高考理数(安徽专用)12.5 统计与统计案例

合集下载

普通高等学校招生国统一考试数学理试题安徽卷,解析 试题

普通高等学校招生国统一考试数学理试题安徽卷,解析 试题

2021年普通高等招生全国统一考试数学理试题〔卷,解析版〕 本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,第一卷第1至第2页,第二卷第3页至第4页。

全卷满分是150分,考试时间是是120分钟。

考生考前须知:1. 在答题之前,必须在试题卷、答题卡规定填写上本人的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

必须在答题卡反面规定的地方填写上姓名和座位号后两位。

2. 答第一卷时,每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3. 答第二卷时,必须使用的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹明晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域答题,超出书写之答案无效.........,在试题卷....、草稿..纸上答题无效......。

4. 在在考试完毕之后以后,必须将试题卷和答题卡一并上交。

参考公式:假如事件A 与B 互斥, 椎体体积13V Sh =,其中S 为椎体的底面积, 那么()()()P A B P A P B +=+ h 为椎体的高.假如事件A 与B 互相HY ,那么()()()P AB P A P B =第一卷(选择题 一共50分)一.选择题:本大题一一共10小题,每一小题5分,一共50分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。

(1) 设 i 是虚数单位,复数ai i1+2-为纯虚数,那么实数a 为 〔A 〕2 (B) -2 (C) 1-2 (D) 12 〔1〕A 【命题意图】此题考察复数的根本运算,属简单题. 【解析】设()ai bi b R i1+∈2-=,那么1+(2)2ai bi i b bi =-=+,所以1,2b a ==.应选A. 〔2〕 双曲线x y 222-=8的实轴长是〔A 〕2 (B)〔2〕C 【命题意图】此题考察双曲线的HY 方程,考察双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,那么24a =,2a =,24a =.应选C. 〔3〕 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,那么()f 1= 〔A 〕-3 (B) -1 〔C〕1 〔D〕3(3)A 【命题意图】此题考察函数的奇偶性,考察函数值的求法.属容易题.【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.应选A.〔4〕设变量,x y 满足1,x y +≤那么2x y +的最大值和最小值分别为〔A〕1,-1 〔B〕2,-2 〔C〕1,-2 〔D〕2,-1 〔4〕B 【命题意图】此题考察线性规划问题.属容易题. 【解析】不等式1x y +≤对应的区域如下图,当目的函数过点〔0,-1〕,〔0,1〕时,分别取最小或者最大值,所以2x y +的最大值和最小值分别为2,-2.应选B.(5) 在极坐标系中,点 (,)π23 到圆2cos ρθ= 的圆心的间隔 为〔A 〕249π+219π+〔3(5)D 【命题意图】此题考察极坐标的知识及极坐标与直角坐标的互相转化,考察两点间间隔 . 【解析】极坐标(,)π23化为直角坐标为(2cos ,2sin )33ππ,即3).圆的极坐标方程2cos ρθ=可化为22cos ρρθ=,化为直角坐标方程为222x y x +=,即22(1)1x y -+=,所以圆心坐标为〔1,0〕,那么由两点间间隔 公式22(11)(30)3d =-+-=应选D.(6)一个空间几何体得三视图如下图,那么该几何体的外表积为第〔8〕题图〔A 〕1717(6)C 【命题意图】此题考察三视图的识别以及空间多面体外表积的求法. 【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为(44221724817++=+4817+.应选C.(7)命题“所有能被2整除的数都是偶数〞的否认..是 〔A 〕所有不能被2整除的数都是偶数〔B 〕所有能被2整除的数都不是偶数〔C 〕存在一个不能被2整除的数是偶数〔D 〕存在一个能被2整除的数不是偶数〔7〕D 【命题意图】此题考察全称命题的否认.属容易题.【解析】把全称量词改为存在量词,并把结果否认.〔8〕设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =那么满足S A ⊆且SB φ≠的集合S 的个数为〔A 〕57 〔B 〕56 〔C 〕49 〔D 〕8〔8〕B 【命题意图】此题考察集合间的根本关系,考察集合的根本运算,考察子集问题,考察组合知识.属中等难度题.【解析】集合A 的所有子集一共有6264=个,其中不含4,5,6,7的子集有328=个,所以集合S 一共有56个.应选B.〔9〕函数()sin(2)f x x ϕ=+,其中ϕ为实数,假设()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,那么()f x 的单调递增区间是 〔A 〕,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 〔B 〕,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ 〔C 〕2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦〔D 〕,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 〔9〕C 【命题意图】此题考察正弦函数的有界性,考察正弦函数的单调性.属中等偏难题.【解析】假设()()6f x f π≤对x R ∈恒成立,那么()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,〔k Z ∈〕,可知sin()sin(2)πϕπϕ+>+,即sin 0ϕ<,所以(21),6k k Z πϕπ=++∈,代入()sin(2)f x x ϕ=+,得()sin(2)6f x x π=-+,由3222262k x k πππππ+++,得263k x k ππππ++,应选C. (10) 函数()()m n f x ax x =1-在区间〔0,1〕上的图像如下图,那么m ,n 的值可能是 〔A 〕1,1m n == (B) 1,2m n ==(C) 2,1m n == (D) 3,1m n ==(10)B 【命题意图】此题考察导数在研究函数单调性中的应用,考察函数图像,考察思维的综合才能.难度大.【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+,那么()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =获得最大值,由()()f a 21111=⨯1-=3332,知a 存在.应选B. 第II 卷〔非选择题 一共100分〕考生考前须知:请用黑色墨水签字笔在答题卡上答题,在试题卷上答题无效.................. 二.填空题:本大题一一共5小题,每一小题5分,一共25分.把答案填在答题卡的相应位置.〔11〕〔11〕如下图,程序框图〔算法流程图〕的输出结果是 .(11)15【命题意图】此题考察算法框图的识别,考察等差数列前n 项和.【解析】由算法框图可知(1)1232k k T k +=++++=,假设T =105,那么K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15.〔12〕设()x a a x a x a x 2122101221-1=+++,那么 .〔12)0【命题意图】此题考察二项展开式.难度中等.【解析】101110102121(1)a C C =-=-,111011112121(1)a C C =-=,所以a a C C 111010112121+=-=0. 〔13〕向量a ,b 满足〔a +2b 〕·〔a -b 〕=-6,且a =,2b =,那么a 与b 的夹角为 .(13)60°【命题意图】此题考察向量的数量积,考察向量夹角的求法.属中等难度的题.【解析】()()26a b a b +⋅-=-,那么2226a a b b +⋅-=-,即221226a b +⋅-⨯=-,1a b ⋅=,所以1cos ,2a b a b a b ⋅〈〉==⋅,所以,60a b 〈〉=. 〔14〕ABC ∆ 的一个内角为120o ,并且三边长构成公差为4的等差数列,那么ABC ∆的面积为_______________〔14)【命题意图】此题考察等差数列的概念,考察余弦定理的应用,考察利用公式求三角形面积.【解析】设三角形的三边长分别为4,,4a a a -+,最大角为θ,由余弦定理得222(4)(4)2(4)cos120a a a a a +=+---,那么10a =,所以三边长为6,10,14.△ABC 的面积为1610sin120152S =⨯⨯⨯=〔15〕在平面直角坐标系中,假如x 与y 都是整数,就称点(,)x y 为整点,以下命题中正确的选项是_____________〔写出所有正确命题的编号〕.①存在这样的直线,既不与坐标轴平行又不经过任何整点②假如k 与b 都是无理数,那么直线y kx b =+不经过任何整点③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数⑤存在恰经过一个整点的直线〔15)①③⑤【命题意图】此题考察直线方程,考察逻辑推理才能.难度较大.【解析】令12y x =+满足①,故①正确;假设2,2k b ==,22y x =+过整点〔-1,0〕,所以②错误;设y kx =是过原点的直线,假设此直线过两个整点1122(,),(,)x y x y ,那么有11y kx =,22y kx =,两式相减得1212()y y k x x -=-,那么点1212(,)x x y y --也在直线y kx =上,通过这种方法可以得到直线l 经过无穷多个整点,通过上下平移y kx =得对于y kx b =+也成立,所以③正确;k 与b 都是有理数,直线y kx b =+不一定经过整点,④错误;直线2y x =恰过一个整点,⑤正确.三.解答题:本大题一一共6小题,一共75分,解容许写出文字说明、证明过程或者演算步骤.解答写在答题卡的制定区域内.〔16〕(本小题满分是12分)设()1xe f x ax=+*,其中a 为正实数 〔Ⅰ〕当a 43=时,求()f x 的极值点; 〔Ⅱ〕假设()f x 为R 上的单调函数,求a 的取值范围。

高考数学试题汇编统计、统计案例

高考数学试题汇编统计、统计案例

第五节 统计、统计案例高考试题考点一 抽样的方法1.(2013年新课标全国卷Ⅰ,理3)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) (A)简单随机抽样(B)按性别分层抽样(C)按学段分层抽样 (D)系统抽样解析:由于小学、初中、高中三个学段学生的视力情况差异较大,而男女视力情况差异不大,因此可以按学段分层抽样.故选C. 答案:C2.(2013年安徽卷,理5)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) (A)这种抽样方法是一种分层抽样 (B)这种抽样方法是一种系统抽样(C)这五名男生成绩的方差大于这五名女生成绩的方差 (D)该班男生成绩的平均数小于该班女生成绩的平均数解析:本题采用简单随机抽样方法抽取样本,故选项A 、B 错误.因为5名男生成绩和5名女生成绩的平均数,与该班男生成绩的平均数与女生成绩的平均数不一定存在准确的对应关系,所以选项D 的说法不一定成立.对于C 项,男生成绩的平均数1x =90,女生成绩的平均数2x =91,故5名男生成绩的方差21s =15[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8,5名女生成绩的方差22s =15[(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6,故选C. 答案:C3.(2013年江西卷,理4)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )(A)08 (B)07 (C)02(D)01解析:从左到右第1行的第5列和第6列数字是65,依次选取符合条件的数字分别是08,02,14,07,01,故选出来的第5个个体的编号为01. 答案:D考点二 统计图表1.(2013年福建卷,理4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )(A)588 (B)480(C)450 (D)120解析:由题频率分布直方图得,该模块测试成绩不少于60分的学生人数为600×(0.030+0.025+0.015+0.010)×10=480.故选B.答案:B2.(2012年陕西卷,理6)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则( )(A) x甲<x乙,m甲>m乙 (B) x甲<x乙,m甲<m乙(C) x甲>x乙,m甲>m乙 (D) x甲>x乙,m甲<m乙解析:把数据从茎叶图中整理出来,甲的数据为:5,6,8,10,10,14,18,18,22,25,27,30,30,38,41,43;乙的数据为:10,12,18,20,22,23,23,27,31,32,34,34,38,42,43,48,所以x甲=116(5+6+8+10+10+14+18+18+22+25+27+30+30+38+41+43)=34516,x乙=116(10+12+18+20+22+23+23+27+31+32+34+34+38+42+43+48)=45716,显然x甲<x乙.又∵m甲=18222+=20,m乙=27312+=29,所以m甲<m乙.答案:B3.(2013年新课标全国卷Ⅱ,理19)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.解:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39000,当X∈[130,150]时,T=500×130=65000,所以T=80039000,100130, 65000,130150.X XX-⎧⎨⎩≤<≤≤(2)由(1)知利润T不少于57000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45000530006100065000P0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.考点三样本的数字特征1.(2013年重庆卷,理4)如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )(A)2,5 (B)5,5(C)5,8 (D)8,8解析:由甲组数据的中位数为15,得x=5.由乙组数据的平均数为16.8,得9+30+5+y+8+24=16.8×5,即76+y=84,解得y=8.故选C.答案:C2.(2012年安徽卷,理5)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A)甲的成绩的平均数小于乙的成绩的平均数(B)甲的成绩的中位数等于乙的成绩的中位数(C)甲的成绩的方差小于乙的成绩的方差(D)甲的成绩的极差小于乙的成绩的极差解析:甲射击比赛中靶4,5,6,7,8环各1次,则甲成绩的中位数为6环,平均数为6环,极差为4环,方差为2平方环;乙射击比赛中靶5环3次,6环1次,9环1次,则乙成绩的中位数为5环,平均数为6环,极差为4环,方差为2.4平方环.所以甲成绩的方差比乙成绩的方差小.故选C.答案:C3.(2012年江西卷,理9)样本(x1,x2,…,x n)的平均数为x,样本(y1,y2,…,y m)的平均数为y(x≠y).若样本(x1,x2,…,x n,y1,y2,…,y m)的平均数z=αx+(1-α)y,其中0<α<12,则n,m的大小关系为( )(A)n<m (B)n>m(C)n=m (D)不能确定解析:依题意得x1+x2+…+x n=n x,y1+y2+…+y m=m y,x1+x2+…+x n+y1+y2+…+y m=(m+n)z=(m+n)αx+(m+n)(1-α) y,所以n x+m y=(m+n)αx+(m+n)(1-α)y,所以()()(),1, n m n am m n a ⎧=+⎪⎨=+-⎪⎩于是有n-m=(m+n)[α-(1-α)]=(m+n)(2α-1).因为0<α<1 2 ,所以2α-1<0.又m+n>0,所以n-m<0.即n<m.故选A.答案:A4.(2011年江苏卷,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2= .解析:由于这5个数的平均数x=15×(10+6+8+5+6)=7,因此该组数据的方差s2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.答案:3.2考点四变量的相关性1.(2012年湖南卷,理4)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为ˆy=0.85x-85.71,则下列结论中不正确的是( )(A)y与x具有正的线性相关关系(B)回归直线过样本点的中心(x,y)(C)若该大学某女生身高增加1 cm,则其体重约增加0.85 kg(D)若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:根据线性回归方程相关知识可知选项A、B、C是正确的.而由回归方程得到的是预报变量的可能取值的平均值,不是预报变量的精确值,故选D.答案:D2.(2011年陕西卷,理9)设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图所示),以下结论中正确的是( )(A)x和y的相关系数为直线l的斜率(B)x和y的相关系数在0到1之间(C)当n为偶数时,分布在l两侧的样本点的个数一定相同(D)直线l过点(x,y)解析:相关系数是表示两个变量是否具有线性相关关系的量,可正可负也可为0,它的绝对值越接近1两变量相关性越强.因此A、B错,线性回归直线两侧样本点个数不一定相同,故C错.回归直线恒过样本中心(x,y).选项D正确.答案:D3.(2011年江西卷,理6)变量X和Y对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )(A)r2<r1<0 (B)0<r2<r1(C)r2<0<r1(D)r2=r1解析:对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r1>0;对于变量V与U而言,V随U的增大而减小,故V与U负相关,即r2<0.所以有r2<0<r1.故选C.答案:C4.(2011年山东卷,理7)某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元4235销售额y/万元49263954根据上表可得回归方程ˆy=b x+ˆa中的b为9.4,据此模型预报广告费用为6万元时销售额为( )(A)63.6万元(B)65.5万元(C)67.7万元(D)72.0万元解析:线性回归直线过定点(x,y),y=492639544+++=42, x=3.5,代入ˆa=y-ˆb x得ˆa=42-9.4×3.5=9.1,所以ˆy=6×9.4+9.1=65.5(万元).答案:B5.(2011年辽宁卷,理14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:ˆy=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元. 解析:由回归直线方程可知,x每增加1,ˆy增加0.254,从而家庭年收入每增加1万元,年饮食支出平均增加0.254万元.答案:0.2546.(2011年广东卷,理13)某数学老师的身高为176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为cm.解析:儿子和父亲的身高可列表如下:(单位:cm)父亲身高x173170176儿子身高y170176182设回归直线方程为ˆy=ˆa+ˆb x,由表中数据可求得x=173, y=176,∴ˆb=()()()31321i iiiix x y yx x==---∑∑=()223633⨯+-=1,ˆa=y-ˆb x=3,故回归直线方程为ˆy=x+3.当x=182时, ˆy=182+3=185.故预测他孙子的身高为185 cm.答案:185考点五独立性检验(2012年辽宁卷,理19)电视传媒公司为了解某地区某类体育节目的收视情况,随机抽取了100名观众进行调查.如图所示的是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,据此资料,你是否认为“体育迷”与性别有关?非体育迷体育迷总计男女1055总计(2)将上述调查得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中“体育迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).附:χ2=()211221221n n n n nn n n n-++.P(χ2≥k)0.050.01 k 3.841 6.635解:(1)由频率分布直方图可知在抽取的100人中,“体育迷”有25人,从而2×2列联表补充如下:非体育迷体育迷总计男301545女451055总计7525100将2×2列联表中的数据代入公式计算,得χ2=()2 1003010451575254555⨯-⨯⨯⨯⨯=10033≈3.030.因为3.030<3.841,所以没有足够的把握认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意知X ~B(3, 14),从而X 的分布列为: X 0123P27642764964164所以E(X)=np=3×14=34,D(X)=np(1-p)=3×14×34=916. 模拟试题考点一 抽样方法1.(2013北京市丰台区期末)某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 .解析:高三的人数为400, 所以在高三抽取的人数为45900×400=20. 答案:202.(2013青岛一中调研)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,……,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为 的学生.解析:因为12=5×2+2,即第三组抽出的是第二个同学, 所以每一组都相应抽出第二个同学. 所以第8组中抽出的号码为5×7+2=37号. 答案:37考点二 统计图表1.(2013云南师大附中检测)甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,s 1,s 2分别表示甲乙两名运动员这项测试成绩的标准差,则有( )(A)1x >2x ,s 1<s 2 (B)1x =2x ,s 1=s 2 (C)1x =2x ,s 1<s 2(D)1x =2x ,s 1>s 2解析:由样本中数据可知1x =15, 2x =15, 由茎叶图得s 1<s 2, 所以选C. 答案:C2.(2013贵州省六校联考)某同学学业水平考试的9科成绩如茎叶图所示,则根据茎叶图可知该同学的平均分为 .解析:19(68+72+73+78×2+81+89×2+92)=7209=80.答案:803.(2013北京市西城区期末)为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检.(1)求每组抽取的学生人数;(2)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.解:(1)由频率分布直方图知,第3,4,5组的学生人数之比为3∶2∶1.所以,每组抽取的人数分别为:第3组:36×6=3;第4组:26×6=2;第5组:16×6=1.所以从第3,4,5组应依次抽取3名学生,2名学生,1名学生.(2)记“从6名学生中抽取2名学生不在同一组”为事件A,则P(A)=11111131213226C C C C C CC+⋅+⋅=1115.考点三样本的数字特征1.(2012西安五校模拟)已知一组正数x1,x2,x3,x4的方差s2=14(22221234x x x x+++-16),则数据x1+2,x2+2,x3+2,x4+2的平均数为( ) (A)2 (B)3 (C)4 (D)6解析:设x1,x2,x3,x4的平均值为x,则s2=14[(x1-x)2+(x2-x)2+(x3-x)2+(x4-x)2]=14(22221234x x x x+++-42x),∴42x=16,∴x =2,∴x 1+2,x 2+2,x 3+2,x 4+2的平均数为4. 答案:C2.(2013昆明一中检测)某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷.该卷共有6个单选题,每题答对得20分,答错、不答得零分,满分120分.阅卷完毕后,校方公布每题答对率如下:则此次调查全体同学的平均分数是 分.解析:假设全校人数有x 人,则每道试题答对人数及总分分别为所以六个题的总分为66x,所以平均分为66xx=66. 答案:66考点四 线性回归方程1.(2013青岛一中调研)某学生四次模拟考试中,其英语作文的减分情况如下表:显然所减分数y 与模拟考试次数x 之间有较好的线性相关关系,则其线性回归方程为( )(A)y=0.7x+5.25 (B)y=-0.6x+5.25 (C)y=-0.7x+6.25(D)y=-0.7x+5.25解析:由题意可知,所减分数y 与模拟考试次数x之间为负相关,所以排除A. 考试次数的平均数为x =14(1+2+3+4)=2.5, 所减分数的平均数为y =14(4.5+4+3+2.5)=3.5, 即直线应该过点(2.5,3.5),代入验证可知直线y=-0.7x+5.25成立,故选D. 答案:D2.(2012湘潭三模)某种产品的广告支出x 与销售额y(单位:百万元)之间有如下的对应关系:(1)假定x 与y 之间具有线性相关关系,求回归方程;(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?参考公式: ˆb=1221ni ii nii x ynx y xnx==--∑∑,ˆa=y -ˆb x . 解:(1)∵x =15×(2+4+5+6+8)=5, y =15×(30+40+60+50+70)=50,521ii x=∑=22+42+52+62+82=145,51i ii x y=∑=2×30+4×40+5×60+6×50+8×70=1380,∴ˆb=51522155i ii ii x yx y xx==--∑∑=21380555014555-⨯⨯-⨯=6.5,ˆa=y -ˆb x =50-6.5×5=17.5. ∴回归方程为ˆy=6.5x+17.5. (2)由回归方程得ˆy ≥60,即6.5x+17.5≥60, 解得x ≥8513≈6.54. 故广告支出应该不少于6.54百万元.考点五 独立检验1.(2012枣庄模拟)下面是2×2列联表:则表中a,b 的值分别为( )(A)94,72 (B)52,50 (C)52,74 (D)74,52 解析:∵a+21=73,∴a=52, 又a+22=b,∴b=74. 答案:C2.(2012汕头期末)下列命题中假命题是( )(A)对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的可信程度越大(B)用相关指数R 2来刻画回归的效果时,R 2的值越大,说明模型拟合的效果越好(C)两个随机变量的相关性越强,相关系数的绝对值越接近1 (D)等高条形图可以展示2×2列联表数据的频率特征解析:K 2的观测值k 越大,“X 与Y 有关系”的可信程度越大.答案:A综合检测1.(2011汕头期末)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:如果根据上表提供的数据求出y 关于x 的线性回归方程为y =0.7x+0.35,那么表中t 的值为( )(A)3 (B)3.15 (C)3.5(D)4.5解析:由y=0.7x+0.35得2.54 4.54t+++=0.7×34564++++0.35,即114t+=3.5,解得t=3.答案:A2.(2011佛山联考)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为30的样本,已知B层中每个个体被抽到的概率都是112,则总体中的个体数为.解析:因为分层抽样为等可能抽样,故每个个体被抽到的可能性都是相等的.设总体中的个体数为n,则30n=112,∴n=360.答案:3603.(2012广州期末)在一次调研中,随机调查了某社区若干居民的年龄,将调查数据绘制成如图所示的扇形和条形统计图,则a-b= .(60以上含60)解析:设共调查了x名居民的年龄,由x·46%=230,得x=500,于是得a=100500×100%=20%,b=1-(20%+46%+22%)=12%.故a-b=8%.答案:8%。

高考数学统计与统计案例.doc

高考数学统计与统计案例.doc

高考数学统计与统计案例1.小吴一星期的总开支分布如图 1 所示,一星期的食品开支如图 2 所示,则小吴一星期的鸡蛋开支占总开支的百分比为()A.1%B.2%C.3%D.5%C[ 由图 1 所示,食品开支占总开支的 30%,由图 2 所示,鸡蛋开支占食品开支的30 = 1 ,30+40+100+80+ 50 101∴鸡蛋开支占总开支的百分比为30%×10=3%.故选 C.]2.(2019 德·州模拟 )某人到甲、乙两市各7 个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A.4B. 3C.2D.1B[ 由茎叶图可以看出甲、乙两市的空置房的套数的中位数分别是79,76,因此其差是 79- 76=3,故选 B.]3.某工厂对一批新产品的长度(单位: mm)进行检测,如图是检测结果的频率分布直方,据此估批品的中位数()A.20B. 25C.22.5D.22.75C[ 品的中位数出在概率是 0.5 的地方 . 自左至右各小矩形面依次0.1,0.2,0.4,⋯⋯,中位数是 x,由 0.1+0.2+0.08 ·(x-20)=0.5,得 x= 22.5,故 C.]4.(2019 ·三明模 )在某次高中数学中,随机抽取 90 名考生,其分数如所示,若所得分数的平均数,众数,中位数分 a, b, c, a,b,c 的大小关系 ()A.b<a<c B.c<b<aC.c<a<b D.b<c<a2 50+ 60D [算得平均a=593,众数b=50,中位数c= 2 =55,故b<c<a, A.]5.(2019 南·充模 )如表是我国某城市在2017 年 1 月份至 10 月份各月最低温与最高温 (℃ )的数据一表.月份 1 2 3 4 5 6 7 8 9 10最高温 5 9 9 11 17 24 27 30 31 21最低温-12 - 3 1 - 2 7 17 19 23 25 10 已知城市的各月最低温与最高温具有相关关系,根据一表,下列的是 ()A.最低温与最高温正相关B.每月最高温与最低温的平均在前8 个月逐月增加C.月温差 (最高温减最低温 )的最大出在 1 月D.1 月至 4 月的月温差 (最高温减最低温 )相于 7 月至 10 月,波性更大B[ 根据意,依次分析:于 A ,知城市的各月最低温与最高温具有相关关系,由数据分析可得最低温与最高温正相关, A 正确;于B,由表中数据,每月最高温与最低温的平均依次:-3.5,3,5,4.5,12,20.5,23,26.5,28,15.5,在前 8 个月不是逐月增加, B ;于 C,由表中数据,月温差依次: 17,12,8,13,10,7,8,7,6,11;月温差的最大出在 1 月,C 正确;于 D,有 C 的,分析可得 1 月至 4 月的月温差相于 7 月至 10 月,波性更大, D 正确;故B.]6.某中学的高中女生体重y(位: kg)与身高 x(位: cm)具有性相关关系,根据本数据 (x i, y i )(i =1,2,3,⋯, n),用最小二乘法近似得到回直^方程 y=0.85x-85.71,下列中不正确的是()A.y 与 x 具有正性相关关系––B.回直本点的中心( x , y )C.若中学某高中女生身高增加 1 cm,其体重增加0.85 kgD.若中学某高中女生身高160 cm,可断定其体重必50.29 kg^D[ 因回直方程 y=0.85x-85.71 中 x 的系数 0.85>0,因此 y 与 x 具有正性相关关系,所以 A 正确;由最小二乘法及回直方程的求解––可知回直本点的中心( x , y ),所以 B 正确;由于用最小二乘法得到的回直方程是估,而不是具体,若中学某高中女生身高增加 1 cm,其体重增加0.85 kg,所以 C 正确, D 不正确. ]7.(2018 ·永州三模 )党的十九大告明确提出:在共享等域培育增点、形成新能.共享是公众将置源通社会化平台与他人共享,而得收入的象.考察共享企活度的影响,在四个不同的企各取两个部行共享比,根据四个企得到的数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()D[ 根据四个列联表中的等高条形图可知,图中 D 中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.]8.(2019 ·州模拟惠)已知 x 与 y 之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得的线性回归方程为^ ^ ^y= b +若某同学根据上表中的x a.前两组数据 (1,0)和 (2,2)求得的直线方程为y= b′ x+a′,则以下结论正确的是()^ ^ ^ ^A.b>b′, a>a′B.b>b′, a<a′^ ^ ^ ^C.b<b′, a>a′D.b<b′, a<a′C[ 由两组数据 (1,0)和(2,2)可求得直线方程为 y=2x-2,b′=2,a′=-^ 2.而利用线性回归方程的公式与已知表格中的数据,可求得 b =5 ^ – ^– 13 5==7,a= y -b x =6-771^^×2=-3,所以 b<b′,a>a′.]9.(2019 天·津模 )某校高中共有 720 人,其中理科生 480 人,文科生 240 人,采用分抽的方法从中抽取 90 名学生参加研,抽取理科生的人数________.48060[由分抽的定得抽取理科生的人数720×90=60.]–10.已知本数据x1,x2,⋯, x n的平均数 x = 5,本数据2x1+1,2x2 +1,⋯, 2x n+1 的平均数 ________.11[ 由 x1,x2,⋯,x n的平均数 x= 5,得 2x1+1,2x2+1,⋯,2x n+1 的平–均数 2 x +1= 2× 5+ 1= 11.]11.某学校随机抽取部分新生其上学所需(位:分 ),并将所得数据制成率分布直方(如 ),其中,上学所需的范是[0,100] ,本数据分 [0,20),[20,40),[40,60), [60,80), [80,100],(1)中的 x= ________;(2)若上学所需不少于 1 小的学生可申在学校住宿,校600 名新生中估有 ________名学生可以申住宿.0.0125 72[(1) 由率分布直方知20x= 1-20×(0.025+ 0.0065+ 0.003 +0.003),解得 x=0.0125.(2)上学不少于 1 小的学生的率0.12,因此估有0.12×600=72(人)可以申住宿. ]12.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20 分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;^③在线性回归方程 y=0.2x+12 中,当解释变量x 每增加一个单位时,预报^变量 y平均增加 0.2 个单位;④对分类变量 X 与 Y 的统计量 K2来说, K2越小,“ X 与 Y 有关系”的把握程度越大.②③[①是系统抽样;对于④,统计量 K2越小,说明两个相关变量有关系的把握程度越小. ]。

高考数学(理科)二轮专题复习权威课件(安徽省专用):第16讲 统计与统计案例

高考数学(理科)二轮专题复习权威课件(安徽省专用):第16讲 统计与统计案例

回归方程④ 为^y=0.85x-85.71,则该大学某女生身高增
加 1 cm,则其体重约增加________.
图7-16-1
图7-16-2
返回目录
第16讲 统计与统计案例
核 心 知 识 聚 焦
[答案] 0.85 kg
主干知识
⇒ 线性回归 分析
关键词:变量 的相关性、回归直 线方程、统计思维, 如④.
又 = =120, ∴当 80<x<90 时,甲类品牌车碳排放量的稳定性好; 当 x=90 时,两类品牌车碳排放量的稳定性一样好; 当 90<x<130 时,乙类品牌车碳排放量的稳定性好.
小结:样本数据的均值体现了一种整体的态势,样本数
命 题 立
据的方差则说明了整体态势的稳定性,整体态势(均值)及其 稳定性(方差)是样本数据的两个重要特征数.

下面的临界值表供参考:

P(K2≥k0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001

k0
2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式 K2=(a+b)(cn+(da)d-(bac+)c2)(b+d),
其中 n=a+b+c+d)

题 考
小结:正相关和负相关是根据回归直线的斜率判断的,
向 正相关时回归直线的斜率为正值,负相关是回归直线的斜率
探 为负值.回归直线斜率的符号与相关系数的符号是一致的.

返回目录
第16讲 统计与统计案例
► 考向三 独立性检验问题
考向:独立性检验的基本方法及其应用.
例 3 近年空气质量逐步恶化,雾霾天气出现增多,

高三数学 统计与统计案例 教学教案 新人教版

高三数学 统计与统计案例 教学教案 新人教版

舒城中学高三数学专题复习教与学一体化学案课题:统计与统计案例一、有的放矢、复习轻松1.理解用样本估计总体的思想,并会用样本的数字特征对总体进行估计;理解样本平均数和标准差的意义和作用,并会计算数据平均数和标准差。

2.理解独立性检验的基本思想、方法和初步应用。

3.会用简单随机抽样的方法从总体中抽取样本和了解分层抽样方法和系统抽样方法,并了解随机抽样的等可能性。

4.会作“一表三图”,并能利用“一表三图”分析样本的数字特征。

5.了解最小二乘法的思想和利用已知系数公式建立线性回归方程;了解回归分析的基本思想、方法及其简单应用。

二、知识结构,了然于胸三、复习定位,对症下药 1.重点(1)简单随机抽样的基本方法以及操作步骤。

(2)用茎叶图和频率分布直方图分析样本的基本数字特征。

(3)会根据茎叶图计算样本的基本数字特征;会用频率分布直方图估算样本的基本数字特征.2.难点(1)会用茎叶图和频率分布直方图分析样本的基本数字特征。

(2)体会用样本估计总体的思想;会用样本的基本数字特征估计总体的基本数字特征。

四、例题解析,理解深入【例题1】 某省打算对本省现行的高考方案做出优化改革,使之更好的考查考生的能力和素质,为增强改革的有效性,计划向5000名高三学生、3000名高校学生和4000名高中教师发放相关问卷,拟收回1200份做数据分析,请选择恰当的抽样方法收取这1200份问卷。

【解析】 本题适合采用分层抽样方法: 第一步:确定抽样比:1014000300050001200=++==N n k 第二步:确定每一层的子样本容量:4001014000,3001013000,5001015000321=⨯==⨯==⨯=n n n 第三步:在每一层按简单随机抽样的方法或系统抽样方法抽取相应样本。

采集数据处理数据实际应用【例题2】 为了综合分析我市高三理科数学的教学质量,某研究机构从参加“皖西五校联考(理)”的学生中利用电脑随机选择了20名学生成绩作分析,成绩茎叶图如下: 8 6 9 6 8 10 7 9 9 11 0 2 6 7 8 8 8 12 2 4 8 8 13 3 7 14 5(Ⅰ)请由图中给出的数据,求样本的众数、中位数、平均值和方差。

变量间的相关关系统计案例

变量间的相关关系统计案例
返回
其中两个变量x、y具有相关关系的图是
A.①②
B.①④
C.③④
D.②③
解析:由散点图知③④具有相关关系.
答案: C
()
返回
2.如图所示,有5组(x,y)数据,去 掉________组数据后,剩下的4组 数据具有较强的线性相关关系. 解析:由散点图知呈带状区域时有较强的线性相关关系, 故去掉D. 答案: D
男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110
返回
由χ2=a+bcn+add-ab+cc2b+d算得,
χ2=110×60×405×0×306-0×205×0202≈7.8.
附表:
P(χ2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
多考查基本思想的应用及基本运算.
返回
返回
一、变量间的相关坐标,另一个变量的相应
取值为纵坐标,在直角坐标系中描点,这样的图形叫 做散点图. 三、回归直线方程与回归分析 (1)直线方程=a+bx,叫做Y对x的 回归直线方程 ,b 叫
做 回归系数 .要确定回归直线方程,只要确定a与回 归系数b.
n
n
xi- x 2 yi- y 2
i=1
i=1
r=
n xiyi-n-x -y
i=1
n
xi2-n-x 2n yi2-n-y 2
i=1
i=1

.
返回
(4)样本相关系数r具有以下性质:|r|≤1,并且|r|越接近1,
线性相关程度 越强 ;|r|越接近0,线性相关程度越弱.
返回
四、独立性检验 (1)2×2列联表:
A.^y=-2x+100

2012年安徽省高考理科数学试卷分析

2012年安徽省高考理科数学试卷分析

2012年安徽省高考理科数学试卷分析寿县一中高三数学组黄本定今年的理科数学试卷在稳定中有变化,题型常规中注重对数学思想方化的考查,层层把关加强了选拔功能使得具有良好的心理素质和扎实数学基本功的考生脱颖而出。

是一套区分度和能力要求较高的试卷。

一、试卷特点1.试卷结构试卷题量仍然维持10道选择题5道填空题和6道解答题,与往年的题量相比没有变化。

而试卷的题型又回归到以往的结构上来了,这就使得考生对试题考查的情景较为熟悉,有利考生的正常发挥。

客观题和主观题的设计都是由易到难层次分明,有利考生的发挥,但是选择题中很少有考生能一眼就能看出答案的或考生略做思考运算得出结果的题目,且在10题和15题的难度上也较往年高,这样就明显提升了客观题的难度。

而主观题在入手方面明显要比去年容易,但每道题都加大了思维量减少了运算量,“多思少答”的观念得以彰显,最后一题采用了有一定难度的探究性试题作为把关题提高了试卷的区分度,使得真正具有超强能力的考生获得高分。

2.加强了对主干知识的考查试题很好地覆盖了高中阶段的数学知识,分配设计合理,对基础知识以基础题的形式考查。

如第1、3、11、6、12、13、5题分别考查了复数、程序框图、线性规划、立体几何三视图、极坐标参数方程及统计部分的知识,包括考查导数应用部分的第19题目也属于中档题。

而对函数、方程、不等式这条贯穿高中数学的主干知识的考查明显加大了能力要求,不论是在主观题方面还是在客观题上均较往年提升了考查要求。

如第15题和16题,虽然考查的载题是三角函数知识,但是第15题需要考生能以正弦定理、余弦定理为基础知识灵活熟练地运用方程、不等式的结构和相关结论进行综合处理。

第16题又综合考查运用函数的周期性求函数的解析式,设计新颖符合考纲要求,但是要求经过两次运用周期性求解析式且形成分段函数这就增加了难度提升了要求。

3.突出了数学思想和能力的考查试卷全面考察了高中阶段应该掌握的数学思想和方化,突出考查了函数与方程、转换化归,很大程度上要求考生对相关知识必须达到理解掌握的层次。

【课堂新坐标】(安徽专用)高考数学(理)一轮总复习课件第九章算法初步、统计与统计案例 第1节 算

【课堂新坐标】(安徽专用)高考数学(理)一轮总复习课件第九章算法初步、统计与统计案例 第1节 算
本章内容主要包括算法与程序框图 (流程图与结构图)用样本估计总 体、变量间的相关关系、回归分析 及独立性检验.重点考查程序框 图、抽样方法、频率分布直方图及 茎叶图,常与概率知识结合考查, 以选择、填空题为主,分值约为 5~10分,属容易题. 本章知识重在训练学生的有序性, 表述的条理性思维和分析问题的能 力,数据处理的能力,用数学知识 和方法分析、解决实际生活中的问 题.本章知识与现实生活联系密 切,有助于培养学生对数学知识的 应用意识.
图 9-1-2 A.k>4? B.k>5? C.k>6? D.k>7?
【解析】
由程序框图可知,k=1 时,S=1;k=2 时 S
=2×1+2=4;k=3 时 S=2×4+3=11;k=4 时 S=2×11 +4=26;k=5 时 S=2×26+5=57.故选 A.
【答案】
A
5.(2013· 北京高考改编)执行如图 9-1-3 所示的程序框 图,输出的 S 值为________.
图 9-1-1
1 A. 6
25 B. 24
3 C. 4
11 D. 12
【解析】
1 1 s=0,n=2,2<8,s=0+ = ; 2 2
1 1 3 n=2+2=4,4<8,s= + = ; 2 4 4 3 1 11 n=4+2=6,6<8,s= + = ; 4 6 12 11 n=6+2=8,8<8 不成立,输出 s 的值为 . 12
【答案】 D
3.运行如图所示的程序,可得 a 的输出值为( a=20 a=a*2-30 Print%io2,a A.30 C.10 B.20 D.-10
)
【解析】 【答案】
a=20×2-30=10,故选 C. C
4.某程序框图如图 9-1-2 所示,若输出的 S=57,则 判断框内为( )

高考数学:专题六 第三讲 统计、统计案例课件

高考数学:专题六 第三讲 统计、统计案例课件

特点和实施步骤,其次要熟练掌握系统抽样中被抽个体号码的确定 方法及分层抽样中各层人数的计算方法.
题型与方法
第三讲
变式训练 1 (2011· 湖北)某市有大型超市 200 家、中型超市 400 家、 小型超市 1 400 家,为掌握各类超市的营业情况,现按分层抽样方法
本 讲 栏 目 开 关
抽取一个容量为 100 的样本,应抽取中型超市________家.
考点与考题
第三讲
5.(2012· 湖南)设某大学的女生体重 y(单位:kg)与身高 x(单位:cm) 具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,„,n),用
本 讲 栏 目 开 关
最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论中不 . 正确的是 .. A.y 与 x 具有正的线性相关关系 B.回归直线过样本点的中心( x , y ) C.若该大学某女生身高增加 1 cm,则其体重约增加 0.85 kg D.若该大学某女生身高为 170 cm,则可断定其体重必为 58.79 kg ( )
18 3
本 讲 栏 目 开 关
31.5,35.5
1235.5,39.5
39.5,43.5
根据样本的频率分布估计,大于或等于 31.5 的数据约占 2 1 1 2 A. B. C. D. 11 3 2 3
解析
( B )
由条件可知,落在大于或等于 31.5 的数据有 12+7+3= 22 1 22(个),故所求概率约为66=3.
^
^
考点与考题
第三讲
4.(2011· 四川)有一个容量为 66 的样本, 数据的分组及各组的频数如下:

11.5,15.5 27.5,31.5

2012年高考理科数学安徽卷(含详细答案)

2012年高考理科数学安徽卷(含详细答案)

数学试卷 第1页(共39页)数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号与本人姓名、准考证号是否一致.务必在答题卡背面规定的地方填写姓名和准考证号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效.,在试题卷....、草稿纸上答题无效.........4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥,那么 如果事件A 与B 相互独立,那么 P (A +B )=P (A )+P (B ) P (AB )=P (A )P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,z 是复数z 的共轭复数.若 i 22z z z +=,则z =( )A .1+iB .1-iC .-1+iD .-1-i2.如图所示,程序框图(算法流程图)的输出结果是 ( )A .16 B .2524 C .34D .11123.在下列命题中,不是..公理的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.“0a ≤”是“函数|()|()1f x ax x -=在区间(0)+∞,内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数6.已知一元二次不等式()0f x <的解集为1{|1}2x x x <->或,则(10)0x f >的解集为( ) A .{|}1lg2x x x ->-<或 B .lg |}12{x x -<<- C .l 2|g {}x x -> D .l 2|g {}x x -<7.在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( )A .0()θρ∈R =和cos 2ρθ=B .π()2θρ∈R =和cos 2ρθ=C .π()2θρ∈R =和cos 1ρθ=D .0()θρ∈R =和cos 1ρθ=8.函数=()y f x 的图象如图所示,在区间[],a b 上可找到n (2n ≥)个不同的数1x ,2x ,…,n x ,使得1212===n nf x f x f x x x x ()()(),则n 的取值范围是 ( )A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3}9.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足||=|| 2OA OB OA OB ==,则点集{|=+,||||1,}POP OA OB λμλμμ+∈R≤所表示的区域的面积是( )A.B .C .D .10.若函数32()f x x ax bx c +++=有极值点1x ,2x ,且11()f x x =,则关于x 的方程23(())f x +2()0af x b +=的不同实根个数是( )A .3B .4C .5D .6--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------姓名________________ 准考证号_____________数学试卷 第4页(共39页)数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.若8(x +的展开式中4x 的系数为7,则实数=a __________. 12.设ABC △的内角A ,B ,C 所对边的长分别为a ,b ,c .若=2b c a +,3sin =5sin A B ,则角=C __________.13.已知直线=y a 交抛物线2=y x 于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为__________.14.如图,互不相同的点1A ,2A ,…,n A ,…和1B ,2B ,…,n B ,…分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设=n n OA a .若1=1a ,2=2a ,则数列{}n a 的通项公式是__________.15.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号). ①当102CQ <<时,S 为四边形 ②当12CQ =时,S 为等腰梯形 ③当34CQ =时,S 与11C D 的交点R 满足1=C R 13④当341CQ <<时,S 为六边形⑤当CQ =1时,S三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. 16.(本小题满分12分)已知函数()4cos πsin(4)f x x x ωω+=(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)讨论()f x 在区间π[0,]2上的单调性.17.(本小题满分12分)设函数22()=(1)f x ax a x -+,其中0a >,区间=()0{|}I x f x >. (Ⅰ)求I 的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当11k a k -+≤≤时,求I 长度的最小值.18.(本小题满分12分)设椭圆E :2222=11x y a a +-的焦点在x 轴上. (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设1F ,2F 分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线2F P 交y 轴于点Q ,并且11F P FQ ⊥.证明:当a 变化时,点P 在某定直线上.19.(本小题满分13分)如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为22.5,AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60.(Ⅰ)证明:平面P AB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠.20.(本小题满分13分)设函数23222()123nn x x x f x x n =-+++++(x ∈R ,*n ∈N ).证明: (Ⅰ)对每个*n ∈N ,存在唯一的2[,1]3n x ∈,满足)0(n n f x =;(Ⅱ)对任意*p ∈N ,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n-<<+.21.(本小题满分13分)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责.已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X .(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (Ⅱ)求使()P X m =取得最大值的整数m .2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析3 / 13【解析】{}na是等比数列,且,又等比数列93=4(q⨯⨯【解析】1(45 x=甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,的充分条件,如果条件相同,.45 / 13【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =,又向量OP 按逆时针后,得向量OQ ,10cos OQ θ⎡⎛= ⎢∴. (0,0),(6,8)P ,知(6,8)OP =,设(10cos OP =量OP 绕点逆时针方向旋转后得向量OQ ,由此能求出结果.【考点】平面向量的坐标运算,||3AF =,,1a ∴=【解析】2613C-=取得最小值3-.67 / 138】|2|3a b -≤,22494a b a b ∴+≤+,又2244||||4a b a b a b +≥≥-,944a b a b +∴≥-,98a b -∴≥,a b ∴的最小值是8-.【提示】由平面向量a ,b 满足|2|3a b -≤,知22494a b a b +≤+,故22224244||||4a b a b a b a b +≥=≥-,由此能求出a b 的最小值. 【考点】平面向量数量积【答案】①②③【解析】①2ab c >,②2a b c +>,cos ∴③33a b +=2cos a C =④2a b ==以例反证71082>-【提示】①利用余弦定理,将f x=(Ⅰ)()21=2(Ⅱ)当89 / 13AB AC =面ABC AO ∴⊥面共面,又1OO BC ⊥1AO O =,BC ⊥面BC ⊥;(Ⅱ)延长D OA =,连接,1AO AO ∥1O D OA ∴∥AD OO ∴∥101OO BC ⊥1OO ∴⊥面(Ⅲ)AO BC ⊥1AOA 是二面角Rt OO A ∆中,51AO O =,得到11 / 13(Ⅱ)()f x a =1)e x a a =-,2PF QF ⊥2044b a c c -⨯--又24a c=②,22(a b =-12 ,则2PF QF ⊥又2222x y a b +2y b =-过点13 / 131n n x x +-10x ∴=≤。

2012年高考理科数学安徽卷-答案

2012年高考理科数学安徽卷-答案

2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】{}na是等比数列,且,又等比数列93=4(q⨯⨯2=log32=log【解析】1(45 x=甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,的充分条件,如果.【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =,又向量OP 按逆时针后,得向量OQ ,10cos OQ ⎡=⎢⎝⎣∴知(6,8)OP =设(10c o OP =OP 绕点逆时针方向旋转3π后得向量OQ ,由此能求出结果.9.【答案】,||3AF =,,1【解析】2613C-=①设仅有甲与乙,丙没交换纪念品,则甲收到取得最小值3-.8】|2|3a b -≤,22494a b a b ∴+≤+,又2244||||4a b a b a b +≥≥-,944a b a b +∴≥-,98a b -∴≥,a b ∴的最小值是8由平面向量a ,b 满足|2|3a b -≤,知22494a b a b +≤+,故22224244||||4a b a b a b a b +≥=≥-,由此能求出a b 的最小值.【考点】平面向量数量积 【答案】①②③【解析】①2ab c >,②2a b c +>,cos ∴③333a b c +=,a ∴2cos a C =④2a b ==⑤以例反证71082>-,【提示】①利用余弦定理,将f x=(Ⅰ)()1=21(Ⅱ)当AB AC =面AO ∴⊥面1AO AO ∴∥共面,又1OO BC ⊥1AO O =,BC ⊥面D OA =,连接,1AO AO ∥O D OA ∴∥AD OO ∴∥1OO BC ⊥1OO ∴⊥面AD ∴⊥面(Ⅲ)AO BC ⊥11Rt OO A ∆中,51AO O =,得到BC A -的平面角,由(Ⅱ)()f x a =)e a a =-(2)f ⎧,2PF QF ⊥44a c c ⨯--又24a c=②,(a b =-由①②③解得:,则2PF QF ⊥,解得22y =又2222x y a b+2y b =-过点11 / 111n n x x +-10x ∴=≤当1c ≤时,。

2012安徽高考理科数学

2012安徽高考理科数学

2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 务必在试题卷、答题卡自己的姓名、座位号,并认真粘贴的条形码中姓名座位号是否一致。

务必面规定的地方填写姓名和座位号后两位。

2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.考试结束,务必将试卷和答题卡一并上交。

参考:如果事件A与B互斥,那么P(A+B)=P(A)+P(B)如果事件A与B相互独立,那么P(AB)=P(A)P(B)如果A与B为事件,P(A)>0,那么一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)复数x满足f(x-i)(2-i)=5. 则A.-2-2i B -2+2iC 2-2iD 2+2i(2) 下列函数中,不满足飞(2x)等于2f(x)的是A f(x)=xB f (x)=x-xC f(x)=x+1D f(x)=-x3 如图所示,程序框图(算法流程图)的输出结果是A.3B.4C.5D.84.的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=(A)4 (B)5 (C)6 (D)75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则第1/6页(A)甲的成绩的平均数小于乙的成绩的平均数(B)甲的成绩的中位数等于乙的成绩的中位数(C)甲的成绩的方差小于乙的成绩的方差(D)甲的成绩的极差小于乙的成绩的极差(6)设平面α与平面β相交于直线m,直线a在平面α内。

安徽省安庆二中高考数学专题训练统计与统计案例

安徽省安庆二中高考数学专题训练统计与统计案例

统计与统计案例一.选择题:(每小题5分,计75分)1.已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( ) A .y ∧=1.23x +4 B .y ∧=1.23x +5 C .y ∧=1.23x +0.08 D .y ∧=0.08x +1.232.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在.若低于60分的人数是15,则该班的学生人数是( ) A .45 B .50 C .55 D .607.某容量为180的样本的频率分布直方图共有n(n >1)个小矩形,若第一个小矩形的面积等于其余n -1个小矩形的面积之和的15,则第一个小矩形对应的频数是( )A .20B .25C .30D .358.右面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,8 9.某产品的广告费用广告费用x(万元) 4 2 3 5 6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元10.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .30%B .10%C .3%D .不能确定11.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示: 则7个剩余分数的方差为( ) 1169 B.367 C .36 D.67712.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则 ( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙13.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为 ( )A .0.27,78B .0.27,83C .2.7,78D .2.7,8314.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A. 26,16,8B. 25,17,8C. 25,16,9D. 24,17,915.某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A. 这种抽样方法是一种分层抽样B. 这种抽样方法是一种系统抽样C. 这五名男生成绩的方差大于这五名女生成绩的方差D. 该班男生成绩的平均数小于该班女生成绩的平均数二.非选择题:(16-21每题5分,22 23 24每题15分,计75分)16.容量为60的样本的频率分布直方图共有n(n>1)个小矩形,若其中一个小矩形的面积等于其余n-1个小矩形面积和的15,则这个小矩形对应的频数是________.17.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码.(1)若第1组抽出的号码为2,则所有被抽出职工的号码为________;(2)分别统计这5名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,则该样本的方差为________.∴X 的数学期望为E(X)=0×156+1×1556+2×1528+3×528=10556=158. 24.解析:(1)样本均值为17+19+20+21+25+306=1326=22. (2)由(1)知样本中优秀工人占的比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人. (3)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则P(A)=C14C18C212=1633.。

高考数学 试题汇编 第三节 统计、统计案例 文(含解析)

高考数学 试题汇编 第三节 统计、统计案例 文(含解析)

第三节统计、统计案例抽样方法考向聚焦高考对抽样方法的考查侧重于考查系统抽样和分层抽样中的数值计算问题,尤其是系统抽样中所抽样本的编号问题,分层抽样中各层所抽样本数量的计算等,多以小题形式出现,难度为中、低档,所占分值为4分左右1.(2012年四川卷,文3,5分)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )(A)101 (B)808 (C)1212 (D)2012解析:根据分层抽样的特点可知×N=96,解得N=808,故选B.答案:B.2.(2011年福建卷,文4)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本.已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )(A)6 (B)8 (C)10 (D)12解析:设在高二年级的学生中应抽取的人数为x.由分层抽样的特点有30∶40=6∶x,则x=8,即在高二年级学生中应抽取8人.故选B.答案:B.3.(2010年重庆卷,文5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( )(A)7 (B)15 (C)25 (D)35解析:设样本容量为n,则由分层抽样的特点知=,得n=15,故选B.答案:B.4.(2012年浙江卷,文11,4分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.解析:本题主要考查分层抽样,因为560+420=980,所以560×=160.答案:1605.(2012年福建卷,文14,4分)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是.解析:女运动员有98-56=42人,男女比例为:56∶42=4∶3,∴应抽取女运动员28×=12(人).答案:12本题考查分层抽样方法,属容易题.6.(2012年湖北卷,文11,5分)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人.解析:设抽取的女运动员为x人,则=,解得x=6.故抽取的女运动员为6人.答案:67.(2012年江苏数学,2,5分)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.解析:本题考查随机抽样中分层抽样.关键算出高二学生人数在总数中的比例.因为高二年级学生人数占总数的,样本容量为50,所以50×=15.答案:158.(2011年湖北卷,文11)某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市家.解析:由分层抽样的特点知应抽取中型超市400×=20(家).答案:209.(2011年上海卷,文10)课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为.解析:∵抽取比例为=,∴丙组应抽取的城市数为×8=2.答案:210.(2011年山东卷,文13)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为.解析:由题意知学生总人数为150+150+400+300=1000, 抽取比例为=,从丙专业抽取人数为400×=16.答案:16统计图表与数字特征的计算考向聚焦统计图表(频率分布直方图、茎叶图)与数字特征(平均数、中位数、方差)是高考的重点和热点内容,几乎每年必考,通常以茎叶图和频率分布直方图为载体,考查平均数、中位数、方差等的计算,难度为中、低档,主要以选择题、填空题形式出现,有时也可能以解答题的形式进行综合考查,所占分值5~12分备考指津(1)对于统计图表的题目,求解时,最重要的就是认真观察图表,从中发现有用的信息和数据.(2)计算平均数与方差时,要明确所有数据的个数,以防计算错误11.(2012年陕西卷,文3,5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )(A)46,45,56 (B)46,45,53(C)47,45,56 (D)45,47,53解析:由概念知中位数是中间两数的平均数,即=46,众数是45,极差为68-12=56.所以选A.答案:A.12.(2012年湖北卷,文2,5分)容量为20的样本数据,分组后的频数如下表:分组[10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数 2 3 4 5 4 2则样本数据落在区间[10,40)的频率为( )(A)0.35 (B)0.45 (C)0.55 (D)0.65解析:由表格提供的数据可知,样本数据落在区间[10,40)的频数为2+3+4=9,则频率为=0.45.答案:B.13.(2012年山东卷,文4,5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )(A)众数 (B)平均数(C)中位数(D)标准差解析:本题考查样本的平均数,标准差等的计算方法.根据标准差的性质,易知答案为D.答案:D.14.(2012年江西卷,文6,5分)小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )(A)30% (B)10% (C)3% (D)不能确定解析:本题考查扇形图与条形图的实际应用.由图2可知,小波一星期的食品开支为30+40+100+80+50=300(元),由图1知,小波一星期的总开支为=1000(元),则小波一星期的鸡蛋开支占总开支的百分比为×100%=3%.故应选C.答案:C.统计图在实际中应用相当广泛,也是高考的必考点,难度一般都比较小,主要是读懂图中各阴影部分表示的意义.15.(2011年重庆卷,文4)从一堆苹果中任取10只,称得它们的质量如下(单位:克):125 120 122 105 130 114 116 95 120 134则样本数据落在[114.5,124.5)内的频率为( )(A)0.2 (B)0.3 (C)0.4 (D)0.5解析:在10个已测出的数值中,有4个数据落在[114.5,124.5)内,它们是120、122、116、120,故频率为=0.4,选C.16.(2011年湖北卷,文5)有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )(A)18 (B)36 (C)54 (D)72解析:样本数据在[10,12)内的频率为1-2×(0.02+0.05+0.15+0.19)=0.18.∴样本数据在[10,12)内的频数为200×0.18=36,故选B.答案:B.17.(2011年江西卷,文7)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m0,平均值为,则( )(A)m e=m0=(B)m e=m0<(C)m e<m0<(D)m0<m e<解析:由图知中位数为5.5,众数为5,平均值约为6.选D.答案:D.18.(2010年山东卷,文6)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )(A)92,2 (B)92,2.8(C)93,2 (D)93,2.8解析:去掉一个最高分95,一个最低分89,剩下的5个数据是90,90,93,94,93,其平均值==92,方差s2=×[(90-92)2+(90-92)2+(93-92)2+(94-92)2+(93-92)2]=2.8.故选B.19.(2012年山东卷,文14,4分)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为.解析:本题主要考查频率分布直方图的意义.设样本容量为n,则(0.1+0.12)n=11,解得n=50,故气温不低于25.5 ℃的城市个数为:50×0.18=9.答案:920.(2012年广东卷,文13,5分)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为.(从小到大排列)解析:本小题主要考查平均数、中位数、方差的概念,以及方程组的运算,由题,设x1≤x2≤x3≤x4,则x1+x2+x3+x4=8,x2+x3=4,=1,即(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=4,联立解得x1=1,x2=1,x3=3,x4=3.答案:1 1 3 321.(2012年湖南卷,文13,5分)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为.(注:方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为x1,x2,…,x n的平均数)解析:由茎叶图知该运动员得分为8,9,10,13,15,所以=×(8+9+10+13+15)=11,所以s2=×[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=×(9+4+1+4+16)=6.8.22.(2011年江苏卷,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2= .解析:10,6,8,5,6的平均数==7,∴10,6,8,5,6的方差s2==.答案:23.(2010年福建卷,文14)将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 等于.解析:∵=,∴n=60.答案:6024.(2010年浙江卷,文11)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是, .解析:甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45.乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.答案:45 4625.(2012年广东卷,文17,13分)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60) [60,70) [70,80) [80,90) x∶y 1∶1 2∶1 3∶4 4∶5解:(1)由(2a+0.02+0.03+0.04)×10=1知a=0.005.(2)估计这100名学生的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=7.5+26+22.5+17=73(分).(3)由频率分布直方图知,语文成绩在[50,60)之间的人数为100×0.05=5,[60,70)之间的人数为100×0.4=40,[70,80)之间的人数为100×0.3=30,[80,90)之间的人数为100×0.2=20,故数学成绩在这几个分数段内的人数分别为5,20,40,25,总人数为90,故在[50,90)之外的人数为100-90=10.26.(2012年北京卷,文17,13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(注:s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为数据x1,x2,…,x n的平均数)解:(1)由已知得厨余垃圾共有600吨,其中厨余垃圾投放正确的有400吨,∴厨余垃圾投放正确的概率为=.(2)由已知得厨余垃圾投放正确的有400吨,可回收物投放正确的有240吨,其他垃圾投放正确的有60吨,∴生活垃圾投放正确的有700吨,∴生活垃圾投放错误的有300吨,∴投放错误的概率为=.(3)当a=600,b=c=0时,s2最大.由已知a+b+c=600,∴a,b,c的平均数为200,∴s2==80000,∴方差s2最大值为80000.此题的难度在第三问,其余两问难度不大,第三问对学生有较高的能力要求.虽不要求证明,但要求学生对方差意义的理解非常深刻.27.(2012年安徽卷,文18,13分)若某产品的直径长与标准值的差的绝对值不超过1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品,计算这50件不合格品的直径长与标分组频数频率[-3,-2) 0.10[-2,-1) 8(1,2] 0.50(2,3] 10(3,4]合计50 1.00(1)将上面表格中缺少的数据填在答题卡的相应位置;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.解:(1)频率分布表分组频数频率[-3,-2) 5 0.10[-2,-1) 8 0.16(1,2] 25 0.50(2,3] 10 0.20(3,4] 2 0.04合计50 1.00(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70;(3)设这批产品中的合格品数为x,依题意有=,解得x=-20=1980.所以该批产品的合格品件数估计是1980.本题考查频率和频率分布表等统计学的基本知识,用频率估计概率的基本思想,考查运用统计和概率基本知识解决简单实际问题的能力.28.(2012年陕西卷,文19,12分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.解:(1)根据题意知:甲品牌产品寿命小于200小时的频率为=,因为用频率估计概率,所以甲品牌产品寿命小于200小时的概率为.(2)有抽样结果,寿命>200小时的产品有75+70=145个,其中甲品牌产品75个,因而在样本中寿命大于200小时的产品是甲品牌的频率是=,由此估计概率为.29.(2012年新课标全国卷,文18,12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单元:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n 14 15 16 17 18 19 20 频数10 20 16 16 15 13 10①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.解:(1)当日需求量n≥17时,利润y=85,当日需求量n<17时,利润y=10n-85,所以y关于n的函数为y=(n∈N).(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.②利润不低于75元当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为p=0.16+0.16+0.15+0.13+0.1=0.7.30.(2011年全国新课标卷,文19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:指标值[90,94) [94,98) [98,102) [102,106) [106,110] 分组频数8 20 42 22 8指标值[90,94) [94,98) [98,102) [102,106) [106,110] 分组频数 4 12 42 32 10(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.解:(1)由试验结果知,用A配方生产的产品中优质品的频率为=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B配方生产的一件产品的利润大于0,当且仅当其质量指标值t≥94.由试验结果知,质量指标值t≥94的频率为0.96.所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为×[4×(-2)+54×2+42×4]=2.68(元).31.(2011年广东卷,文17)在某次测验中,有6位同学的平均成绩为75分,x n表示编号为编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解:(1)∵==75,∴x6=6×75-(70+76+72+70+72)=90,∴s2=×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=×(25+1+9+25+9+225)=49,∴s==7.即这6位同学成绩的标准差为7.(2)从5位同学中随机选两位有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种可能情况,记事件A=“恰有一位同学成绩在(68,75)”,A包含(1,2),(2,3),(2,4),(2,5)共4种可能情况,∴P(A)==.即恰有1位同学成绩在区间(68,75)的概率为.32.(2011年辽宁卷,文19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(1)假设n=2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403 397 390 404 388 400 412 406 品种乙419 403 412 418 408 423 400 413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x1,x2,…,x n的样本方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为样本平均数.解:(1)设第一大块地中的两小块地编号为1、2,第二大块地中的两小块地编号为3、4,令事件A为“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A包含1个基本事件:(1,2).所以P(A)=.即第一大块地都种植品种甲的概率为.(2)品种甲的每公顷产量的样本平均数和样本方差分别为:=×(403+397+390+404+388+400+412+406)=400,=×[32+(-3)2+(-10)2+42+(-12)2+02+122+62]=57.25.品种乙的每公顷产量的样本平均数和样本方差分别为:=×(419+403+412+418+408+423+400+413)=412,=×[72+(-9)2+02+62+(-4)2+112+(-12)2+12]=56.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且>,故应该选择种植品种乙.33.(2010年安徽卷,文18)某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85 ,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解:(1)频率分布表:分组频数频率[41,51) 2[51,61) 1[61,71) 4[71,81) 6[81,91) 10[91,101) 5[101,111] 2(2)频率分布直方图如图所示:(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的.有26天处于良的水平,占当月天数的,处于优或良的天数为28天,占当月天数的.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数共17天,占当月天数的,超过50%.说明该市空气质量有待进一步改善.本题以新颖的背景考查了用统计知识解决实际问题的能力,考查了对数据的处理能力以及应用意识.34.(2010年陕西卷,文19)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的概率;(3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm 之间的概率.解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数约为400.(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35(人),因为样本容量为70,所以样本中学生身高在170~185 cm之间的频率f==0.5,故由频率f估计该校学生身高在170~185 cm之间的概率P1=0.5.(3)样本中身高在180~185 cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190 cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm之间的可能结果数为9,因此,所求概率P2==.变量的相关性考向聚焦高考对变量间的相关性的考查呈逐年上升的趋势,主要考查借助于散点图直观地分析两个变量间的相关关系,知道回归直线经过样本中心,会求线性回归方程,并能利用方程对有关变量作出估计.一般以选择题、填空题的形式出现,属容易题,所占分值4~5分35.(2012年新课标全国卷,文3,5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )(A)-1 (B)0 (C)(D)1解析:由所有样本点都在直线y=x+1上,即相关性最强,且为正相关,故相关系数为1,故选D.答案:D.36.(2012年湖南卷,文5,5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )(A)y与x具有正的线性相关关系(B)回归直线过样本点的中心(,)(C)若该大学某女生身高增加1 cm,则其体重约增加0.85 kg(D)若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:用回归方程预测已知身高同学的体重只能是预测,不能一定是.答案:D.37.(2011年江西卷,文8)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数父亲身高x(cm) 174 176 176 176 178儿子身高y(cm) 175 175 176 177 177则y对x的线性回归方程为( )(A)y=x-1 (B)y=x+1(C)y=88+x (D)y=176解析:由于回归直线经过样本中心点(176,176),经验证知C符合.答案:C.广告费用x(万元) 4 2 3 5销售额y(万元) 49 26 39 54根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为( )(A)63.6万元(B)65.5万元(C)67.7万元(D)72.0万元解析:据表可得==,==42,∵回归直线过样本中心点(,42),且=9.4,∴=9.1.即回归方程为=9.4x+9.1,∴当x=6时,=65.5,故选B.答案:B.39.(2011年陕西卷,文9)设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )(A)直线l过点(,)(B)x和y的相关系数为直线l的斜率(C)x和y的相关系数在0到1之间(D)当n为偶数时,分布在l两侧的样本点的个数一定相同解析:样本点的中心(,)必在回归直线上.故选A.答案:A.40.(2010年湖南卷,文3)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是( )(A)=-10x+200 (B)=10x+200(C)=-10x-200 (D)=10x-200解析:∵销售量y(件)与销售价格x(元/件)负相关,∴x的系数为负.又∵y不能为负值,∴常数项必须是正值.故选A.答案:A.41.(2011年辽宁卷,文14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.解析:由回归直线方程为=0.254x+0.321知年收入每增加1万元,年饮食支出平均增加0.254万元.答案:0.25442.(2012年福建卷,文18,12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按单价x(元) 8 8.2 8.4 8.6 8.8 9 销量y(件) 90 84 83 80 75 68(1)求回归直线方程=bx+a,其中b=-20,a=-b;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)∵=(x1+x2+x3+x4+x5+x6)=×(8+8.2+8.4+8.6+8.8+9)=8.5,=(y1+y2+y3+y4+y5+y6)=×(90+84+83+80+75+68)=80.∴a=-b=80+20×8.5=250,回归直线方程为=-20x+250.(2)设工厂获得的利润为L元,依题意得:L=x(-20x+250)-4(-20x+250)=-20x2+330x-1000=-20(x-)2+361.25当且仅当x==8.25时,L取得最大值,故当单价定为8.25元时,工厂可获得最大利润.本题主要考查回归分析,二次函数求最值等基础知识,考查学生的运算求解能力,应用意识和化归与转化思想,属中档题.43.(2011年安徽卷,文20)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份2002 2004 2006 2008 2010 需求量(万吨) 236 246 257 276 286(1)利用所给数据求年需求量与年份之间的回归直线方程=x+;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,为求回归直线方程,对数据预处理如下:年份-2006 -4 -2 0 2 4需求量-257 -21 -11 0 19 29 对预处理后的数据得=0,=3.2,===6.5,=-=3.2,由上述计算结果知所求回归直线方程为-257=(x-2006)+=6.5(x-2006)+3.2,即=6.5(x-2006)+260.2.(2)利用(1)的结论,当x=2012时,=6.5×6+260.2=299.2,即预测该地2012年的粮食需求量为299.2万吨.独立性检验考向聚焦对独立性检验的考查是高考的一个方向,有时以一道选择题的形式出现,属容易题,4~5分;也有时以一道解答题的形式出现,属于中档偏下题目,12分左右备考指津通过独立性检验判断两个变量是否相关,列出列联表是关键.利用列联表进行独立性检验,不但能考查两个变量是否相关,而且能较准确地计算出这种判断的可靠程度44.(2011年湖南卷,文5)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如男女总计爱好40 20 60不爱好20 30 50总计60 50 110由K2=算得,K2=≈7.8.附表:P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828参照附表,得到的正确结论是( )(A)有99%以上的把握认为“爱好该项运动与性别有关”(B)有99%以上的把握认为“爱好该项运动与性别无关”(C)在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”(D)在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”解析:∵K2≈7.8>6.635,∴有99%以上把握认为“爱好该项运动与性别有关”.故选A.答案:A.45.(2012年辽宁卷,文19,12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:。

招生国统一考试数学理试题安徽卷,含答案

招生国统一考试数学理试题安徽卷,含答案

2021年普通高等招生全国统一考试〔卷〕数学〔理科〕本套试卷分第一卷和第II 卷〔非选择题〕两局部,第一卷第1至第2页,第II 卷第3至第4页。

全卷满分是150分,考试时间是是为120分钟。

参考公式:假如事件A 与B 互斥,那么()()()P A B P A P B +=+假如事件A 与B 互相HY ,那么()()()P AB P A P B =第一卷〔选择题 一共50分〕一.选择题:本大题一一共10小题,每一小题5分,一共50分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。

(1) 设i 是虚数单位,_z 是复数z 的一共轭复数,假设|()>0I x f x =+2=2z zi ,那么z =〔A 〕1+i 〔B 〕1i -〔C 〕1+i - 〔D 〕1-i -〔2〕 如下图,程序框图〔算法流程图〕的输出结果是〔A 〕 16 〔B 〕2524〔C 〕34 〔D 〕1112〔3〕在以下命题中,不是公理..的是 〔A 〕平行于同一个平面的两个平面互相平行〔B 〕过不在同一条直线上的三点,有且只有一个平面〔C 〕假如一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内〔D 〕假如两个不重合的平面有一个公一共点, 那么他们有且只有一条过该点的公一共直线〔4〕"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增〞的〔A 〕 充分不必要条件 〔B 〕必要不充分条件〔C 〕充分必要条件 〔D 〕既不充分也不必要条件〔A 〕这种抽样方法是一种分层抽样〔B 〕这种抽样方法是一种系统抽样〔C 〕这五名男生成绩的方差大于这五名女生成绩的方差〔D 〕该班级男生成绩的平均数小于该班女生成绩的平均数〔6〕一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,那么(10)>0x f 的解集为 〔A 〕{}|<-1>lg2x x x 或 〔B 〕{}|-1<<lg2x x 〔C 〕 {}|>-lg2x x 〔D 〕{}|<-lg2x x〔7〕在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为〔A 〕=0()cos=2R θρρ∈和 〔B 〕=()cos=22R πθρρ∈和 〔C 〕 =()cos=12R πθρρ∈和 〔D 〕=0()cos=1R θρρ∈和〔8〕函数=()y f x 的图像如下图,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 那么n 的取值范围是 〔A 〕{}3,4 〔B 〕{}2,3,4〔C 〕 {}3,4,5 〔D 〕{}2,3〔9〕在平面直角坐标系中,o 是坐标原点,两定点,A B 满足2,OA OB OA OB ===那么点集,1,,|P OP OA OB R λμλμλμ==++≤∈所表示的区域的面积是〔A〕〔B〕〔C 〕 〔D 〕〔10〕假设函数3()=+b +f x x x c 有极值点1x ,2x ,且11()=f x x ,那么关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是〔A 〕3 〔B 〕4〔C 〕 5 〔D 〕62021普通高等招生全国统一考试〔卷〕数 学〔理科〕第二卷〔非选择题 一共100分〕考生考前须知:请用黑色墨水签字笔在答题卡上.....答题,在试题卷上答题无效.........。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档