[整理]上海金融学院12届微积分期中复习(附答案).

合集下载

经济数学微积分课程期中模拟考试卷及答案

经济数学微积分课程期中模拟考试卷及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。

《经济数学-微积分》课程期中模拟考试卷(A )答案202 ——202 学年第一学期姓名学号班级题号 一二三四五六总分得分一、 单选题(每小题2分,共计10分)1.1=x 是函数xx f -=11arctan)(的 ( C ) A .连续点. B .可去间断点. C .跳跃间断点. D .无穷间断点.2.若1)0(='f ,则=--→hh f f h 3)()0(lim0( B ) A . 0. B . 31. C . 3. D . 31-.3.设⎪⎩⎪⎨⎧=≠--=.1,2;1,1|1|)(2x x x x x f 则在1=x 处函数)(x f ( A )A . 不连续.B . 连续,但不可导.C . 可导,但导函数不连续.D . 可导,且导函数连续.4.设)(x f y =是由方程0ln =+y xy 确定的函数,则=dxdy( C ) A . xy ln -. B . 2y -. C . 12+-xy y . D . xy y 12+-.5.设)(x f 在),(b a 内可导,),(0b a x ∈,若0)(0='x f ,则)(0x f ( D )A . 是极大值.B .是极小值.C . 是拐点的纵坐标.D .可能是极值也可能不是极值.得分二、 填空题(每小题2分,共计10分)1. =+∞→)sin 1sin(lim xx x x x 1 .2. 设xx f 2)(=,则='-'→x f x f x )0()(lim0 2ln 2 . 3. 设xx f 211)(-=,则=)1()10(f !10210⋅- . 4. 设曲线2x y =的切线与曲线3x y =的切线相互垂直,则曲线2x y =上的点的横坐标=x 361- . 5. 函数x y cos =在23,2[ππ上符合罗尔定理结论中的=ξ π .三、计算题(每小题9分,共计54分)1. ])12()12(1531311[lim +⋅-++⋅+⋅∞→n n n .解: )12()12(1531311[lim +⋅-++⋅+⋅∞→n n n211211[21lim ]1211215131311[21lim =+-⋅=+--++-+-⋅=∞→∞→n n n n n .得分 得分2. 已知213)tan )(1ln(lim=-+→x x x x f ,求20)(lim x x f x →.解:由于3ln )(lim 3ln )(lim 3ln tan )(lim 13)tan )(1ln(lim220000x x f x x x f x x x f x x f x x x x x →→→→===-+=,所以3ln 2)(lim2=→x x f x 。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与持续 【2 】一.填空题1.已知x x f cos 1)2(sin +=,则=)(cos x f .2.=-+→∞)1()34(lim22x x x x . 3.0→x 时,x x sin tan -是x 的阶无限小. 4.01sinlim 0=→xx kx 成立的k 为. 5.=-∞→x e xx arctan lim .6.⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处持续,则=b .7.=+→xx x 6)13ln(lim0.8.设)(x f 的界说域是]1,0[,则)(ln x f 的界说域是__________. 9.函数)2ln(1++=x y 的反函数为_________. 10.设a 长短零常数,则________)(lim =-+∞→xx ax a x . 11.已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无限小,则常数________=a . 12.函数xxx f +=13arcsin )(的界说域是__________.13.lim ____________x →+∞=.14.设8)2(lim =-+∞→xx ax a x ,则=a ________. 15.)2)(1(lim n n n n n -++++∞→=____________.二.选择题1.设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数. (A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f .2.xxx +-=11)(α,31)(x x -=β,则当1→x 时有. (A)α是比β高阶的无限小; (B)α是比β低阶的无限小;(C )α与β是同阶无限小; (D )βα~.3.函数⎪⎩⎪⎨⎧=-≥≠-+-+=0)1(0,1111)(3x k x x x x x f 在0=x 处持续,则=k .(A)23; (B)32; (C )1; (D )0. 4.数列极限=--∞→]ln )1[ln(lim n n n n .(A)1; (B)1-; (C )∞;(D )不消失但非∞.5.⎪⎪⎩⎪⎪⎨⎧>=<+=01cos 000sin )(x x x x x x x x x f ,则0=x 是)(x f 的.(A)持续点;(B)可去间断点;(C )跳跃间断点;(D )振荡间断点. 6.以下各项中)(x f 和)(x g 雷同的是( )(A)2lg )(x x f =,x x g lg 2)(=; (B)x x f =)(,2)(x x g =;(C )334)(x x x f -=,31)(-=x x x g ;(D )1)(=x f ,x x x g 22tan sec )(-=.7.||sin lim0x xx →= ( )(A)1; (B)-1; (C )0; (D )不消失. 8.=-→xx x 10)1(lim ( )(A)1; (B)-1; (C)e ; (D)1-e .9.)(x f 在0x 的某一去心邻域内有界是)(lim 0x f x x →消失的( )(A)充分必要前提;(B) 充分前提;(C )必要前提;(D )既不充分也不必要前提. 10.=-+∞→)1(lim 2x x x x ( )(A)1; (B)2; (C )21; (D )0. 11.设}{},{},{n n n c b a 均为非负数列,且∞===∞→∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则必有( ) (A )n n b a <对随意率性n 成立; (B )n n c b <对随意率性n 成立;(C )极限n n n c a ∞→lim 不消失 ; (D )极限n n n c b ∞→lim 不消失.12.当1→x 时,函数11211---x e x x 的极限( ) (A)等于2; (B)等于0;(C)为∞;(D)不消失但不为∞. 三.盘算解答 1.盘算下列极限 (1)12sin2lim -∞→n nn x ;(2)xxx x cot csc lim0-→ ;(3))1(lim 1-→∞xx e x ; (4)xx x x 31212lim ⎪⎭⎫⎝⎛-+∞→;(5)1cos cos 21cos 2cos 8lim 223-+--→x x x x x π; (6)x x x x x x tan cos sin 1lim 0-+→;(7)⎪⎪⎭⎫⎝⎛+++⨯+⨯∞→)1(1321211lim n n n ; (8)32324arctan )21ln(lim x x x --+→. 3.试肯定b a ,之值,使2111lim 2=⎪⎪⎭⎫ ⎝⎛--+++∞→b ax x x x . 4.运用极限消失准则求极限(1)nn n n 13121111131211lim++++++++++∞→ .(2)设01>>a x ,且),2,1(1 ==+n ax x n n ,证实n n x →∞lim 消失,并求此极限值.5.评论辩论函数xx xx n n n n n x f --∞→+-=lim )(的持续性,如有间断点,指出其类型.6.设)(x f 在],[b a 上持续,且b x f a <<)(,证实在),(b a 内至少有一点ξ,使ξξ=)(f .第一单元 函数极限与持续习题解答一.填空题1.x 2sin 2.2sin 22)2sin21(1)2(sin 22x x x f -=-+=, 222)(x x f -=∴x x x f 22sin 2cos 22)(cos =-=∴.2.0 .016249lim )1()34(lim3222=+-++=-+∞→∞→xx x x x x x x x .3.高阶.0)cos 1(lim )cos 1(tan lim sin tan lim000=-=-=-→→→x xx x x x x x x x ,x x sin tan -∴是x 的高阶无限小.4.0>k .x 1sin为有界函数,所以要使01sin lim 0=→xx kx ,只要0lim 0=→k x x ,即0>k .5.0.0arctan lim =-∞→x e xx ))2,2(arctan ,0lim (ππ-∈=-∞→x e xx .6.2=b .b b x x f x x =+=--→→)(lim )(lim 0,2)1(lim )(lim 0=+=++→→xx x e x f ,,)0(b f =2=∴b .7.212163lim 6)13ln(lim 00==+→→x x x x x x .8.e x ≤≤1依据题意 请求1ln 0≤≤x ,所以 e x ≤≤1. 9.21-=-x ey )2ln()1(),2ln(1+=-∴++=x y x y ,12-=+y e x ,21-=∴-y e x ,)2ln(1++=∴x y 的反函数为21-=-x e y .10.ae 2原式=a aa x xa ax x e ax a 222)21(lim =-+⋅-⋅-∞→. 11.23-=a 由231231~1)1(ax ax -+(运用教材P58(1)1ax ax +-)与221~1cos x x --,以及1322131lim 1cos 1)1(lim 2203120=-=-=--+→→a x axx ax x x , 可得 23-=a . 12.2141≤≤-x 由反三角函数的界说域请求可得 ⎪⎩⎪⎨⎧≠+≤+≤-011131x x x 解不等式组可得 ⎪⎩⎪⎨⎧-≠≤≤-12141x x ,⇒)(x f 的界说域为2141≤≤-x . 13.0limlimx x =22lim0x ==.14.2ln 23lim()lim(1)x x x x x a a x a x a →∞→∞+=+--,令t=3x aa-,所以x=3at a + 即:3211lim()lim[(1)](1)x t a a x t x a x a t t→∞→∞+=++-=38a e =2ln 32ln 8ln 318ln 33===⇒=a a .15.2)2(2)1(lim)2)(1(lim n n n n n n n n n n ++⨯++=-++++∞→+∞→2121)111(2lim =++++=+∞→nn n .二.选择题1.选(D) 令)()()()(x h x g x f x F =,由)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,)()()()()()()()(x F x h x g x f x h x g x f x F -=-=---=-∴.2.选(C)])1(11)[1(1lim )1)(1(1lim )()(lim31311x x xx x x x x x x x ---+-=-+-=→→→βα23)1(31)1(1lim1=-⋅+-=→x x x x (运用教材P58(1)1a x ax +-)3.选(A ) 233121lim 1111lim )(lim 0300==-+-+=→→→x xx x x f x x x (运用教材P58(1)1a x ax +-) 4.选(B)1lim [ln(1)ln ]lim ln(1)1nn n n n n n-→∞→∞--=--=-5.选(C)1)0(=-f , 0)0(=+f , 0)0(=f 6.选(C)在(A )中2ln )(xx f = 的界说域为0≠x ,而x x g ln 2)(=的界说域为0>x ,)()(x g x f ≠∴故不准确在(B )x x f =)( 的值域为),(+∞-∞,2)(x x g =的值域为0>x ,故错在(D )中1)(=x f 的界说域为R,x x x g tan sec )(2-=的界说域为}2,{ππ+≠∈k x R x ,)()(x g x f ≠∴,故错7.选(D) 1sin lim ||sin lim 00==++→→x x x x x x ,1sin lim ||sin lim 00-=-=--→→xxx x x x ||sin lim0x xx →∴不消失8.选(D) 1)1(110)](1[lim )1(lim --⋅-→→=-+=-e x x xx xx ,9.选(C)由函数极限的局部有界性定理知,)(lim 0x f x x →消失,则必有0x 的某一去心邻域使)(x f 有界,而)(x f 在0x 的某一去心邻域有界不必定有)(lim 0x f x x →消失,例如x x 1sinlim 0→,函数11sin 1≤≤-x有界,但在0=x 点极限不消失10.选(C)(lim ()lim x x x x x x →∞→∞==211111lim2=++=∞→xx 11.选(D ) (A ).(B)显然不对,因为稀有列极限的不等式性质只能得出数列“当n 充分大时”的情形,不可能得出“对随意率性n 成立”的性质.(C)也显著不对,因为“无限小·无限大”是不决型,极限可能消失也可能不消失.12.选(D )002)1(lim 11lim 1111121=⋅=+=---→-→--x x x x e x e x x ∞=+=---→-→++1111121)1(lim 11lim x x x x e x e x x 当1→x 时函数没有极限,也不是∞.三.盘算解答 1.盘算下列极限: (1)解:x x x n n n n n n 222lim 2sin2lim 11=⋅=-∞→-∞→.(2)解:2200001cos csc cot 1cos 1sin sin 2lim lim lim lim sin 2x x x x x x x x x x x x x x x x →→→→---====.(3)解:11lim )1(lim 1=⋅=-∞→∞→xx e x x xx . (4)解:3212133])2111[(lim )1221(lim )1212(lim +-∞→∞→∞→-+=-+=-+x x x x x x x x x x . 113332211[lim(1)][lim(1)]1122x x x e x x -→∞→∞=+⋅+=--(5)解:)1)(cos 1cos 2()1cos 4)(1cos 2(lim 1cos cos 21cos 2cos 8lim 3223+-+-=-+--→→x x x x x x x x x x ππ212112141cos 1cos 4lim 3=++⨯=++=→x x x π.(6)解:)cos sin 1(tan cos sin 1limtan cos sin 1lim00x x x x x xx x x x x x x x x ++-+=-+→→ 2020202cos 1lim 2sin lim 2cos 1sin limx x x x x x x x x x x x -+=-+=→→→434121=+=. 0lim(12x →+=(7)解:])1(1321211[lim +++⨯+⨯∞→n n x )]111()3121()211[(lim +-++-+-=∞→n n x 1)111(lim =+-=∞→n x . (8)解:33123232323241)21(lim 42lim 4arctan )21ln(lim =+=--=--+→→→x xxx x x x x . 3.解:1)(1lim )11(lim 222+-+--+=--+++∞→+∞→x b x b a ax x b ax x x x x211)1()()1(lim 2=+-++--=+∞→x b x b a x a x ⎪⎩⎪⎨⎧=+-=-∴21)(01b a a ⇒⎪⎩⎪⎨⎧-==231b a4.(1) 1111211111312111++<+++++++++<n nn n而 1111lim=+++∞→n x 113121111131211lim=++++++++++∴+∞→nn n x .(2)先证有界(数学归纳法)1=n 时,a a a ax x =⋅>=12设k n =时,a x k >, 则a a ax x k k =>=+21数列}{n x 有下界, 再证}{n x 单调减,11<==+nnn n n x ax ax x x 且0>n x n n x x <∴+1即}{n x 单调减,n n x ∞→∴lim 消失,设A x n n =∞→lim ,则有 aA A =⇒0=A (舍)或a A =,a x n n =∴∞→lim5.解:先求极限 得 00010111lim )(22<=>⎪⎩⎪⎨⎧-=+-=∞→x x x n n x f xxn 而 1)(lim 0=+→x f x 1)(lim 0-=-→x f x 0)0(=f)(x f ∴的持续区间为),0()0,(+∞-∞0=x 为跳跃间断点..6.解:令x x f x F -=)()(, 则 )(x F 在],[b a 上持续而0)()(>-=a a f a F0)()(<-=b b f b F由零点定理,),(b a ∈∃ξ使0)(=ξF即 0)(=-ξξf ,亦即 ξξ=)(f .第二章 导数与微分一.填空题1.已知2)3(='f ,则hf h f h 2)3()3(lim--→=.2.)0(f '消失,有0)0(=f ,则xx f x )(lim→=.3.πππ1arctan++=x y x ,则1='x y =.4.)(x f 二阶可导,)sin 1(x f y +=,则y '=;y ''=.5.曲线xe y =在点处切线与衔接曲线上两点),1(),1,0(e 的弦平行. 6.)]1ln[arctan(x y -=,则dy =. 7.42sin x y =,则dx dy =,2dx dy=. 8.若txx xt t f 2)11(lim )(+=∞→,则)(t f '=.9.曲线12+=x y 于点_________处的切线斜率为2. 10.设xxe y =,则_______)0(=''y . 11.设函数)(x y y =由方程0)cos(=++xy eyx 肯定,则________=dxdy. 12.设⎩⎨⎧=+=ty t x cos 12则________22=dx yd . 二.单项选择 1.设曲线xy 1=和2x y =在它们交点处两切线的夹角为ϕ,则ϕtan =( ). (A)1-;(B)1; (C )2-;(D)3. 3.函数x ke xf tan )(=,且e f =')4(π,则=k ( ).(A)1;(B)1-; (C )21;(D)2. 4.已知)(x f 为可导的偶函数,且22)1()1(lim-=-+→xf x f x ,则曲线)(x f y =在)2,1(-处切线的方程是.(A)64+=x y ;(B)24--=x y ;(C )3+=x y ;(D)1+-=x y .5.设)(x f 可导,则xx f x x f x ∆-∆+→∆)()(lim 220=.(A)0;(B))(2x f ; (C ))(2x f ';(D))()(2x f x f '⋅.6.函数)(x f 有随意率性阶导数,且2)]([)(x f x f =',则)()(x fn =.(A)1)]([+n x f n ;(B)1)]([!+n x f n ;(C )1)]()[1(++n x f n ;(D)2)]([)!1(x f n +.7.若2)(x x f =,则xx f x x f x ∆-∆+→∆)()2(lim000=( )(A)02x ; (B)0x ; (C )04x ; (D)x 4.8.设函数)(x f 在点0x 处消失)(0x f -'和)(0x f +',则)()(00x f x f +-'='是导数)(0x f '消失的( )(A)必要非充分前提;(B)充分非必要前提; (C )充分必要前提;(D)既非充分又非必要前提. 9.设)99()2)(1()(---=x x x x x f 则=')0(f ( ) (A)99;(B)99- ; (C )!99;(D)!99-. 10.若)(u f 可导,且)(2x f y -=,则有=dy ( )(A)dx x f x )(2-';(B)dx x f x )(22-'-;(C )dx x f )(22-';(D)dx x f x )(22-'. 11.设函数)(x f 持续,且0)0('>f ,则消失0>δ,使得( )(A ))(x f 在),0(δ内单调增长; (B ))(x f 在)0,(δ-内单调削减;(C )对随意率性的),0(δ∈x 有)0()(f x f >;(D )对随意率性的)0,(δ-∈x 有)0()(f x f >.12.设⎪⎩⎪⎨⎧≤+>=001sin)(2x bax x xx x f 在0=x 处可导,则( )(A )0,1==b a ; (B )b a ,0=为随意率性常数; (C )0,0==b a ; (C )b a ,1=为随意率性常数. 三.盘算解答 1.盘算下列各题 (1)xey 1sin 2=,求dy ; (2)⎩⎨⎧==3ln t y t x ,求122=t dx yd ;(3)y y x =+arctan ,22dxy d ; (4)x x y cos sin =,求)50(y ;(5)xxx y )1(+=,求y '; (6))2005()2)(1()(+++=x x x x x f ,求)0(f ';(7))()()(x a x x f ϕ-=,)(x ϕ在a x =处有持续的一阶导数,求)()(a f a f '''、; (8)设)(x f 在1=x 处有持续的一阶导数,且2)1(='f ,求)1(cos lim 1-+→x f dxdx .2.试肯定常数b a ,之值,使函数⎩⎨⎧<-≥+++=0102)sin 1()(x e x a x b x f ax处处可导. 3.证实曲线a y x =-22与b xy =(b a ,为常数)在交点处切线互相垂直.4.一气球从距离不雅察员500米处离地匀速铅直上升,其速度为140米/分,当此气球上升到500米空中时,问不雅察员视角的倾角增长率为若干.5.若函数)(x f 对随意率性实数21,x x 有)()()(2121x f x f x x f =+,且1)0(='f ,证实)()(x f x f ='.6.求曲线5323-+=x x y 上过点)3,1(--处的切线方程和法线方程.第二章 导数与微分习题解答一.填空题 1.1-1)3(21)21()3()3(lim 2)3()3(lim00-='-=-⋅---=--→→f h f h f h f h f h h 2.)0(f ')0(0)0()(lim )(lim00f x f x f x x f x x '=--=→→ 3.ππ+x ln 1ln -+='ππππxy xππ+='∴=x y x ln |14.x x f cos )sin 1(⋅+',x x f x x f sin )sin 1(cos )sin 1(2⋅+'-⋅+''x x f y cos )sin 1(⋅+'=',x x f x x f y sin )sin 1(cos )sin 1(2⋅+'-⋅+''=''5.)1),1(ln(--e e 弦的斜率1011-=--=e e k 1)(-==='∴e e e y x x ⇒)1ln(-=e x ,当)1ln(-=e x 时,1-=e y .6.])1(1[)1arctan(2x x dx-+⋅--)1()1(11)1arctan(1)]1[arctan()1arctan(12x d x x x d x dy --+⋅-=--=])1(1[)1arctan(2x x dx-+⋅--=7.432sin 4x x ,422sin 2xx 433442sin 44cos sin 2x x x x x dxdy =⋅⋅= 4222sin 22x x xdxdy dx dy == 8.t t te e 222+ttx x te xt t f 22)11(lim )(=+=∞→t t te e t f 222)(+='∴9.)2,1(x y 2=' ,由220=x ⇒10=x ,21120=+=y12+=∴x y 在点)2,1(处的切线斜率为210. 2x x xe e y +=' ,xx x xe e e y ++=''2)0(00=+=''∴e e y11.)sin()sin(xy x e xy y e y x y x ---++ 方程双方对x 求导得 0)')(sin()'1(=+-++xy y xy y e yx解得 )sin()sin('xy x e xy y e y y x y x ---=++.12.34cos sin t tt t - 由参数式求导公式得t t x y dx dy tt 2sin ''-==, 再对x 求导,由复合函数求导法得32224cos sin 21sin cos 21'')'()'(ttt t t t t t t x y y dx d dx y d t t x x -=⋅--===. 二.选择题1.选(D) 由⎪⎩⎪⎨⎧==21xy x y ⇒交点为)1,1(,1|)1(11-='==x x k ,2|)(122='=x x k3|1||)tan(|tan 211212=+-=-=∴k k k k ϕϕϕ3.选(C) x x k e x f k xk21tansec tan )(⋅⋅='-由e f =')4(π得 e k e =⋅⋅2⇒21=k 4.选(A ) 由xf x f x f x f x x 2)1()1(lim2)1()1(lim00----=-+→→ 2)21()1()21()1()1(lim0-=-⋅-'=-⋅-----=→f x f x f x ⇒4)1(=-'f∴切线方程为:)1(42+=-x y 即 64+=x y 5.选(D) )()(2])([)()(lim2220x f x f x f xx f x x f x '⋅='=∆-∆+→∆ 6.选(B) )(2)()(2})]({[)(32x f x f x f x f x f ='⋅='='')(32)()(32])(2[)(423x f x f x f x f x f ⨯='⋅⨯='=''' 设)(!)(1)(x f n x f n n +=,则)()()!1()()1(x f x f n x fn n '⋅+=+)()!1(2x f n n ++= )(!)(1)(x f n x f n n +=∴7.选(C) )(22)()2(2lim )()2(lim 0000000x f xx f x x f x x f x x f x x '=∆-∆+⋅=∆-∆+→∆→∆又x x x f 2)()(2='=' ,004)(2x x f ='∴8.选(C) )(x f 在0x 处可导的充分必要前提是)(x f 在0x 点的左导数)(0x f -'和右导数)(0x f +'都消失且相等. 9.选(D))99()3)(1()99()2()99()2)(1()(---+--+---='x x x x x x x x x x x f )98()2)(1(---++x x x x!99!99)1()990()20)(10()0(99-=⋅-=---='∴ f另解:由界说,)99()2)(1(lim 0)0()(lim )0(00---=--='→→x x x x f x f f x x!99!99)1(99-=⋅-= 10.选(B) )(2)()(])([2222x f x x f x f -'-='-⋅-'='-dx x f x dy )(22-'-=∴11.由导数界说知0)0()(lim)0('0>-=→xf x f f x ,再由极限的保号性知 ,0>∃δ当),(δδ-∈x 时0)0()(>-xf x f ,从而 当)),0()(0,(δδ∈-∈x x 时,)0(0)0()(><-f x f ,是以C 成立,应选C. 12.由函数)(x f 在0=x 处可导,知函数在0=x 处持续b b ax x f xx x f x x x x =+===--++→→→→)(lim )(lim ,01sinlim )(lim 0020,所以0=b .又a xax x f x f f x x x x f x f f x x x ==--===--=-++→-→→+0)0()(lim )0(,01sinlim 0)0()(lim )0(0200,所以0=a .应选C. 三.盘算解答 1.盘算下列各题 (1)dx x x x e x d edy xx)1(1cos 1sin 2)1(sin 21sin 21sin 22-⋅⋅==dx e xx x1sin 222sin 1-=(2)32313t tt dxdy ==,3222919t t t dx y d ==,9|122=∴=t dx y d (3)双方对x 求导:y y y'='⋅++2111⇒12+='-y y)11(2)1(2223233+-=+⋅-='⋅-=''---y y y y y y y (4)x x x y 2sin 21cos sin == )22sin(2cos π+=='∴x x y )222sin(2)22cos(2ππ⋅+=+=''x x y 设)22sin(21)(π⋅+=-n x yn n则)2)1(2sin(2)22cos(2)1(ππ++=⋅+=+n x n x yn n nx x y 2sin 2)2502sin(24949)50(-=⋅+=∴π(5)双方取对数:)]1ln([ln ln x x x y +-=双方求导:xx x x y y +-++-='⋅11)1ln(ln 1 ]11)1ln([ln )1(xxx x x x y x +-++-+='∴(6)运用界说:!2005)2005()3)(2)(1(lim )0()(lim)0(00=++++=-='→→x x x x xf x f f x x(7))()()()(x a x x x f ϕϕ'-+=' )()(a a f ϕ='∴又ax a x a x x a x a f x f a f a x ax --'-+=-'-'=''→→)()()()(lim)()(lim)(ϕϕϕ )]()()([lim x ax a x ax ϕϕϕ'+--=→)(2)()(a a a ϕϕϕ'='+'=[注:因)(x ϕ在a x =处是否二阶可导不知,故只能用界说求.](8)]121)1sin ()1(cos [lim )1(cos lim 11-⋅--⋅-'=-++→→x x x f x f dx d x x121sin lim )1(cos lim 11---⋅-'=++→→x x x f x x 1)21()1(-=-⋅'=f2.易知当0≠x 时,)(x f 均可导,要使)(x f 在0=x 处可导则 )0()0(-+'='f f , 且)(x f 在0=x 处持续.即)0()(lim )(lim 0f x f x f x x ==+-→→而020)(lim 2)(lim 00=++⇒⎪⎭⎪⎬⎫=++=+-→→b a x f a b x f x x 又 b xa b a x x f x f f x x =---+++=--='++→→+22)sin 1(lim 0)0()(lim )0(00a x axx e x a b e f x ax x ax x ==-=----='---→→→-000lim 1lim 21lim )0(由⎩⎨⎧⎩⎨⎧-=-=⇒=++=1102b a b a b a 3.证实:设交点坐标为),(00y x ,则a y x =-2020b y x =00对a y x =-22双方求导:yx y y y x ='⇒='⋅-022 ∴曲线a y x =-22在),(00y x 处切线斜率010|y x y k x x ='== 又由2xb y x b y b y x -='⇒=⇒= ∴曲线b xy =在),(00y x 处切线斜率2020|x by k x x -='== 又 1)(00200021-=-=-⋅=y x b x b y x k k ∴两切线互相垂直.4.设t 分钟后气球上升了x 米,则500tan x=α 双方对t 求导:2575001405001sec 2==⋅=⋅dt dx dt d αα αα2cos 257⋅=∴dt d 当500=x m 时, 4πα=∴当500=x m 时,50721257=⋅=dt d α(弧度/分) 5.证实:hx f h f x f h x f h x f x f h h )0()()(lim )()(lim)(00+-⋅=-+='→→ h f h f x f h f x f h f x f h h )0()()(lim )0()()()(lim00-=⋅-⋅=→→)()0()(x f f x f ='⋅=6.解:因为x x y 632+=',于是所求切线斜率为3|63121-=+=-=x x x k ,从而所求切线方程为)1(33+-=+x y , 即063=++y x又法线斜率为31112=-=k k 所以所求法线方程为)1(313+=+x y ,即 083=+-x y 第三章 中值定理与导数运用一.填空题1.=→x x x ln lim 0__________.2.函数()x x x f cos 2-=在区间______________单调增.3.函数()43384x x x f -+=的极大值是____________.4.曲线x x x y 3624+-=在区间__________是凸的.5.函数()x x f cos =在0=x 处的12+m 阶泰勒多项式是_________.6.曲线xxey 3-=的拐点坐标是_________.7.若()x f 在含0x 的()b a ,(个中b a <)内恒有二阶负的导数,且_______,则()0x f 是()x f 在()b a ,上的最大值.8.123++=x x y 在()+∞∞-,内有__________个零点.9.________)1sin 1(cot lim 0=-→xx x x . 10._________)tan 11(lim 20=-→xx x x . 11.曲线2x e y -=的上凸区间是___________. 12.函数1--=x e y x的单调增区间是___________. 二.单项选择1.函数)(x f 有持续二阶导数且,2)0(,1)0(,0)0(-=''='=f f f 则=-→2)(lim x xx f x ( ) (A)不消失 ;(B)0 ;(C)-1 ;(D)-2.2.设),,(),12)(1()(+∞-∞∈+-='x x x x f 则在)1,21(内曲线)(x f ( ) (A)单调增凹的; (B)单调减凹的; (C)单调增凸的;(D)单调减凸的.3.)(x f 在),(b a 内持续,0)()(),,(000=''='∈x f x f b a x ,则)(x f 在0x x =处( )(A)取得极大值; (B)取得微小值;(C)必定有拐点))(,(00x f x ;(D)可能取得极值,也可能有拐点.4.设)(x f 在[]b a ,上持续,在),(b a 内可导,则Ⅰ:在),(b a 内0)(≡'x f 与Ⅱ:在),(b a 上)()(a f x f ≡之间关系是( )(A)Ⅰ是Ⅱ的充分但非必要前提; (B)Ⅰ是Ⅱ的必要但非充分前提; (C)Ⅰ是Ⅱ的充分必要前提;(D)Ⅰ不是Ⅱ的充分前提,也不是必要前提.5.设)(x f .)(x g 在[]b a ,持续可导,0)()(≠x g x f ,且)()()()(x g x f x g x f '<',则当b x a <<时,则有( )(A))()()()(a g a f x g x f <;(B))()()()(b g b f x g x f <; (C))()()()(a g a f x g x f <; (D))()()()(a f a g x f x g >. 6.方程0133=+-x x 在区间),(+∞-∞内() (A)无实根; (B)有独一实根; (C)有两个实根; (D)有三个实根.7.已知)(x f 在0=x 的某个邻域内持续,且0)0(=f ,2cos 1)(lim 0=-→xx f x ,则在点0=x 处)(x f ( )(A)不可导; (B)可导,且0)0('≠f ; (C )取得极大值; (D)取得微小值. 8.设)(x f 有二阶持续导数,且0)0('=f ,1||)("lim=→x x f x ,则( ) (A))0(f 是)(x f 的极大值; (B))0(f 是)(x f 的微小值; (C)))0(,0(f 曲直线)(x f y =的拐点; (D))0(f 不是)(x f 的极值点.9.设b a ,为方程0)(=x f 的二根,)(x f 在],[b a 上持续,在),(b a 内可导,则)('x f 在),(b a 内( ) (A )只有一实根; (B )至少有一实根; (C )没有实根; (D )至少有2个实根. 10.在区间]1,1[-上知足罗尔定理前提的函数是( ) (A )21)(x x f =; (B )||)(x x f =; (C )21)(x x f -=; (D )12)(2--=x x x f .11.函数)(x f 在区间),(b a 内可导,则在),(b a 内0)('>x f 是函数)(x f 在),(b a 内单调增长的( ) (A )必要但非充分前提; (B )充分但非必要前提;(C )充分必要前提; (C )无关前提. 12.设)(x f y =是知足微分方程0'"sin =-+xey y 的解,且0)('0=x f ,则)(x f 在( )(A )0x 的某个邻域单调增长; (B )0x 的某个邻域单调削减; (C)0x 处取得微小值; (D)0x 处取得极大值. 三.盘算解答 1.盘算下列极限 (1)1arccos lim 1+-+-→x xx π;(2)xxx ln cot ln lim 0+→; (3) )1ln(lim 2sin 0x x e e x x x +-→; (4) ⎥⎦⎤⎢⎣⎡-+→)1ln(11lim 20x x x x ;(5)30arctan limxxx x -→ ; (6))tan(ln )tan(ln lim 0bx ax x +→. 2.证实以下不等式(1).设e a b >>,证实ab b a >. (2).当20π<<x 时,有不等式x x x 3sin 2tan >+.3.已知x x y sin 3=,运用泰勒公式求)0()6(y .4.试肯定常数a 与n 的一组数,使得当0→x 时,nax 与33)1ln(x x +-为等价无限小.5.设)(x f 在[]b a ,上可导,试证消失)(b a <<ξξ,使[])()(3)()(1233ξξξξf f b f a f a b a b '+=-.6.作半径为r 的球的外切正圆锥,问此圆锥的高为何值时,其体积V 最小,并求出该体积最小值.7.若)(x f 在]1,0[上有三阶导数,且0)1()0(==f f ,设)()(3x f x x F =,试证:在)1,0( 内至少消失一个ξ,使0)('"=ξF .第三章 中值定理与导数运用习题解答一.填空题1.00)(lim 11lim 1ln lim ln lim 02000=-=-==→→→→x xx x xx x x x x x2.),(+∞-∞0sin 2)(>+='x x f )(x f ∴在),(+∞-∞上单调增3.20)2(121224)(232--=-='x x x x x f令2,00)(21==⇒='x x x f当2<x 时,0)(>'x f ;当2>x 时,0)(<'x f∴极大值为 20)2(=f4.)1,1(-31243+-='x x y ,)1)(1(1212122-+=-=''x x x y当1-<x 时,0>''y .当)1,1(-∈x 时,0<''y ;当),1(+∞∈x 时,0>''y∴曲线在)1,1(-上是凸的5.m m x m x x 242)!2(1)1(!41!211-+++-(赐教材P13页,泰勒公式) 6.)32,32(2-e )31(3333x e xe ey x x x-=-='--- ,)32(9)69(3)31(33333-=-=---=''----x e x e e x e y x x x x令320=⇒=''x y ,当32<x 时,0<''y ;当32>x 时0>''y而当32=x 时,232-=e y ∴拐点为)32,32(2-e7.0)(0='x f ,0)(lim )()(lim)("000000<-'=-'-'=→→x x x f x x x f x f x f x x x x 0)(0<-'⇒x x x f 当0x x <时,)(,0)(0x f x f >'单调增长;当0x x >时,)(,0)(x f x f <'单调削减 8.10232>+='x y ,y ∴在),(+∞-∞上单调增长又-∞=-∞→y x lim +∞=+∞→y x lim .∴在),(+∞-∞内有1个零点.9.61 原式613cos 1lim sin lim cos lim sin )sin (cos lim 2030020=-=-=-=→→→→x x x x x x x x x x x x x x x . 10.31 原式=31tan lim 3131sec lim tan lim tan tan lim 2202203020==-=-=-=→→→→x x x x x x x x x x x x x x x . 11.)22,22(-22])2(2[",2'2x x e x y xe y -----=-=令220"±=⇒=x y ,当)22,22(-∈x 时,0"<y ,上凸,其它区间0">y ,上凹,故应填入)22,22(-. 12.),0(+∞ 函数1--=x e y x的界说区间为),(+∞-∞,在界说区间内持续.可导,且1'-=xe y ,因为在),0(+∞内0'>y ,所以函数1--=x e y x 在),0(+∞上单调增长.二.选择题 1.选(C) 12)(lim 21)(lim )(lim0020-=''=-'=-→→→x f x x f x x x f x x x 2.选(B) 当)1,21(∈x 时,0)(<'x f ,又0)41(414)(>-=-=''x x x f )1,21(∈x)(x f ∴在)1,21(上单调减且为凹的.3.选(D) 3)(x x f =,则0)0(")0('==f f ,0=x 是3)(x x f =的拐点;设4)(xx f =,则0)0(")0('==f f ,而0=x 是4)(x x f =的极值点.4.选(C)由)(x f 在),(b a 内0)(≡'x f 的充分必要前提是在),(b a 内C x f ≡')((C 为常数),又因为)(x f 在],[b a 内持续,所以)(a f C =,即在),(b a 上)()(a f x f ≡.5.选(C)由0)()()()()()()()(<'-'⇒'<'x g x f x g x f x g x f x g x f)()(0])()([x g x f x g x f ⇒<'⇒单调削减,),(b a x ∈ )()()()(b f a f x g x f <∴. 6.选(D) 令13)(3+-=x x x f ,则)1)(1(333)(2+-=-='x x x x f ;当1-<x 时,0)(>'x f ,)(x f 单调增长, 当)1,1(-∈x 时,0)(<'x f ,)(x f 单调削减 当),1(+∞∈x 时,0)(>'x f ,)(x f 单调增长. 而3)1(=-f ,1)1(-=f-∞=-∞→)(lim x f x ,+∞=+∞→)(lim x f x)(x f ∴在)1,(--∞上有一实根,在]1,1[-上有一实根,在),1(+∞上有一实根.7.选(D) 运用极限的保号性可以剖断)(x f 的正负号:0cos 1)(02cos 1)(lim0>-⇒>=-→xx f x x f x (在0=x 的某空心邻域);由0cos 1>-x ,有)0(0)(f x f =>,即)(x f 在0=x 取微小值. 8.选(B) 由极限的保号性:0||)("01||)("lim 0>⇒>=→x x f x x f x (在0=x 的某空心邻域);由此0)(">x f (在0=x 的某空心邻域),)('x f 单调增,又由0)0('=f ,)('x f 在0=x 由负变正,由极值第一充分前提,0=x 是)(x f 的微小点.9.选(B )由罗尔定理保证至少消失一点),(b a ∈ξ使0)('=ξf .10.选(C ),A 选项)(x f 在0=x 不持续,B 选项)(x f 在0=x 处不可导,D 选项)1()1(-≠f f .11.选(B ),如3x y =在),(+∞-∞单增,但0)0('=f ,故非必要前提.12.选(C),由0)('0=x f 有0)(')("00sin 0sin 0>=-=x x e x y ex y ,所以)(x f 在0x 处取得微小值. 三.盘算解答1.盘算极限(1)解: 1arccos lim 1+-+-→x x x π12111arccos 21lim 21+-⋅=+-→x x x x π2111arccos 1lim 1=-⋅=+-→x x x (2)解: 1sin cos sin lim 1)csc (cot 1lim ln cot ln lim 20200-=⋅⋅-=-⋅=+++→→→xx x x xx x x x x x x . (3)解: 613cos 1lim sin lim )1(lim )1ln(lim 20303sin sin 02sin 0=-=-=-=+-→→-→→x x x x x x e e x x e e x x x x x x x x x (4)解:21])1(21[lim 2111lim )1ln(lim )]1ln(11[lim 002020-=--=--=-+=-+→→→→x x x x x x x x x x x x x (5)解: 31)1(3lim 3111lim arctan lim 222022030=+=+-=-→→→x x x x x x x x x x x . (6)解: b bx ax a ax bx b bx bx a ax ax bx ax x x x ⋅⋅⋅⋅=⋅⋅⋅⋅=+++→→→)(sec )tan()(sec )tan(lim )(sec )tan(1)(sec )tan(1lim )tan(ln )tan(ln lim 2202200 220cos ()lim 1cos ()x bx bx a ax ax b+→⋅⋅==⋅⋅ 2.(1)证实:b a a b b a ab ln ln >⇔>令 x a a x x f ln ln )(-=,则)(x f 在],[b a 上持续0ln )(>-='xa a x f ],[b a x ∈ )(x f ∴在],[b a 上单调增长,)()(a f b f >∴得 0ln ln ln ln =->-a a a a b a a b , 即ab b a > (2)令x x x x f 3sin 2tan )(-+=在)2,0(π∈x 时03cos cos cos 133cos cos cos 13cos 2sec )(3222=-⋅⋅≥-++=-+='x x xx x x x x x f 0)(>'∴x f ,)(x f ∴在(0,)2π上单调增,又00lim ()lim(tan 2sin 3)0x x f x x x x ++→→=+-= 0(0,),()lim ()02x x f x f x π+→∴∀∈>=, 即x x x 3sin 2tan >+ 3.解: 麦克劳林公式)(!)0(!2)0()0()0()()(2n n n x o x n f x f x f f x f +++''+'+= 而)()!12()1(!5!3sin 212153m m m x o m x x x x x +--+-+-=-- ++-==∴!5!3sin 8643x x x x x y 比较 6x 的系数有:120!3!6)0(!31!6)0()6()6(-=-=⇒-=f f 4.解: 1)]1(3[lim 313lim )1ln(lim 36023210330=--=+--=+--→-→→x x an x x x anx x x ax n x n x n x 6=∴n ,2113-=⇒=-a an 5.即证:332()()[3()()]b f b a f a f f b aξξξξ-'=+- 令)()(3x f x x F =,则)(x F 在],[b a 上知足拉格朗日定理的前提 ),(b a ∈∃∴ξ,使)()()(ξF ab a F b F '=-- 即3323()()3()()b f b a f a f f b aξξξξ-'=+- 即 )]()(3[)()(1233ξξξξf f b f a f a b a b '+=-6.解:设圆锥的高为h,底面圆半径为R,则有比例关系222r hrRR h r=⇒=-rhrhhRV23131222-⋅==∴ππ)2(rh>222222)2()42(31)2()2(231rhhrhhrrhrhrhhrdhdV---=---=ππ令⇒=0dhdV独一驻点rh4=所以,当rh4=时,体积最小,此时32238241631rrrrrVππ=-⋅⋅=7.解:由题设可知)('"),("),('),(xFxFxFxF在]1,0[上消失,又)1()0(FF=,由罗尔定理,)1,0(1∈∃ξ使0)('1=ξF,又0|)](')(3[)0('32=+==xxfxxfxF,可知)('xF在],0[1ξ上知足罗尔定理,于是),0(12ξξ∈∃,使0)("2=ξF,又0|)](")('6)(6[)0("32=++==xxfxxfxxxfF,对)(''xF在],0[2ξ上再次运用罗尔定理,故有)1,0(),0(),0(12⊂⊂∈ξξξ,使得0)('"=ξF.第四章不定积分一.填空题1.⎰dx xx=___________.2.⎰xxdx2=_____________.3.⎰+-dxxx)23(2=_____________.4.⎰-dxxxxsincos2cos=___________.5.⎰+xdx2cos1=____________.6.dttt⎰sin=___________.7.⎰xdxx sin=___________.8.⎰xdxarctan=__________.9.=+⎰dxxx2sin12sin____________.10.⎰=''dx x f x )(____________. 11.⎰=++dx x x 1)3(1________________. 12.⎰=++__________522x x dx .二.单项选择1.对于不定积分()dx x f ⎰,下列等式中( )是准确的.(A )()()x f dx x f d =⎰;(B )()()x f dx x f ='⎰;(C )()()x f x df =⎰;(D )()()x f dx x f dx d =⎰. 2.函数()x f 在()+∞∞-,上持续,则()[]dx x f d ⎰等于( )(A )()x f ;(B )()dx x f ;(C )()C x f +;(D )()dx x f '.3.若()x F 和()x G 都是()x f 的原函数,则( )(A )()()0=-x G x F ;(B )()()0=+x G x F ;(C )()()C x G x F =-(常数);(D )()()C x G x F =+(常数).4.若⎰+='c xdx x f 33)(,则=)(x f ( ) (A )c x +3556;(B )c x +3559;(C )c x +3;(D )c x +. 5.设)(x f 的一个原函数为x x ln ,则=⎰dx x xf )(( )(A )c x x ++)ln 4121(2;(B )c x x ++)ln 2141(2; (C )c x x +-)ln 2141(2;(D )c x x +-)ln 4121(2. 6.设c x dx x f +=⎰2)(,则=-⎰dx x xf )1(2( )(A )c x +--22)1(2;(B )c x +-22)1(2;(C )c x +--22)1(21;(D )c x +-22)1(21. 7.=+-⎰dx e e x x 11( )。

2011-2012第二学期微积分期中考试试卷参考答案_7481_1628_20120411115551

2011-2012第二学期微积分期中考试试卷参考答案_7481_1628_20120411115551

北 京 交 通 大 学2011-2012学年第二学期《微积分》期中考试试卷考试方式: 闭卷 任课教师:学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________请注意:本卷共七道大题,如有不对,请与监考老师调换试卷! 一、单项选择题(每小题3分,共15分)1. 设函数()21,0,0,y x f x y ⎧<<=⎨⎩其它,则(),f x y 在()0,0点 B 。

(A )连续,且可偏导。

(B )沿任何方向的方向导数都存在。

(C )可微,且()0,00.df =(D )(),x f x y 和(),y f x y 在()0,0点连续。

2. 设有三元方程ln 1.xyxy z y e -+=由多元隐函数存在定理,在()0,1,1的某邻域内,该方程 A 。

(A )可以确定两个具有连续偏导数的隐函数(),x x y z =和(),y y x z =。

(B )可以确定两个具有连续偏导数的隐函数(),x x y z =和(),.z z x y = (C) 可以确定两个具有连续偏导数的隐函数(),y y x z =和(),z z x y =。

(D )只能确定一个具有连续偏导数的隐函数(),.z z x y = 3.设函数()f u 具有二阶连续导数,且()()'0,00,f u f>=则函数()()ln z f x f y =在点()0,0处取得极大值的一个充分条件是 D 。

(A )()()"01,00.f f << (B )()()"01,00.f f >> (C )()()"01,00.f f <> (D )()()"01,00.f f ><4.单位圆域221x y +≤被直线y x =±划分为四个区域()1,2,3,4,k D k =1D 是完全位于y 轴右侧的那个区域,按逆时针依次排列为1234,,,D D D D ,记cos kk D I x ydxdy =⎰⎰,则{}14max k k I ≤≤等于 A 。

微积分各章习题及详细答案(供参考)

微积分各章习题及详细答案(供参考)

微积分各章习题及详细答案(供参考)第一章函数极限与连续一、填空题1、已知 f (sin x) 1cos x ,则 f (cos x)。

2(4 3x)22、 lim2)。

xx(1 x3、 x 0 时, tan x sin x 是 x 的阶无量小。

4、 lim xksin10 建立的 k 为。

xx5、 lim e x arctan xx6、 f ( x)ex1, xb,7、 limln( 3x1)x 06x。

x 0在 x 0处连续,则 b 。

x 0。

8、设 f (x) 的定义域是 [ 0,1] ,则 f (ln x) 的定义域是 __________ 。

9、函数 y 1 ln( x 2) 的反函数为 _________。

10、设 a 是非零常数,则 lim (xa) x ________ 。

xx a111、已知当 x 0时, (1 ax 2 ) 3 1与 cosx 1 是等价无量小,则常数 a ________。

12、函数 f ( x)arcsin3x的定义域是 __________ 。

1 x13、 lim ( x 22x 2 2)____________ 。

x14、设 lim (x2a ) x 8 ,则 a________。

xx a15、 lim ( n n 1)( n 2n) =____________ 。

n二、选择题1、设 f ( x), g(x) 是 [ l , l ] 上的偶函数, h( x) 是 [ l , l ] 上的奇函数,则中所给的函数必为奇函数。

(A) f ( x) g( x) ;(B) f ( x) h( x) ;( C ) f (x)[ g(x) h( x)] ;( D ) f ( x) g( x) h(x) 。

2、1 x3x( x),( x)1x ,则当时有。

1 x1(A) 是比 高阶的无量小; (B) 是比 低阶的无量小;( C )与 是同阶无量小;( D )~。

3、函数 f (x)1 x 1 ,x 0( x1) 在 x0处连续,则 k3 1 x 1 。

经济数学基础微分学部分综合练习及参考答案

经济数学基础微分学部分综合练习及参考答案

微积分考试复习题一、单项选择题1.函数()1lg +=x xy 的定义域是( D )D .1->x 且0≠x 2.下列各函数对中,D )中的两个函数相等D x x x f 22cos sin )(+=,1)(=x g3.设xx f 1)(=,则=))((x f f (C ). C .x 4.下列函数中为奇函数的是( C ).C .11ln +-=x x y 5.已知1tan )(-=x xx f ,当(A )时,)(x f 为无穷小量.A. x →06.当+∞→x 时,下列变量为无穷小量的是( D .xxsin 7.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩在x = 0处连续,则k = ( C ).C .18.曲线11+=x y 在点(0, 1)处的切线斜率为(A )A .21-9.曲线x y sin =在点(0, 0)处的切线方程为( A ).A. y = x10.设y x=l g 2,则d y =(B ). B .1d x x ln1011.下列函数在指定区间(,)-∞+∞上单调增加的是(B ).B .e x12.设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =(B )B .--p p32二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域[-5,2]2.函数xx x f --+=21)5ln()(的定义域是(-5, 2 ).3.若函数52)1(2-+=+x x x f ,则=)(x f 62-x .4.设21010)(xx x f -+=,则函数的图形关于y 轴对称.5.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.66.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2.7. =+∞→x x x x sin lim18.已知xxx f sin 1)(-=,当0→x 时,)(x f 为无穷小量. 9. 已知⎪⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞.内连续,则=a 2. 10.曲线y =)1,1(处的切线斜率是(1)0.5y '=.11.函数y x =-312()的驻点是x =112.需求量q 对价格p 的函数为2e 100)(pp q -⨯=,则需求弹性为E p =2p - 三、计算题1.已知y xxx cos 2-=,求)(x y '.2.已知()2sin ln x f x x x =+,求)(x f '. 3.已知2s i n 2c o s x y x -=,求)(x y '.4.已知x x y 53e ln -+=,求)(x y '.5.已知x y cos 25=,求)2π(y ';6.设x x y x +=2cos e ,求y d 7.设x y x 5si n cos e +=,求y d .8.设x x y -+=2t an 3,求y d .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p=-100010(q 为需求量,p 为价格)试求(1)成本函数,收入函数(2)产量为多少吨时利润最大?3.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?4.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?5.已知某厂生产q 件产品的成本为C q q q()=++25020102(万元).问要使平均成本最少应生产多少件产品?三、计算题1.解:2cos sin cos ()(2)2ln 2x x x x x x y x x x --''=-=-2sin cos 2ln 2xx x x x +=+ 2.解xx x x f x x 1cos 2sin 2ln 2)(++⋅='3.解)(cos )2(2sin )(22'-'-='x x x y x x 2cos 22ln 2sin 2x x x x --=4.解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--= 5.解:因为5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x x x x y -='='='所以5ln 25ln 52πsin 2)2π(2πcos 2-=⋅-='y6.解:因为212cos 23)2sin (e 2x x y x +-='所以x x x y xd ]23)2sin (e 2[d 212cos +-=7.解:因为)(cos cos 5)(sin e 4sin '+'='x x x y x x x x x sin cos 5cos e 4sin -=所以x x x x y x d )sin cos 5cos e (d 4sin -=8解:因为)(2ln 2)(cos 1332'-+'='-x x x y x 2ln 2cos 3322xx x --=所以x xx y x d )2ln 2cos 3(d 322--=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C 所以,1851061025.0100)10(2=⨯+⨯+=C 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C (2)令025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解(1)成本函数C q ()= 60q +2000.因为q p =-100010,即p q =-100110, 所以收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q--(60q +2000) = 40q -1102q -2000 且'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点.所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.(1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 4.解因为()9800()0.536C q C q q q q==++(0)q > 298009800()(0.536)0.5C q q q q''=++=- 令()0C q '=,即0598002.-q =0,得q 1=140,q 2= -140(舍去).q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值. 所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为9800(140)0.514036176140C =⨯++=(元/件) 5.解因为C q ()=C q q()=2502010q q ++'C q ()=()2502010qq++'=-+2501102q令'C q ()=0,即-+=25011002q ,得150q =,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品. 积分学一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为(A .y = x 2 + 3 2.下列等式不成立的是(A .)d(e d e x x x = 3.若c x x f x +-=-⎰2ed )(,则)(x f '=(D .2e 41x--4.下列不定积分中,常用分部积分法计算的是(C .⎰x x x d 2sin 5. 若c x x f xx+-=⎰11e d e )(,则f (x ) =( C .21x 6.若)(x F 是)(x f 的一个原函数,则下列等式成立的是( B .)()(d )(a F x F x x f xa -=⎰7.下列定积分中积分值为0的是(A .x xx d 2e e 11⎰---8.下列定积分计算正确的是(D .0d sin =⎰-x x ππ9.下列无穷积分中收敛的是( C .⎰∞+12d 1x x10.无穷限积分 ⎰∞+13d 1x x =(C .21二、填空题1.=⎰-x x d e d 2x x d e 2-2.函数x x f 2sin )(=的原函数是-21cos2x + c (c 是任意常数)3.若)(x f '存在且连续,则='⎰])(d [x f )(x f '4.若c x x x f ++=⎰2)1(d )(,则=)(x f )1(2+x5.若c x F x x f +=⎰)(d )(,则x f xx)d e (e --⎰=c F x+--)e ( 6.=+⎰e12dx )1ln(d d x x7.积分=+⎰-1122d )1(x x x08.无穷积分⎰∞++02d )1(1x x 是收敛的.(判别其敛散性) 9.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为2 + q 23三、计算题1.⎰+-x x x d 242解⎰+-x x x d 242=(2)d x x -⎰=2122x x c -+ 2.计算⎰x x x d 1sin 2 解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin23.计算⎰x xx d 2解c x xxxx x +==⎰⎰22ln 2)(d 22d 24.计算⎰x x x d sin 解 c x x x x x x x x x x ++-=+-=⎰⎰sin cos d cos cos d sin5.计算⎰+x x x d 1)ln (解⎰+x x x d 1)ln (=⎰+-+x xx x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(21226.计算 x x x d e 2121⎰解 x x xd e 2121⎰=21211211e e e )1(d e -=-=-⎰x xx7.2e 1x ⎰解 x x x d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x +=)13(2- 8.x x x d 2cos 2π⎰ 解:x x x d 2cos 20⎰π=22sin 21πx x -x x d 2sin 2120⎰π=202cos 41πx =21-9.x x d )1ln(1e 0⎰-+ 解法一 x x x x x x x d 1)1ln(d )1ln(1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+--- =1e 0)]1ln([1e -+---x x =e ln =1四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.解 当产量由4百台增至6百台时,总成本的增量⎰+=∆64d )402(x x C =642)40(x x +=100(万元)又 xc x x C x C x⎰+'=00d )()(=x x x 36402++ =x x 3640++ 令 0361)(2=-='xx C , 解得6=x .x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值所以产量为6百台时可使平均成本达到最小.2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x 令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大.当产量由500件增加至550件时,利润改变量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x 令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x 即从利润最大时的产量再生产2百台,利润将减少20万元.4.已知某产品的边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本.解:因为总成本函数为⎰-=q q q C d )34()(=c q q +-322当q = 0时,C (0)= 18,得 c =18 即 C (q )=18322+-q q 又平均成本函数为 qq q q C q A 1832)()(+-== 令 0182)(2=-='qq A , 解得q = 3(百台) 该题确实存在使平均成本最低的产量. 所以当q = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7 由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点.因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为87287)14(d )214(x x x x L -=-=∆⎰ =112–64 – 98 + 49 = -1 (万元)即利润将减少1万元.线性代数一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行.A .AB2.设B A ,为同阶可逆矩阵,则下列等式成立的是( B .T T T )(A B AB = 3.以下结论或等式正确的是( ).C .对角矩阵是对称矩阵4.设A 是可逆矩阵,且A A B I +=,则A -=1( C .I B + 5.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( D .⎥⎦⎤⎢⎣⎡--5232 6.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =( C .2 7.设线性方程组b AX =的增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组的一般解中自由未知量的个数为( A .18.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( A . 无解9.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=( )时线性方程组无解B .1210. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( D .n A r A r <=)()( 11.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( B .无解正确答案:B12.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(C .只有零解 二、填空题1.若矩阵A = []21-,B = []132-,则A T B=⎥⎦⎤⎢⎣⎡---264132 2.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T)(A I -=:⎥⎦⎤⎢⎣⎡--2240 3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是B A ,是可交换矩阵4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 0 时,A 是对称矩阵.5.设B A ,均为n 阶矩阵,且)(B I -可逆,则矩阵X BX A =+的解X =A B I 1)(-- 6.设A 为n 阶可逆矩阵,则r (A )= n .7.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b 无解.8.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则=λ—1 9.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于n –r10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,且该方程组有非0解,则≤)(A r 3 .11.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般为为⎩⎨⎧=--=4243122x x x x x (其中43,x x 是自由未知量)12.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A :t 1-≠时,方程组有唯一解.三、计算题1.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-01241121,求逆矩阵1-A . 解 因为(AI ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----211231241122.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,求逆矩阵1)(-+A I . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 3.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1.解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435(BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101所以(BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--252231 4.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =.解:因为 ⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-1101 5.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的秩,并判断其解的情况.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201 所以 r (A ) = 2,r (A ) = 3. 又因为r (A )≠r (A ),所以方程组无解.6.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解. 解 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)7.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 的一般解. 解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→0000194101101 所以一般解为 ⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量)8.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解 因为系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 所以当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x xx (其中3x 是自由未知量)9.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ有解?并求一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 所以当λ=0时,线性方程组有无穷多解, 且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕 经济数学基础11年秋季学期模拟试卷一、单项选择题1.B 2.A 3. D 4.C 5. C1.下列函数在指定区间(,)-∞+∞上单调增加的是( B ).B .e x 2.曲线11+=x y 在点(0, 1)处的切线斜率为(A ).A .21-3.下列定积分计算正确的是(D ). D .0d sin =⎰-x x ππ4.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C )C .111)(---=A B AB5.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(C ) C .只有零解 二、填空题6.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是[-5, 2). 7.求极限 =+∞→x xx x sin lim1 . 8.若)(x f '存在且连续,则='⎰])(d [x f )(x f '.9.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是BA AB =.10.设齐次线性方程组01=⨯⨯n n m X A ,且r (A ) = r < n ,则其一般解中的自由未知量的个数等于n -r三、微积分计算题11.设xx y -+=2tan 3,求y d . 12.计算积分 x x x d 2cos 20⎰π.四、代数计算题13.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---112401211,计算1)(-+A I .14.求线性方程组⎪⎩⎪⎨⎧=++-=++-=+-5532342243214321421x x x x x x x x x x x 的一般解. 五、应用题15.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?三、微积分计算题11.解:因)(2ln 2)(cos 1332'-+'='-x x x y x 2ln 2cos 3322xx x --=所以x xx y x d )2ln 2cos 3(d 322--=12.解:x x x d 2cos 20⎰π=22sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21-四、线性代数计算题13.解:因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+012411210A I 且 (I +AI )=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-12000101083021041110001000101241121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→12312411220001000112300101120021021⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001所以 1)(-+A I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----2112312411214.解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---131101311021011551323412121011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000001311012101000001311021011 故方程组的一般解为:1342342131x x x x x x =++⎧⎨=+-⎩(x 3,4x 是自由未知量〕五、应用题15.解:(1)由已知201.014)01.014(q q q q qp R -=-== 利润函数22202.0201001.042001.014q q q q q q C R L --=----=-= 则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)经济数学基础一、单项选择 1.C 2.D 3.B 4.A 5.D 1.下列函数中为奇函数的是( C ).(C) 11ln+-=x x y 2.设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为=p E3.下列无穷积分中收敛的是(B) ⎰∞+12d 1x x 4.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行.(A) AB5.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是 D) 无解二、填空题 6.函数24)(2--=x x x f 的定义域是),2(]2,(∞+--∞7.函数1()1e xf x =-的间断点是0=x 8.若cx F x x f +=⎰)(d )(,则=⎰--x f x x d )e (e c F x +--)e (. 9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201aA ,当=a 0 时,A 是对称矩阵10.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非=三、微积分计算题1.设x y x5cos 3+=,求y d . 2. 计算定积分⎰e1d ln x x x .四、线性代数计算题11. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211010,211001B A ,求1T )(-A B .设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211010,211001B A ,求1T )(-A B .12.求齐次线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.五、应用题15.生产某产品的总成本为x x C +=3)((万元),其中x 为产量,单位:百吨.边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量; (2) 从利润最大时的产量再生产1百吨,利润有什么变化?三、微积分计算题)11. 解:由微分四则运算法则和微分基本公式)(cos d )3(d )cos 3(d d 55x x y x x +=+=)(cos d cos 5d 3ln 34x x x x +=x x x x x d cos sin 5d 3ln 34-=x x x x d )cos sin 53ln 3(4--=12. 解:由分部积分法得⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x 414e d 212e 2e 12+=-=⎰x x四、线性代数计算题13. 解:因为⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=3121211001211100T A B 所以由公式⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---⨯-⨯-=-11231123)1(23)1(1)(1T A B 14. 解:因为系数矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量) 五、应用题)15.解:(1)因为边际成本1)(='x C ,边际利润'='-'L x R x C x ()()()x x 2141215-=--=令'=L x ()0 得 7=x (百吨)又7=x 是L x ()的唯一驻点,根据问题的实际意义可知L x ()存在最大值,故7=x 是L x ()的最大值点,即当产量为7(百吨)时,利润最大. 16.x x x x L L d )214(d )(8787⎰⎰-='=1)14(872-=-=x x即从利润最大时的产量再生产1百吨,利润将减少1万元. 1 经济数学基础09秋模拟试卷一、单项选择题1.函数()1lg +=x xy 的定义域是( D ). D .1->x 且0≠x2.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( C .1 3.下列不定积分中,常用分部积分法计算的是( C .⎰x x x d 2sin4.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行A .AB5. 设线性方程组b AX =的增广矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------124220621106211041231,则此线性方程组的一般解中自由未知量的个数为( B .2 二、填空题( 6.设函数2)1(2++=+x x x f ,则42+x7.设某商品的需求函数为2e 10)(p p q -=,则需求弹性=p E 2p - 8.积分 =+⎰-1122d )1(x x x0 .9.设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵方程X BX A =+的解X =1)(--B I . 10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,则≤)(A r 3 . 三、微积分计算题11.设x x y x +=cos e ,求y d . 12.计算积分 ⎰x x x d 1sin 2.四、代数计算题 13.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,计算 1)(-+A I . 14.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=--1261423623352321321321x x x x x x x x x 的一般解.五、应用题15.已知某产品的边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本. 三、微积分计算题11.解:212co s 23co s 23)sin (e)()(cos ex x x x y xx+-='+'='x x x y x d )e sin 23(d 2cos 21-=12.解: c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin2四、线性代数计算题13.解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→11210000131001501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 14.解:因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=18181809990362112614236213352A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101401 所以一般解为 ⎩⎨⎧+=+=1143231x x x x (其中3x 是自由未知量) 五、应用15.解:因为总成本函数为 ⎰-=q q q C d )34()(=c q q +-322 当q = 0时,C (0)= 18,得 c =18,即C (q )=18322+-q q 又平均成本函数为 qq q q C q A 1832)()(+-== 令 0182)(2=-='qq A , 解得q = 3(百台) 该问题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)经济数学基础09秋模拟试卷2一、单项选择题1.下列各函数对中,( D )中的两个函数相等.D .x x x f 22cos sin )(+=,1)(=x g2.当+∞→x 时,下列变量为无穷小量的是( C .21e x -3.若c x x f xx+-=⎰11e d e )(,则f (x ) =( C .21x4.设A 是可逆矩阵,且A A B I+=,则A -=1( A .B 5.设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( B .nA r A r <=)()(二、填空题6.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) =42+x7.曲线y =)1,1(处的切线斜率是2p -8.=+⎰x x xd )1ln(d d e12 09.设A 为n 阶可逆矩阵,则r (A )=1)(--B I10.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A ,则t 3时,方程组有唯一解. 三、微积分计算题11.设x y x 5sin cos e +=,求y d . 12.计算积分 ⎰e1d ln x x x .四、代数计算题13.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 14.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.五、应用题15.设生产某种产品q 个单位时的成本函数为:qq q C 625.0100)(2++=(万元),求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?三、微积分计算题 四、解:212cos 23cos 23)sin (e)()(cos ex x x x y xx+-='+'='x x x y x d )e sin 23(d 2cos 21-=12.解: c x x x x x x +=-=⎰⎰1cos )1(d 1sin d 1sin2四、线性代数计算题13.解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 14.解:因为增广矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=18181809990362112614236213352A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101401 所以一般解为 ⎩⎨⎧+=+=1143231x x x x (其中3x 是自由未知量) 五、应用题15.解:因为总成本函数为⎰-=q q q C d )34()(=c q q +-322 当q = 0时,C (0)= 18,得 c =18,即 C (q )=18322+-q q 又平均成本函数为q q q q C q A 1832)()(+-==令 0182)(2=-='qq A , 解得q = 3(百台) 该问题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)经济数学基础期末模拟练习(二) 一、单项选择题 1.B 2.C 3.D 4.C 5.B 6.A 7.D 8.C 9.B10.A1.下列各对函数中,( )中的两个函数相同. (B) 1)(,cos sin )(22=+=x g x x x f2.当1→x 时,下列变量中的无穷小量是 (C) 1122+-x x3.若)(x f 在点0x 有极限,则结论( )成立 (D) )(x f 在点0x 可能没有定义4.下列函数中的单调减函数是( ) (C) x y -=5.下列等式中正确的是( ) (B) )cos d(d sin x x x -=6.若F x ()是f x ()的一个原函数,则=⎰--x f x x d )e (e ( ).(A) c F x +--)e (7.设A B ,为随机事件,下列等式成立的是( ). (D) )()()(AB P A P B A P -=- 8.已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ). (C) 1,21-==b a 9.设A 是n s ⨯矩阵,B 是m s ⨯矩阵,则下列运算中有意义的是( (B) T AB 10.n 元线性方程组A Xb =有解的充分必要条件是( ). (A) 秩=A 秩)(A 二、填空题11.2sin 2+x 12. 减少 13.x cot -14.7.1 15.1 11.若函数2)(2+=x x f ,x x g sin )(=,则=))((x g f 12.函数x x f ln )(-=在区间),0(∞+内单调13.=⎰x xd sin 12. 14.设随机变量⎥⎦⎤⎢⎣⎡3.01.06.0210~X ,则=+)1(X E . 15.当λ=时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解.三、极限与微分计算题16.求极限xx x 21sin 1lim 0-+→.17.由方程x y x y ln sin =+确定y是x 的隐函数,求y d .四、积分计算18.计算积分⎰41d ex xx19.求微分方程xx x y y sin =+'的通解. 五、概率计算题 20.已知5.0)(=A P ,3.0)(=B A P ,求)(B A P +.21.设随机变量)9,3(~N X ,求)120(<≤X P .(已知ΦΦ().,().108413209772==,Φ().309987=) 六、代数计算题 22.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=244213001,543322011B A ,求1)(--B A . 23.求解线性方程组⎪⎩⎪⎨⎧=++-=++-=+-5532342243214321421x x x x x x x x x x x七、应用题24.厂家生产一种产品的需求函数为p q 80720-=(单位:件)而生产q 件该产品时的成本函数为1604)(+=q q C (单位:元)问生产多少件产品时厂家获得的利润最大?八、证明题25.设A 为矩阵,证明T AA 是对称矩阵.三、极限与微分计算题 16. 解:利用重要极限的结论和极限运算法则得)1sin 1(2)1sin 1)(1sin 1(lim21sin 1lim00++++-+=-+→→x x x x x x x x )1sin 1(2sin lim 0++=→x x x x 41= 17. 解:等式两端同时求微分得 左)sin (d d )sin (d y x y y x y +=+=y y x x y y y x x y y d cos d sin d )(sin d d sin d ++=++= 右x xx d 1)(ln d ==由此得x x y y x x y y d 1d cos d sin d =++ 整理得 x yx yx y d cos 1sin 1d +-= 18. 解:利用积分的性质和凑微分法得⎰⎰=4141)(d 2e d ex x xxx⎰==21212ed 2e u uu )e 2(e 2-=19. 解:方程是一阶线性微分方程,xx P 1)(=,积分因子为x x xx ==⎰ln d 1e e原方程改为x y y x sin =+' 上式左端为)('xy ,两端同时积分得c x x x xy +-==⎰cos d sin即微分方程的通解为xcx x y +-=cos 其中c 为任意常数. 五、概率计算题 20. 解:由事件的关系得B A A B A +=+且A 与B A 互斥,再由加法公式得)()()(B A P A P B A P +=+8.03.05.0=+= 21. 解:对X 做变换得出)1,0(~33N X -,于是 )3331()331233330()120(<-≤-=-<-≤-=<≤X P X P X P)]1(1[)3()1()3(ΦΦΦΦ--=--=84.018413.09987.0=-+=六、代数计算题22. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-301111010B A 利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110210001010010111100301010111001010 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→2121211001010010111111200001010010111 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---→212121100001010212323001212121100001010212321011即 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--=--212121001212323)(1B A 23. 解:将线性方程组的增广矩阵化为行简化阶梯形矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=131101311021011551323412121011A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000001311012101000001311021011 线性方程组的一般解为 ⎩⎨⎧-+=++=1312432431x x x x x x (其中43,x x 是自由未知量)24. 解:由已知条件可得809q p -=809)(2q q pq q R -== 又由已知条件得1604)(+=q q C进一步得到160805)1604(809)()()(22--=+--=-=q q q q q q C q R q L对利润函数求导得405)(qq L -=' 令'=Lq ()0得200=q ,在定义域内只有一个驻点,故为最值点.即生产200件产品时厂家获得的利润最大. 八、证明题25. 证:由转置的性质得T T T T T T AA A A AA ==)()( 由定义可知T AA 是对称矩阵. 中央广播电视大学2018-2018学年度第二学期 经济数学基础 试卷一、单项选择题二、填空题三、微积分计算题四、线性代数计算题五、应用题一、单项选择题(每小题3分.本题共15分)1.D 2.B 3.A 4.C 5.A。

微积分I(第一层次)期中试题参考答案

微积分I(第一层次)期中试题参考答案

……………………
1 n 1 n 1
1 1 1 把上述不等式相加,得 1 2 3 n ln n 1 2 1 而 an 1 1 2 3 1 n 1
ln n 1 n 0 ,所以 {an } 下方有界. 故 lim an 存在.
n
1 1 e
x x 1
,试确定 f ( x ) 的间断点及其类型.
解: x 0, x 1 为间断点. 因为 f (1 ) 0, f (1 ) 1 ,所以 1 为跳跃间断点.

又因为 f (0 ) , f (0 ) ,所以 0 为无穷型间断点.
1 1 八、 (8 分) (1)对任意正整数 n ,证明: n1 1 ln(1 n ) n ; 1 1 (2)令 an 1 1 2 3 n ln n ,证明: lim an 存在. n
当 0 | x 2 | ,有
n 4
2. 求极限: lim n 4 .
n
解: 4
n
lim 4 =4. 所以由夹逼定理, 得原式= 4 . n 4 4 n 4 n 2 ( n 5). 而 lim 4 n 2 =4 ,
n n 2/ x x 0
3. 求极限: lim(1 2 x) 解:原式= exp(lim
f (0) lim
a (sin x x cos x) sin x a lim ( cos x ) 2a. x 0 x 0 x x
由题意,当 a 2 时, f (0) f (0), 所以 f (0) 4. 七、 (8 分)设 f ( x )



1
x

1
I lim

第一学期第二次微积分期中考试参考答案

第一学期第二次微积分期中考试参考答案

北 京 交 通 大 学2011-2012学年第一学期《微积分》第二次期中考试试卷学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________请注意:本卷共十道大题,如有不对,请与监考老师调换试卷!一、()()ln 101.arcsin x x x+<<<证明:设()()ln 1f x x x =-+,则()00f =。

又因为()()'11001f x x xx x =+=<<<所以01x <<时,()()ln 10,f x x x =-+<()ln 1.arcsin x x+< 二、设0x >时方程211kx x +=有且仅有一个解,求k 的范围。

解:设()()2110f x kx x x =+->,则()'32.f x k x=-(1)0k <时,()()()'0,,0,f f f x +=+∞+∞=-∞<所以0x >时方程211kx x +=有且仅有一个解;(2)0k =时,显然0x >时方程211kx x+=有且仅有一个解; (3)0k >时,()()0,,f f +=+∞+∞=+∞当x ⎛∈ ⎝时,()'0,f x <当x ⎫∈+∞⎪⎪⎭时,()'0,f x >所以1f =为其最小值,只有当其为零时方程211kx x +=有且仅有一个解;此时得k = 总之,k 的范围为(]23,0.⎧⎫⎪⎪-∞⎨⎬⎪⎪⎩⎭ 三、设函数32,1x y x =-求(1)y 的定义域;(2)y 的单调区间和极值,图形的凹凸区间及拐点;(3)y 图形的渐近线方程。

解:(1)y 的定义域为 1.x ≠± (2)()()()()222'"2322323,.11x x xx y y xx-+==--所以(,-∞为单增区间,()1-为单减区间,()1,1-为单减区间,(为单减区间,)+∞为单增区间。

微积分I期中试题及答案

微积分I期中试题及答案

广 东 商 学 院 试 题2010-2011学年第一学期期中课程名称 微积分I 课程代码 课程班号 共 2 页…………………………………………………………………………………………一、填空题(每题2分,共20分)1.函数()9ln 912++-=x x y 的定义域是__________.2.设()()x x g x xx f 1,11=+-=,则复合函数()[]=x g f _______________.3.=∞→xx x 31sin lim _______________. 4.若函数()⎩⎨⎧≥+<=0,20,x x x ae x f x 在0=x 处连续,则=a _______.5. 设,sin x y =则()=10y _________.6.曲线x x y ln = 与直线0=-y x 平行的切线方程是_______。

7.已知当0→x 时,112-+bx 与2x 是等价无穷小,则=b ____。

8.设,cos csc )sin 1(sin 22x x x x f -=+则=)(x f ________________9.极限12sinlim 2+∞→x xx x =_______________10.设函数()()⎪⎪⎩⎪⎪⎨⎧=+-=000,ln 1cos 1)(22 x x x b x x x a x f 在x=0处连续,则a=______ ,b=________二、单选题(每题2分,共10分)1.1-=x ey 的反函数是 ( )A. ()1ln -=x y B()x y -=1lnC. x y ln 1+= D x y ln 1-=2. 己知()⎪⎩⎪⎨⎧>-=<=0,40,00,2x x x x e x f x ,则当0→x 时,()x f 的极限为( )A.4B.1C.0D.不存在 3.当的是时,x x x )21ln(0+→( )。

A 、低阶无穷小B 、高阶无穷小C 、同阶但不等价无穷小D 、等价无穷小4.设()x f 在点0x 可导,则()()xx f x x f x ∆-∆-→∆0002lim( )A .()02x f ' B. ()02x f '- C. ()02x f ' D.()20x f '-5.设y 是由方程122=+y x 确定的隐函数,则=''y ( )A.y1-B.21yC.31yD 31y-三、计算题Ⅰ(每题6分,共24分)1. 已知,3lim 2=⎪⎭⎫ ⎝⎛-+∞→xx c x c x 求c .2. 求23cos 1tan sin limxx x x -→.3. 求函数10log2ln 3axe xx y -+-=的导数。

微积分(经管类)第五章答案

微积分(经管类)第五章答案

微积分(经管类)第五章答案 5.1 定积分的概念与性质一、1、∑=→∆ni iixf 1)(limξλ;2、被积函数,积分区间,积分变量;3、介于曲线)(x f y =,x 轴,直线b x a x ==,之间各部分面积的代数和;4、⎰ba dx ;5、⎰⎰+bc cadx x f dx x f )()(;6、b a a b M dx x f a b m ba<-≤≤-⎰,)()()(;7、⎰badx x f )( ⎰-=a bdx x f )(;8、)(ξf 与a b -为邻边的矩形面积;二、略. 三、⎰-231cos xdx .四、略。

五、(1)+; (2)-; (3)+. 六、(1)<; (2)<. 七、略。

5.2. 微积分基本定理一、1、0;2、)()(a f x f -;3、)1ln(23+x x ;4、65; 5、(1)ππ,;(2)0,0;6、(1)0; (2)0。

7、;6145 8、6π; 9、1. 二、1、1sin cos -x x ;2、)sin cos()cos (sin 2x x x π⋅-; 3、2-.三、 1、852; 2、3π; 3、14+π; 4、4.四、1、0; 2、101.五、略。

六、335π, 0. 七、⎪⎪⎩⎪⎪⎨⎧>≤≤-<=ππφx x x x x ,10,)cos 1(210,0)(.5.3. 定积分的换元积分法与分部积分法一、1、0; 2、34-π; 3、2π; 4、323π; 5、0.6、e 21-; 7、)1(412+e ; 8、23ln 21)9341(+-π. 二、1、41; 2、3322-; 3、1-2ln 2; 4、34;5、22;6、8π;7、417;8、2ln 21; 9、1-e .10、211cos 1sin +-e e ; 11、)11(2e-; 12、212ln -;13、2ln 33-π; 14、22+π;15、3ln 24-;16、2+)2ln 3(ln 21-。

微积分A(2)期中样卷 答案

微积分A(2)期中样卷 答案

并考察 f ( x, y ) 在 (0,0) 的连续性和可微性.
解:
f x (0,0) = lim
Δx →0
(Δx) 3 f (0 + Δx,0) − f (0,0) = lim = 1 , ………………………2 分 Δx → 0 ( Δx ) 3 Δx
f (0, 0 + Δy ) − f (0, 0) ( Δy ) 3 = lim − = −1 . ……………………2 分 Δy → 0 ( Δy ) 3 Δy
y cos( xy )esin( xy ) dy + 2esin(2 x ) − esin x

x
二.计算题(每题 10 分,共 40 分)
⎧ x3 − y3 , ⎪ 2 2 1. 求函数 f ( x , y ) = ⎨ x + y ⎪0, ⎩
x2 + y2 ≠ 0 x +y =0
2 2
在原点的偏导数 f x (0,0) 与 f y (0,0) ,

1
0
x p −1 (1 − x r ) q −1 dx 可以表示为

2
答案:
∫x
0
1
p −1
(1 − x r ) q −1 dx =
1 p B( , q), p > 0, q > 0, r > 0; r r

2 2
15. 设 F ( x) = 答案: F ′( x ) =
∫ቤተ መጻሕፍቲ ባይዱ
2x x 2x
esin( xy ) dy ,则 F ′( x) =
6
微积分(2)期中考题 答案
一.填空题(每空 3 分,共 15 空) (请将答案直接填写在横线上! )

微积分期中考试试题答案

微积分期中考试试题答案

一,求下列极限: (20分) 1, dtte dt e x t x t x ⎰⎰→0220022)(lim 2, 求极限:dt t f a x x xa a x ⎰-→)(lim ,其中)(x f 连续二,求定积分(30分)1.21⎰ 2.0x xdx e e +∞-+⎰ 3.⎰+20cos sin cos πdx xx x 4.⎰-=++222cos 1cos ππdx x x x 三,求由方程⎰x20 t 2dt +⎰x0 dt t 21+ +xy=0所确定的函数y=y(x)的微分dy 。

(10分) 四,求抛物线23y x =-与直线2y x =及y 轴所围成在第一象限的平面图形的面积A 及该平面图形绕y 轴旋转所成的旋转体的体积V 。

(10分)五,(30分)1)设()f x 在[0,2]a 上连续,证明200()[()(2)]a af x dx f x f a x dx =+-⎰⎰ 2)若f(x)在[0,1]上连续,证明⎰π0)(sin dx x xf =πdx x f ⎰20)(cos π3) 计算20sin 1cos x x dx xπ+⎰1. ()dxte dt e x t x t x ⎰⎰→0220202lim 2220202lim x x x t x xe e dt e ⋅=⎰→20202lim x x t x xe dt e ⎰→= 2222022lim x x xx ex e e +=→2212lim 20=+=→x x 2.dt t f a x x xa a x ⎰-→)(lim)(1)()(lim a af dt t f x xf x a a x =+=⎰→二.1。

210⎰tdt t t t x cos 2cos 2sin 4sin 602⎰=π ⎰=602sin 4πtdt ⎰-=60)2cos 1(2πdt t 602sin 3ππt -=233-=π 2.0x x dx e e +∞-+⎰=dx e e x x 120+=⎰∞+1)(20+=⎰∞+x x e de 0)arctan(∞+=x e 42ππ-=4π= 3.⎰+20cos sin cos πdx x x x ⎰+++-=2cos sin )cos (sin )sin (cos 21πdx x x x x x x ⎰++=20cos sin )cos (sin 21πx x x x d dx ⎰+20121π 4cos sin ln 2120ππ++=x x 4π=4.⎰-=++222cos 1cos ππdx x x x ⎰-+222cos 1ππdx x x +⎰-+222cos 1cos ππdx x x ⎰+=202cos 1sin 2πxx d ⎰-=202sin 2sin 2πx x d x d xx sin )sin 21sin 21(2120-++=⎰π 20sin 2sin 2ln 21πxx -+= 1212ln 21-+=)12ln(2+= 三,解:对原方程⎰x20 t 2dt +⎰x0 dt t 21+ +xy=0两边求微分,得0)(1)2()2(22=+++xy d dx x x d x 有01822=++++xdy ydx dx x dx x 所以所求微分dx xy x x dy +++-=2218四.求抛物线23y x =-与直线2y x =及y 轴所围成在第一象限的平面图形的面积A 及该平面图形绕y 轴旋转所成的旋转体的体积V 。

微积分综合练习题及参考答案

微积分综合练习题及参考答案

综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃-- (3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k 2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x(2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x(3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f.答案:x x x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ). A. 2 B. 1 C. -1 D. -2因)(cos e cos )e ()cos e ()('+'='='---x x x x f xx x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C(2)设y x =l g 2,则d y =( ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2c o s s i n 34c o s4-= (3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

微积分综合练习题及参考答案(可编辑修改word版)

微积分综合练习题及参考答案(可编辑修改word版)

1. 填空题(1)函数 f (x ) =综合练习题 1(函数、极限与连续部分)1的定义域是. 答案: x > 2 且 x ≠ 3 .ln(x - 2)( 2) 函 数 f (x ) = 1 + ln(x + 2) 的 定 义 域 是. 答 案 :(-2,-1) ⋃ (-1,2](3)函数 f (x + 2) = x 2 + 4x + 7 ,则 f (x ) =. 答案: f (x ) = x 2 + 3⎧⎪x sin 3 + 1, x < 0(4)若函数 f (x ) = ⎨ x⎪⎩ k ,x ≥ 0 在 x = 0 处连续,则 k = .答案: k = 1(5)函数 f (x - 1) = x 2 - 2x ,则 f (x ) =.答案: f (x ) = x 2 - 1(6) 函数 y = x 2 - 2x - 3x + 1的间断点是 .答案: x = -1(7) lim x s in 1 x →∞ x= .答案:1(8) 若lim sin 4x = 2 ,则k = .答案: k = 2 x →0 sin kx2. 单项选择题(1) 设函数 y = e - x + e x 2,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数答案:B(2) 下列函数中为奇函数是().e - x + e x2A. x sin xB. . ln(x + 2) D . x + x答案:C(3) 函数 y =xx + 4+ ln(x + 5) 的定义域为( ).A. x > -5答案:DB. x ≠ -4C. x > -5 且 x ≠ 0D. x > -5 且 x ≠ -4(4)设 f (x + 1) = x 2 - 1,则 f (x ) = ()4 - x 21 + x 2A.x(x +1) B.x 2C.x(x - 2) D.(x + 2)(x -1)答案:C⎧e x+ 2, x ≠ 0(5)当k =()时,函数f (x) =⎨⎩ A.0 B.1 C.2k,D.3x = 0在x = 0 处连续.答案:D⎧x 2+1, x ≠ 0(6)当k =()时,函数f (x) =⎨⎩k, x = 0,在x = 0 处连续. A.0B.1C.2 D.- 1答案:B(7)函数 f (x) =A.x = 1, x = 2x - 3x 2- 3x + 2的间断点是()B.x = 3C.x = 1, x = 2, x = 3 D.无间断点答案:A3.计算题x 2- 3x + 2(1)lim2.x→2 x - 4解:lim x 2- 3x + 2 = lim (x - 2)(x -1) = lim x - 1 =1 x→2 x 2-4x→2 (x - 2)(x + 2) x→2 x + 2 4(2)limx→3 x 解:lim x 2- 9- 2x - 3x 2- 9 = lim (x - 3)(x + 3) = lim x + 3=6=3x→3 x 2- 2x - 3 x→3 (x - 3)(x +1) x→3 x +1 4 2 x 2- 6x + 8(3)lim2x→4 x 解:lim- 5x + 4x 2- 6x + 8 = lim (x - 4)(x - 2) = lim x - 2=2x→4 x 2- 5x + 4 x→4 (x - 4)(x - 1) x→4 x -1 3 21.填空题(1)曲线f (x) =1综合练习题 2(导数与微分部分)+1在(1,2) 点的切斜率是.答案:2(2)曲线f (x) = e x在(0,1) 点的切线方程是.答案: y =x + 1(3)已知f (x) =x3+ 3x,则f '(3) =.答案: f '(x) = 3x 2+ 3x ln 3f '(3) =27(1 + ln 3)(4)已知f (x) = ln x ,则f '(x) = .答案: f '(x) =1, f '(x) =-1 x x 2(5)若f ( x) =x e-x,则f '(0) =.答案: f '(x) =-2e-x+x e-xf '(0) =- 22.单项选择题(1)若f (x) = e-x cos x ,则f '(0) =().A. 2B. 1C. -1D. -2因 f '(x) = (e-x cos x)'= (e-x)'cos x + e-x(cos x)'=-e-x cos x - e-x sin x =-e-x(cos x + sin x) 所以 f '(0) =-e-0 (cos 0 + sin 0) =-1答案:C(2)设y = lg 2x ,则d y =().A.1d x2x1B.d xx ln10ln10C.d xxD.1d xx答案:B (3)设y =f (x) 是可微函数,则d f (cos 2x) =().x12 (x + 1 x 1 1 A. 2 f '(cos 2x )d xB. f '(cos 2x ) s in 2x d2xC. 2 f '(cos 2x ) sin 2x d xD. - f '(cos 2x ) sin 2x d2x答案:D(4) 若 f (x ) = sin x + a 3 ,其中 a 是常数,则 f ' ( x ) = ().A. cos x + 3a 2 答案:C3. 计算题1B. sin x + 6aC. - sin xD. cos x(1)设 y = x 2e x,求 y ' .1 1 1 1 解: y ' = 2x e x + x 2e x(- ) = e x(2x - 1) x2(2)设 y = sin 4x + cos 3 x ,求 y ' .解: y ' = 4 cos 4x + 3cos 2 x (-sin x )= 4 cos 4x - 3sin x cos 2 x(3) 设 y = ex +1+ 2,求 y ' . x 解: y ' = ex +1- 2 x2(4) 设 y = x+ ln cos x ,求 y ' .解: y ' = 3x 2+ 2 1 cos x (-sin x ) = 3 x 2- tan x2综合练习题 3(导数应用部分)1. 填空题(1) 函数 y = 3( x - 1) 2 的单调增加区间是.答案: (1,+∞)(2) 函数 f (x ) = ax 2 + 1在区间(0, + ∞) 内单调增加,则 a 应满足. 答案: a > 02. 单项选择题(1)函数 y = (x + 1)2 在区间(-2,2) 是()A .单调增加B .单调减少C .先增后减D .先减后增答案:D(2) 满足方程 f '(x ) = 0 的点一定是函数 y =f (x ) 的().A .极值点B .最值点C .驻点D . 间断点答案:C(3) 下列结论中()不正确.A. f (x ) 在 x = x 0 处连续,则一定在 x 0 处可微.B. f (x ) 在 x = x 0 处不连续,则一定在 x 0 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4) 下列函数在指定区间(-∞,+∞) 上单调增加的是().A. sin xB. e xC. x 2D. 3 - x答案:B3. 应用题(以几何应用为主)(1) 欲做一个底为正方形,容积为 108m 3 的长方体开口容器,怎样做法用料最省?解:设底边的边长为 x m ,高为h m ,容器的表面积为 y m 2。

微积分(下)总复习题及部分参考答案

微积分(下)总复习题及部分参考答案

微积分(下)总复习题及部分参考答案()()()()()xD xC xB x A x πππππππππcos cos 1cos 1cos sin 1⋅⋅⋅-⋅-的一个原函数是函数B()()()()()()12211,2sin ln 2122-=⋅=D C B A k x x ctg k x f 则的一个原函数为设A()()()[]()[]()()∞+∞--⎥⎦⎤⎢⎣⎡-=,,00,2,2sin ,3D C B A x y ππππ可积的区间是函数在下列区间中C()()()()()()()()()()Cx D C x x C C x f B Cx x A dx x f x C x dx x f ++++++++=+⋅+=⎰⎰333333432313113131411,4则若D()()()()()C x D Cx C Cx B Cx A xdx +--+--+--+-=-⎰32323223232325D()()()()()()()()()()()()()()()()a G a x G D a G a t G C a G x G B a G t G A dt a t g x g x G xa22,6-+-+--=+='⎰则己知D()()()()()3ln 8093ln 9803ln 9803722⋅⋅⋅=⎰--D C B A dx x B()()()()()⎰⎰⎰⎰∞+∞+∞+∞+⋅11112ln 8x dx D xx dx C xdx B xdx A 是下列广义积分中收敛的D()()()()()()11sin 111cos 211cos 111cos 11,1cos 922232221212++-+-+-=⎪⎭⎫⎝⎛+=⎰⎰xx D xx C x x B xA dt t f t x dt t f xx则如果A()()()()()()313311lim1032-=-⎰-→D C B A xdtext xD()()()()()eD eC eB e A dx x e x -++-='⎪⎪⎭⎫ ⎝⎛⎰33ln 3ln 333ln 3ln 3113ln 1A()()()()()()()()()()()()()()()()a F F D F a F C a F a F B a F a F A dx a x f x f x F aa-----=-⎰002,122则的原函数是如果C()()()()()()()()()()()以上都不对则若D x C x B x A x f c x dx x f x x ln cos ln sin ln ,ln sin 21ln sin 132=+=⎰解 ()()()⎪⎭⎫⎝⎛+='⎪⎭⎫ ⎝⎛⎰c x dx x f x x ln sin 21ln sin 2, ()()()()x x xx f x x ln cos ln sin 1ln sin ⋅= , ()()x x f ln cos =.()[]()()()()()[]()()()()()[]()02,,14000D dxx f x f C dx x f B dx x f x f A dx x f a a x f aaa aa⎰⎰⎰⎰-+-+-=---则上连续在设证明()()()dx x f dx x f dx x f aaaa⎰⎰⎰--+=0令:x t -=,()()()()⎰⎰⎰⎰-=-=--=-aaaa dx x f dt t f dt t f x f 0()()()()()⎰⎰⎰⎰⎰-+=+=--aa aaaadx x f dx x f dx x f dx x f dx x f 0()()[]dx x f x f a⎰-+=0。

微积分综合练习题及参考答案

微积分综合练习题及参考答案

综合练习题1〔函数、极限与连续局部〕1.填空题 〔1〕函数)2ln(1)(-=x x f 的定义域是. 答案:2>x 且3≠x .〔2〕函数24)2ln(1)(x x x f -++=的定义域是.答案:]2,1()1,2(-⋃--〔3〕函数74)2(2++=+x x x f ,那么=)(x f .答案:3)(2+=x x f〔4〕假设函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,那么=k .答案:1=k 〔5〕函数x x x f 2)1(2-=-,那么=)(x f .答案:1)(2-=x x f〔6〕函数1322+--=x x x y 的连续点是.答案:1-=x〔7〕=∞→xx x 1sin lim .答案:1〔8〕假设2sin 4sin lim0=→kxxx ,那么=k .答案:2=k 2.单项选择题〔1〕设函数2e e xx y +=-,那么该函数是〔 〕.A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B〔2〕以下函数中为奇函数是〔〕.A .x x sinB .2e e x x +- C .)1ln(2x x ++D .2x x +答案:C〔3〕函数)5ln(4+++=x x xy 的定义域为〔 〕. A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D〔4〕设1)1(2-=+x x f ,那么=)(x f 〔 〕A .)1(+x xB .2xC .)2(-x xD .)1)(2(-+x x 答案:C〔5〕当=k 〔 〕时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D〔6〕当=k 〔 〕时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B 〔7〕函数233)(2+--=x x x x f 的连续点是〔 〕 A .2,1==x x B .3=x C .3,2,1===x x x D .无连续点 答案:A 3.计算题〔1〕423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x〔2〕329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x〔3〕4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2〔导数与微分局部〕1.填空题 〔1〕曲线1)(+=x x f 在)2,1(点的切斜率是.答案:21 〔2〕曲线x x f e )(=在)1,0(点的切线方程是. 答案:1+=x y〔3〕x x x f 3)(3+=,那么)3(f '=. 答案:3ln 33)(2x x x f +=')3(f '=27〔)3ln 1+〔4〕x x f ln )(=,那么)(x f ''=. 答案:x x f 1)(=',)(x f ''=21x- 〔5〕假设x x x f -=e )(,那么='')0(f . 答案:x x x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 〔1〕假设x x f xcos e)(-=,那么)0(f '=〔 〕. A. 2 B.1 C. -1 D. -2因)(cos e cos )e ()cos e ()('+'='='---x x x x f xx x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C〔2〕设y x =lg2,那么d y =〔 〕. A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B〔3〕设)(x f y =是可微函数,那么=)2(cos d x f 〔 〕. A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D〔4〕假设3sin )(a x x f +=,其中a 是常数,那么='')(x f 〔 〕. A .23cos a x +B .a x 6sin + C .x sin -D .x cos 答案:C3.计算题〔1〕设xx y 12e =,求y '.解:)1(e e 22121xx x y xx -+=')12(e 1-=x x〔2〕设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=〔3〕设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ 〔4〕设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+='x x tan 2321-=综合练习题3〔导数应用局部〕1.填空题〔1〕函数y x =-312()的单调增加区间是.答案:),1(+∞〔2〕函数1)(2+=ax x f 在区间),0(∞+单调增加,那么a 应满足.答案:0>a2.单项选择题〔1〕函数2)1(+=x y 在区间)2,2(-是〔 〕A .单调增加B .单调减少C .先增后减D .先减后增 答案:D〔2〕满足方程0)(='x f 的点一定是函数)(x f y =的〔 〕. A .极值点 B .最值点 C .驻点 D .连续点 答案:C〔3〕以下结论中〔 〕不正确.A .)(x f 在0x x =处连续,那么一定在0x 处可微.B .)(x f 在0x x =处不连续,那么一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B〔4〕以下函数在指定区间(,)-∞+∞上单调增加的是〔 〕. A .x sin B .xe C .2x D .x -3答案:B3.应用题〔以几何应用为主〕〔1〕欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的外表积为y m 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海金融学院12届经管微积分期中复习第一章 函数与极限一、函数1、数轴、区间、领域2、函数的概念:设有两个变量x 和y ,如果当某非空集合D 内任取一个数值时, 变量y 按照一定的法则(对应规律)f ,都有唯一确定的值y 与之对应,则称y 是x 的函数。

记作()y f x =,其中变量x 称为自变量,它的取值范围D 称为函数的定义域;变量y 称为因变量,它的取值范围是函数的值域,记作()Z f ,即(){|(),}Z f y y f x x D ==∈。

函数的表示:函数的表示有三种。

公式法、表格法和图示法。

3、函数的几种特性函数的有界性、奇偶性、单调性和周期性。

4、初等函数(1) 基本初等函数① 幂函数:y x μ=(μ为任意实数), y kx b =+, 2y ax bx c =++ ② 指数函数:x y a =(0a >且1a ≠) ③ 对数函数:log a y x =(0a >且1a ≠)。

恒等式: log (0,1)a N a N a a =>≠ 换底公式: log log log c a c bb a=运算的性质:log log log a a a xy x y =+,log log log aa a yy x x=-。

④ 三角函数:sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ======。

⑤ 反三角函数:arcsin ,arccos ,arctan ,cot y x y x y x y arc x ====。

(2) 反函数: (3) 复合函数: 5、常见的经济函数(1) 成本函数、收益函数和利润函数01()()C x C C x =+, ()()R x p x x =⋅,()()()L x R x C x =-。

(2) 需求函数与供给函数 (),()d d s s Q f p Q f p ==二、极限的概念与性质1、数列的极限 (1) 数列(2) 数列极限的定义 (3) 数列极限的几何意义 2、函数的极限(1) 当自变量x →∞时函数()f x 的极限 (2) 当自变量0x x →时函数()f x 的极限 (3) 左右极限3、函数极限的主要性质极限的唯一性、局部有界性、局部保号性。

三、极限的运算1、极限的运算法则2、两个重要极限 (1) 极限存在的准则数列极限的夹挤定理、函数极限的夹挤定理和单调有界数列必有极限。

(2) 两个重要极限0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭。

3、无穷小量和无穷大量(1) 无穷小量的定义 (2) 无穷小量的性质① 有限个无穷小量的和、差、积仍然为无穷小量; ② 有界函数与无穷小量的乘积仍为无穷小量。

(3) 无穷小量的比较高阶无穷小、同阶无穷小和等价无穷小 无穷小量的替换四、函数的连续性1、函数连续的概念(1) 函数在一点处连续的定义设函数()f x 在点0x 的某领域内有定义,如果00lim ()()x x f x f x →=,则称函数()f x 在点0x 处连续。

函数在点0x 处连续必须满足下列3个条件: ② ()f x 在点0x 有定义,即有确定的函数值0()f x ;② 极限0lim ()x x f x →存在,即左右极限0(0)f x -,0(0)f x +存在且相等。

③ 00lim ()()x x f x f x →=(0lim 0x y ∆→∆=),即极限值0lim ()x x f x →等于函数值0()f x 。

(2) 函数在区间上连续的定义函数()f x 在(,)a b 内每一点连续,称()f x 在闭区间(,)a b 内连续。

函数()f x 在(,)a b 内每一点连续,且在x a =右连续,在点x b =作连续,则称()f x 在闭区间[,]a b 上连续。

2、连续函数的运算与初等函数的连续性(1) 连续函数的和、差、积、商(分母不为零)仍为连续函数; (2) 连续函数的复合函数仍是连续函数; (3) 基本初等函数在其定于内都是连续的。

3、函数的间断点 (1) 间断点的定义 (2) 间断点的分类 第一类间断点:① 若函数()f x 当0x x →时,左右极限都存在但不相等, 跳跃间断点 ② 若函数()f x 当0x x →时,左右极限都存在且相等,但是不等于函数值或函数值无定义, 可去间断点 第二类间断点:除了第一类间断点外,其他间断点都称为第二类间断点。

4、闭区间上连续函数的性质 最值性、介值性、零值定理。

第二章 导数与微分一、导数的概念1、引例(1) 平面曲线上切线的斜率 (2) 总产量对时间的变化率 2、导数的定义(函数在一点可导的定义)设函数()y f x =在点0x 的某领域有定义,当自变量x 在点0x 处取得该变量x ∆,即自变量x 从0x 改变到0x x +∆(0x ∆≠,点0x x +∆仍在该领域内)时,函数()f x 取得相应的该变量为 00()()y f x x f x ∆=+∆-,若当0x ∆→时,比值yx∆∆的极限存在,即 0000()()lim limx x f x x f x yx x∆→→+∆-∆=∆∆ 存在,则称此极限值为函数()f x 在点0x 处的导数,记为 0'()f x ,0'()y x ,0x x dydx=,x x df dx=即 0000()()'()limx f x x f x f x x∆→+∆-=∆。

此时,称函数()f x 在点0x 处可导。

(函数在区间可导的定义)若函数()f x 在区间(,)a b 内每一点处都可导,则称函数()f x 在区间(,)a b 内可导。

这时对于任一个(,)x a b ∈,都对应着函数()f x 的一个确定的到数值,这样就构成了一个新的函数,称此函数为()f x 的导函数,简称导数,记作'()f x ,'()y x ,dy dx,df dx 。

即()()'()lim x f x x f x f x x∆→+∆-=∆。

3、导数的几何意义函数()y f x =在点0x 处的导数0'()f x 在几何上就表示了曲线()y f x =在点00(,())x f x 处切线的斜率。

4、左导数与右导数 如果极限000()()lim x x f x f x x x -→--存在,则称此极限值为()f x 在点0x 处的左导数,记作'0()f x -,即'000()()()lim x x f x f x f x x x --→-=-,如果极限000()()lim x x f x f x x x +→--存在,则称此极限值为()f x 在点0x 处的右导数,记作'0()f x +,即'000()()()lim x x f x f x f x x x ++→-=-。

显然,()f x 在点0x 处可导的充要条件是()f x 在点0x 处的左右导数存在且相等,即''000'()()()f x A f x f x A -+=⇔==。

如果函数()f x 在开区间(,)a b 内可导,且'()f a +与'()f b -存在,则称()f x 在[,]a b 上可导。

5、函数可导与连续的关系若函数()y f x =在点0x 处可导,则函数()y f x =在点0x 处连续(即可导必连续)。

二、导数的基本公式与运算法则1、函数和、差、积、商的求导法则 []()()''()'()u x v x u x v x ±=± []()()''()()()'()u x v x u x v x u x v x ⋅=+2()'()()()'()'()()u x u x v x u x v x v x v x ⎡⎤-=⎢⎥⎣⎦ (()0v x ≠) 2、反函数的求导法则设函数()x y ϕ=在某一区间内单调、可导,且()0y ϕ≠,则它的反函数()y f x =在对应区间内也单调可导,且有 1'()'()f x y ϕ=。

3、复合函数的求导法则[]{}()''()'()f x f u x ϕϕ=⋅。

4、导数的基本公式 5、隐函数求导法则 6、对数求导法则三、高阶导数重点是二阶导数四、参数式函数的导数参数方程的求导法则,难点是参数方程的二阶导数。

应用是求曲线的切线和法线方程。

五、函数的微分1、微分的定义设函数()y f x =在点0x 的某个领域内有定义,自变量x 自0x 取得该变量x ∆(0x ∆≠,点0x x +∆仍在该领域内),若函数的相应该变量 00()()y f x x f x ∆=+∆-, 克表示为()y A x o x ∆=⋅∆+∆其中A 是只与0x 有关而与x ∆无关的常数,()o x ∆是当0x ∆→时比x ∆高阶的无穷小量,则称函数()y f x =在点0x 处可微,并称A x ⋅∆为函数()y f x =在点0x 处的微分,记作 0x x df =,0x x dy =,0()df x ,即x x dy A x ==∆当0A ≠时,A x ⋅∆也称为y ∆的线性主部。

函数()y f x =在点0x 可微的充分必要条件是函数()y f x =在点0x 处可导,此时,0'()A f x =。

2、微分的几何意义3、微分的运算4、微分形式不变性5、微分在近似计算中的应用000()()'()y f x x f x f x x ∆=+∆-≈⋅∆, 000()()'()f x x f x f x x +∆=+⋅∆, 或 00()()'()f x f x f x x =+⋅∆。

第一章练习题选择题 1、设函数111()21xx e f x e-+=+,则0lim ()x f x →=( )。

DA.0;B.12; C.1; D.不存在。

2、设函数1211()1x x f x e x --=-,则1x =是()f x 的( )。

D A.连续点; B.可去间断点; C.第一类(非可去)间断点; D.第二类间断点。

3、设函数()f x 在(,)-∞+∞内有定义,且1(),0lim (), () 0 ,0x f x f x a g x x x →∞⎧≠⎪==⎨⎪=⎩则( )。

DA.0x =必是()g x 的第一类间断点;B. 0x =必是()g x 的第二类间断点;C. 0x =必是()g x 的连续点;D.()g x 在点0x =处的连续性与a 的取值有关。

相关文档
最新文档