PB2,因此PO⊥OB,又AE∩OB=O,因此PO⊥平面ABCE,因为PO? 平面PAE,因此平面PAE⊥平面ABCE .(2)由(1)知,OB,OE,OP 两两垂直,以O为坐标原点,以OB,OE,OP 所在直线分别为x轴、y轴、z轴成立空间直角坐标系,如图(2),则O(0,0,0),P(0,0,2),B( 2,0,0),E(0,→→→=( 2,0,-2),EP=(0,-2,2),EC=( 2,2,0).2,0),C( 2,2 2,0),PB图(2)设平面PCE 的法向量为n=(x,y,z),→n·EP则→=0,=0,n·EC 即-2y+2z=0,2x+2y=0,令x=1,得y=-1,z=-1,故平面PCE 的一个法向量为n=(1,-1,-1).→因此cos〈PB,n〉=→PB·n 2 2==→2 3|PB| ·|n|6,36因此直线P B 和平面PCE 所成角的正弦值为.319.某学校为鼓舞家校互动,与某手机通信商合作,为教师办理流量套餐.为认识该校教师手机流量使用状况,经过抽样,获得100 位教师近 2 年每人手机月均匀使用流量L(单位:M) 的数据,其频次散布直方图以下:图3若将每位教师的手机月均匀使用流量分别视为其手机月使用流量,并将频次视为概率,回答以下问题.(1)从该校教师中随机抽取 3 人,求这3人中至多有 1 人手机月使用流量不超出300 M 的概率;(2)现该通信商推出三款流量套餐,详情以下:套餐名称月套餐费/元月套餐流量/MA 20 300B 30 500C 38 700这三款套餐都有以下附带条款:套餐费月初一次性收取,手机使用流量一旦高出套餐流量,系统就自动帮用户充值200 M 流量,资费20 元;假如又高出充值流量,系统就再次自动帮用户充值200 M 流量,资费20 元,以此类推,假如当月流量有节余,系统将自动清零,无法转入次月使用.学校欲订购此中一款流量套餐,为教师支付月套餐费,并肩负系统自动充值的流量资费的75%,其他部分由教师个人肩负,问学校正购哪一款套餐最经济?说明原因.[解] (1)记“从该校随机抽取 1 位教师,该教师手机月使用流量不超出300 M ”为事件 D.依题意,P(D )=(0.000 8+0.002 2) ×100=0.3.X~这3 人中手机月使用流量不超出300 M 的人数为X,则中随机抽取 3 人,设从该校教师B(3,0.3),中随机抽取 3 人,至多有 1 人手机月使用流量不超出300 M 的概率为P(X=校教师因此从该0 03+C31×0.3 ×(1-0.3)2=0.343+0.441=0.784.0)+P(X=1)=C3×0.3 ×(1-0.3)(2)依题意,从该校随机抽取 1 位教师,该教师手机月使用流量L∈(300,500] 的概率为(0.002 5(0.000 8+0.000 2) ×100=0.1.+0.003 5) ×100=0.6,L∈(500,700] 的概率为X1 元,则X1 的全部可能取值为当学校正购A 套餐时,设为学校为1位教师肩负的月花费20,35,50,且P(X1=20)=0.3,P(X1=35)=0.6,P( X1=50)=0.1,因此X1 的散布列为X1 20 35 50P 0.3 0.6 0.1因此E(X1)=20×0.3+35×0.6+50×0.1=32(元).费X2元,则X2的全部可能取值为30,45,肩负的月花为当学校正购B 套餐时,设学校为1位教师且P(X2=30)=0.3+0.6=0.9,P(X2=45)=0.1,因此X2 的散布列为X2 30 45P 0.9 0.1因此E(X2)=30×0.9+45×0.1=31.5(元).为费X3 元,则X3 的全部可能取值为38,当学校正购C 套餐时,设学校为1位教师肩负的月花且P(X3=38)=1,因此E(X3)=38×1=38(元).因为E(X2)<E(X1)<E(X3),.济因此学校正购B 套餐最经(请在第22~23题中选一题作答,假如多做,则依据所做第一题计分)22.选修4-4:坐标系与参数方程在极坐标方程为ρ系中,圆C的极坐标2=4ρ(cos θ+sin θ)-3.若以极点O为原点,极轴所在成立平面直角坐标系.为x轴直线【导学号:07804230】(1)求圆C的参数方程;(2)在直角坐标系中,点P(x,y)是圆C上的动点,试求x+2y 的最大值,并求出此时点P 的.直角坐标2=4ρ(cos θ+sin θ)-3,[解] (1)因为ρ因此x2+y2-4x-4y+3=0,即(x-2)2+(y-2)2=5为方程,圆C 的直角坐标(θ为参数).x=2+5cos θy=2+5sin θC的参数方程为因此圆2+y2-4x-4y+3=0,整理得5y2+4(1-t)y+t2 (2)法一:设x+2y=t,得x=t-2y,代入x-4t+3=0 (*) ,则对于y 的方程必有实数根.因此Δ=16(1-t)2-20(t2-4t+3) ≥0,化简得t2-12t+11≤0,解得1≤t≤ 1 1,即x+2y 的最大值为11.将t=11 代入方程(*) 得y2-8y+16=0,解得y=4,代入x+2y=11,得x=3,故x+2y 的最大值为11时,点P 的直角坐标为(3,4).法二:由(1)可设点P(2+5cos θ,2+5sin θ),则x+2y=6+5cos θ+2 5sin θ=6+55 2 55 cos θ+ 5 sin θ,设s in α=5 2 5,则c os α=,因此x+2y=6+5sin(θ+α),5 5当sin(θ+α)=1时,(x+2y)max=11,π此时,θ+α=+2kπ,k∈Z,即θ=2 π-α+2kπk(∈Z),2因此sin θ=cos α=2 55,cos θ=sin α=5,故点P 的直角坐标为(3,4).523.选修4-5:不等式选讲已知函数f(x)=|x-2|+2,g(x)=m|x|(m∈R).(1)解对于x 的不等式f( x)>5;(2)若不等式f(x) ≥g(x)对随意x∈R恒成立,求m 的取值范围.[解] (1)由f(x)>5,得|x-2|>3,∴x-2<-3 或x-2>3,解得x<-1 或x>5.故原不等式的解集为{ x|x<-1 或x>5} .(2)由f(x) ≥g(x),得|x-2|+2≥m|x|对随意x∈R恒成立,当x=0时,不等式|x-2|+2≥0恒成立,|x-2|+2当x≠0时,问题等价于m≤对随意非零实数恒成立,|x||x-2|+2 |x-2+2|∵=1,∴m≤1,即m 的取值范围是(-∞,1].≥|x| |x|。

江苏省2015高考理科数学二轮专题整合:7-2矩阵与变换(选做部分)

江苏省2015高考理科数学二轮专题整合:7-2矩阵与变换(选做部分)

第2讲 矩阵与变换1.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,求矩阵A 的特征值.解 因为A -1A =E ,所以A =(A -1)-1.因为A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 321, 于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3 -2 λ-1=λ2-3λ-4.令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.2.(2011·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤112 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.解 A 2=⎣⎢⎡⎦⎥⎤1121⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3 24 3,设α=⎣⎢⎡⎦⎥⎤x y ,由A 2α=β得,⎣⎢⎡⎦⎥⎤3 24 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12,从而⎩⎨⎧ 3x +2y =1,4x +3y =2,解得⎩⎨⎧x =-1,y =2.所以α=⎣⎢⎡⎦⎥⎤-1 2. 3.求使等式⎣⎢⎡⎦⎥⎤2 43 5=⎣⎢⎡⎦⎥⎤2 00 1M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M .解 设M =⎣⎢⎡⎦⎥⎤m n p q ,则⎣⎢⎡⎦⎥⎤2435=⎣⎢⎡⎦⎥⎤2001M ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤2m -2n p -q ,则⎩⎨⎧ 2m =2,-2n =4,p =3,-q =5⇒⎩⎨⎧m =1,n =-2,p =3,q =-5,即M =⎣⎢⎡⎦⎥⎤1 -23 -5. 4.(2010·江苏卷)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k 00 1,N =⎣⎢⎡⎦⎥⎤11 0,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值. 解 由题设得,MN =⎣⎢⎡⎦⎥⎤k 00 1⎣⎢⎡⎦⎥⎤011 0=⎣⎢⎡⎦⎥⎤0 k 10,由⎣⎢⎡⎦⎥⎤0 k 10⎣⎢⎡⎦⎥⎤0 -2 -20 0 1=⎣⎢⎡⎦⎥⎤0 0 k 0 -2 -2,可知A 1(0,0)、B 1(0,-2)、C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知:|k |=2×1=2.所以k 的值为2或-2.5.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.设向量β=⎣⎢⎡⎦⎥⎤74,试计算A 5β的值.解 由题设条件可得,⎣⎢⎡⎦⎥⎤ 1 a -1 b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,即⎩⎨⎧ 2+a =4,-2+b =2,解得⎩⎨⎧a =2,b =4,得矩阵A =⎣⎢⎡⎦⎥⎤1 2-1 4.矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6,令f (λ)=0,解得λ1=2,λ2=3.当λ1=2时,得α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11,由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,得m =3,n =1,∴A 5β=A 5(3α1+α2)=3(A 5α1)+A 5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.6.(2014·南京,盐城模拟)已知矩阵M =⎣⎢⎡⎦⎥⎤213 4.(1)求矩阵M 的逆矩阵;(2)求矩阵M 的特征值及特征向量. 解 (1)设M -1=⎣⎢⎡⎦⎥⎤ab cd .则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 134=⎣⎢⎡⎦⎥⎤2a +3b a +4b 2c +3d c +4d =⎣⎢⎡⎦⎥⎤1 001,∴⎩⎨⎧2a +3b =1,2c +3d =0,a +4b =0,c +4d =1,解得⎩⎪⎪⎨⎪⎪⎧a =45,b =-15,c =-35,d =25,∴M -1=⎣⎢⎢⎡⎦⎥⎥⎤45 -15-35 25.(2)矩阵A 的特征多项式为f (x )=⎪⎪⎪⎪⎪⎪λ-2 -1 -3 λ-4=(λ-2)·(λ-4)-3=λ2-6λ+5,令f (λ)=0,得矩阵M 的特征值为1或5,当λ=1时,由二元一次方程⎩⎨⎧-x -y =0,-3x -3y =0,得x +y =0,令x =1,则y =-1,所以特征值λ=1对应的特征向量为α1=⎣⎢⎡⎦⎥⎤1-1;当λ=5时,由二元一次方程⎩⎨⎧3x -y =0,-3x +y =0,得3x -y =0,令x =1,则y =3,所以特征值λ=5对应的特征向量为α2=⎣⎢⎡⎦⎥⎤13.。

2015年高考新课标卷2理科数学(含解析)

2015年高考新课标卷2理科数学(含解析)

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质. 11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD【答案】D 【解析】DPCx试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。

2015届高三人教通用文科数学二轮复习规范练6份

2015届高三人教通用文科数学二轮复习规范练6份

目录规范练一 三角函数与解三角形 ................................................................ 1 规范练二 数 列 ...................................................................................... 3 规范练三 概率与统计 ............................................................................... 6 规范练四 立体几何 .................................................................................. 9 规范练五 圆锥曲线 ................................................................................ 13 规范练六 函数与导数 .. (16)规范练(一) 三角函数与解三角形1.已知函数f (x )=32sin ωx -sin 2ωx 2+12(ω>0)的最小正周期为π. (1)求ω的值及函数f (x )的单调递增区间; (2)当x ∈[0,π2]时,求函数f (x )的最值.解 (1)f (x )=32sin ωx -1-cos ωx 2+12=32sin ωx +12cos ωx =sin ⎝ ⎛⎭⎪⎫ωx +π6,因为f (x )的最小正周期为π,所以ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴当2x +π6=π2,即x =π6时,f (x )的最大值为1, 当2x +π6=7π6,即x =π2时,f (x )的最小值为-12.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知角A =π3,sin B =3sin C .(1)求tan C 的值;(2)若a =7,求△ABC 的面积.解 (1)因为A =π3,所以B +C =2π3,故sin ⎝ ⎛⎭⎪⎫2π3-C =3sin C ,所以32cosC +12sin C =3sin C ,即32cos C =52sin C ,得tan C =35. (2)由b sin B =csin C ,sin B =3sin C ,得b =3c .在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A =9c 2+c 2-2×(3c )×c ×12=7c 2,又∵a =7,∴c =1,b =3,所以△ABC 的面积为S =12bc sin A =334. 3.已知向量m =(cos A ,-sin A ),n =(cos B ,sin B ),m·n =cos 2C ,其中A ,B ,C 为△ABC 的内角. (1)求角C 的大小;(2)若AB =6,且CA →·CB →=18,求AC ,BC 的长.解 (1)m·n =cos A cos B -sin A sin B =cos (A +B ),因为A +B +C =π,所以cos (A +B )=-cos C =cos 2C , 即2cos 2C +cos C -1=0, 故cos C =12或cos C =-1. 又0<C <π,所以C =π3.(2)因为CA →·CB →=18,所以CA ·CB =36,①由余弦定理AB 2=AC 2+BC 2-2AC ·BC ·cos π3,及AB =6和①得,AC +BC =12,②由①②解得AC =6,BC =6.4.已知向量m =(sin x,1),n =⎝ ⎛⎭⎪⎫3A cos x ,A 2cos 2x (A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域.解 (1)f (x )=m ·n =3A sin x cos x +A2cos 2x =A ⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =A sin ⎝ ⎛⎭⎪⎫2x +π6. 因为A >0,由题意知A =6. (2)由(1)得f (x )=6sin ⎝ ⎛⎭⎪⎫2x +π6.将函数y =f (x )的图象向左平移π12个单位后得到 y =6sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π12+π6=6sin ⎝ ⎛⎭⎪⎫2x +π3的图象; 再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到y =6sin⎝ ⎛⎭⎪⎫4x +π3的图象; 因此g (x )=6sin ⎝ ⎛⎭⎪⎫4x +π3.因为x ∈⎣⎢⎡⎦⎥⎤0,5π24,所以4x +π3∈⎣⎢⎡⎦⎥⎤π3,7π6,故g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域为[-3,6].规范练(二) 数 列1.设数列{a n }的前n 项和为S n ,且S n =4a n -p ,其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,数列{b n }满足b n +1=b n +a n (n ∈N *),b 1=2,求数列{b n }的通项公式.(1)证明 因为S n =4a n -p (n ∈N *),则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3. 所以{a n }是首项为p 3,公比为43的等比数列. (2)解 当p =3时,由(1)知,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时, 可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3(43)n -1-1, 当n =1时,上式也成立.∴数列{b n }的通项公式为b n =3(43)n -1-1(n ∈N *).2.已知数列{a n }是等差数列,a 1=2,且a 2,a 3,a 4+1成等比数列. (1)求数列{a n }的通项公式; (2)设b n =2n ·(a n +2),求数列{b n }的前n 项和S n .解 (1)设数列{a n }的公差为d ,由a 1=2和a 2,a 3,a 4+1成等比数列,得 (2+2d )2=(2+d )(3+3d ),解得d =2或d =-1.当d =-1时,a 3=0与a 2,a 3,a 4+1成等比数列矛盾,舍去. 所以d =2,所以a n =a 1+(n -1)d =2+2(n -1)=2n ,即数列{a n }的通项公式为a n =2n . (2)b n =2n ·(a n +2)=2n ·(2n +2)=1n ·(n +1)=1n -1n +1.S n =b 1+b 2+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.3.已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),b n =log 24a n . (1)求数列{a n }和{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解 (1)当n =1时,a 1=S 1=2a 1-1,解得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -1-2a n -1+1=2a n -2a n -1,∴a n =2a n -1,则a na n -1=2,数列{a n }为以1为首项,2为公比的等比数列,∴a n =2n -1;b n =log 24a n =log 24×2n -1=log 22n+1=n +1;(2)由(1)可知a n b n =(n +1)2n -1,T n =2×20+3×21+4×22+…+(n +1)×2n -1, 2T n =2×21+3×22+4×23+…+(n +1)×2n ,上面两式相减:-T n =2+21+22+23+…+2n -1-(n +1)×2n =-n ×2n ,∴T n =n ·2n .4.已知n ∈N *,数列{d n }满足d n =3+(-1)n 2,数列{a n }满足a n =d 1+d 2+d 3+…+d 2n ;数列{b n }为公比大于1的等比数列,且b 2,b 4为方程x 2-20x +64=0的两个不相等的实根.(1)求数列{a n }和数列{b n }的通项公式;(2)将数列{b n }中的第a 1项,第a 2项,第a 3项,……,第a n 项,……删去后剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前2 015项和. 解 (1)∵d n =3+(-1)n2,∴a n =d 1+d 2+d 3+…+d 2n =3×2n2=3n ,因为b 2,b 4为方程x 2-20x +64=0的两个不相等的实数根. 所以b 2+b 4=20,b 2·b 4=64, 解得:b 2=4,b 4=16,所以:b n =2n .(2)由题知将数列{b n }中的第3项、第6项、第9项……删去后构成的新数列{c n }中的奇数项与偶数项仍成等比数列,首项分别是b 1=2,b 2=4,公比均是8,T 2015=(c 1+c 3+c 5+…+c 2015)+(c 2+c 4+c 6+…+c 2014) =2×(1-81 008)1-8+4×(1-81 007)1-8=20×81 007-67.规范练(三)概率与统计1.一个盒子中装有形状大小相同的5张卡片,上面分别标有数字1,2,3,4,5,甲乙两人分别从盒子中随机不放回的各抽取一张.(1)写出所有可能的结果,并求出甲乙所抽卡片上的数字之和为偶数的概率;(2)以盒子中剩下的三张卡片上的数字作为边长来构造三角形,求出能构成三角形的概率.解(1)甲乙两人分别从盒子中随机不放回的各抽取一张,基本事件有(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)共20个.设事件A=“甲乙所抽卡片上的数字之和为偶数”,则事件A包含的基本事件有(1,3),(1,5),(2,4),(3,1),(3,5),(4,2),(5,1),(5,3)共8个.所以P(A)=820=25.(2)剩下的三边长包含的基本事件为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个;设事件B=“剩下的三张卡片上的数字作为边长能构成三角形”则事件B包含的基本事件有:(2,3,4),(2,4,5),(3,4,5)共3个,所以P(B)=3 10.2.某个团购网站为了更好地满足消费者,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示.(1)分别求第三、四、五组的频率;(2)该网站在得分较高的第三、四、五组中用分层抽样的方法抽取6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的2个产品均来自第三组的概率.解(1)第三组的频率是0.150×2=0.3;第四组的频率是0.100×2=0.2;第五组的频率是0.050×2=0.1.(2)设“抽到的2个产品均来自第三组”为事件A,由题意可知,分别抽取3个、2个、1个.不妨设第三组抽到的是A1、A2、A3;第四组抽到的是B1、B2;第五组抽到的是C1,所含基本事件为:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{A3,B2},{A3,C1},{B1,B2},{B1,C1},{B2,C1},共15个,事件A包含的基本事件有3个,所以P(A)=315=15.3.已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组,现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.解(1)由题意,得抽出号码为22的组数为3.因为2+10×(3-1)=22,所以第1组抽出的号码应该为02,抽出的10名学生的号码依次分别为:02,12,22,32,42,52,62,72,82,92.(2)这10名学生的平均成绩为:x=110×(81+70+73+76+78+79+62+65+67+59)=71,故样本方差为:s2=110×(102+12+22+52+72+82+92+62+42+122)=52.(3)从这10名学生中随机抽取两名成绩不低于73分的学生,共有如下10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).其中成绩之和不小于154分的有如下7种:(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故被抽取到的两名学生的成绩之和不小于154分的概率为:P=7 10.4.随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响,现调查了某市500名居民的工作场所和呼吸系统健康,得到2×2列联表如下:室外工作室内工作合计有呼吸系统疾病150无呼吸系统疾病100合计200(1)补全2×2列联表;(2)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关;(3)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.参考公式与临界值表:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K2≥k0)0.1000.0500.0250.0100.001 k0 2.706 3.841 5.024 6.63510.828 解(1)列联表如下室外工作室内工作合计有呼吸系统疾病150200350 无呼吸系统疾病50100150 合计200300500(2)计算得,K2=500×(150×100-200×50)2350×150×200×300≈3.968>3.841,所以有95%的把握认为感染呼吸系统疾病与工作场所有关.(3)采用分层抽样从室内工作的居民中抽取6名进行座谈,有呼吸系统疾病的抽4人,记为A、B、C、D,无呼吸系统疾病的抽2人,记为E、F,从中抽两人,共有15种抽法,A=“从中随机的抽取两人,两人都有呼吸系统疾病”有6种,∴P(A)=25.规范练(四)立体几何1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且P A⊥底面ABCD,BD⊥PC,E是P A的中点.(1)求证:平面P AC⊥平面EBD;(2)若P A=AB=AC=2,求三棱锥P-EBD的体积.(1)证明∵P A⊥平面ABCD,∴P A⊥BD,又BD⊥PC,P A∩PC=P,∴BD⊥平面P AC,∵BD⊂平面EBD,∴平面P AC⊥平面EBD.(2)解 由(1)可知BD ⊥AC ,所以四边形ABCD 是菱形, ∠BAD =120°,∴S △ABD =12BD ·OA =12×23×1= 3.∴V P -EBD =V P -ABD -V E -ABD =13×3×2-13×3×1=33.2.如图所示,AB 是圆O 的直径,点C 是弧AB 的中点,点V 是圆O 所在平面外一点,D 是AC 的中点,已知AB =2,VA =VB =VC =2.(1)求证:OD ∥平面VBC ; (2)求证:AC ⊥平面VOD ; (3)求棱锥C -ABV 的体积.(1)证明 ∵O 、D 分别是AB 和AC 的中点, ∴OD ∥BC .又OD ⊄平面VBC ,BC ⊂平面VBC , ∴OD ∥平面VBC .(2)证明 ∵VA =VB ,O 为AB 中点,∴VO ⊥AB .连接OC ,在△VOA 和△VOC 中,OA =OC ,VO =VO ,VA =VC ,∴△VOA ≌△VOC ,∴∠VOA =∠VOC =90°,∴VO ⊥OC .又∵AB ∩OC =O ,AB ⊂平面ABC ,OC ⊂平面ABC ,∴VO⊥平面ABC.又∵AC⊂平面ABC,∴AC⊥VO.又∵VA=VC,D是AC的中点,∴AC⊥VD.∵VO⊂平面VOD,VD⊂平面VOD,VO∩VD=V,∴AC⊥平面VOD.(3)解由(2)知VO是棱锥V-ABC的高,且VO=VA2-AO2= 3. 又∵点C是弧AB的中点,∴CO⊥AB,且CO=1,AB=2,∴三角形ABC的面积S△ABC =12AB·CO=12×2×1=1,∴棱锥V-ABC的体积为V V-ABC =13S△ABC·VO=13×1×3=33,故棱锥C-ABV的体积为3 3.3.已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E、F分别在棱AA′,CC′上,且AE=C′F=2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.(1)证明取BC中点O,连接AO,因为三角形ABC是等边三角形,所以AO⊥BC,又因为平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,所以AO⊥平面BCC′B′,又BB′⊂平面BCC′B,所以AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC.所以BB ′⊥底面ABC .(2)解 显然M 不是A ′,B ′,棱A ′B ′上若存在一点M ,使得C ′M ∥平面BEF ,过M 作MN ∥AA ′交BE 于N ,连接FN ,MC ′,所以MN ∥CF ,即C ′M 和FN 共面, 所以C ′M ∥FN ,所以四边形C ′MNF 为平行四边形, 所以MN =2,所以MN 是梯形A ′B ′BE 的中位线,M 为A ′B ′的中点.4.正△ABC 的边长为2,CD 是AB 边上的高,E 、F 分别是AC 、BC 的中点(如图(1)),现将△ABC 沿CD 翻折成直二面角A -DC -B (如图(2)).在图(2)中: (1)求证:AB ∥平面DEF ; (2)求多面体D -ABFE 的体积.(1)证明 在△ABC 中,因为E 、F 分别是AC 、BC 的中点,所以EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF .所以AB ∥平面DEF(2)解 由二面角A -DC -B 是直二面角知平面ADC ⊥平面BCD ,又在正△ABC 中,D 为边AB 的中点,故AD ⊥CD ,所以AD ⊥平面BCD , V 三棱锥A -BCD =13·S △BCD ·AD =36,V 三棱锥E -FCD =13·12S △BCD ·12AD =324, 所以多面体D -ABFE 的体积V =V 三棱锥A -BCD -V 三棱锥E -FCD =38.规范练(五) 圆锥曲线1.已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E . (1)求E 的方程;(2)若点A ,B 是E 上的两个动点,O 为坐标原点,且O A →·O B →=-16,求证:直线AB 恒过定点.(1)解 设P (x ,y ),则x 2+(y -2)2=(y +1)+1,∴x 2=8y .∴E 的方程为x 2=8y .(2)证明 设直线AB :y =kx +b ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入x 2=8y 中得x 2-8kx -8b =0,所以x 1+x 2=8k ,x 1x 2=-8b .O A →·O B →=x 1x 2+y 1y 2=x 1x 2+x 21x 2264=-8b +b 2=-16,∴b =4,所以直线AB 恒过定点(0,4).2.如图,已知点A (1,2)是离心率为22的椭圆C :y 2a 2+x 2b 2=1(a >b >0)上的一点,斜率为2的直线BD 交椭圆C 于B 、D 两点,且A 、B 、D 三点互不重合.(1)求椭圆C 的方程;(2)求证:直线AB 、AD 的斜率之和为定值.(1)解 由题意,可得e =c a =22,将(1,2)代入y 2a 2+x 2b 2=1,得2a 2+1b 2=1,又a 2=b 2+c 2,解得a =2,b =2,c =2, 所以椭圆C 的方程为y 24+x 22=1.(2)证明 设直线BD 的方程为y =2x +m ,又A 、B 、D 三点不重合,所以m ≠0.设D (x 1,y 1)、B (x 2,y 2),由⎩⎨⎧y =2x +m 2x 2+y 2=4得,4x 2+22mx +m 2-4=0, 所以Δ=-8m 2+64>0,∴-22<m <22, x 1+x 2=-22m ①,x 1x 2=m 2-44②. 设直线AB 、AD 的斜率分别为k AB 、k AD , 则k AD +k AB =y 1-2x 1-1+y 2-2x 2-1=2x 1+m -2x 1-1+2x 2+m -2x 2-1=22+m ·x 1+x 2-2x 1x 2-x 1-x 2+1(*). 将①②式代入(*),得22+m -22m -2m 2-44+22m +1=22-22=0,所以k AD +k AB =0,即直线AB 、AD 的斜率之和为定值0.3.椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且经过点P (1,22).过坐标原点的直线l 1与l 2均不在坐标轴上,l 1与椭圆M 交于A ,C 两点,l 2与椭圆M 交于B ,D 两点. (1)求椭圆M 的方程;(2)若平行四边形ABCD 为菱形,求菱形ABCD 面积的最小值.解(1)依题意有⎩⎪⎨⎪⎧c =22a ,1a 2+12b 2=1,又因为a 2=b 2+c 2,所以⎩⎨⎧a 2=2,b 2=1,故椭圆M 的方程为x 22+y 2=1.(2)设直线AC :y =k 1x ,直线BD :y =k 2x ,A (x A ,y A ),C (x C ,y C ).联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k 1x ,得方程(2k 21+1)x 2-2=0,x 2A =x 2C =22k 21+1, 故|OA |=|OC |=1+k 21·22k 21+1. 同理,|OB |=|OD |=1+k 22·22k 22+1. 又因为AC ⊥BD ,所以|OB |=|OD |=1+(1k 1)2·22(1k 1)2+1,其中k 1≠0.从而菱形ABCD 的面积S =2|OA |·|OB |=21+k 21·22k 21+1·1+(1k 1)2·22(1k 1)2+1, 整理得S =412+1(k 1+1k 1)2,其中k 1≠0.故当k 1=1或-1时,菱形ABCD 的面积最小,该最小值为83.4.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →. (1)求椭圆方程; (2)求m 的取值范围.解 (1)由题意知椭圆的焦点在y 轴上 , 设椭圆方程为y 2a 2+x 2b 2=1(a >b >0),由题意知a =2,b =c ,又a 2=b 2+c 2,则b =2, 所以椭圆方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意,直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,即⎩⎨⎧y 2+2x 2=4,y =kx +m ,则(2+k 2)x 2+2mkx +m 2-4=0, Δ=(2mk )2-4(2+k 2)(m 2-4)>0, 由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k 2,x 1·x 2=m 2-42+k 2.又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ). ∴-x 1=2x 2,∴⎩⎨⎧x 1+x 2=-x 2,x 1x 2=-2x 22.∴m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22,整理得(9m 2-4)k 2=8-2m 2, 又9m 2-4=0时不成立,∴k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0.∴m 的取值范围为⎝ ⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2.规范练(六) 函数与导数1.已知函数f (x )=ax 2+x -x ln x . (1)若a =0,求函数f (x )的单调区间;(2)若f (1)=2,且在定义域内f (x )≥bx 2+2x 恒成立,求实数b 的取值范围. 解 (1)当a =0时,f (x )=x -x ln x ,函数定义域为(0,+∞). f ′(x )=-ln x ,由-ln x =0,得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )在(0,1)上是增函数;当x ∈(1,+∞)时,f ′(x )<0,f (x )在(1,+∞)上是减函数. (2)由f (1)=2,得a +1=2,∴a =1, ∴f (x )=x 2+x -x ln x ,由f (x )≥bx 2+2x ,得(1-b )x -1≥ln x .又∵x >0,∴b ≤1-1x -ln xx 恒成立.令g (x )=1-1x -ln x x ,可得g ′(x )=ln xx 2,由g ′(x )=0,得x =1. ∴g (x )在(0,1]上单调递减,在[1,+∞)上单调递增, ∴g (x )min =g (1)=0,∴b 的取值范围是(-∞,0]. 2.设f (x )=e x (ax 2+x +1). (1)若a >0,讨论f (x )的单调性;(2)x =1时,f (x )有极值,证明:当θ∈⎣⎢⎡⎦⎥⎤0,π2时,|f (cos θ)-f (sin θ)|<2.(1)解 f ′(x )=e x (ax 2+x +1)+e x (2ax +1)=a e x (x +1a )(x +2), 当a =12时,由f ′(x )=12e x (x +2)2≥0,所以f (x )在R 上单增递增; 当0<a <12时,由f ′(x )>0,得x >-2或x <-1a ; 由f ′(x )<0,得-1a <x <-2,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-1a 和(-2,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-1a ,-2上单调递减.当a >12时,由f ′(x )>0,得x >-1a 或x <-2, 由f ′(x )<0,得-2<x <-1a ,∴f (x )在(-∞,-2)和⎝ ⎛-1a ,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2,-1a 上单调递减.(2)证明 ∵x =1时,f (x )有极值, ∴f ′(1)=3e(a +1)=0,∴a =-1,∴f (x )=e x (-x 2+x +1),f ′(x )=-e x (x -1)(x +2). 由f ′(x )>0,得-2<x <1,∴f (x )在[-2,1]上单增. ∵θ∈⎣⎢⎡⎦⎥⎤0,π2,∴sin θ,cos θ∈[0,1],∴|f (cos θ)-f (sin θ)|≤f (1)-f (0)=e -1<2.3.已知函数f (x )=-x 3+ax 2+bx +c 在(-∞,0)上是减函数,在(0,1)上是增函数,函数f (x )在R 上有三个零点,且1是其中一个零点. (1)求b 的值;(2)求f (2)的取值范围;(3)设g (x )=x -1,且f (x )>g (x )的解集为(-∞,1),求实数a 的取值范围. 解 (1)∵f ′(x )=-3x 2+2ax +b∴当x =0时,f (x )取到极小值,即f ′(0)=0,∴b =0. (2)由(1)知,f (x )=-x 3+ax 2+c ,∵1是函数f (x )的一个零点,即f (1)=0,∴c =1-a . ∵f ′(x )=-3x 2+2ax =0的两个根分别为 x 1=0,x 2=2a3.又∵f (x )在(0,1)上是增函数,且函数f (x )在R 上有三个零点, ∴x 2=2a 3>1,即a >32.∴f (2)=-8+4a +(1-a )=3a -7>-52. 故f (2)的取值范围为(-52,+∞).(3)法一 由(2)知f (x )=-x 3+ax 2+1-a ,且a >32. ∵1是函数f (x )的一个零点,∴f (1)=0, ∵g (x )=x -1,∴g (1)=0,∴点(1,0)是函数f (x )和函数g (x )的图象的一个交点结合函数f (x )和函数g (x )的图象及其增减特征可知,当且仅当函数f (x )和函数g (x )的图象只有一个交点(1,0)时, f (x )>g (x )的解集为(-∞,1).即方程组⎩⎨⎧ y =x -1y =-x 3+ax 2+1-a ①只有一解:⎩⎨⎧x =1y =0. 由-x 3+ax 2+1-a =x -1, 得(x 3-1)-a (x 2-1)+(x -1)=0, 即(x -1)[x 2+(1-a )x +(2-a )]=0, ∴x =1或x 2+(1-a )x +(2-a )=0, 由方程x 2+(1-a )x +(2-a )=0②, 得Δ=(1-a )2-4(2-a )=a 2+2a -7,当Δ<0,即a 2+2a -7<0,又因为a >32,解得32<a <22-1.此时方程②无实数解,方程组①只有一个解⎩⎨⎧x =1,y =0,所以32<a <22-1时,f (x )>g (x )的解集为(-∞,1). 法二 由(2)知f (x )=-x 3+ax 2+1-a ,且a >32. ∵1是函数f (x )的一个零点, ∴f (x )=-(x -1)[x 2+(1-a )x +1-a ] 又f (x )>g (x )的解集为(-∞,1),∴f (x )-g (x )=-(x -1)[x 2+(1-a )x +2-a ]>0的解集为(-∞,1). ∴x 2+(1-a )x +2-a >0恒成立. ∴Δ=(1-a )2-4×1×(2-a )<0. ∴a 2+2a -7<0,∴(a +1)2<8. 又∵a >32,∴32<a <22-1, ∴a 的取值范围为⎝ ⎛⎭⎪⎫32,22-1.4.已知函数f (x )=ax +ln x ,其中a 为常数 (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数解. 解 (1)当a =-1时,f (x )=-x +ln x (x >0), f ′(x )=-1+1x =1-xx ,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数,f (x )max =f (1)=-1, (2)∵f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0不合题意. ②若a <-1e ,则由f ′(x )>0⇒a +1x >0, 即0<x <-1a .由f ′(x )<0得a +1x <0,即-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上是增函数,在⎝ ⎛⎭⎪⎫-1a ,e 上是减函数, ∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,则ln ⎝ ⎛⎭⎪⎫-1a =-2,∴-1a =e -2,即a =-e -2. ∵-e 2<-1e , ∴a =-e 2为所求.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, ∴|f (x )|≥1又令g (x )=ln x x +12,g ′(x )=1-ln x x 2. 令g ′(x )=0,得x =e.当0<x <e 时,g ′(x )>0,g (x )在(0,e)上单调递增, 当x >e 时,g ′(x )<0,g (x )在(e ,+∞)上单调递减, ∴g (x )max =g (e)=1e +12<1, ∴g (x )<1,∴|f (x )|>g (x ),即|f (x )|>ln x x +12, ∴方程|f (x )|=ln x x +12没有实数解.。

江苏省2015高考理科数学二轮专题整合:规范练4实际应用问题

江苏省2015高考理科数学二轮专题整合:规范练4实际应用问题

规范练(四) 实际应用问题1.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨. (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少? 解 (1)每吨平均成本为yx (万元). 则y x =x 5+8 000x-48≥2 x 5·8 000x-48=32,当且仅当x 5=8 000x ,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元. (2)设年获得总利润为R (x )万元. 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).∵R (x )在[0,210]上是增函数,∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.2.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+5(0<x <6),14 (x ≥6),已知每日的利润L =S -C ,且当x =2时,L =3.(1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解 (1)由题意可得:L =⎩⎪⎨⎪⎧2x +k x -8+2,0<x <6,11-x ,x ≥6,因为x =2时,L =3,所以3=2×2+k2-8+2, 解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以L =2(x -8)+18x -8+18=-[2(8-x )+188-x]+18≤-22(8-x )·188-x+18=6.当且仅当2(8-x )=188-x ,即x =5时取得等号.当x ≥6时,L =11-x ≤5.所以当x =5时,L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元.3.某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t 件时,销售所得的收入为⎝ ⎛⎭⎪⎫0.05t -120 000t 2万元.(1)该公司这种产品的年生产量为x 件,生产并销售这种产品所得到的利润关于当年产量x 的函数为f (x ),求f (x ); (2)当该公司的年产量为多少件时,当年所获得的利润最大? 解 (1)当0<x ≤500时,f (x )=0.05x -120 000x 2- ⎝ ⎛⎭⎪⎫0.25×x 100+0.5=-x 220 000+19400x -12, 当x >500时,f (x )=0.05×500-120 000×5002-⎝ ⎛⎭⎪⎫0.25×x 100+0.5=12-1400x ,故f (x )=⎩⎪⎨⎪⎧-120 000x 2+19400x -12,0<x ≤500,12-1400x ,x >500.(2)当0<x ≤500时,f (x )=-x 220 000+19400x -12= -120 000(x -475)2+34532, 故当x =475时,f (x )max =34532.当x >500时,f (x )=12-1400x <12-54=34432<34532.故当该公司的年产量为475件时,当年获得的利润最大.4.如图,一块弓形薄铁片EMF ,点M 为的中点,其所在圆O 的半径为4 dm(圆心O 在弓形EMF 内),∠EOF =2π3.将弓形薄铁片裁剪成尽可能大的矩形铁片ABCD (不计损耗),AD ∥EF ,且点A ,D 在上,设∠AOD =2θ.(1)求矩形铁片ABCD 的面积S 关于θ的函数关系式; (2)当裁出的矩形铁片ABCD 面积最大时,求cos θ的值. 解 (1)设矩形铁片的面积为S ,∠AOM =θ.当0<θ<π3时(如图1),AB =4cos θ+2,AD =2×4sin θ,S =AB ×AD =(4cos θ+2)(2×4sin θ)=16sin θ(2cos θ+1).当π3≤θ<π2时(如图2),AB =2×4cos θ,AD =2×4sin θ, 故S =AB ×AD =64sin θcos θ=32sin 2θ.综上得,矩形铁片的面积S 关于θ的函数关系式为S =⎩⎪⎨⎪⎧16sin θ(2cos θ+1),0<θ<π3,32sin 2θ, π3≤θ<π2.(2)当0<θ<π3时,求导得S ′=16[cos θ(2cos θ+1)+sin θ(-2sin θ)]=16(4cos 2θ+cos θ-2).令S ′=0,得cos θ=33-18.记区间⎝ ⎛⎭⎪⎫0,π3内余弦值等于33-18的角为θ0(唯一存在).列表:又当π3≤θ<π2时,S =32sin 2θ在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,所以当θ=θ0即cos θ=33-18时,矩形的面积最大.。

2015年江苏高考数学试题及答案

2015年江苏高考数学试题及答案

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)(2015•江苏)不等式2<4的解集为.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f (x)+g(x)|=1实根的个数为.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy 中,已知椭圆+=1(a >b >0)的离心率为,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程; (2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.19.(16分)(2015•江苏)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b=c ﹣a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c 的值.20.(16分)(2015•江苏)设a 1,a 2,a 3.a 4是各项为正数且公差为d (d≠0)的等差数列. (1)证明:31242,2,2,2a a a a依次构成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次构成等比数列?并说明理由;(3)是否存在1,a d 及正整数,n k ,使得231234,,,n n k n kn k a a a a +++依次构成等比数列?并说明理由。

2015年江苏高考数学试卷(含附加题)

2015年江苏高考数学试卷(含附加题)
(1)写出 的值;
(2)当 时,写出 的表达式,并用数学归纳法证明。
【答案】.
【解析】
【答案】
【解析】
13.已知函数 , ,则方程 实根的个数为。
【答案】
【解析】
14.设向量 ,则 的值为。
【答案】.
【解析】
二.解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明.证明过程或演算步骤.
15.(本小题满分14分)
在△ABC中,角A,B,C的对边分别为AB=2,AC=3,A=60o
一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.
1.设集合A={1,2,3 },B={2,4,5 },则A∪B中元素的个数.
【答案】
【解析】
2.已知一组数据4、6、5、8、7、6,那么这组数的平均数为.
【答案】
【解析】
3.若复数 z 满足z2=3+4i (i是虚数单位),则复数z 的模_________________
【答案】
【解析】
4.根据如图所示的伪代码,可知输出的结果S为___________
s←1
I←1
WhileI<8
s←s+2
I←I+3
End While
Print s
【答案】
【解析】
5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随
机摸出2只球,则这两只球颜色不同的概率是▲.
A.(几何证明选讲选做题)
A、(本小题满分10分)
如图,在 中, , 的外接圆圆O的弦 交 于点D
求证:
【答案】
【解析】
B.(矩阵与变换选做题)(本小题满分10分)

2015年全国高考理科数学试题及答案

2015年全国高考理科数学试题及答案

绝密★启用前2015年普通高等学校招生全国统一考试(全国卷2)理科数学注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()(A)-1 (B)0 (C)1 (D)2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析
因为点P到直线x﹣y+1=0的距离大于c恒成立,
所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.
故答案为:.
点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.
13.(5分)(2015?江苏)已知函数f(x)=|lnx|,g(x)=,则方程
|f(x)+g(x)|=1实根的个数为4.
点本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期
评性,考查了推理能力与计算能力,属于中档题.

二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)
15.(14分)(2015?江苏)在△ABC中,已知AB=2,AC=3,A=60°.
(1)求BC的长;
考点分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结
论.
解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.
g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;
5
将其分别代入y=,得,
解得,
9
(2)①由(1)y=(5≤x≤20),P(t,),
∴y′=﹣,
∴an=.
4
∴=2.
∴数列{}的前n项的和Sn=
=
=.
∴数列{}的前10项的和为.
故答案为:.
点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考
查了推理能力与计算能力,属于中档题.
22
﹣y
12.(5分)(2015?江苏)在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动

2015高考理科数学(人教版通用)二轮专题整合:限时练6

2015高考理科数学(人教版通用)二轮专题整合:限时练6

限时练(六)(建议用时:40分钟)一、选择题1.已知R 是实数集,M ={x |2x <1},N ={y |y =x -1+1},则N ∩∁R M = ( ). A .(1,2) B .[0,2] C .∅D .[1,2]解析 ∵2x <1,∴x -2x >0,∴x <0或x >2,∴M ={x |x <0或x >2},∵y =x -1+1≥1,∴N ={y |y ≥1},∴N ∩∁R M =[1,2]. 答案 D2.在复平面内,复数-2+3i3-4i(i 是虚数单位)所对应的点位于 ( ).A .第一象限B .第二象限C .第三象限D .第四象限解析 ∵-2+3i 3-4i =(-2+3i )(3+4i )(3-4i )(3+4i )=-18+i 25=-1825+125i ,∴-1825+125i 对应的点为(-1825,125),在第二象限. 答案 B 3.3cos 10°-1sin170°= ( ).A .4B .2C .-2D .-4解析3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin (10°-30°)12sin20°=-2sin20°12sin20°=-4.答案 D4.关于统计数据的分析,有以下几个结论:①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化; ③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;④已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则 P (X >4)=0.158 7;⑤某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为15人. 其中正确的个数为 ( ).A .2B .3C .4D .5解析 ①正确;②将一组数据中的每个数据都减去同一个数后,期望变小了,而方差不变,所以②错;③属于随机抽样;④P (X >4)=12[1-P (2≤x ≤4)]= 12(1-0.682 6)=0.158 7,所以④正确;⑤设样本容量为n ,根据分层抽样得7350=n750,得n =15,所以⑤正确.综上可知:①④⑤正确. 答案 B5.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( ).A .13B .26C .52D .156解析 ∵3(a 3+a 5)+2(a 7+a 10+a 13)=24,∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26.答案 B6.把边长为2的正方形ABCD 沿对角线BD 折起,连接AC ,得到三棱锥C -ABD ,其正视图、俯视图为全等的等腰直角三角形(如图所示),则其侧视图的面积为( ).A.32 B .12 C .1D .22解析 由条件知直观图如图所示,其中M 是BD 的中点,则CM ⊥平面ABD ,侧视图就是Rt △CMA ,CM =AM =1,CM ⊥AM ,S △CMA =12×1×1=12.答案 B7.程序框图如图所示,该程序运行后输出的S 的值是( ).A .2B .13C .-3D .-12解析 由程序框图知:S =2,i =1;S =1+21-2=-3,i =2;S =1-31+3=-12,i =3;S =1+(-12)1-(-12)=13,i =4;S =1+131-13=2,i =5;…,可知S 的周期为4,当i =2 015=4×503+3时,结束循环输出S ,即输出S =-12. 答案 D8.已知向量a ,b ,满足|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a·b x 在R上有极值,则向量a ,b 的夹角的取值范围是 ( ).A.⎣⎢⎡⎭⎪⎫0,π6 B .⎝ ⎛⎦⎥⎤π6,πC.⎝ ⎛⎦⎥⎤π3,π D .⎝ ⎛⎭⎪⎫π3,2π3解析 设a 、b 的夹角为θ,∵f (x )=13x 3+12|a |x 2+|a ||b |cos θ·x =13x 3+12|a |x 2+ 12|a |2cos θ·x ,∴f ′(x )=x 2+|a |x +12|a |2cos θ,∵函数f (x )有极值,∴f ′(x )=0有2个不同的实根,∴Δ=|a |2-2|a |2cos θ>0,即1-2cos θ>0,∴cos θ<12,∴π3<θ≤π. 答案 C9.设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且a =1,B =2A ,则b 的取值范围为( ).A .(2,3)B .(1,3)C .(2,2)D .(0,2)解析 ∵B =2A ,∴sin B =sin 2A ,∴sin B =2sin A cos A ,∴b =2a cos A ,又∵a =1,∴b =2cos A ,∵△ABC 为锐角三角形,∴0<A <π2,0<B <π2,0<C <π2,即0<A <π2,0<2A <π2,0<π-A -2A <π2,∴π6<A <π4,22<cos A <32,∴2<2cos A <3,∴b ∈(2,3). 答案 A10.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为 ( ). A. 2 B .2 2 C. 3D .433解析 设P 点在双曲线右支上,由题意得⎩⎨⎧|PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a ,故|PF 1|=4a ,|PF 2|=2a ,由条件得∠PF 1F 2=30°,由2asin 30°=4asin ∠PF 2F 1,得sin ∠PF 2F 1=1,∴∠PF 2F 1=90°,在Rt △PF 2F 1中,2c =(4a )2-(2a )2=23a ,∴e =ca = 3. 答案 C11.在平面直角坐标系中,记抛物线y =x -x 2与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A 内的概率为827,则k 的值为 ( ).A.13 B .23 C.12D .34解析 ∵M 的面积为⎠⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫12x 2-13x 3=16,A 的面积为(x -x 2-kx )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫12x 2-13x 3-k 2x 21-k 0=16(1-k )3,∴16(1-k )316=827,∴k =13.答案 A12.已知函数f (x )=⎩⎪⎨⎪⎧14x +1,x ≤1ln x ,x >1,则方程f (x )=ax 恰有两个不同的实根时,实数a 的取值范围是(注:e 为自然对数的底数) ( ).A.⎝ ⎛⎭⎪⎫0,1e B .⎣⎢⎡⎭⎪⎫14,1eC.⎝ ⎛⎭⎪⎫0,14 D .⎣⎢⎡⎭⎪⎫14,e解析 ∵y =ln x (x >1),∴y ′=1x ,设切点为(x 0,y 0),∴切线方程为y -y 0=1x(x -x 0),∴y -ln x 0=1x 0(x -x 0),若其与y =ax 相同,则a =1x 0,ln x 0-1=0,∴x 0=e ,∴a =1e .当直线y =ax 与y =14x +1平行时,直线为y =14x ,当x =1时,ln x -14x =ln 1-14<0,当x =e 时,ln x -14x =ln e -14e >0,当x =e 3时,ln x -14x =ln e 3-14e 3<0,∴y =ln x 与y =14x 的图象在(1,e),(e ,e 3)上各有1个交点,∴直线y =ax 在y =14x 和y =1e x 之间时,与函数f (x )的图象有2个交点,所以a ∈[14,1e ),故选B.答案 B 二、填空题13.若(x 2+1x )n 的二项展开式中,所有项的二项式系数和为64,则该展开式中的常数项为________.解析 ∵所有项的二项式系数和为64,∴2n =64.∴n =6,∴(x 2+1x )n =(x 2+1x )6,∴T r +1=C r 6(x 2)6-r ·(1x)r =C r 6x12-3r,令12-3r =0,得r =4,∴常数项为C 46=15.答案 1514.已知△P AD 所在平面与矩形ABCD 所在平面互相垂直,P A =PD =AB =2,∠APD =90°,若点P 、A 、B 、C 、D 都在同一球面上,则此球的表面积等于________. 解析 如图在Rt △P AD 中,AD =4+4=22,过△P AD 的外心M 作垂直于平面P AD 的直线l ,过四边形ABCD 的外心O 作垂直于平面ABCD 的直线m ,两线交于点O ,则O 为四棱锥P -ABCD 的外接球球心,2R =AC =4+8=23(R 为四棱锥P -ABCD 外接球的半径),即R =3,∴四棱锥P -ABCD 外接球的表面积S =4πR 2=12π.答案 12π15.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________. 解析 ∵⎩⎨⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,∴a n +2+a n =2a n +1,∴数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,∴a 3=a 2+2=4,∴S 10=1+2+4+6+…+18=1+9(2+18)2=91. 答案 9116.在△ABC 中,边AC =1,AB =2,角A =2π3,过A 作AP ⊥BC 于P ,且AP →=λAB →+μAC→,则λμ=________. 解析 AB →·AC →=2×1×cos 2π3=-1,∵AP ⊥BC ,∴AP →·BC→=0,即(λAB →+μAC →)·(AC →-AB →)=0,∴(λ-μ)AB →·AC →-λAB →2+μAC →2=0,即μ-λ-4λ+μ=0,∴μ=52λ①,∵P ,B ,C 三点共线,∴λ+μ=1②,由①②联立解得⎩⎪⎨⎪⎧λ=27,μ=57,∴λμ=27×57=1049. 答案 1049。

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考全国新课标卷Ⅱ理科数学真题一、选择题1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=() A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2}2、若a 为实数,且(2+ai)(a –2i)=–4i ,则a=() A .–1 B .0 C .1 D .23、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显着B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .20064、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则A .21 B .42 C .63 D .84 5、设函数f(x)=,则f(–2)+f(log 212)=() A .3 B .6 C .9 D .12 6.一个正方体被一个平面截去一部分后,分体积的比值为()A .B .C .D .7、过三点A .2 8、如上左2a=() A .0 9、已知A ,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36A .36π.256π10、如上左O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x x 的函数,则y=f(x)的图像大致为()A .B .C .D . 11、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为()A .B .2C .D .12、设函数f’(x)是奇函数f(x)(x R)的导函数,f(–1)=0,当x>0时,xf’(x)–f(x)<0,则使得f(x)>0成立的x 的取值范围是() A .(–∞,–1)∪(0,1) B .(,0)∪(1,+∞)C .(–∞,–1)∪(–1,0) D .(,1)∪(1,+∞) 二、填空题13、设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ=. 14、若x ,y 满足约束条件,则z=x+y 的最大值为.15、(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=.16、设S n 是数列{a n }的前n 项和,且a 1=–1,a n+1=S n S n+1,则S n =________________. 三、解答题17、△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (1)求.(2)若AD=1,DC=,求BD 和AC 的长.18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下: A 地区:62738192958574645376 78869566977888827689B 地区:73836251914653736482 93486581745654766579(1)均值及分散程度(记事件C :“A 地区用户的满意等级高于B 19、如图,长方形ABCD –A 1B 1C 1D 1中,AB=16,BC=101F=4.过点E ,F 的平面α(1)在途中画出这个正方形(不必说明画法和理由(2)求直线AF 与α平面所成角的正弦值.20、已知椭圆C :9x 2+y 2=M 2(m>0).直线l A ,B ,线段AB 的中点为M .(1)(2)若l l 的21、设函数(1)证明:(2)2)|≤e –1,求m 的取值范围.22、[选修4ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N E ,F 两点. (1)(2)若AG EBCF 的面积. 23、[选修4xOy 中,曲线C 1:(t 为参数,t≠0),其中0≤α<π. 在以O C 2:ρ=2sinθ,C 3:ρ=2cosθ. (1)求C 2与C (2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值24、[选修4–5:不等式选讲]设a ,b ,c ,d 均为正数,且a+b=c+d ,证明: (1)若ab>cd ,则+>+;(2)+>+是|a –b|<|c –d|的充要条件. 2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题1、答案:A .∵(x–1)(x+2)<0,解得–2<x<1,∴B={x|–2<x<1},∴A∩B={–1,0}.2、答案:B .∵(2+ai)(a–2i)=(2a+2a)+(a 2–4)i=–4i ,∴a 2–4=–4,解得a=0.3、答案:D .由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.4、答案:B .∵a 1+a 3+a 5=a 1+a 1q 2+a1q 4=3(1+q 2+q 4)=21,∴1+q 2+q 4=7,整理得(q 2+3)(q 2–2)=0.解得q 2=2,∴a 3+a 5+a 7=a 1q 2+a 1q 4+a 1q 6=a 1q 2(1+q 2+q 4)=3×2×7=42. 5、答案:C .∵f(–2)=1+log 2(2+2)=3,()222log 121log 3log 412log 1222f -+-==222log 3log 2log 6226+===,∴f(–2)+f(log 212)=9.6、答案:D .如图所示截面为ABC ,设边长为a ,则截取部分体积为S △ADC ·|DB|=a 3, 所以截去部分体积与剩余部分体积的比值为=.7、答案:C .由题可得,解得,所以圆方程为x 2+y 2–2x+4y –20=0,令x=0,解得y=–2±2, 所以|MN|=|–2+2–(–2–2)|=4. 8、答案:B .输入a=14,b=18.第一步a≠b 成立,执行a>b ,不成立执行b=b –a=18–14=4; 第二步a≠b第三步a≠b 第四步a≠b 第四步a≠b 第五步a≠b 9、答案:C 点C 到平面10、答案:当点P 在CD 当x=时,从点P B . 11、答案:过点M 作, 12、答案:因为当x>0 又因为函数且g(–, 二、填空题131415、答案:所以Ca+Ca+C+C+C=32,解得a=3.16、答案:–.∵a n+1=S n+1–S n =S n S n+1,∴–=1.即–=–1,∴{}是等差数列, ∴=–(n –1)=–1–n+1=–n ,即S n =–. 三、解答题17、答案:(1);(2)|BD|=,|AC|=1.(1)如图,由题意可得S △ABD =|AB||AD|sin ∠BAD,S △ADC =|AC||AD|sin ∠CAD, ∵S △ABD =2S △ADC ,∠BAD=∠DAC,∴|AB |=2|AC|,∴==. (2)设BC 边上的高为h ,则S △ABD =|BD|·h=2S △ADC =2××h ,解得|BD|=,设|AC|=x ,|AB|=2x ,则cos ∠BAD=,cos ∠DAC=.∵cos∠DAC=cos ∠BAD ,∴=,解得x=1或x=–1(舍去).∴|AC|=1. 18、(1)如图所示.通过茎叶图可知A 地区的平均值比B 地区的高,A地区的分散程度大于B地区.(2)记事件不满意为事件A1,B1,满意为事件A2,B2,非常满意为事件A3,B3.则由题意可得P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,则P(C)=P(A2)P(B1)+P(A3)(P(B1)+P(B2))=×+×(+)=.19、(1)如图所示(2)建立空间直角坐标系.由题意和(1)可得A(10,0,0),F(0,4,8),E(10,4,8),G(10,10,0),则向量AF=(–10,4,8),EF=(–10,0,0),EG=(0,6,–8).设平面EFHG的一个法向量为n=(x,y,z),则,即,解得x=0,令y=4,z=3,则n=(0,4,3).所以直线AF与α平面所成角的正弦值为sinθ=|cos<AF,n>|===.20、(1)设直线l的方程为y=kx+b(k≠0),点A(x1,y1),B(x2,y2),则M(,),联立方程,消去y整理得(9+k2)x2+2kbx+b2–m2=0(*),∴x1+x2=–,y1+y2=k(–)+2b=,∴kOM ·kAB=·k=·(–)·k=–9.k=4±,有21∴∴,所以此时当令e–m–2m 在而.当当22则∵.在在Rt△AEO中,sin∠OAE===.∴∠OAE=60°,∵∠OAE=∠OAF=∠EAF,AE=AF,∴∠EAF=2∠OAE=60°,∴△AEF、△ABC是等边三角形.连接OM,∴OM=2.∵OD⊥MN,∴MD=ND=MN=.在Rt△ODM中,OD===1,∴AD=OA+AD=4+1=5.在Rt△ADB中,AB===.∴四边形EBCF的面积为S△ABC –S△AEF=×()2–×(2)2=.23、(1)将曲线C2,C3化为直角坐标系方程C2:x2+y2–2y=0,C3:x2+y2–2x=0.联立,解得或.所以交点坐标为(0,0),(,).(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.∵A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).∴|AB|=|2sinα–2 cosα|=4|sin(α–)|.当α=时,|AB|取得最大值,最大值为4.24、(1)由题意可得(+)2=a+b+2,(+)2=c+d+2,∵ab>cd,∴>,而a+b=c+d,∴(+)2>(+)2,即+>+.(2)+>+,即a+b+2>c+d+2,∴>,∴ab>cd,∴–4ab<–4cd,∴(a+b)2–4ab<(c+d)2–4cd,∴(a–b)2<(c–d)2,∴|a–b|<|c–d|.。

高考理科数学总复习中档大题规范练6:新定义、推理证明含真题分类

高考理科数学总复习中档大题规范练6:新定义、推理证明含真题分类

6.与新定义、推理证明有关的压轴小题1.有三支股票A,B,C,28位股民的持有情况如下:每位股民至少持有其中一支股票,在不持有A股票的人中,持有B股票的人数是持有C股票的人数的2倍,在持有A股票的人中,只持有A股票的人数比除了持有A股票外同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A股票,则只持有B股票的股民人数是()A.7B.6C.5D.4答案A解析设只持有A股票的人数为X(如图所示),则持有A股票还持有其它股票的人数为X-1(图中d+e+f的部分),因为只持有一支股票的人中,有一半没持有B或C股票,则只持有了B或C股票的人数和为X(图中b+c部分).假设只同时持有了B和C股票的人数为a,那么X+X-1+X+a=28,即3X+a=29,则X的取值可能是:9,8,7,6,5,4,3,2,1.与之对应的a值为:2,5,8,11,14,17,20,23,26.因为没持有A股票的股民中,持有B股票的人数为持有C股票人数的2倍,得b+a=2(c+a),即X-a=3c,故X=8,a=5时满足题意,故c=1,b=7,故只持有B股票的股民人数是7,故选A.2.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)|x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77B.49C.45D.30答案C解析因为集合A={(x,y)|x2+y2≤1,x,y∈Z}所以集合A中有5个元素(即5个点),集合B={(x,y)||x|≤2,|y|≤2,x,y∈Z}中有25个元素(即25个点),集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}的元素可看作正方形A1B1C1D1中的横纵坐标都为整数的点(除去四个顶点),即7×7-4=45(个).3.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ](其中[x ]表示不大于x 的最大整数)可以表示为( ) A.y =⎣⎡⎦⎤x +510 B.y =⎣⎡⎦⎤x +410 C.y =⎣⎡⎦⎤x +310 D.y =⎣⎡⎦⎤x 10 答案 C解析 根据题意,当x =16时,y =1,所以选项A ,B 不正确,当x =17时,y =2,所以D 不正确,故选C.4.下列推理中属于归纳推理且结论正确的是( )A.设数列{a n }的前n 项和为S n ,由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B.由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C.由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b 2=1(a >b >0)的面积S =πab D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 答案 A解析 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.5.给出以下数对序列: (1,1) (1,2)(2,1) (1,3)(2,2)(3,1) (1,4)(2,3)(3,2)(4,1) …若第i 行的第j 个数对为a ij ,如a 43=(3,2),则a nm 等于( )A.(m ,n -m +1)B.(m -1,n -m )C.(m -1,n -m +1)D.(m ,n -m ) 答案 A解析 由前4行的特点,归纳可得:若a nm =(a ,b ),则a =m ,b =n -m +1,∴a nm =(m ,n -m +1).6.若函数f (x ),g (x )满足ʃ1-1f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0 B.1 C.2 D.3答案 C解析 对①,ʃ1-1⎝⎛⎭⎫sin 12x ·cos 12x d x =ʃ1-112sin x d x =-12cos x|1-1=0,则f (x ),g (x )为区间[-1,1]上的正交函数;对②,ʃ1-1(x +1)(x -1)d x =ʃ1-1(x 2-1)d x =⎝⎛⎭⎫13x 3-x |1-1≠0,则f (x ),g (x )不是区间[-1,1]上的正交函数;对③,ʃ1-1x 3d x =14x 4|1-1=0,则f (x ),g (x )为区间[-1,1]上的正交函数. 7.已知点A (0,1),点B 在曲线C 1:y =e x -1上,若线段AB 与曲线C 2:y =1x 相交且交点恰为线段AB 的中点,则称点B 为曲线C 1与曲线C 2的一个“相关点”,记曲线C 1与曲线C 2的“相关点”的个数为n ,则( ) A.n =0 B.n =1 C.n =2 D.n >2 答案 B解析 设B (t ,e t-1),则AB 的中点为P ⎝⎛⎭⎫t 2,e t2,所以有e t2=2t ,e t =4t,所以“相关点”的个数就是方程e x =4x 解的个数,由于y =e x 的图象在x 轴上方,且是R 上的增函数,y =4x 在(0,+∞)上是减函数,所以它们的图象只有一个交点,即n =1,故选B.8.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”:有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n 等于( )A.7B.8C.11D.15 答案 C解析 由题意得,根据甲乙丙三图可知最上面的两个是一样大小的,所以比三个盘子不同时操作的次数(23-1)要多,比四个盘子不同时操作的次数(24-1)要少,相当于与操作三个不同盘子的时候相比,最上面的那个动了几次,就会增加几次,故游戏结束需要移动的最少次数为11.9.定义域为[a ,b ]的函数y =f (x )图象的两个端点为A ,B ,M (x ,y )是f (x )图象上任意一点,其中x =λa +(1-λ)b ,λ∈[0,1].已知向量ON →=λOA →+(1-λ)OB →,若不等式|MN →|≤k 恒成立,则称函数f (x )在[a ,b ]上“k 阶线性近似”.若函数y =x -1x在[1,2]上“k 阶线性近似”,则实数k 的取值范围为( )A.[0,+∞)B.⎣⎡⎭⎫112,+∞C.⎣⎡⎭⎫32+2,+∞D.⎣⎡⎭⎫32-2,+∞ 答案 D解析 由题意可知,A (1,0),B ⎝⎛⎭⎫2,32, M ⎝⎛⎭⎫2-λ,2-λ-12-λ,N ⎝⎛⎭⎫2-λ,32(1-λ), ∴|MN →|=⎪⎪⎪⎪32-32λ-(2-λ)+12-λ=⎪⎪⎪⎪⎪⎪2-λ2+12-λ-32,∵2-λ2+12-λ≥22-λ2·12-λ=2,当且仅当2-λ2=12-λ,λ=2-2时,等号成立, 又∵λ∈[0,1],∴2-λ∈[1,2], ∴2-λ2+12-λ≤32,∴⎪⎪⎪⎪⎪⎪2-λ2+12-λ-32max =32-2,即实数k 的取值范围是⎣⎡⎭⎫32-2,+∞. 10.(四川遂宁、广安、眉山、内江四市联考)已知函数y =f (x )与y =F (x )的图象关于y 轴对称,当函数y =f (x )和y =F (x )在区间[a ,b ]同时递增或同时递减时,把区间[a ,b ]叫做函数y =f (x )的“不动区间”,若区间[1,2]为函数y =||2x -t 的“不动区间”,则实数t 的取值范围是( ) A.(0,2] B.⎣⎡⎭⎫12,+∞ C.⎣⎡⎦⎤12,2 D.⎣⎡⎦⎤12,2∪[4,+∞) 答案 C解析 易知y =|2x -t |与y =⎪⎪⎪⎪⎝⎛⎭⎫12x -t 在[1,2]上单调性相同,当两个函数递增时,y =|2x -t |与y =⎪⎪⎪⎪⎝⎛⎭⎫12x -t 的图象如图1所示,易知⎩⎪⎨⎪⎧log 2t ≤1,-log 2t ≤1,解得12≤t ≤2;当两个函数递减时,y =|2x -t |的图象如图2所示,此时y =|2x -t |关于y 轴对称的函数y =⎪⎪⎪⎪⎝⎛⎭⎫12x -t 不可能在[1,2]上为减函数.综上所述,12≤t ≤2,故选C.11.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10…根据以上排列规律,数阵中第n (n >3)行从左至右的第3个数是________. 答案 n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)=n (n -1)2个,即n 2-n2个,因此第n 行从左至右的第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62.12.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“精致数列”. 已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为__________.答案 b n =2n -1(n ∈N *)解析 设等差数列{b n }的公差为d ,由S n S 2n 为常数,设S n S 2n =k 且b 1=1,得n +12n n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0, 因为对任意正整数n 上式恒成立,则⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得d =2,k =14,所以数列{b n }的通项公式为b n =2n -1(n ∈N *). 13.已知cos π3=12,cos π5cos 2π5=14, cos π7cos 2π7cos 3π7=18, …,(1)根据以上等式,可猜想出的一般结论是________;(2)若数列{a n }中,a 1=cos π3,a 2=cos π5cos 2π5,a 3=cos π7cos 2π7cos 3π7,…,前n 项和S n =1 0231 024,则n =________.答案 (1)cos π2n +1·cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *) (2)10解析 (1)从题中所给的几个等式可知,第n 个等式的左边应有n 个余弦相乘,且分母均为2n +1,分子分别为π,2π,…,n π,右边应为12n ,故可以猜想出结论为cos π2n +1·cos 2π2n +1·…·cosn π2n +1=12n (n ∈N *). (2)由(1)可知a n =12n ,故S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n =2n -12n =1 0231 024,解得n =10.14.(·四川)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题: ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是________.(写出所有真命题的序号) 答案 ②③解析 对于①,若令A (1,1),则其伴随点为A ′⎝⎛⎭⎫12,-12,而A ′⎝⎛⎭⎫12,-12的伴随点为(-1,-1),而不是P .故错误;对于②,令单位圆上点的坐标为P (cos x ,sin x ),其伴随点为P ′(sin x ,-cos x )仍在单位圆上,故②正确;对于③,设曲线f (x ,y )=0关于x 轴对称,则f (x ,-y )=0与曲线f (x ,y )=0表示同一曲线,其伴随曲线分别为f n ⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2=0与f n⎝ ⎛⎭⎪⎫-y x 2+y 2,-x x 2+y 2=0也表示同一曲线,又因为其伴随曲线分别为f n ⎝ ⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2=0与f n ⎝ ⎛⎭⎪⎫-y x 2+y 2,-x x 2+y 2=0的图象关于y 轴对称,所以③正确;对于④,反例为直线y =1,取三个点A (0,1),B (1,1),C (2,1),这三个点的伴随点分别是A ′(1,0),B ′⎝⎛⎭⎫12,-12,C ′⎝⎛⎭⎫15,-25,而这三点不在同一条直线上.故④错误.所以正确的序号为②③.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规范练(一) 三角问题1.已知向量a =(cos θ,sin θ),b =(2,-1). (1)若a ⊥b ,求sin θ-cos θsin θ+cos θ的值;(2)若|a -b |=2,θ∈⎝ ⎛⎭⎪⎫0,π2,求sin ⎝ ⎛⎭⎪⎫θ+π4的值.解 (1)由a ⊥b 可知,a ·b =2cos θ-sin θ=0,所以sin θ=2cos θ,所以sin θ-cos θsin θ+cos θ=2cos θ-cos θ2cos θ+cos θ=13.(2)由a -b =(cos θ-2,sin θ+1)可得|a -b |=(cos θ-2)2+(sin θ+1)2=6-4cos θ+2sin θ=2, 即1-2cos θ+sin θ=0,又cos 2 θ+sin 2 θ=1,且θ∈⎝ ⎛⎭⎪⎫0,π2,解得sin θ=35,cos θ=45,所以sin ⎝ ⎛⎭⎪⎫θ+π4=22(sin θ+cos θ)=22⎝ ⎛⎭⎪⎫35+45=7210.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且tan B tan A +1=2ca . (1)求B ;(2)若cos ⎝ ⎛⎭⎪⎫C +π6=13,求sin A 的值. 解 (1)由tan B tan A +1=2c a 及正弦定理得sin B cos A cos B sin A +1=2sin Csin A ,所以sin B cos A +cos B sin A cos B sin A=2sin C sin A ,即sin (A +B )cos B sin A =2sin C sin A ,则sin C cos B sin A =2sin C sin A . 因为在△ABC 中,sin A ≠0,sin C ≠0, 所以cos B =12.因为B ∈(0,π),所以B =π3. (2)因为0<C <2π3,所以π6<C +π6<5π6. 因为cos ⎝ ⎛⎭⎪⎫C +π6=13,所以sin ⎝ ⎛⎭⎪⎫C +π6=223. 所以sin A =sin(B +C )=sin ⎝ ⎛⎭⎪⎫C +π3=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫C +π6+π6 =sin ⎝ ⎛⎭⎪⎫C +π6cos π6+cos ⎝ ⎛⎭⎪⎫C +π6sin π6=26+16.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a +c =2b . (1)求证:B ≤π2;(2)当AB →·BC →=-2,b =23时,求△ABC 的面积.(1)证明 ∵cos B =a 2+c 2-b 22ac =a 2+c 2-12(a +c )22ac=12(a -c )22ac ≥0,∴B ≤π2(当且仅当a =c 时取得等号). (2)解 ∵AB →·BC →=-2,∴ac cos B =2,由余弦定理得b 2=a 2+c 2-2ac cos B =12,∴a 2+c 2=16,又a +c =2b =26,∴ac =4,∴cos B =12,∴sin B =32.∴S △ABC =12ac sin B = 3.4.已知△ABC 三个内角A ,B ,C 的对边分别是a ,b ,c ,面积为S ,a cos C +3c sin A-b-c=0.(1)求角A的值;(2)若a=3,求33S+3cos B cos C取最大值时S的值.解(1)由正弦定理,得sin A·cos C+3sin A·sin C-sin B-sin C=0,∴sin A·cos C+3sin A·sin C-sin (A+C)-sin C=0,sin A·cos C+3 sin A·sin C-sin A cos C-cos A sin C-sin C=0,∴3sin A·sin C-cos A·sin C-sin C=0,又sin C≠0,∴3sin A-cos A=1,即2sin (A-π6)=1,∴sin (A-π6)=1 2,∵-π6<A-π6<5π6,∴A-π6=π6,∴A=π3.(2)∵bsin B=csin C=asin A=332=2,∴b=2sin B,c=2sin C,由(1)知C=2π3-B,∴33S+3cos B cos C=33·12bc sin A+3cos B cos C=33·12·2sin B·2sin C·32+3cos B cos C=sin B sin C+3cos B cos C=sin B·sin (2π3-B)+3cos B·cos (2π3-B)=34sin 2 B+12sin2B-32cos2B+34sin 2B=34sin 2B+12·12(1-cos 2B)-32·12(1+cos 2B)+34sin 2B=3+14(3sin 2B-cos 2B)+1-34=3+12sin (2B-π6)+1-34∵0<B <2π3,∴-π6<2B -π6<7π6,∴当2B -π6=π2,即B =π3时,原式取得最大值,此时S =12(3)2×sin π3=32×32=334.规范练(二) 立体几何问题1. 在如图的多面体中,AE ⊥底面BEFC ,AD ∥EF ∥BC ,BE =AD =EF =12BC ,G 是BC 的中点.(1)求证:AB ∥平面DEG ; (2)求证:EG ⊥平面BDF .证明 (1)∵AD ∥EF ,EF ∥BC ,∴AD ∥BC .又∵BC =2AD ,G 是BC 的中点,∴AD 綊BG ,∴四边形ADGB 是平行四边形, ∴AB ∥DG .∵AB ⊄平面DEG ,DG ⊂平面DEG , ∴AB ∥平面DEG .(2)连接GF ,四边形ADFE 是矩形, ∵DF ∥AE ,AE ⊥底面BEFC ,∴DF ⊥平面BCFE ,EG ⊂平面BCFE ,∴DF ⊥EG . ∵EF 綊BG ,EF =BE ,∴四边形BGFE为菱形,∴BF⊥EG,又BF∩DF=F,BF⊂平面BFD,DF⊂平面BFD,∴EG⊥平面BDF.2.如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.证明(1)如图,在△P AD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面P AD⊥平面ABCD,BF⊂平面ABCD,平面P AD∩平面ABCD=AD,所以BF⊥平面P AD.又因为BF⊂平面BEF,所以平面BEF⊥平面P AD.3. 如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.证明(1)因为平面P AD∩平面ABCD=AD.又平面P AD⊥平面ABCD,且P A⊥AD.所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,且四边形ABED为平行四边形.所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD,所以P A⊥CD.又因为P A∩AD=A,所以CD⊥平面P AD,从而CD⊥PD,且CD⊂平面PCD,又E,F分别是CD和CP的中点,所以EF∥PD,故CD⊥EF.由EF,BE在平面BEF内,且EF∩BE=E,所以CD⊥平面BEF.所以平面BEF⊥平面PCD.4.如图所示,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,D是AC的中点,已知AB=VA=VB=VC.(1)求证:OD ∥平面VBC ; (2)求证:AC ⊥平面VOD .证明 (1)∵O 、D 分别是AB 和AC 的中点,∴OD ∥BC .又OD ⊄平面VBC ,BC ⊂平面VBC , ∴OD ∥平面VBC . (2)∵VA =VB ,O 为AB 中点,∴VO ⊥AB .连接OC ,在△VOA 和△VOC 中,OA =OC ,VO =VO ,VA =VC ,∴△VOA ≌△VOC ,∴∠VOA =∠VOC =90°,∴VO ⊥OC .又∵AB ∩OC =O ,AB ⊂平面ABC ,OC ⊂平面ABC ,∴VO ⊥平面ABC . 又∵AC ⊂平面ABC ,∴AC ⊥VO .又∵VA =VC ,D 是AC 的中点,∴AC ⊥VD .∵VO ⊂平面VOD ,VD ⊂平面VOD ,VO ∩VD =V , ∴AC ⊥平面VOD .规范练(三) 解析几何问题1.已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E . (1)求E 的方程;(2)若点A ,B 是E 上的两个动点,O 为坐标原点,且OA →·OB →=-16,求证:直线AB 恒过定点.(1)解 设P (x ,y ),则x 2+(y -2)2=(y +1)+1,∴x 2=8y .∴E 的方程为x 2=8y . (2)证明 设直线AB :y =kx +b ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入x 2=8y 中得x 2-8kx -8b =0,所以x 1+x 2=8k ,x 1x 2=-8b .OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 21x 2264=-8b +b 2=-16,∴b =4,所以直线AB 恒过定点(0,4).2.椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且经过点P ⎝ ⎛⎭⎪⎫1,22.过坐标原点的直线l 1与l 2均不在坐标轴上,l 1与椭圆M 交于A ,C 两点,l 2与椭圆M 交于B ,D 两点. (1)求椭圆M 的方程;(2)若平行四边形ABCD 为菱形,求菱形ABCD 面积的最小值.解(1)依题意有⎩⎪⎨⎪⎧c =22a ,1a 2+12b 2=1,又因为a 2=b 2+c 2,所以⎩⎨⎧a 2=2b 2=1.故椭圆M的方程为x 22+y 2=1.(2)设直线AC :y =k 1x ,直线BD :y =k 2x ,A (x A ,y A ),C (x C ,y C ).联立⎩⎪⎨⎪⎧x 22+y 2=1y =k 1x,得方程(2k 21+1)x 2-2=0,x 2A =x 2C =22k 21+1,故OA =OC =1+k 21·22k 21+1. 同理,OB =OD =1+k 22·22k 22+1.又因为AC ⊥BD ,所以OB =OD =1+(1k 1)2·22(1k 1)2+1,其中k 1≠0.从而菱形ABCD 的面积S=2OA ·OB=21+k 21·22k 21+1·1+(1k 1)2·22(1k 1)2+1, 整理得S =412+1(k 1+1k 1)2,其中k 1≠0.故当k 1=1或-1时,菱形ABCD 的面积最小,该最小值为83.3.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →. (1)求椭圆方程;(2)求m 的取值范围.解 (1)由题意知椭圆的焦点在y 轴上 , 设椭圆方程为y 2a 2+x 2b 2=1(a >b >0), 由题意知a =2,b =c ,又a 2=b 2+c 2,则b =2, 所以椭圆方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意,直线l 的斜率存在,设其方程为y =kx+m ,与椭圆方程联立,即⎩⎨⎧y 2+2x 2=4,y =kx +m ,则(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0,由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k 2,x 1·x 2=m 2-42+k 2.又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ).∴-x 1=2x 2,∴⎩⎨⎧x 1+x 2=-x 2,x 1x 2=-2x 22.∴m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22,整理得(9m 2-4)k 2=8-2m 2, 又9m 2-4=0时不成立,∴k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0.∴m 的取值范围为⎝ ⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2.4.已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,CP =1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M . (1)求曲线M 的方程;(2)设直线BC 与曲线M 的另一交点为D ,当点A 在以线段CD 为直径的圆上时,求直线BC 的方程.解 (1)由题知CA +CB =CP +CQ +AP +BQ =2CP +AB =4>AB , 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点), 设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0), 则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫AB 22=3,所以曲线M :x 24+y 23=1(y ≠0)为所求.(2)注意到直线BC 的斜率不为0,且过定点B (1,0),设l BC :x =my +1,C (x 1,y 1),D (x 2,y 2), 由⎩⎨⎧x =my +1,3x 2+4y 2=12,消x 得(3m 2+4)y 2+6my -9=0,所以y 1,2=-3m ±6m 2+13m 2+4,所以⎩⎪⎨⎪⎧y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,因为AC →=(my 1+2,y 1),AD →=(my 2+2,y 2),所以AC →·AD →=(my 1+2)(my 2+2)+y 1y 2=(m 2+1)y 1y 2+2m (y 1+y 2)+4=-9(m 2+1)3m 2+4-12m 23m 2+4+4=7-9m 23m 2+4.注意到点A 在以CD 为直径的圆上,所以AC →·AD →=0,即m =±73,所以直线BC 的方程3x +7y -3=0或3x -7y -3=0为所求.规范练(四) 实际应用问题1.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨. (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为yx (万元). 则y x =x 5+8 000x -48≥2x 5·8 000x -48=32,当且仅当x 5=8 000x ,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元. (2)设年获得总利润为R (x )万元. 则R (x )=40x -y =40x -x 25+48x -8 000 =-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).∵R (x )在[0,210]上是增函数,∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.2.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+5(0<x <6),14 (x ≥6),已知每日的利润L =S -C ,且当x =2时,L=3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解 (1)由题意可得:L =⎩⎪⎨⎪⎧2x +k x -8+2,0<x <6,11-x ,x ≥6,因为x =2时,L =3,所以3=2×2+k2-8+2, 解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以L =2(x -8)+18x -8+18=-[2(8-x )+188-x ]+18≤-22(8-x )·188-x +18=6.当且仅当2(8-x )=188-x,即x =5时取得等号. 当x ≥6时,L =11-x ≤5.所以当x =5时,L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元.3.某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t 件时,销售所得的收入为⎝ ⎛⎭⎪⎫0.05t -120 000t 2万元.(1)该公司这种产品的年生产量为x 件,生产并销售这种产品所得到的利润关于当年产量x 的函数为f (x ),求f (x ); (2)当该公司的年产量为多少件时,当年所获得的利润最大? 解 (1)当0<x ≤500时,f (x )=0.05x -120 000x 2- ⎝ ⎛⎭⎪⎫0.25×x 100+0.5=-x 220 000+19400x -12, 当x >500时,f (x )=0.05×500-120 000×5002-⎝ ⎛⎭⎪⎫0.25×x 100+0.5=12-1400x ,故f (x )=⎩⎪⎨⎪⎧-120 000x 2+19400x -12,0<x ≤500,12-1400x ,x >500.(2)当0<x ≤500时,f (x )=-x 220 000+19400x -12= -120 000(x -475)2+34532, 故当x =475时,f (x )max =34532.当x >500时,f (x )=12-1400x <12-54=34432<34532.故当该公司的年产量为475件时,当年获得的利润最大.4.如图,一块弓形薄铁片EMF ,点M 为的中点,其所在圆O 的半径为4 dm(圆心O 在弓形EMF 内),∠EOF =2π3.将弓形薄铁片裁剪成尽可能大的矩形铁片ABCD (不计损耗),AD ∥EF ,且点A ,D 在上,设∠AOD =2θ.(1)求矩形铁片ABCD 的面积S 关于θ的函数关系式; (2)当裁出的矩形铁片ABCD 面积最大时,求cos θ的值. 解 (1)设矩形铁片的面积为S ,∠AOM =θ.当0<θ<π3时(如图1),AB =4cos θ+2,AD =2×4sin θ,S =AB ×AD =(4cos θ+2)(2×4sin θ)=16sin θ(2cos θ+1).当π3≤θ<π2时(如图2),AB =2×4cos θ,AD =2×4sin θ, 故S =AB ×AD =64sin θcos θ=32sin 2θ.综上得,矩形铁片的面积S 关于θ的函数关系式为S =⎩⎪⎨⎪⎧16sin θ(2cos θ+1),0<θ<π3,32sin 2θ, π3≤θ<π2.(2)当0<θ<π3时,求导得S ′=16[cos θ(2cos θ+1)+sin θ(-2sin θ)]=16(4cos 2θ+cos θ-2).令S ′=0,得cos θ=33-18.记区间⎝⎛⎭⎪⎫0,π3内余弦值等于33-18的角为θ0(唯一存在).列表: θ (0,θ0) θ0 ⎝ ⎛⎭⎪⎫θ0,π3 S ′ + 0 - S增函数极大值减函数又当π3≤θ<π2时,S =32sin 2θ在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,所以当θ=θ0即cos θ=33-18时,矩形的面积最大.规范练(五) 数列问题1.已知n ∈N *,数列{d n }满足d n =3+(-1)n2,数列{a n }满足a n =d 1+d 2+d 3+……+d 2n ;数列{b n }为公比大于1的等比数列,且b 2,b 4为方程x 2-20x +64=0的两个不相等的实根. (1)求数列{a n }和数列{b n }的通项公式;(2)将数列{b n }中的第a 1项,第a 2项,第a 3项,……,第a n 项,……删去后剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前2 015项和.解 (1)∵d n =3+(-1)n2,∴a n =d 1+d 2+d 3+…+d 2n =3×2n2=3n .因为b 2,b 4为方程x 2-20x +64=0的两个不相等的实数根. 所以b 2+b 4=20,b 2·b 4=64, 解得:b 2=4,b 4=16,所以:b n =2n .(2)由题知将数列{b n }中的第3项、第6项、第9项……删去后构成的新数列{c n }中的奇数项与偶数项仍成等比数列,首项分别是b 1=2,b 2=4,公比均是8,T 2 015=(c 1+c 3+c 5+…+c 2 015)+(c 2+c 4+c 6+…+c 2 014).=2×(1-81 008)1-8+4×(1-81 007)1-8=20×81 007-67.2.已知数列{a n }的前n 项和S n =a n +n 2-1,数列{b n }满足3n b n +1=(n +1)a n +1-na n ,且b 1=3. (1)求a n ,b n ;(2)设T n 为数列{b n }的前n 项和,求T n ,并求满足T n <7时n 的最大值.解 (1)n ≥2时,S n =a n +n 2-1,S n -1=a n -1+(n -1)2-1, 两式相减,得a n =a n -a n -1+2n -1, ∴a n -1=2n -1. ∴a n =2n +1,∴3n ·b n +1=(n +1)(2n +3)-n (2n +1)=4n +3, ∴b n +1=4n +33n ,∴当n ≥2时,b n =4n -13n -1,又b 1=3适合上式,∴b n =4n -13n -1.(2)由(1)知,b n =4n -13n -1, ∴T n =31+73+1132+…+4n -53n -2+4n -13n -1,①13T n =33+732+1133+…+4n -53n -1+4n -13n ,② ①-②,得23T n =3+43+432+…+43n -1-4n -13n=3+4·13(1-13n -1)1-13-4n -13n =5-4n +53n . ∴T n =152-4n +52·3n -1.T n -T n +1=4(n +1)+52·3n -4n +52·3n -1=-(4n +3)3n <0.∴T n <T n +1,即{T n }为递增数列.又T 3=599<7,T 4=649>7,∴T n <7时,n 的最大值为3.3.数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1(n ∈N *),等差数列{b n }满足b 3=3,b 5=9. (1)分别求数列{a n },{b n }的通项公式; (2)设c n =b n +2a n +2(n ∈N *),求证:c n +1<c n ≤13. (1)解 由a n +1=2S n +1,①得a n =2S n -1+1(n ≥2),②①-②得a n +1-a n =2(S n -S n -1)=2a n , ∴a n +1=3a n ,即a n +1a n =3,又当n =1时,a 2a 1=3也符合上式,∴a n =3n -1.由数列{b n }为等差数列,b 3=3,b 5=9,设{b n }公差为d ,∴b 5-b 3=9-3=2d ,∴d =3, ∴b n =3n -6.(2)证明 由(1)知:a n +2=3n +1,b n +2=3n ,所以c n =3n 3n +1=n3n ,所以c n +1-c n=1-2n3n +1<0, ∴c n +1<c n <…<c 1=13,∴c n +1<c n ≤13.4.已知数列{a n }为等差数列,S n 为其前n 项和,a 5和a 7的等差中项为11,且a 2·a 5=a 1·a 14,令b n =1a n ·a n +1,数列{b n }的前n 项和为T n .(1)求a n 及T n ;(2)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由. 解 (1)因为{a n }为等差数列,设公差为d ,则由题意得⎩⎨⎧a 5+a 7=22,a 2·a 5=a 1·a 14,即⎩⎨⎧ 2a 1+10d =22,(a 1+d )(a 1+4d )=a 1(a 1+13d ), 整理得⎩⎨⎧a 1+5d =11,d =2a 1⇒⎩⎨⎧d =2,a 1=1,所以a n =1+(n -1)×2=2n -1.由b n =1a n ·a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1)所以T n =12(1-13+13-15+…+12n -1-12n +1)=n2n +1. (2)假设存在. 由(1)知,T n =n2n +1, 所以T 1=13,T m =m 2m +1,T n =n2n +1, 若T 1,T m ,T n 成等比数列,则有T 2m =T 1·T n ⇒(m 2m +1)2=13·n 2n +1⇒m 24m 2+4m +1=n 6n +3⇒4m 2+4m +1m 2=6n +3n⇒3n =4m +1-2m2m 2,……①因为n >0,所以4m +1-2m 2>0⇒1-62<m <1+62,因为m ∈N *,m >1,∴m =2,当m =2时,带入①式,得n =12.综上,当m =2,n =12时可以使T 1,T m ,T n 成等比数列.规范练(六) 函数与导数问题1.设f (x )=e x (ax 2+x +1). (1)若a >0,讨论f (x )的单调性;(2)x =1时,f (x )有极值,证明:当θ∈⎣⎢⎡⎦⎥⎤0,π2时,|f (cos θ)-f (sin θ)|<2. 解 (1)f ′(x )=e x (ax 2+x +1)+e x (2ax +1)=a e x (x +1a )(x +2),当a =12时,f ′(x )=12e x (x +2)2≥0,f (x )在R 上单增;当0<a <12时,由f ′(x )>0,得x >-2或x <-1a ;由f ′(x )<0,得-1a <x <-2,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-1a 和(-2,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-1a ,-2上单调递减.当a >12时,由f ′(x )>0,得x >-1a 或x <-2;由f ′(x )<0,得-2<x <-1a ,∴f (x )在(-∞,-2)和⎝ ⎛-1a ,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2,-1a 上单调递减.(2)证明 ∵x =1时,f (x )有极值,∴f ′(1)=3e(a +1)=0,∴a =-1,∴f (x )=e x (-x 2+x +1),f ′(x )=-e x (x -1)(x +2).由f ′(x )>0,得-2<x <1,∴f (x )在[-2,1]上单调递增.∵θ∈⎣⎢⎡⎦⎥⎤0,π2,∴sin θ,cos θ∈[0,1],∴|f (cos θ)-f (sin θ)|≤f (1)-f (0)=e -1<2. 2.已知m ∈R ,f (x )=2x 3+3x 2+6(m -m 2)x . (1)当m =1时,求f (x )在点(1,f (1))处的切线方程;(2)若m ∈[12,2]且关于x 的不等式(m -1)2(1-4m )≤f (x )≤20在区间[k,0]上恒成立,求k 的最小值k (m ). 解 (1)当m =1时,f (x )=2x 3+3x 2,f ′(x )=6x 2+6x .切线斜率为k =f ′(1)=12,f (1)=5,所以切线方程为y =12x -7. (2)令f ′(x )=6x 2+6x +6(m -m 2)=0,可得 x 1=-m ,x 2=m -1,因为m ∈[12,2],所以m -1-(-m )=2m -1≥0.①当m -1≤0,且2m -1>0,即12<m ≤1时.f (x )极大=f (-m )=4m 3-3m 2,f (x )极小=f (m -1)=(m -1)2(1-4m ).令g (m )=f (x )极大=4m 3-3m 2,则g ′(m )=12m 2-6m ≥0. 故g (m )在12≤m ≤1上单调递增,故g (m )≤g (1)=1≤20恒成立. 令h (x )=f (x )-(m -1)2(1-4m ),显然h (m -1)=f (m -1)-(m -1)2(1-4m )=0, 令h (x 0)=h (m -1)(x 0≠m -1),设[x -(m -1)]2(ax +b )=2x 3+3x 2+6(m -m 2)x -(m -1)2(1-4m ),比较两边系数得a =2,b =4m -1,故x 0=-b a =1-4m2.结合图象可知,要使(m -1)2(1-4m )≤f (x )恒成立.则只需x 0≤k <0即可,故k min =k (m )=x 0=1-4m 2⎝ ⎛⎭⎪⎫12<m ≤1; ②当m -1>0即1<m ≤2时,同①可知,g (m )=f (x )极大=4m 3-3m 2,又g (m ),在1<m ≤2上单调递增,故g (m )≤g (2)=20恒成立. 同理可知k min =k (m )=x 0=1-4m2(1<m ≤2),综上可知,k (m )=1-4m 2⎝ ⎛⎭⎪⎫m ∈⎣⎢⎡⎦⎥⎤12,2. 3.已知函数f (x )=xln x -ax . (1)若函数f (x )在(1,+∞)上是减函数,求实数a 的最小值;(2)若∃x 1,x 2∈[e ,e 2],使f (x 1)≤f ′(x 2)+a (a >0成立),求实数a 的取值范围.解 (1)因f (x )在(1,+∞)上为减函数,故f ′(x )=ln x -1(ln x )2-a ≤0在(1,+∞)上恒成立,所以当x ∈(1,+∞)时,f ′(x )max ≤0,又f ′(x )=ln x -1(ln x )2-a =-(1ln x )2+1ln x -a =-(1ln x -12)2+14-a ,设1ln x =t ,t ∈(0,+∞),则y =-(t -12)2+14-a ,故当t =12,即x =e 2时,f ′(x )max=14-a ≤0,解得a ≥14,所以a 的最小值为14.(2)命题“若∃x 1,x 2∈[e ,e 2],使f (x 1)≤f ′(x 2)+a 成立”,等价于“当x ∈[e ,e 2]时,有f (x )min ≤f ′(x )max +a ”,由(1)知,当x ∈[e ,e 2]时,f ′(x )max =14-a ,f ′(x )max +a =14,问题等价于:“当x ∈[e ,e 2]时,有f (x )min ≤14”.10当a ≥14时,f ′(x )max =14-a ≤0,f (x )在[e ,e 2]上为减函数,则f (x )min =f (e 2)=e 22-a e 2≤14,故a ≥12-14e 2.20当0<a <14时,f ′(x )max =14-a >0,由于f ′(x ) =-(1ln x -12)2+14-a 在[e ,e 2]上为增函数,故f ′(x )的值域为[f ′(e),f ′(e 2)],即[-a ,14-a ],由f ′(x )的单调性和值域知,存在唯一x 0∈[e ,e 2],使f ′(x 0)=0,且满足:当x ∈[e ,x 0]时,f ′(x )<0,f (x )为减函数;当x ∈[x 0,e 2]时,f ′(x )>0.由f (x )min =f (x 0)=x 0ln x 0-ax 0≤14,x 0∈[e ,e 2],所以,a ≥1ln x 0-14x 0>1ln e 2-14e >12-14=14,与0<a <14矛盾,不合题意. 综上所述,得a ≥12-14e 2.4.已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数.(1)若k <0,试判断函数f (x )在区间(0,+∞)上的单调性;(2)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小; (3)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明0<f (x 1)<1.解 (1)由f ′(x )=k e x -2x 可知,当k <0时,由于x ∈(0,+∞),f ′(x )=k e x -2x <0,故函数f (x )在区间(0,+∞)上是单调递减函数.(2)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2, 由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)为增函数,所以h(x)=2e x-2x>h(0)=2>0,即f′(x)=2e x-2x>0在(0,+∞)恒成立,从而f(x)=2e x-x2在(0,+∞)为增函数,故f(x)=2e x-x2>f(0)=2.(3)函数f(x)有两个极值点x1,x2,则x1,x2是f′(x)=k e x-2x=0的两个根,即方程k=2xe x有两个根,设φ(x)=2xe x,则φ′(x)=2-2xe x,当x<0时,φ′(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ′(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ′(x)<0,函数φ(x)单调递减且φ(x)>0.要使k=2xe x有两个根,只需0<k<φ(1)=2e,如图所示,故实数k的取值范围是(0,2 e).又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由f′(x1)=k e x1-2x1=0,得k=2x1 e x1.∴f(x1)=k e x1-x21=2x1e x1e x1-x21=-x21+2x1=-(x1-1)2+1,由于x1∈(0,1),故0<-(x1-1)2+1<1,所以0<f(x1)<1.。

相关文档
最新文档