初中数学 八年级下册 教材课后习题参考答案

合集下载

(完整版)人教版八年级数学下学期课后习题与答案

(完整版)人教版八年级数学下学期课后习题与答案

习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义? (1) .. rr ;( 2)、、戸;(3),5a ;( 4) .. 2a 1 . 解析:(1)由 a + 2 >0,得 a >- 2; (2) 由 3- a > 0,得 a w 3; (3) 由 5a >0,得 a >0;1(4) 由 2a + 1 > 0,得 a > -.22、计算:3、用代数式表示:(1) 面积为S 的圆的半径; (2) 面积为S 且两条邻边的比为(1)C.5)2 ; ( 2) ( 、.02)2 ; (3) ;(4) (5.5)2 ;(5) .(10)2 ; (6)( ⑺:(?2 ; (8)(2)2.解析: ⑴(、一5)2 (2)(02)2 ( 1)2 (、、0^)20.2;(4) (3) (5.5)252 (一 5)2125 ;.(10)2■■ 10210;(5)214 ;解析:(1)设半径为r (r>0),由r 2 S,得 r2 : 3的长方形的长和宽.2x, 3x (x>0),则有2x • 3x=S,得x J-S ,(2)设两条邻边长为4、利用a (、、a)2(a > 0),把下列非负数分别写成一个非负数的平方的形式:1(1)9;( 2)5;( 3)2.5;( 4)0.25;( 5) _; (6)0.2解析:(1) 9=32; (2) 5=(... 5)2; ( 3) 2.5=(云)2;1 斤2(4) 0.25=0.52; (5) § (,瑕)2; (6) 0=02.5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:r22232, r213 ,Q r 0, r 55 .6、A ABC的面积为12, AB边上的高是AB边长的4倍.求AB的长.答案:.6 .7、当x是怎样的实数时,下列各式在实数范围内有意义?(1)X2 1 ; (2) ,(X 1)2; (3) , 1; (4) 1.V X yj x 1答案:(1) x为任意实数;(2) x为任意实数;(3) x>0; (4) x>— 1 .8、小球从离地面为h (单位:m)的高处自由下落,落到地面所用的时间为t (单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2 •试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t2,,-、5 .9、(1)已知18 n是整数,求自然数n所有可能的值;(2)已知.24n是整数,求正整数n的最小值.答案:(1) 2, 9, 14, 17, 18 ; (2) 6.因为24n=22x 6X n,因此,使得莎为整数的最小的正整数n是6.⑵210、一个圆柱体的高为 10,体积为V •求它的底面半径r (用含V 的代数式表示),并 分别求当V=5n ,10n 和20 n 时,底面半径r 的大小.习题16.21、计算:(1) •, 24 ...27 ;( 2) 6 ( .. 15);(3) .18.. 20 , 75 ;( 4) , 32 43 5 •答案:(1) 18; (2) 3 10 ; ( 3) 30.30 ; (4) 24. 5 •2、计算:3、化简:(3) 誥;(4)宁;(5) y 怎;(6) 5 •(1),4 49 ;(2) (4)a 2b 4c 2答案:(1) 14 ; (2)10 '、3 ; (3) 37(4) 4、化简: (1) ; (2)23 (3)运6 ;( 3) 3质;(4) 卑;(5)辿;(6)•3、n .2x 3 5y(1) .181; 5 ;( 4) 2 也•6 3、xy答案:(1)2 ,3 ; (3)「2 ; (4)答案:(1) .3 ;5、根据下列条件求代数式b 、b 2 4ac2a的值;答案:11、已知长方体的体积V 4 3,高 h 3、2 ,求它的底面积S .(1) a=1, b=10, c=—15; (2) a=2, b= — 8, c=5 . 答案:(1)5 2.10 ;(2)4;6 26、设长方形的面积为 S,相邻两边分别为 a , b . (1) 已知 a .8 , b .12,求 S ; (2) 已知 a 2.,50 , b 3 32,求 S . 答案:(1) 4.6 ; (2) 240.7、设正方形的面积为 S,边长为a . (1) 已知 S=50,求 a ; (2) 已知 S=242,求 a . 答案:(1) 5、、2 ; (2) 112 •8、计算:.8 3、、40,5 ; (4) 27 ■- 50 \ 6 .9、已知 2 1.414 ,答案:0.707, 2.828.10、设长方形的面积为 S ,相邻两边长分别为 a , b •已知S 4;3,a、、15,求 b .(1) m 题;答案:(1) 1.2 ; ( 2)(3)15.12、如图,从一个大正方形中裁去面积为15cm2和24cm2的两个小正方形, 的面积.答案:12.10cm2.13、用计算器计算:(1) -.,9 9 19 ; (2)、一99 99 199 ;(3)、、999 999 1999 ; (4) 9999 9999 19999 .观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9些39 99L39 19匹39 ___________ .n个9 n个9 n个9答案:(1) 10 ; (2) 100; (3) 1000; (4) 10000. 100匕0 .n个0习题16.31、下列计算是否正确?为什么?(1) .2 .3 .,5 ;(2) 2 .2 2 2 ;(3) 32 ,2 3; (4)压8J 3 2 1 2答案: (1)不正确,,2与. 3不能合并;(2)不正确,2与不能合并;(3)不正确,3、. 2 .2 2,2 ;求留下部分12 (4) 不正确,邑空3 2 2辽2 .2 2 24、计算:(1) (、、12 5、、8八3 ; (2) (2、一 3 3. 2)(2 ,3 3、2); (3) ®3 2、、5)2 ; (4)^481、、6) ,27 •4答案:(1) 6 10 .6; (2)— 6; (3) 95 20.15; (4)-35、已知亏 2.236,求5 1 5 4*45的近似值(结果保留小数点后两位)(1)2、.-.27;(2).9;(3) 2、9X3X ;(4)a 2 , 8a 3a 50a 3 •答案: (1) 7、、3 ;⑵ \ 2 ; (3) 5 .. X ; (4)17a^. 2a23、计算:(1) .18 ,32 迈;(2) ,7554 ,96 .108 ;(3) C.45•18)(、、8 .125);(4)丄(42、3) 3(.2.27) 4•答案:(1) 0 ;(2) 、、6 . 3 ; (3) 8.. 5 . 2 ; (4)— I" •2、计算: 4(2)答案:7.83.6、已知x . 3 1,y ,3 1,求下列各式的值:(1) x 2+ 2xy + y 2; (2) x 2— y 2. 答案:(1) 12 ; (2) 4.3 .7、如图,在 Rt △ ABC 中,/ C=90° CB=CA=a .求 AB 的长.A8、已知a 1 ,10,求a -的值.aa答案:.6 .9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1) 2x 2 — 6=0 , (、、3,、、6, J, 厨;(2) 2 (x + 5) 2=24, (5 2.3,5 2.3, 5 2 G, 5 2、3). 答案:(1)3 ; (2) 2.3 5 .复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (1) r~x;12、化简:3、计算:(1) G24 J) (、1 ,6) ; (2) 2.12 乜 5、、2 ; V2 \8 4 (3) (2 ,3、、6)(2、、3 ,6) ; (4) (2 .一48 3. 27)、、6 ;(5)(2-2 3、3)2 ; (6)《J ; :1;)2 •4、正方形的边长为 a cm ,它的面积与长为 96cm ,宽为12cm 的长方形的面积相等.求 a 的值.答案:24、2 .5、已知x .5 1,求代数式x 2+ 5x — 6的值.答案:3,5 5 .6、已知x 2.3 ,求代数式(7 4 3)x 2(2 .3)x .3的值.(3):2 ;3x(4)r1:(X1)2 •答案: (1) x >— 3 ;(2) x 1 22 ;(3)%3 ;(4)乂工1-(1).500 ;(2) (3) (5)2x 2y 3 ;答案: (1) 10、5 ; (2) 2 '、3X ; ( 3)42; ;(4) 迁;(5) xy 2y ;(6) ‘五3a 答案:(1);(2);(3) 6; (4)4 10(5) 35 12.6 ; (6) 55_3 2; (4)亦;(6)5a 5答案:2 3 •7、电流通过导线时会产生热量,电流 I (单位:A )、导线电阻R (单位:Q )、通电时 间t (单位:s )与产生的热量 Q (单位:J )满足Q=l 2Rt •已知导线的电阻为 5Q, 1s 时间 导线产生30J 的热量,求电流I 的值(结果保留小数点后两位)•答案:2.45A •8、已知n 是正整数, "89n 是整数,求n 的最小值. 答案:21.9、(1)把一个圆心为点 0,半径为r 的圆的面积四等分•请你尽可能多地设想各种分 割方法. (2)如图,以点0为圆心的三个同心圆把以 0A 为半径的大圆0的面积四等分•求这 三个圆的半径 OB , 0C , 0D 的长.类比上述式子,再写出几个同类型的式子. 你能看出其中的规律吗?用字母表示这一规律,并给出证明.平方即可.答案:(1)例如,相互垂直的直径将圆的面积四等分;1(2)设 0A=r ,则 0D r , 0C20Bn n 2 1n 3 n 2 1,再两边开答案:规律是:•只要注意到习题17.11、设直角三角形的两条直角边长分别为 a 和b ,斜边长为c .(1) 已知 a=12, b=5,求 c ; (2) 已知 a=3, c=4,求 b ; (3) 已知 c=10,b=9,求 a . 答案:(1) 13; (2), 7 ; (3) J9 .2、一木杆在离地面 3m 处折断,木杆顶端落在离木杆底端 4m 处.木杆折断之前有多高?答案:8m .3、如图,一个圆锥的高 AO=2.4,底面半径 OB=0.7 . AB 的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).5、如图,要从电线杆离地面 5m 处向地面拉一条长 7m 的钢缆•求地面钢缆固定点 A到电线杆底部B 的距离(结果保留小数点后一位)•答案:4.9m •6、在数轴上作出表示 .20的点. 答案:略.8、在厶 ABC 中,/ C=90°, AC=2.1 , BC=2.8 .求: (1) △ ABC 的面积; (2) 斜边AB ; (3) 高 CD •7、在厶 ABC 中,/ C=90°, AB=c • (1) 如果/ (2) 如果/ A=30°,求 A=45 ,求 BC , BC , AC ; AC • 答案:(1) BC -c ,2AC(2) BCc , AC2答案:(1) 2.94; (2) 3.5; (3) 1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高I的长(结果取整数)答案:82mm.10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面. 水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在AB的长.答案:12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.S半圆 ACD g因为/ ACD=90,根据勾股定理得 AC 2 + CD 2=AD 2, S 半圆AEC + S 半圆CFD =S 半圆ACD ,S 阴影=S ^ACD + S 半圆AEC + S 半圆CFD — S 半圆ACD , 即S 阴影=S ^ACD . 14、如图,△ ACB 和厶ECD 都是等腰直角三角形, △ ACB 的顶点A 在厶ECD 的斜边DE 上.求证:AE 2+ AD 2=2AC 2.证明:证法1:如图(1),连接BD .•••△ ECD 和△ ACB 都为等腰直角三角形,••• EC=CD , AC=CB ,/ ECD= / ACB=90 •••/ ECA= / DCB . • △ ACE ◎△ DCB . • AE=DB ,/ CDB= / E=45 . 又/ EDC=45 ,13、 月形图案 u如图,分别以等腰 AGCE 和 DHCF (1)Rt △ ACD 的边AD , AC , CD 为直径画半圆.求证:所得两个 的面积之和(图中阴影部分)等于Rt △ ACD 的面积. S半圆AECAB2 符 8 gAC 2,S 半圆CFD8 g CD 2 ,gAD 2 .所以H•••/ ADB=90 .在Rt△ ADB 中,AD 2+ DB2=AB2,得AD2+ AE2=AC2+ CB2, 即AE2+ AD 2=2AC2.<1)证法2:如图(2),作AF丄EC, AG丄CD,由条件可知,AG=FC . 在Rt△ AFC中,根据勾股定理得AF2+ FC2=AC 2.• AF2+ AG2=AC2.在等腰Rt△ AFE和等腰Rt△ AGD中,由勾股定理得AF2+ FE2=AE 2, AG 2+ GD2=AD2.又AF=FE , AG=GD ,••• 2AF2=AE2, 2AG 2=AD 而2AF2+ 2AG 2=2AC2,• AE2+ AD2=2AC2.习题17.21、判断由线段a, b, c组成的三角形是不是直角三角形:(1)a=7, b=24, c=25;(2) a .41 , b=4, c=5;5 3(3) a , b=1, c —;4 4(4)a=40, b=50, c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题•这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角•不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在厶ABC 中,AB=13 , BC=10, BC 边上的中线AD=12 .求AC .答案:13.5、如图,在四边形ABCD 中,AB=3 , BC=4 , CD=12 , AD=13,/ B=90° 求四边形ABCD的面积.答案:36.一一1 一6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF —CD .求4证/ AEF=90 .答案:设AB=4k,贝U BE=CE=2k , CF=k , DF=3k .•••/ B=90°,••• AE2= (4k) 2+( 2k) 2=20k2.同理,EF2=5k2, AF2=25k2.• AE2+ EF2=AF2.根据勾股定理的逆定理,△ AEF为直角三角形.•••/ AEF=90 .7、我们知道3, 4, 5是一组勾股数,那么3k, 4k , 5k ( k是正整数)也是一组勾股数吗?一般地,如果a, b, c是一组勾股数,那么ak, bk, ck (k是正整数)也是一组勾股数吗?答案:因为(3k) 2+( 4k) 2=9k2+ 16k2=25k2= (5k) 2,所以3k, 4k,5k( k是正整数)为勾股数.如果a , b , c 为勾股数,即a 2 + b 2=c 2,那么(ak ) 2+( bk ) 2=a 2k 2 + b 2k 2= (a 2+ b 2) k 2=c 2k 2= (ck ) 2 • 因此,ak , bk , ck (k 是正整数)也是勾股数.复习题171、两人从同一地点同时出发, 一人以20 m/min 的速度向北直行, 一人以30m/min 的速 度向东直行.10min 后他们相距多远(结果取整数)?答案:361m .2、如图,过圆锥的顶点S 和底面圆的圆心 0的平面截圆锥得截面△ SAB ,其中SA=SB , 答案: 6、5 cm 23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm ,两孔中心的水平距离是77mm •计算两孔中心的垂直距离(结果保留小数点后一位)答案:109.7mm .4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽 a=3m ,高b=1.5m,长d=10m .求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位)AB 是圆锥底面圆答案:33.5m2.5、一个三角形三边的比为1: .3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k…3k ,2k,其中k>0.由于k2(、、3k)2 4k2 (2k)2, 根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数;(3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等.答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立.(3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为2 3 1和2 3 1,求斜边c的长.答案:.26 .8、如图,在△ ABC 中,AB=AC=BC,高AD=h .求AB .答案:2 3h .39、如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)Z BCD是直角吗?答案:(1) 14.5, 3.5 、17 .. 26 ;(2)由BC 、20, CD . 5 , BD=5,可得BC2+ CD2=BD2•根据勾股定理的逆定理,△ BCD是直角三角形,因此/ BCD是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出, 如果m 表示大于1的整数,a=2m , b=m 2- 1, c=m 2 +1,那么a , b , c 为勾股数.你认为对吗?如果对, 你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2= (2m ) 2+( m 2- 1) 2=4m 2 + m 4- 2m 2+ 1=m 4+ 2m 2+ 1= (m 2+ 1) 2=c 2, 所以a , b , c 为勾股数.用 m=2, 3, 4 等大于 1 的整数代入 2m , m 2- 1, m 2 + 1,得 4, 3, 5; 6, 8, 10; 8, 15, 17;等等.12、如图,圆柱的底面半径为 6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点 A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm , 40cm , 30cm 的长方体木箱中, 能放进去吗?答案:能.习题18.11、如果四边形 3 ABCD 是平行四边形,AB=6,且AB 的长是口 ABCD 周长的,那么16BC 的长是多少?答案:10.14、设直角三角形的两条直角边长及斜边上的高分别为 a, b 及h .求证:a 21 h2 .答案:由直角三角形的面积公式,1 得- ab 2対厂,等式两边平方得抚窃(a2+ b 2),等式两边再同除以a 2b 2c 2,得 $h 2 a 22、如图,在一束平行光线中插入一张对边平行的纸板•如果光线与纸板右下方所成的 / 1是72° 15'那么光线与纸板左上方所成的/ 2是多少度?为什么?答案:72° 15 ',平行四边形的对角相等.3、如图,口ABCD的对角线AC , BD相交于点0,且AC + BD=36 , AB=11 .求厶0CD 的周长.答案:29.4、如图,在口ABCD中,点E, F分别在BC , AD上,且AF=CE .求证:四边形AECF 是平行四边形.答案: 提示:利用5、如图,口ABCD的对角线AC , BD相交于点0,且E, F, G, H分别是AO , B0 , CO, DO 的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD 和EBCF 都是平行四边形.求证:四边形ABCD 是平行四边形.7、如图,直线l i // |2,厶ABC 与厶DBC 的面积相等吗?为什么?你还能画出一些与△ ABC 面积相等的三角形吗?答案:相等•提示:在直线 l i 上任取一点P,A PBC 的面积与厶ABC 的面积相等(同 底等高).□ OABC 的顶点O , A , C 的坐标分别是(0, 0), (a , 0), (b , c ).求顶点9、如图,在梯形 ABCD 中,AB // DC .(1) 已知/ A= / B ,求证 AD=BC ; (2) 已知 AD=BC ,求证/ A= / B .答案: 8、如图, B 的坐标.答案:B 提示:利用(a + b ,答案:提示:过点AECD为平行四边形.10、如图,四边形ABCD是平行四边形,/ ABC=70°, BE平分/ ABC且交AD于点E, DF // BE且交BC于点F.求/ 1的大小.A E DB F C答案:35°11、如图,A' B BA , B'C'// CB , C ' /AC,/ ABC 与/ B'有什么关系?线段AB'与线段AC 呢?为什么?答案:由四边形ABCB是平行四边形,可知/ ABC= / B ', AB =BC ;再由四边形C BCA 是平行四边形,可知 C A=BC .从而AB =AC12、如图,在四边形ABCD 中,AD=12 , DO=OB=5 , AC=26 , / ADB=90°.求BC 的长和四边形ABCD的面积.答案: 的对角线互相平分,它是一个平行四边形•所以BC=AD=12,四边形ABCD的面积为120 .13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点0,用大头针把一根平放在平行四边形上的直细木条固定在点0处,并使细木条可以绕点0转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与口ABCD的边AD , BC分别交于点E, F,可以发现0E=0F , AE=CF ,DE=BF , △ A0E C0F , △ D0EB0F等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF // BC, GH // AB .图中哪两个平行四边形面积相等?为什么?答案:口AEPH 与□PGCF面积相等.利用△ ABD 与厶CDB , △ PHD与厶DFP, △ BEP 与厶PGB分别全等,从而口AEPH与口PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC, BD相交于点0,且/仁/2.它是一个矩形吗?为什么?答案:是.利用/ 1 = / 2,可知B0=C0,从而BD=AC , □ ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板•他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ ABC 中,/ C=90° AB=2AC .求/ A,/ B 的度数. 答案:/ A=60°,/ B=30°.5、如图,四边形ABCD是菱形,/ ACD=30°, BD=6 .求:(1)Z BAD,/ ABC 的度数;(2)AB , AC 的长.B答案:(1)Z BAD=60,/ ABC=120 ; (2) AB=6 , AC 6品-6、如图,AE // BF , AC平分/ BAD,且交BF于点C, BD平分/ ABC,且交AE于点D,连接CD •求证:四边形ABCD是菱形.答案:提示:由/ ABD= / DBC= / ADB,可知AB=AD,同理可得AB=BC .从而AD P BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角•要得到一个正方形,剪口与折痕应成多少度的角?答案:45°8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了. 纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ ABC 中,/ ACB=90°, CD 丄AB 于点D,/ ACD=3 / BCD , E 是斜边AB的中点./ ECD是多少度?为什么?45°.提示:/ BCD= / EAC= / ECA=22.5答案:10、如图,四边形ABCD 是菱形,点M , N分别在AB , AD上,且BM=DN , MG // AD , NF // AB ;点F, G分别在BC , CD上,MG与NF相交于点E.求证:四边形AMEN , EFCG都是菱形.答案:提示:四边形AMEN , EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8 , DB=6 , DH丄AB于点H .求DH的长.B答案:DH=4.8 .提示:由AB • DH=2AO • OD=2S A ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O, B , D三点的坐标分别是(0, 0),(b, 0), (0, d).求点C的坐标.(2) 如下图(2),四边形ABCD 是菱形,C , D 两点的坐标分别是(c , 0), (0, d ), 点A , B 在坐标轴上.求 A , B 两点的坐标.(3) 如下图(3),四边形OBCD 是正方形,O , D 两点的坐标分别是 (0, 0),(0, d ).求 B , C 两点的坐标.答案:正方形.提示: △ BFECMF DNM AEN ,证明四边形 EFMN 的四条 边相等,四个角都是直角.14、如图,将等腰三角形纸片 ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个 三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.(2)(3)答案:(1) C (b , (2) A ( — c , 0), B (0, — d );(3) B (d , 0), C (d , d ).13、如图,E , F , M , N 分别是正方形 ABCD 四条边上的点,且 判断四边形EFMN 是什么图形,并证明你的结论. AE=BF=CM=DN .试 B D n Cd );DB答案:3种.可以分别以 AD , AB (AC ), BD ( CD )为四边形的一条对角线,得到3B G C答案:提示:由△ ADE BAF ,可得 AE=BF ,从而 AF — BF=EF .16、如图,在△ ABC 中,BD ,CE 分别是边 AC , AB 上的中线,BD 与CE 相交于点 O. B0 与0D 的长度有什么关系? BC 边上的中线是否一定过点 0?为什么?答案:B0=20D , BC 边上的中线一定过点 0.利用四边形EMND 是平行四边形,可知B0=20D ;设BC 边上的中线和 BD 相交于点0',可知B0 =20'D ,从而0与0重合.17、如图是一块正方形草地, 要在上面修建两条交叉的小路, 使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.种平行四边形,它们的对角线长分别为 h ,、.、4n 2 h 2 (或.3n 2 m 2) ; m , m ; n ,n 2 4h 2 (或.3h 2 m 2).15、如图,四边形ABCD 是正方形. 且交AG 于点F .求证:AF — BF=EF . G 是BC 上的任意一点, DE 丄 AG 于点 E , BF // DE ,答案:分法有无数种•只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题. (1)若平行四边形中两个内角的度数比为 1 : 2,则其中较小的内角是(A • 90 °B . 60 °C • 120 °D • 45 °(2)若菱形的周长为 8,高为1,则菱形两邻角的度数比为().A . 3 : 1B . 4 : 1C . 5 : 1D . 6 : 1(3) 如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,则/ AEB 为(答案:(1) B ; (2) C ; (3) B .2、如图,将口ABCD 的对角线BD 向两个方向延长,分别至点E 和点F,且使BE=DF •求 证:四边形AECF 是平行四边形.)• A . 10答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个少50。

2019-2020年初中数学八年级下册第四章 因式分解2 提公因式法北师大版课后练习九

2019-2020年初中数学八年级下册第四章 因式分解2 提公因式法北师大版课后练习九

2019-2020年初中数学八年级下册第四章因式分解2 提公因式法北师大版课后练习九第1题【单选题】把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是( )A、8(7a-8b)(a-b)B、2(7a-8b)^2C、8(7a-8b)(b-a)D、-2(7a-8b)【答案】:【解析】:第2题【单选题】多项式x^3+x^2提取公因式后剩下的因式是( )A、x+1B、x^2C、xD、x^2+1【答案】:【解析】:第3题【单选题】下列多项式中,含有因式(y+1)的多项式是( )A、y^2﹣2xy﹣3x^2B、(y+1)^2﹣(y﹣1)^2C、(y+1)^2﹣(y^2﹣1)D、(y+1)^2+2(y+1)+1【答案】:【解析】:第4题【单选题】下列多项式应提取公因式5a^2b的是( )A、15a^2b-20a^2b^2B、30a^2b^3-15ab^4-10a^3b^2C、10a^2b-20a^2b^3+50a^4D、5a^2b^4-10a^3b^3+15a^4b^2【答案】:【解析】:第5题【单选题】下列分解因式正确的是( )A、x^3﹣x=x(x^2﹣1)B、m^2+m﹣6=(m﹣3)(m+2)C、1-a^2+2ab﹣b^2=(1-a+b)(1+a-b)D、x^2+y^2=(x+y)(x-y)【答案】:【解析】:第6题【单选题】将3a(x-y)-b(x-y)用提公因式法分解因式,应提出的公因式是( )A、3a-bB、3(x-y)C、x-yD、3a+b【答案】:【解析】:第7题【填空题】(﹣2)^2014+(﹣2)^2015=______.A、﹣2^2014<\/sup>【答案】:【解析】:第8题【填空题】因式分解:x﹣x^2=______.【答案】:【解析】:第9题【填空题】因式分解x^3-2x^2y+xy^2=______.【答案】:【解析】:第10题【填空题】多项式3a^2b^2﹣6a^3b^3﹣12a^2b^2c的公因式是______.A、3a^2<\/sup>b^2<\/sup>【答案】:【解析】:第11题【填空题】因式分解:a^3﹣9ab^2=______【答案】:【解析】:第12题【填空题】分解因式:a^2﹣6a=______.【答案】:【解析】:第13题【填空题】分解因式:ax^2+2ax﹣3a=______.【答案】:【解析】:第14题【填空题】分解因式:2a^2+ab=______.A、a(2a+b)【答案】:【解析】:第15题【综合题】用提公因式法分解因式:6m^2n-15n^2m+30m^2n^2;-4x^3+16x^2-26x;x(x+y)+y(x+y).【答案】:【解析】:。

初中人教版数学八年级下册:19.2.1 第2课时 正比例函数的图象和性质 习题课件(含答案)

初中人教版数学八年级下册:19.2.1   第2课时 正比例函数的图象和性质  习题课件(含答案)

把 x=0 代入得 y=-x=0,所以点 B 在图象上.
把 x=3代入得 y=-x=-3,所以点 C 在图象上.
2
2
知识点二 正比例函数的性质 1) B.函数图象经过第二、四象限 C.y 随 x 的增大而增大 D.不论 x 取何值,总有 y>0
-6),B(m,-4)两点,则 m 的值为( A )
A.2
B.8
C.-2
D.-8
5.(1)画出函数 y=-x 的图象; 解:(1)图象如图所示.
(2)判断点 A(-32,32),B(0,0),C(32,-32)是否在函 数 y=-x 的图象上.
(2)把 x=-32代入得 y=-x=32,所以点 A 在图象上.
7.(易错题)(2020·南昌期中)对于正比例函数 y= -2x,当自变量 x 的值增加 1 时,函数 y 的值增加
(A) A.-2 B.2 C.-13 D.13
8.(2020·上海中考)已知正比例函数 y=kx(k 是常数, k≠0)的图象经过第二、四象限,那么 y 的值随着 x 的值增大而 减小 (填“增大”或“减小”).
14.若点 A(m,n)在直线 y=kx(k≠0)上,当-1≤m≤1 时,-1≤n≤1,则这条直线的函数解析式为 y=x
或y=-x .
15.已知正比例函数 y=(2m+4)x.求: (1)m 为何值时,函数图象经过第一、三象限; 解:(1)∵函数图象经过第一、三象限, ∴2m+4>0,解得 m>-2.
17.如图,已知正比例函数 y=kx 的图象经过点 A, 点 A 在第四象限,过 A 作 AH⊥x 轴,垂足为 H,点 A 的横坐标为 4, 且△AOH 的面积为 6. (1)求正比例函数的解析式;
(1)∵点 A 的横坐标为 4,且△AOH 的面积为 6, ∴12×4×AH=6,解得 AH=3. ∴A(4,-3). 把 A(4,-3)代入 y=kx, 得 4k=-3,解得 k=-34. ∴正比例函数的解析式为 y=-34x.

北师大版八年级下册数学课本答案参考

北师大版八年级下册数学课本答案参考

北师大版八年级下册数学课本答案参考第一章:有理数1. 基础知识有理数是整数和分数的统称,它包括正数、负数和零。

有理数的加、减、乘、除运算规则和整数的运算规则相同。

2. 课后练习答案1) 解方程2x - 1 = 7得 x = 4。

2) 有理数的加法运算:(-3) + (-5) = -8。

3) 约分分数$\frac{8}{12}$得到$\frac{2}{3}$。

4) 相反数的性质:若$a$是有理数,那么$-(-a) = a$。

5) 解方程$\frac{1}{3}x - \frac{1}{2} = \frac{1}{4}$,得到$x =\frac{2}{3}$。

6) 有理数的乘法运算:$(-\frac{3}{4}) \times (\frac{8}{9}) = -\frac{2}{3}$。

7) 加法交换律:若$a$和$b$是有理数,则$a + b = b + a$。

8) 解方程$\frac{2}{3}x + \frac{1}{4} = -\frac{3}{4}$,得到$x = -\frac{5}{2}$。

9) 解方程$-0.4x - 0.1 = -0.3$,得到$x = 1$。

10) 解方程$2x - 3 = -5x + 2$,得到$x = \frac{5}{7}$。

第二章:代数式与变量1. 基础知识代数式是由常数、变量和运算符号组成的表达式,例如$x + y$就是一个代数式。

变量是代表数的符号,可以代表不同的数值。

在代数式中,变量参与运算,可以得到具体的数值。

2. 课后练习答案1) 代数式$3x^2 - 2x + 5y$的系数是3、-2、5。

2) 代数式$7x - 3y$的和是$8x - y$。

3) 代数式$(3a + 4b)(2a - 5b)$展开后为$6a^2 - 7ab - 20b^2$。

4) 代数式$2x^2 + 3xy - 4y^2$的最高次项是$2x^2$。

5) 代数式$6a - (2b - 3a)$化简得$9a - 2b$。

人教版初中八年级数学下册第十九章《一次函数》经典习题(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》经典习题(含答案解析)

一、选择题1.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300km B .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km4.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-5.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .36.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C.D.7.如图,在四边形ABCD中,AD∥BC,∠B=60°,∠D=90°,AB=4,AD=2,点P从点B出发,沿B→A→D→C的路线运动到点C,过点P作PQ⊥BC,垂足为Q.若点P运动的路程为x,△BPQ的面积为y,则表示y与x之间的函数关系图象大致是()A.B.C.D.8.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:蟋蟀每分钟鸣叫的次数温度/°F1447615278160801688217684)A.178 B.184 C.192 D.2009.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A .①②③B .①②④C .③④D .①③④ 10.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .12.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在13.关于函数(3)y k x k =-+,给出下列结论: ①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-; ③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<. 其中正确结论的序号是( ) A .①②③B .①③④C .②③④D .①②③④14.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-15.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个二、填空题16.已知关于x ,y 的二元一次方程组1,mx y y nx -=⎧⎨=⎩的解是1,2x y =⎧⎨=⎩则直线1y mx =-与直线y nx =的交点坐标是______;17.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 18.函数1y x =-中自变量x 的取值范围是________.19.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.20.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________.21.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.22.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 23.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.24.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.25.已知一个一次函数的图象过点(1,2)-,且y 随x 的增大而减小,则这个一次函数的解析式为__________.(只要写出一个)26.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题27.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.28.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值.(2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.29.已知一次函数y kx b =+的图象经过点(1,2)和(1,6)-. (1)求这个一次函数的表达式.(2)若这个一次函数的图象与x 轴交于A ,与y 轴交于点B ,求ABOS的值.30.某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?x≥时,求y与x之间的函数关系式;(2)当20(3)种植时间为多少天时,总用水量达到3500米3.。

宾川县实验中学八年级数学下册第十九章平面直角坐标系19.3坐标与图形的位置课后练习新版冀教版3

宾川县实验中学八年级数学下册第十九章平面直角坐标系19.3坐标与图形的位置课后练习新版冀教版3

坐标与图形的位置1.方格纸上有A ,B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(-4,3);若以A 点为原点建立直角坐标系,则B 点坐标为( C )A .(-4,-3)B .(-4,3)C .(4,-3)D .(4,3) 解析:画出图来易得.故选C.2.如图,在△ABC 中,A (0,4),C (3,0),且△ABC 面积为10,则B 点坐标为(-2,0). 解析:S △ABC =12BC ·4=10,解得BC =5,∴OB =5-3=2, ∴点B 的坐标为(-2,0).3.如图,等边三角形ABC ,B 点在坐标原点,C 点坐标为(4,0),A 点的坐标为(2,23).解析:如图所示,过点A 作AD ⊥BC , ∵△ABC 为等边三角形,∴BD =CD =2,OA =4.根据勾股定理,得AD =23,∴点A 的坐标为(2,23).4.如图,草房地基AB 长15米,房檐CD 的长为20米,门EF 宽6米,CD 到地面的距离为18米,请你建立适当的坐标系,并写出A,B,C,D,E,F各点的坐标.解:草房所在的平面图是轴对称图形,如图,以直线AB为x轴,以线段AB的中垂线为y轴,建立坐标系.∵AB长15米,且在x轴上,A点在负轴上,B点在正轴上,故得出A(-7.5,0),B(7.5,0),E(-3,0),F(3,0),C(-10,18),D(10,18).5.在如图所示的网格中,每个小正方形的边长都为1.(1)试作出直角坐标系,使点A的坐标为(2,-1);(2)在(1)中建立的直角坐标系中描出点B(3,4),C(0,1),并求△ABC的面积.解:(1)作出直角坐标系如图所示.(2)如图所示.S △ABC =3×5-12×3×3-12×2×2-12×5×1=6.6.如图所示,已知等边三角形ABC 两个顶点的坐标为A (-4,0),B (2,0). (1)求点C 的坐标; (2)求△ABC 的面积.解:(1)如图,作CD ⊥AB 于点D ,则AD =12AB =3,所以点D 的坐标为(-1,0),所以CD=AC 2-AD 2=33,所以点C 的坐标为(-1,33).(2)S △ABC =12AB ·CD =12×6×33=9 3.7.在棋盘中建立如图①所示的直角坐标系,三颗棋子A,O,B的位置如图①,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图②,添加棋子C,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可).解:(1)如图所示,直线l即为该图形的对称轴.(2)P(2,1)或(-1,-1)(答案不唯一).1.2分式的乘法和除法第1课时分式的乘除法【知识与技能】理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.【过程与方法】经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.【情感态度】通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.期末模拟卷(3)一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)3.(3分)要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数4.(3分)对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限5.(3分)下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,26.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形7.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.(3分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若n边形的每个内角都是150°,则n=.10.(3分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为cm.11.(3分)已知点A(a,b),B(4,3)关于y轴对称,则a+b=.12.(3分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为.13.(3分)如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=.14.(3分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.15.(3分)矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=°.16.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是cm.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.(6分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.(6分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.19.(6分)已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.20.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.(8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B0.5<t≤1 20C1<t≤1.5 aD 1.5<t≤2 30E t>2 10请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?23.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x (时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?24.(10分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)55 36售价(元/箱)63 4225.(10分)将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.26.(12分)已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.期末模拟卷(3)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.2.(3分)点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)【解答】解:∵点C在x轴上方,y轴左侧,∴点C的纵坐标大于0,横坐标小于0,点C在第二象限;∵点距离x轴2个单位长度,距离y轴3个单位长度,所以点的横坐标是﹣3,纵坐标是2,故选:C.3.(3分)要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数【解答】解:频数分布直方图是用来显示样本在某一范围所占的比例大小,故选:D.4.(3分)对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限【解答】解:A、∵函数y=﹣2x是正比例函数,∴此函数的图象是一条直线,故本选项正确;B、∵当x=﹣1时,y=2,∴过点(﹣1,2),故本选项正确;C、∵k=﹣2<0,∴y随着x增大而减小,故本选项错误;D、∵k=﹣2<0,∴函数图象经过二四象限,故本选项正确.故选:C.5.(3分)下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,2【解答】解:A、52+42≠62,不能作为直角三角形的三边长,故本选项不符合题意.B、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意.C、12+12=()2,能作为直角三角形的三边长,故本选项符合题意.D、12+22≠22,不能作为直角三角形的三边长,故本选项不符合题意.故选:C.6.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选:D.7.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.8.(3分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:∵四边形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正确;∵BO=DO,∴S△ABO=S△ADO,故②正确;当∠ABD=45°时,则∠AOD=90°,∴AC⊥BD,∴矩形ABCD变成正方形,故⑤正确,而④不一定正确,矩形的对角线只是相等,∴正确结论的个数是4个.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若n边形的每个内角都是150°,则n=12 .【解答】解:依题意得,(n﹣2)×180°=n×150°,解得n=12故答案为:1210.(3分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为12 cm.【解答】解:∵直角三角形斜边上的中线长为6cm,∴这个直角三角形的斜边长为12cm.11.(3分)已知点A(a,b),B(4,3)关于y轴对称,则a+b=﹣1 .【解答】解:∵点A(a,b),B(4,3)关于y轴对称,∴a=﹣4,b=3,∴a+b=﹣4+3=﹣1.故答案为:﹣1.12.(3分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为y=3x﹣4 .【解答】解:将正比例函数y=3x的图象向下平移4个单位长度,所得的函数解析式为y=3x﹣4.故答案为y=3x﹣4.13.(3分)如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC= 3 .【解答】解:∵AC平分∠BAD∴∠1=∠BAC∴AB∥DC又∵AB=DC∴四边形ABCD是平行四边形∴BC=AD又∵∠1=∠2∴AD=DC=3∴BC=3.14.(3分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12 米.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.15.(3分)矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=120 °.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵AC=2AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=180°﹣60°=120°;故答案为:120°.16.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是10 cm.【解答】解:CD=DE∵AC=BC∴∠B=45°∴DE=BE∵△DEB的周长=DB+DE+BE=AC+BE=AB=10.故填10.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.(6分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).【解答】解:根据题意得:∠ABC=90°,则AB===450(米),即该河的宽度为450米.18.(6分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.【解答】解:(1)如图,A1(3,4),B1(0,2);(2)以A,B,A1,B1为顶点的四边形为平行四边形,理由如下:∵△OAB绕O点旋转180°得到△OA1B1,∴点A与点A1关于原点对称,点B与点B1关于原点对称,∴OA=OA1,OB=OB1,∴四边形ABA1B1为平行四边形.19.(6分)已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.【解答】解:依题意可以设该一次函数解析式为y=kx+4(k≠0).把(﹣1,2)代入得到:2=﹣k+4,解得k=2,所以该函数解析式为:y=2x+4.其函数图象如图所示:.20.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.【解答】证明:∵平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD.∵BE、DF分别是∠ABC、∠ADC的平分线,∴∠BEC=∠ABE+∠BAE=∠FDC+∠FCD=∠DFA,在△BEC与△DFA中,∵∴△BEC≌△DFA(AAS),∴AF=CE,∴AE=CF.21.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解答】解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,在Rt△ADE和Rt△BEC中,,∴Rt△ADE≌Rt△BEC(HL);(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.22.(8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B0.5<t≤1 20C1<t≤1.5 aD 1.5<t≤2 30E t>2 10请根据图表信息解答下列问题:(1)a=35 ;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?【解答】解:(1)a=100﹣5﹣20﹣30﹣10=35,故答案为:35;(2)条形统计图如下:(3)∵100÷2=50,25<50<60,∴第50个和51个数据都落在C类别1<t≤1.5的范围内,即小王每天进行体育锻炼的时间在1<t≤1.5范围内;(4)被抽查学生的达标率=×100%=75%.23.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x (时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【解答】解:(1)设线段DE所在直线对应的函数关系式为y=kx+b.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5;(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.∴当甲队清理完路面时,乙队铺设完的路面长为87.5米,∴乙队还有160﹣87.5=72.5米的路面没有铺设完,答:当甲队清理完路面时,乙队还有72.5米的路面没有铺设完.24.(10分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)55 36售价(元/箱)63 42【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(63﹣55)x+(42﹣36)(50﹣x)=2x+300;(3)由题意,得55x+36(50﹣x)≤2000,解得x≤10,∵w=2x+300,y随x的增大而增大,∴当x=10时,y最大值=2×10+300=320元,此时购进B品牌的饮料50﹣10=40箱,∴该商场购进A、B两种品牌的饮料分别为10箱、40箱时,能获得最大利润320元.25.(10分)将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.【解答】证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC==4,∴OA=AC=2,在Rt△AOE中,AE=5,OE==,∴EF=2OE=2.26.(12分)已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.【解答】解:(1)如图所示:∵点P(x,y)在直线x+y=8上,∴y=8﹣x,∵点A的坐标为(6,0),∴S=3(8﹣x)=24﹣3x,(0<x<8);(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,由8k+b=8,6k+b=0,解得k=4,b=﹣24,故直线AB的解析式为y=4x﹣24,由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,点M的坐标为(6.4,1.6).。

八年级数学下册二次根式(全章)习题及答案(含答案)

八年级数学下册二次根式(全章)习题及答案(含答案)

二次根式16.1 二次根式:1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. 若1a b -+互为相反数,则()2005_____________a b -=。

13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()2311223224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。

22. 当a取什么值时,代数式1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。

16.2 二次根式的乘除1. 当0a ≤,0b__________=。

数学八年级下册课本习题答案

数学八年级下册课本习题答案

数学八年级下册课本习题答案【篇一:最新人教版初二数学下学期课后习题与答案】a是怎样的实数时,下列各式在实数范围内有意义?(1(2(3;(4.解析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得a≥?12.2、计算:(1)2;(2)(2;(3)2;(4)2;(5(6)(?2;(7(8)解析:(1)2?5;(2)(2?(?1)2?2?0.2;(3)2?2;(4)2?52?27?125;(5??10;(6)(?2?(?7)2?2?14;(7??23;(8)???25.3、用代数式表示:(1)面积为s的圆的半径;(2)面积为s且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r(r0),由?r2?s,得r?;,得x?,所以两条邻边长为 4、利用a?2(a≥0),把下列非负数分别写成一个非负数的平方的形式:(1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)12?2;(6)0=02. 5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:?r2???22???32,??r2?13?,?r?0,?r.6、△abc的面积为12,ab边上的高是ab边长的4倍.求ab的长.7、当x是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4.答案:(1)x为任意实数;(2)x为任意实数;(3)x>0;(4)x>-1.8、小球从离地面为h(单位:m)的高处自由下落,落到地面所用的时间为t(单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2.试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t29、(1n所有可能的值;1 / 33(2n的最小值.答案:(1)2,9,14,17,18;(2)6.为整数的最小的正整数n是6.10、一个圆柱体的高为10,体积为v.求它的底面半径r(用含v 的代数式表示),(1);(2(3;(4(5;(6.2答案:(1(2(3(4(5)(6).答案:r?习题16.21、计算:(1(2(;(3(4.答案:(1)(2)?(3)(4) 2、计算:(1(2;(3(4.答案:(1)32;(2)(3(43、化简:(1(2)(3(4答案:(1)14;(2)(3)37;(4. 4、化简:5(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)?5?(26、设长方形的面积为s,相邻两边分别为a,b.(1)已知a?b?s;(2)已知a?b?,求s.答案:(1);(2)240;7、设正方形的面积为s,边长为a.(1)已知s=50,求a;(2)已知s=242,求a.答案:(1)(2) 8、计算:(1;(2(3;(4答案:(1)1.2;(2)312;(3)3;(4)15.9?1.4140.707,2.828. 10、设长方形的面积为s,相邻两边长分别为a,b .已知s?a?b.2 / 3311、已知长方体的体积v?h?s.12、如图,从一个大正方形中裁去面积为15cm2和24cm2下部分的面积.答案:2.13、用计算器计算:(1(2(3;(4观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:?________. 答案:(1)10;(2)100;(3)1000;(4)10000..100??????0 n个0习题16.31、下列计算是否正确?为什么?(1? (2)2? (3)?3;(4??3?2?1.答案:(1(2)不正确,2(3)不正确,? (4?2?2. 2、计算:(1)(2;(3 (4)a3 答案:(1)(2(3);(4)17a 3、计算:(1(2(3)?;(4)132?4.答案:(1)0;(2(3)(4)?4 4、计算:(1)(2);(3)2;(4)答案:(1)6?(2)-6;(3)95?;(4)43?12.5?2.236,求.答案:7.83.6、已知x1,y1,求下列各式的值:(1)x2+2xy+y2;(2)x2-y2.答案:(1)12;(2)3 / 33. 8、已知a?1a?a?1a的值.答案:9(1)2x2-6=0,;(2)2(x+5)2=24,(5???5??5?.答案:(1)(2)?5.复习题161、当x是怎样的实数时,下列各式在实数范围内有意义?(1 (2;(3;(4 答案:(1)x≥-3;(2)x?12;(3)x?23;(4)x≠1. 2、化简:(1 (2 (3 (4 5 (6(答案:(1)(2);(33;(4(5)(63、计算:(1)?;(2)(3);(4)(5)2;(6)2.答案:(1(2;(3)6;(4)?2;(5)35?;(6)5?2.4、正方形的边长为a cm,它的面积与长为96cm,宽为12cm的长方形的面积相等.求a的值.答案:25、已知x?1,求代数式x2+5x-6的值.答案:5.答案:2.45a.8、已知n是正整数,n的最小值.答案:21.9、(1)把一个圆心为点o,半径为r的圆的面积四等分.请你尽可能多地设想各种分割方法.(2)如图,以点o为圆心的三个同心圆把以oa为半径的大圆o的面积四等分.求这三个圆的半径ob,oc,od的长.答案:(1)例如,相互垂直的直径将圆的面积四等分;4 / 33(2)设oa=r,则od?12r,oc?2r,ob?.10、判断下列各式是否成立:??? 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明.答案:规律是:?n?nn2?1?n3n2?1,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a和b,斜边长为c.(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.答案:(1)13;(2(32、一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高ao=2.4,底面半径ob=0.7.ab的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).答案:43.4mm.5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点a到电线杆底部b的距离(结果保留小数点后一位).答案:4.9m.6 答案:略.答案:(1)bc?12c,ac?;(2)bc?2,ac?2.(1)△abc的面积;(2)斜边ab;(3)高cd.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).5 / 33【篇二:新人教版八年级下册数学教案(包括每节课后练习及答案)】1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写p4[思考],学生自己依次填出:10,s,200,v.7a33s2.学生看p3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.20?v20?v20?v20?v20?v20?v轮船顺流航行100千米所用的时间为100小时,逆流航行60千米所用时间60小时,所以100=60. 3. 以上的式子100,60,s,v,有什么共同点?它们与分数有什么相同点和不同点? as五、例题讲解p5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0? 2(1m?1(2)m?1m?3的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2(3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4,8y?3,1 xx?9205y22. 当x取何值时,下列分式有意义?(1)(2)(3)x2?43?2xx?23. 当x为何值时,分式的值为0?七、课后练习 3x?5mm?2m?11分母不能为零;○2分子为零,这样求出的m的解集中[分析] 分式的值为0时,必须同时满足两个条件:○..2x?5x2?1x?77x(1)(2)x2?x5x21?3x1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 .x?12.当x取何值时,分式无意义? 3x?2x?1的值为0? 3. 当x为何值时,分式x2?x八、答案:六、1.整式:9x+4,9?y, m?4 分式: 7 , 8y?3,1 xx?9520y23.(1)x=-7 (2)x=0(3)x=-180七、1.1s,x?y; 整式:8x, a+b, x?y; xa?b44分式:80, s a?bx2. 3. x=-1 3课后反思: 2316.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变. “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入15313与9与相等吗?为什么?4202482.说出与之间变形的过程,并说出变形依据? 4与202483.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解p7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.p11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.p11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.?6b, ?x, 2m??n?5a3y, ??7m, ??3x。

初中人教版数学八年级下册:19.1.1 第2课时 函 数 习题课件(含答案)

初中人教版数学八年级下册:19.1.1   第2课时 函 数  习题课件(含答案)

(2)求距地面 3 km 处的气温 T; (3)求气温为-6 ℃处距地面的高度 h. (2)当 h=3 时,T=24-6×3=6(℃). 答:距地面 3 km 处的气温 T 为 6 ℃. (3)当 T=-6 时,-6=24-6h,解得 h=5. 答:气温为-6 ℃处距地面的高度 h 为 5 km.
方法点拨:在实际问题中,要注意自变量的 取值要符合实际意义.
1.下列几个式子,其中 y 是 x 的函数的是( A )
A.y=2x
B.y2=2x
C.y=±2x D.|y|=2x
2.在函数关系式 y=1x2-1 中,当自变量 x=2-1 C.1 D.2
知识要点 1 函数的概念 函数:在一个变化过程中,有两个变量 x,y,
对于 x 的每一个确定的值,y 都有 唯一 确定的值 与它对应.x 是 自变量 ,y 是 x 的 函数 .
函数值:如果当 x=a 时,y=b,那么 b 叫做当自变 量的值为 a 时的 函数值 . 解题策略:判断变量 y 是否为变量 x 的函数,要抓 住三个特点:①在同一变化过程中;②有两个变量; ③本质上是一种对应关系,给定一个 x 的值,确定 唯一一个 y 的值;而对应 y 的一个值,自变量 x 的 取值不一定只有一个.
例 水箱内原有水 200 升,7:30 打开水龙头,以 2 升/分的速度放水,设经过 t 分钟时,水箱内存水 y 升. (1)求 y 关于 t 的函数关系式和自变量的取值范围; (2)7:55 时,水箱内还有多少水? (3)几点几分水箱内的水恰好放完?
分析:(1)根据水箱内还有的水等于原有水减去放 掉的水列式整理即可,再根据剩余水量不小于 0 列 不等式求出 t 的取值范围;(2)当 7:55 时,55- 30=25(分钟),将 t=25 代入(1)中的关系式即 可;(3)令 y=0,求出 t 的值即可.

人教版初中八年级数学下册第十九章《一次函数》习题(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》习题(含答案解析)

一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时;③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t =或4.5.A .1B .2C .3D .4B解析:B【分析】 观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题.【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩=8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t ,即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确;④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t ,当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确, 综上所述,正确的有①②,共2个,故选:B .【点睛】 本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.2.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =D解析:D【分析】 本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A 、B 、C 都可证正确,选项D ,面积为8时,对应x 值不为10,所以错误.【详解】解:由图2可知,长方形MNPQ 的边长,MN=9-4=5,NP=4,故选项A 正确;选项B ,长方形周长为2×(4+5)=18,正确;选项C ,x=6时,点R 在QP 上,△MNR 的面积y=12×5×4=10,正确; 选项D ,y=8时,即1852x =⨯,解得 3.2x =, 或()185132x =⨯-,解得9.8x =, 所以,当y=8时,x=3.2或9.8,故选项D 错误;故选:D .【点睛】本题考查了动点问题分类讨论,对运动中的点R 的三种位置都设置了问题,是一道很好的动点问题,读懂函数图象是解题关键.3.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得: 227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.4.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 5.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m >C .m 1≥D .1m <A 解析:A【分析】 由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解: ∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y 1>y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12, 故选:A .【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)C解析:C【分析】 先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB =22AO BO +=5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32, 故点C (0,32), 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.8.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D .D 解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.9.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-B解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④D解析:D【分析】 当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.二、填空题11.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____. (15)或(-17)【分析】利用待定系数法求出直线AC 的解析式得到OCOB 的长设M 的坐标为用OC 作底用含m 的式子表示和的面积利用已知条件求得m 的值即可得到M 的坐标【详解】设直线AC 的解析式为:解得:解析:(1,5)或(-1,7)【分析】利用待定系数法求出直线AC 的解析式,得到OC 、OB 的长.设M 的坐标为(),6m m -+,用OC 作底,用含m 的式子表示OMC 和OAC 的面积,利用已知条件14OMC OAC S S =△△求得m 的值,即可得到M 的坐标.【详解】设直线AC 的解析式为:y kx b =+()()064,2C A ,,642b k b =⎧∴⎨+=⎩,解得:16k b =-⎧⎨=⎩∴直线AC 的解析式为:6y x =-+∴B 点的坐标为:()6,0M 在直线AC 上∴设M 点坐标(),6m m -+在OMC 中,OC=6,M 到OC 的距离1h m = ∴1116322OMC S OC h m m =⋅⋅=⨯⋅= 在OAC 中,OC=6,A 到OC 的距离24h = ∴211641222OAC S OC h =⋅⋅=⨯⨯= 14OMC OAC S S =13124m ∴=⨯ 1m =11m =或21m =-M ∴的坐标为(1,5)或(-1,7).故答案为:(1,5)或(-1,7).【点睛】本题考查了待定系数法求一次函数解析式及三角形的面积求法.利用待定系数法求解一次函数解析式:①设出一次函数解析式的一般形式;②把已知条件代入解析式,得到关于待定系数的方程组;③解方程组,求出待定系数的值,代入解析式得到一次函数解析式. 12.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当1n =时,直线1:21l y x =-+与x 轴和y 轴分别交于点1A 和1B ,设11AOB (其中0是平面直角坐标系的原点)的面积为1S ;当2n =时,直线2l :3122y x =-+与x 轴和y 轴分别交于点2A 和2B ,设22A OB 的面积为2S ;……依此类推,直线n l 与x 轴和y 轴分别交于点n A 和n B ,设n n A OB 的面积为n S .则1S =________,123n S S S S +++⋅⋅⋅+=________.【分析】首先求得S1S2Sn 的值然后由规律:×=−求解即可求得答案【详解】当n =1时直线l1:y =−2x +1与x 轴和y 轴分别交于点A1和B1则A1(0)B1(01)∴S1=××1=∵当n =2时直线l 解析:1422n n + 【分析】 首先求得S 1,S 2,S n 的值,然后由规律:11n +×1n =1n −11n +求解即可求得答案. 【详解】当n =1时,直线l 1:y =−2x +1与x 轴和y 轴分别交于点A 1和B 1,则A 1(12,0),B 1(0,1), ∴S 1=12×12×1=14, ∵当n =2时,直线l 2:y =−32x +12与x 轴和y 轴分别交于点A 2和B 2, 则A 2(13,0),B 2(0,12), ∴S 2=12×13×12, ∴直线l n 与x 轴和y 轴分别交于点A n 和B n ,△A n OB n 的面积为S n =12×11n +×1n , ∴S 1+S 2+S 3+…+S n =12×12×1+12×13×12+…+12×11n +×1n =12×(1−12+12−13+…+1n −11n +) =12×(1−11n +) =22n n +. 故答案为:14,22n n +. 【点睛】此题考查了一次函数的应用.解题的关键是找到规律:△A n OB n 的面积为S n =12×11n +×1n 与11n +×1n =1n −11n +. 13.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A 解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°, ∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3),设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253. 故答案为:y=-23x+253. 【点睛】本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键.14.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.【分析】根据一次函数y=(m-2)x+m -3的图象经过第一二四象限可得函数表达式中一次项系数小于0常数项大于0进而得到关于m 的不等式组解不等式组即可得答案取值范围【详解】∵一次函数的图像经过第一二四 解析:12m <<【分析】根据一次函数y=(m-2)x+m -3的图象经过第一、二、四象限,可得函数表达式中一次项系数小于0,常数项大于0,进而得到关于m 的不等式组,解不等式组即可得答案取值范围.【详解】∵一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,∴2010m m -<⎧⎨->⎩, 解得:1<m <2,故答案为:1<m <2【点睛】本题考查了一次函数y=kx+b (k≠0)的图象与系数的关系:对于一次函数y=kx+b (k≠0),k >0,b >0时,图象在一、二、三象限;k >0,b <0时,图象在一、三、四象限;k <0,b >0时,图象在一、二、四象限;k <0,b <0时,图象在二、三、四象限;熟练掌握一次函数的性质是解题关键.15.如图所示的平面直角坐标系中,点A 坐标为(2,2),点B 坐标为(﹣1,1),在x 轴上有点P ,使得AP+BP 最小,则点P 的坐标为_____.(00)【分析】先作点B 关于x 轴的对称点C 再连接AC求出AC 的函数解析式再把y=0代入即可【详解】解:如图作点B 关于x 轴的对称点C 再连接AC 点B 坐标为(﹣11)点B 关于x 轴的对称点C 的坐标为(-1- 解析:(0,0)【分析】先作点B 关于x 轴的对称点C ,再连接AC ,求出AC 的函数解析式,再把y=0代入即可.【详解】解:如图,作点B 关于x 轴的对称点C ,再连接AC ,点B 坐标为(﹣1,1),∴点B 关于x 轴的对称点C 的坐标为(-1,-1),在x 轴上有点P ,∴线段BP 和CP 关于x 轴对称,∴BP=CP ,∴AP+BP= CP+AP ,当AP+BP 取最小值时,最小值即为线段AC 的长,点A 坐标为(2,2),设直线AC 的方程为:y=kx+b ,∴代入A 、C 的坐标,221k b k b +=⎧⎨-+=-⎩,解得10k b =⎧⎨=⎩, ∴AC l y x =:,点P 的纵坐标为0,代入y=0,∴x=0,∴点P 的坐标为(0,0),故答案为:(0,0).【点睛】此题主要考查最短路线问题,综合运用了一次函数的知识,熟练掌握最短路线问题的求解方法是解题的关键.16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.【分析】根据中点坐标公式求得C 点坐标作点A关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键. 18.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元解析:43【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知, 当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43. 【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键. 19.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k,再求出b,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b,∵y=2x+b的图象经过A(4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为480m?解析:(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min) 612-=答:小慧返回家中的速度比去文具店的速度快80m/min (2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.22.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.23.如图,已知直线113y x =-+与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90BAC ∠=︒.(1)A 点坐标为________,B 点坐标为________;(2)求直线BC 的解析式;(3)点P 为直线BC 上一个动点,当S 3S AOP AOB =时,求点P 坐标.解析:(1)(3,0);(0,1).(2)直线BC 的解析式为y=12x+1.(3)点P 的坐标为(4,3)或(-8,-3).【分析】 (1)分别代入y=0,x=0,求出与之对应的x ,y 的值,进而可得出点A ,B 的坐标; (2)过点C 作CE ⊥x 轴于点E ,易证△ABO ≌△CAE ,利用全等三角形的性质可得出点C 的坐标,根据点B ,C 的坐标,利用待定系数法即可求出直线BC 的解析式; (3)利用三角形的面积公式结合S △AOP =3S △AOB ,即可求出点P 的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P 坐标.【详解】解:(1)当y=0时,-13x+1=0, 解得:x=3,∴点A 的坐标为(3,0);当x=0时,y=-13x+1=1, ∴点B 的坐标为(0,1).故答案为:(3,0);(0,1).(2)过点C 作CE ⊥x 轴于点E ,如图所示.∵△ABC 为等腰直角三角形,∴AB=AC ,∠BAC=90°.∵∠OBA+∠OAB=90°,∠OAB+∠BAC+∠EAC=180°,∴∠OBA=∠EAC .在△ABO 和△CAE 中,90AOB CEA OBA EACAB CA ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ABO ≌△CAE (AAS ),∴AE=BO=1,CE=AO=3,∴OE=OA+AE=4,∴点C 的坐标为(4,3).设直线BC 的解析式为y=kx+b (k≠0),将B (0,1),C (4,3)代入y=kx+b ,得:143b k b ⎧⎨+⎩==, 解得:121k b ⎧⎪⎨⎪⎩==,∴直线BC 的解析式为y=12x+1. (3)∵S △AOP =3S △AOB ,即12OA•|y P |=3×12OA•OB , ∴12×3|y P |=3×12×3×1, ∴y P =±3. 当y=3时,12x+1=3, 解得:x=4,∴点P 坐标为(4,3);当y=-3时,12x+1=-3, 解得:x=-8,∴点P 的坐标为(-8,-3).∴当S △AOP =3S △AOB 时,点P 的坐标为(4,3)或(-8,-3).【点睛】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用全等三角形的性质,求出点C 的坐标;(3)利用三角形的面积结合S △AOP =3S △AOB ,求出点P 的纵坐标.24.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.解析:(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+,2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?解析:(1)兔子;乌龟;1500;(2)14分钟;(3)28.5分钟【分析】(1)利用乌龟始终运动,中间没有停留,进而得出折线 OABC 和线段OD 的意义和全程的距离;(2)根据乌龟的速度及兔子睡觉时的路程即可得;(4)用乌龟跑完全程的时间+兔子晚到的时间−兔子在路上奔跑的两端所用时间可得.【详解】()1龟兔赛跑中,兔子在途中睡了一觉,通过图像发现AB 段S 没有发生变化,∴折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OO 则表示赛跑过程中乌龟的路程与时间的关系,赛跑的全程是1500米.()150025030V ==龟米/分钟, 50700,t ⨯=14t =.答:乌龟用了14分钟追上了正在睡觉的兔子.()83,48t v =千米/时800=米/分钟, 150********t -==分钟, 300.5129.5+-=分钟,29.5128.5-=分钟, 答:兔子中间停下睡觉用了28.5分钟.【点睛】 本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.26.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围. 解析:(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,。

人教版八年级数学下册二次根式习题及答案

人教版八年级数学下册二次根式习题及答案

人教版八年级数学下册二次根式(全章)习题及答案(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次根式二次根式:1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. 若1a b -+互为相反数,则()2005_____________a b -=。

13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( ) A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=成立的x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。

22. 当a取什么值时,代数式1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。

华师版八下数学课本习题答案

华师版八下数学课本习题答案

华师版八下数学课本习题答案华师版八年级下册数学课本习题答案涵盖了多个章节的练习题,以下是部分习题的解答示例:# 第一章:实数习题11. 计算下列各数的绝对值:- |-5| = 5- |0| = 0- |3.14| = 3.142. 判断下列各数是正数、负数还是零:- 5是正数- -2是负数- 0是零习题21. 计算下列各数的相反数:- 相反数为-3的数是3- 相反数为-(-2)的数是22. 根据相反数的定义,判断下列说法是否正确:- 0的相反数是0(正确)- 5的相反数是-5(正确)# 第二章:代数基础习题11. 根据代数式求值:- 当a=2,b=-3时,a-b=52. 化简下列代数式:- 3a + 2b - 5a = -2a + 2b习题21. 解下列方程:- x + 5 = 10,解得x = 5- 2x - 3 = 7,解得x = 5# 第三章:方程与不等式习题11. 解一元一次方程:- 3x + 7 = 22,解得x = 5习题21. 解一元一次不等式:- 2x + 5 > 11,解得x > 3# 第四章:函数习题11. 判断下列函数的自变量的取值范围:- 对于函数y = 3x + 2,自变量x可以取所有实数。

习题21. 根据函数的解析式求函数值:- 当x=1时,y = 3*1 + 2 = 5# 第五章:几何基础习题11. 根据题目给定的几何图形,计算面积或周长:- 例如,一个边长为a的正方形的面积是a²。

习题21. 解决实际问题,应用几何知识:- 例如,计算一个长为l,宽为w的矩形的面积,公式为A = lw。

请注意,以上仅是部分习题的解答示例,并非完整的课本习题答案。

实际课本习题答案应根据具体题目要求进行解答。

如果需要特定章节或习题的详细解答,请提供具体题目信息。

八年级下册数学课本答案人教版答案(28页)

八年级下册数学课本答案人教版答案(28页)

八年级下册数学课本答案人教版答案(28页)第110页:1. 解答:题目:解方程 $2x + 3 = 7$解答思路:将方程两边减去3,得到 $2x = 4$,然后除以2得到 $x = 2$。

题目:解不等式 $3x 5 > 10$解答思路:将不等式两边加上5,得到 $3x > 15$,然后除以3得到 $x > 5$。

题目:求三角形面积,已知底边为6cm,高为8cm。

解答思路:使用三角形面积公式 $A = \frac{1}{2} \times\text{底边} \times \text{高}$,代入数值计算得到 $A = 24\text{cm}^2$。

题目:解比例 $\frac{x}{5} = \frac{10}{2}$解答思路:将比例两边乘以5,得到 $x = 25$。

题目:求正方形的面积,已知边长为7cm。

解答思路:使用正方形面积公式 $A = \text{边长}^2$,代入数值计算得到 $A = 49 \text{cm}^2$。

题目:解方程 $4x 3 = 11$解答思路:将方程两边加上3,得到 $4x = 14$,然后除以4得到 $x = 3.5$。

题目:解不等式 $2x + 7 \leq 15$解答思路:将不等式两边减去7,得到 $2x \leq 8$,然后除以2得到 $x \leq 4$。

题目:求矩形面积,已知长为12cm,宽为6cm。

解答思路:使用矩形面积公式 $A = \text{长} \times\text{宽}$,代入数值计算得到 $A = 72 \text{cm}^2$。

题目:解比例 $\frac{x}{9} = \frac{3}{4}$解答思路:将比例两边乘以9,得到 $x = 27$。

题目:求梯形面积,已知上底为8cm,下底为12cm,高为5cm。

解答思路:使用梯形面积公式 $A = \frac{1}{2} \times(\text{上底} + \text{下底}) \times \text{高}$,代入数值计算得到 $A = 50 \text{cm}^2$。

最新部编人教版初中八年级下册数学课后习题与答案

最新部编人教版初中八年级下册数学课后习题与答案

习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3;(4.解析:(1)由a +2≥0,得a ≥-2;(2)由3-a ≥0,得a ≤3;(3)由5a ≥0,得a ≥0;(4)由2a +1≥0,得12a -≥.2、计算:(1)2;(2)2(;(3)2;(4)2;(5;(6)2(-;(7(8).解析:(1)25=;(2)222((1)0.2=-⨯=;(3)227=;(4)2225125=⨯=;(510==;(6)222((7)14-=-⨯=;(723==;(8)25==-.3、用代数式表示:(1)面积为S 的圆的半径;(2)面积为S 且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r (r>0),由2r S r π==,得;(2)设两条邻边长为2x ,3x (x>0),则有2x ·3x=S ,得x =,所以两条邻边长为.4、利用2(0)a a =≥,把下列非负数分别写成一个非负数的平方的形式:(1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)212=;(6)0=02.5、半径为r cm 的圆的面积是,半径为2cm 和3cm 的两个圆的面积之和.求r 的值.解析:222223,13,0,r r r r πππππ=⨯+⨯∴=>∴=Q .6、△ABC 的面积为12,AB 边上的高是AB 边长的4倍.求AB 的长.7、当x 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4 答案:(1)x 为任意实数;(2)x 为任意实数;(3)x >0;(4)x >-1.8、小球从离地面为h (单位:m )的高处自由下落,落到地面所用的时间为t (单位:s ).经过实验,发现h 与t 2成正比例关系,而且当h=20时,t=2.试用h 表示t ,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t 29、(1n 所有可能的值;(2n 的最小值.答案:(1)2,9,14,17,18;(2)6.因为24n=22×6×n n 是6.10、一个圆柱体的高为10,体积为V .求它的底面半径r (用含V 的代数式表示),并分别求当V=5π,10π和20π时,底面半径r 的大小.答案:2r =习题16.21、计算:(1(2(;(3(4答案:(1)(2)-(3)(4)2、计算:(1(2;(3(4答案:(1)32;(2)(3(43、化简:(1(2(3(4答案:(1)14;(2)(3)37;(4.4、化简:(1)2;(2(3;(4;(5(6.答案:(1;(2)2(3)30;(4)3;(5)(6)5、根据下列条件求代数式2b a-的值; (1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)5-+(2 6、设长方形的面积为S ,相邻两边分别为a ,b .(1)已知a =b =S ;(2)已知a =,b =,求S .答案:(1);(2)240.7、设正方形的面积为S ,边长为a .(1)已知S=50,求a ;(2)已知S=242,求a .答案:(1)(2).8、计算:(1)0.4 3.6⨯;(2)22738⨯;(3)85340⨯;(4)27506⨯÷. 答案:(1)1.2;(2)32;(3)13;(4)15. 9、已知2 1.414≈,求12与8的近似值. 答案:0.707,2.828.10、设长方形的面积为S ,相邻两边长分别为a ,b .已知43,15S a ==,求b .答案:455. 11、已知长方体的体积43V =,高32h =,求它的底面积S .答案:26. 12、如图,从一个大正方形中裁去面积为15cm 2和24cm 2的两个小正方形,求留下部分的面积.答案:210cm .13、用计算器计算:(19919⨯+(29999199⨯+;(39999991999⨯+(49999999919999⨯+.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:________.= 答案:(1)10;(2)100;(3)1000;(4)10000.01000n L 14243个.习题16.31、下列计算是否正确?为什么?(1= (2)2+=(3)3=; (4321==-=.答案:(1不能合并;(2)不正确,2(3)不正确,=(4)不正确,222==.2、计算:(1);(2(3(4)3a .答案:(1)(2(3);(4)17a3、计算:(1(2)755496108-+-; (3)(4518)(8125)+--; (4)13(23)(227)24+-+. 答案:(1)0;(2)63-;(3)852+;(4)27344--.4、计算:(1)(1258)3+;(2)(2332)(2332)+-;(3)2(5325)+;(4)1(486)274+÷. 答案:(1)6106+;(2)-6;(3)952015+;(4)423+.5、已知5 2.236≈,求154545545-+的近似值(结果保留小数点后两位). 答案:7.83.6、已知31,31x y =+=-,求下列各式的值:(1)x 2+2xy +y 2;(2)x 2-y 2.答案:(1)12;(2)43.7、如图,在Rt △ABC 中,∠C=90°,CB=CA=a .求AB 的长..8、已知1a a+=1a a -的值.答案:.9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解:(1)2x 2-6=0,;(2)2(x +5)2=24,(555+--+--.答案:(1)(2)5±-.复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义?(1(2;(3(4答案:(1)x ≥-3;(2)12x >;(3)23x <;(4)x ≠1.2、化简:(1 (2; (3 (4(5 (6答案:(1)(2);(3;(4(5)(63、计算:(1)--;(2)(3);(4)(5)2;(6)2.答案:(1;(2;(3)6;(4)2-;(5)35+;(6)5-. 4、正方形的边长为a cm ,它的面积与长为96cm ,宽为12cm 的长方形的面积相等.求a 的值.答案:5、已知1x =,求代数式x 2+5x -6的值.答案:5.6、已知2x =2(7(2x x ++的值.答案:2+7、电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足Q=I 2Rt .已知导线的电阻为5Ω,1s 时间导线产生30J 的热量,求电流I 的值(结果保留小数点后两位).答案:2.45A .8、已知n n 的最小值.答案:21.9、(1)把一个圆心为点O ,半径为r 的圆的面积四等分.请你尽可能多地设想各种分割方法.(2)如图,以点O 为圆心的三个同心圆把以OA 为半径的大圆O 的面积四等分.求这三个圆的半径OB ,OC ,OD 的长.答案:(1)例如,相互垂直的直径将圆的面积四等分;(2)设OA=r ,则12OD r =,2OC =,3OB =.10、判断下列各式是否成立: 2233442;3;44.33881515=== 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明. 答案:2211n n n n n n +=--32211n n n n n +=--,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a 和b ,斜边长为c .(1)已知a=12,b=5,求c ;(2)已知a=3,c=4,求b ;(3)已知c=10,b=9,求a .答案:(1)13;(27(3192、一木杆在离地面3m 处折断,木杆顶端落在离木杆底端4m 处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高AO=2.4,底面半径OB=0.7.AB的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).答案:43.4mm.5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点A到电线杆底部B的距离(结果保留小数点后一位).答案:4.9m.620的点.答案:略.7、在△ABC中,∠C=90°,AB=c.(1)如果∠A=30°,求BC,AC;(2)如果∠A=45°,求BC,AC.答案:(1)12BC c=,32AC=;(2)22BC c=,22AC=.8、在△ABC中,∠C=90°,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB;(3)高CD.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).答案:82mm.10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2.求斜边AB的长.答案:43 3.12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.13、如图,分别以等腰Rt △ACD 的边AD ,AC ,CD 为直径画半圆.求证:所得两个月形图案AGCE 和DHCF 的面积之和(图中阴影部分)等于Rt △ACD 的面积.答案:2211()228AEC AC S AC ππ==g g 半圆,218CFD S CD π=g 半圆,218ACD S AD π=g 半圆. 因为∠ACD=90°,根据勾股定理得AC 2+CD 2=AD 2,所以 S 半圆AEC +S 半圆CFD =S 半圆ACD ,S 阴影=S △ACD + S 半圆AEC +S 半圆CFD -S 半圆ACD , 即S 阴影=S △ACD .14、如图,△ACB 和△ECD 都是等腰直角三角形,△ACB 的顶点A 在△ECD 的斜边DE 上.求证:AE 2+AD 2=2AC 2.证明:证法1:如图(1),连接BD . ∵△ECD 和△ACB 都为等腰直角三角形, ∴EC=CD ,AC=CB ,∠ECD=∠ACB=90°. ∴∠ECA=∠DCB .∴△ACE≌△DCB.∴AE=DB,∠CDB=∠E=45°.又∠EDC=45°,∴∠ADB=90°.在Rt△ADB中,AD2+DB2=AB2,得AD2+AE2=AC2+CB2,即AE2+AD2=2AC2.证法2:如图(2),作AF⊥EC,AG⊥CD,由条件可知,AG=FC.在Rt△AFC中,根据勾股定理得AF2+FC2=AC2.∴AF2+AG2=AC2.在等腰Rt△AFE和等腰Rt△AGD中,由勾股定理得AF2+FE2=AE2,AG2+GD2=AD2.又AF=FE,AG=GD,∴2AF2=AE2,2AG2=AD2.而2AF2+2AG2=2AC2,∴AE2+AD2=2AC2.习题17.21、判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=7,b=24,c=25;(2)41a=b=4,c=5;(3)54a=,b=1,34c=;(4)a=40,b=50,c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角.不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求AC.答案:13.5、如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.答案:36.6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且14CF CD.求证∠AEF=90°.答案:设AB=4k,则BE=CE=2k,CF=k,DF=3k.∵∠B=90°,∴AE2=(4k)2+(2k)2=20k2.同理,EF2=5k2,AF2=25k2.∴AE2+EF2=AF2.根据勾股定理的逆定理,△AEF为直角三角形.∴∠AEF=90°.7、我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)也是一组勾股数吗?一般地,如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?答案:因为(3k)2+(4k)2=9k2+16k2=25k2=(5k)2,所以3k,4k,5k(k是正整数)为勾股数.如果a,b,c为勾股数,即a2+b2=c2,那么(ak)2+(bk)2=a2k2+b2k2=(a2+b2)k2=c2k2=(ck)2.因此,ak,bk,ck(k是正整数)也是勾股数.复习题171、两人从同一地点同时出发,一人以20 m/min的速度向北直行,一人以30m/min的速度向东直行.10min 后他们相距多远(结果取整数)?答案:361m.2、如图,过圆锥的顶点S和底面圆的圆心O的平面截圆锥得截面△SAB,其中SA=SB,AB是圆锥底面圆O 的直径.已知SA=7cm,AB=4cm,求截面△SAB的面积.65cm.答案:23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).答案:109.7mm.4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽a=3m,高b=1.5m,长d=10m.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).答案:33.5m 2.5、一个三角形三边的比为32,这个三角形是直角三角形吗?答案:设这个三角形三边为k 3k ,2k ,其中k >0.由于2222(3)4(2)k k k k +==,根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗? (1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数; (3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等. 答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立. (3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为31和231,求斜边c 的长. 26.8、如图,在△ABC 中,AB=AC=BC ,高AD=h .求AB .答案:233h .9、如图,每个小正方形的边长都为1. (1)求四边形ABCD 的面积与周长; (2)∠BCD 是直角吗?答案:(1)14.5,351726++; (2)由20BC =,5CD =,BD=5,可得BC 2+CD 2=BD 2.根据勾股定理的逆定理,△BCD 是直角三角形,因此∠BCD 是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a=2m ,b=m 2-1,c=m 2+1,那么a ,b ,c 为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2=(2m )2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2=c 2, 所以a ,b ,c 为勾股数.用m=2,3,4等大于1的整数代入2m ,m 2-1,m 2+1,得4,3,5;6,8,10;8,15,17;等等.12、如图,圆柱的底面半径为6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm ,40cm ,30cm 的长方体木箱中,能放进去吗? 答案:能.14、设直角三角形的两条直角边长及斜边上的高分别为a ,b 及h .求证:222111a b h+=.答案:由直角三角形的面积公式,得221122ab h a b =+a 2b 2=h 2(a 2+b 2),等式两边再同除以a 2b 2c 2,得222111h a b =+,即222111a bh+=.习题18.11、如果四边形ABCD是平行四边形,AB=6,且AB的长是□ABCD周长的316,那么BC的长是多少?答案:10.2、如图,在一束平行光线中插入一张对边平行的纸板.如果光线与纸板右下方所成的∠1是72°15′,那么光线与纸板左上方所成的∠2是多少度?为什么?答案:72°15′,平行四边形的对角相等.3、如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=36,AB=11.求△OCD的周长.答案:29.4、如图,在□ABCD中,点E,F分别在BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.答案:提示:利用AF P CE.5、如图,□ABCD的对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.答案:提示:利用AD=P EF=P BC.7、如图,直线l1∥l2,△ABC与△DBC的面积相等吗?为什么?你还能画出一些与△ABC面积相等的三角形吗?答案:相等.提示:在直线l1上任取一点P,△PBC的面积与△ABC的面积相等(同底等高).8、如图,□OABC的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c).求顶点B的坐标.答案:B(a+b,c).9、如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;(2)已知AD=BC,求证∠A=∠B.答案:提示:过点C作CE∥AD,交AB于点E,可得四边形AECD为平行四边形.10、如图,四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC且交AD于点E,DF∥BE且交BC于点F.求∠1的大小.答案:35°.11、如图,A′B′∥BA,B′C′∥CB,C′A′∥AC,∠ABC与∠B′有什么关系?线段AB′与线段AC′呢?为什么?答案:由四边形ABCB′是平行四边形,可知∠ABC=∠B′,AB′=BC;再由四边形C′BCA是平行四边形,可知C′A=BC.从而AB′=AC′.12、如图,在四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的长和四边形ABCD的面积.答案:因为AD=12,DO=5,利用勾股定理可得AO=13,从而四边形ABCD的对角线互相平分,它是一个平行四边形.所以BC=AD=12,四边形ABCD的面积为120.13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处,并使细木条可以绕点O转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与□ABCD的边AD,BC分别交于点E,F,可以发现OE=OF,AE=CF,DE=BF,△AOE≌△COF,△DOE≌△BOF等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形面积相等?为什么?答案:□AEPH与□PGCF面积相等.利用△ABD与△CDB,△PHD与△DFP,△BEP与△PGB分别全等,从而□AEPH与□PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠2.它是一个矩形吗?为什么?答案:是.利用∠1=∠2,可知BO=CO,从而BD=AC,□ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°,四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ABC中,∠C=90°,AB=2AC.求∠A,∠B的度数.答案:∠A=60°,∠B=30°.5、如图,四边形ABCD是菱形,∠ACD=30°,BD=6.求:(1)∠BAD,∠ABC的度数;(2)AB,AC的长.AC答案:(1)∠BAD=60°,∠ABC=120°;(2)AB=6,36、如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.答案:提示:由∠ABD=∠DBC=∠ADB,可知AB=AD,同理可得AB=BC.从而AD P BC,四边形ABCD 是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕应成多少度的角?答案:45°.8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了.纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点.∠ECD 是多少度?为什么?答案:45°.提示:∠BCD=∠EAC=∠ECA=22.5°.10、如图,四边形ABCD是菱形,点M,N分别在AB,AD上,且BM=DN,MG∥AD,NF∥AB;点F,G分别在BC,CD上,MG与NF相交于点E.求证:四边形AMEN,EFCG都是菱形.答案:提示:四边形AMEN,EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.求DH的长.答案:DH=4.8.提示:由AB·DH=2AO·OD=2S△ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(b,0),(0,d).求点C的坐标.(2)如下图(2),四边形ABCD是菱形,C,D两点的坐标分别是(c,0),(0,d),点A,B在坐标轴上.求A,B两点的坐标.(3)如下图(3),四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,d).求B,C两点的坐标.答案:(1)C (b ,d );(2)A ( -c ,0),B (0,-d ); (3)B (d ,0),C (d ,d ).13、如图,E ,F ,M ,N 分别是正方形ABCD 四条边上的点,且AE=BF=CM=DN .试判断四边形EFMN 是什么图形,并证明你的结论.答案:正方形.提示:△BFE ≌△CMF ≌△DNM ≌△AEN ,证明四边形EFMN 的四条边相等,四个角都是直角.14、如图,将等腰三角形纸片ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.答案:3种.可以分别以AD ,AB (AC ),BD (CD )为四边形的一条对角线,得到3种平行四边形,它们的对角线长分别为h 22224(3)n h n m ++或;m ,m ;n 22224(3)n h h m ++或.15、如图,四边形ABCD 是正方形.G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ∥DE ,且交AG 于点F .求证:AF -BF=EF .答案:提示:由△ADE≌△BAF,可得AE=BF,从而AF-BF=EF.16、如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O.BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答案:BO=2OD,BC边上的中线一定过点O.利用四边形EMND是平行四边形,可知BO=2OD;设BC边上的中线和BD相交于点O′,可知BO′=2O′D,从而O与O′重合.17、如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.答案:分法有无数种.只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题.(1)若平行四边形中两个内角的度数比为1︰2,则其中较小的内角是().A.90°B.60°C.120°D.45°(2)若菱形的周长为8,高为1,则菱形两邻角的度数比为().A.3︰1 B.4︰1 C.5︰1 D.6︰1(3)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB为()A.10°B.15°C.20°D.125°答案:(1)B;(2)C;(3)B.2、如图,将□ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF 是平行四边形.答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个50°的角.对角线与各边组成的角是多少度?答案:65°和25°.4、如图,你能用一根绳子检查一个书架的侧边是否和上、下底都垂直吗?为什么?答案:可以.通过测量对边以及对角线是否分别相等来检验.5、如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD.求证:四边形OCED是菱形.答案:提示:一组邻边相等的平行四边形是菱形.6、如图,E,F,G,H分别是正方形ABCD各边的中点.四边形EFGH是什么四边形?为什么?答案:正方形.提示:证明四边形EFGH四边相等、四个角都是直角.7、如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.求证∠1=∠2.答案:由△ABE≌△CDF,可知BE=DF.又BE∥DF,所以四边形BFDE是平行四边形.所以DE∥BF,从而∠1=∠2.8、如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?答案:由△ABE≌△DAF可知,BE和AF等长,并且互相垂直.9、我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)任意四边形的中点四边形是什么形状?为什么?(2)任意平行四边形的中点四边形是什么形状?为什么?(3)任意矩形、菱形和正方形的中点四边形分别是什么形状?为什么?答案:(1)平行四边形,利用三角形中位线定理可证一组对边平行且相等,或两组对边分别平行;(2)平行四边形;(3)菱形、矩形、正方形.10、如果一个四边形是轴对称图形,并且有两条互相垂直的对称轴,它一定是菱形吗?一定是正方形吗?答案:一定是菱形,不一定是正方形.11、用纸板剪成的两个全等三角形能够拼成什么四边形?要想拼成一个矩形,需要两个什么样的全等三角形?要想拼成菱形或正方形呢?动手剪拼一下,并说明理由.答案:平行四边形;要拼成一个矩形,需要两个全等的直角三角形;要拼成一个菱形,需要两个全等的等腰三角形;要拼成一个正方形,需要两个全等的等腰直角三角形.12、如图,过□ABCD的对角线AC的中点O作两条互相垂直的直线,分别交AB,BC,CD,DA于E,F,G,H四点,连接EF,FG,GH,HE.试判断四边形EFGH的形状,并说明理由.答案:菱形.提示:先证明△AOE≌△COG,△AOH≌△COF,可得OE=OG,OF=OH,所以四边形EFGH 是平行四边形.又EG⊥FH,从而□EFGH是菱形.13、如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm.点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?答案:6s;6s或7s.提示:设经过t s,四边形PQCD成为平行四边形,根据PD=QC,可列方程24-t=3t,解得t=6.若PQ=CD,则四边形PQCD为平行四边形或梯形(腰相等),为平行四边形时有t=6;为梯形(腰相等)时,有QC=PD+2(BC-AD),可列方程3t=24-t+4,解得t=7.14、如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.答案:提示:证明△AGE≌△ECF.15、求证:平行四边形两条对角线的平方和等于四条边的平方和.答案:提示:如图,在□ABCD中,设AD=a,AB=b,BD=m,AC=n,DE=h,AE=x,则分别有h2=a2-x2①,h2=n2-(b+x)2②,h2=m2-(b-x)2③,由①×2=②+③,化简可得m2+n2=2a2+2b2.习题19.11、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.答案:常量0.2,变量x,y,自变量x,函数y,y=0.2x.2、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.答案:常量5,变量h,S,自变量h(h>0),函数S,52hS .3、在计算器上按下面的程序操作:填表:x 1 3 -4 0 101 -5.2y显示的计算结果y是输入数值x的函数吗?为什么?答案:7,11,-3,5,207,-5.4,y是x的函数,符合函数定义.4、下列式子中的y是x的函数吗?为什么?(1)y=3x-5;(2)21xyx-=-;(3)1y x=-.请再举出一些函数的例子.答案:y是x的函数,符合函数定义.例子略.5、分别对上一题中的各函数解析式进行讨论:(1)自变量x在什么范围内取值时函数解析式有意义?(2)当x=5时对应的函数值是多少?答案:(1)y=3x-5,x可为任意实数;21xyx-=-,x≠1;1y x=-,x≥1.(2)y=3x-5,x=5,y=10;21xyx-=-,x=5,34y=;1y x=-,x=5,y=2.6、画出函数y=0.5x的图象,并指出自变量x的取值范围.答案:自变量x的取值范围是全体实数.7、下列各曲线中哪些表示y是x的函数?答案:图(1)(2)(3)中y是x的函数,图(4)中y不是x的函数.8、“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下列哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)答案:图(2).9、下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图象回答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)张强从文具店回家的平均速度是多少?答案:(1)2.5km,15min;(2)1km;(3)20min;(4)3km/min 70.10、某种活期储蓄的月利率是0.06%,存入100元本金.求本息和y(本金与利息的和,单位:元)随所存月数x变化的函数解析式,并计算存期为4个月时的本息和.答案:y=100+0.06x,100.24元.11、正方形边长为3.若边长增加x,则面积增加y.求y随x变化的函数解析式,指出自变量与函数,并以表格形式表示当x等于1,2,3,4时y的值.答案:y=x2+6x,自变量x,函数y,x 1 2 3 4y 7 16 27 4012、甲、乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m处,设x s(0≤x≤100)后两车相距y m.用解析式和图象表示y与x的对应关系.答案:y=500-5x(0≤x≤100).13、甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如下图所示.(1)A,B两城相距多远?(2)哪辆车先出发?哪辆车先到B城?(3)甲、乙两车的平均速度分别为多少?(4)你还能从图中得到哪些信息?答案:(1)300km;(2)甲先出发,乙先到达;(3)甲60km/h,乙100km/h;(4)6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前.14、在同一直角坐标系中分别画出函数y=x与1yx的图象.利用这两个图象回答:(1)x取什么值时,x比1x大?(2)x取什么值时,x比1x小?答案:(1)-1<x<0或x>1;(2)x<-1或0<x<1.15、四边形有两条对角线,五边形、六边形分别有多少条对角线?n边形呢?多边形对角线的条数是边数的函数吗?答案:五边形有5条对角线,六边形有9条对角线,n边形有(3)2n n条对角线,多边形对角线的条数是边数的函数.习题19.21、一列火车以90km/h的速度匀速前进.求它的行驶路程s(单位:km)关于行驶时间t(单位:h)的函数解析式,并画出函数图象.答案:s=90t(t≥0).图象略.2、函数y=-5x的图象在第__________象限内,经过点(0,__________)与点(1,__________),y随x的增大而__________.答案:二,四,0,-5,减小.3、一个弹簧不挂重物时长12 cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1 kg的物体后,弹簧伸长2 cm.求弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式.答案:y=12+2x(0≤x≤m,m是弹簧能承受物体的最大质量).4、分别画出下列函数的图象:(1)y=4x;(2)y=4x+1;(3)y=-4x+1;(4)y=-4x-1.答案:(1)(2)(3)(4)5、在同一直角坐标系中,画出函数y=2x+4与y=-2x+4的图象,并指出每个函数中当x增大时y如何变化.答案:y=2x+4随x增大而增大,y=-2x+4随x增大而减小.6、已知一次函数y=kx+b,当x=2时y的值为4,当x=-2时y的值为-2,求k与b.答案:32k ,b=1.7、已知一次函数的图象经过点(-4,9)和点(6,3),求这个函数的解析式.答案:333 55y x=-+.8、当自变量x取何值时,函数512y x=+与y=5x+17的值相等?这个函数值是多少?答案:325x=-,y=-15.9、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象.(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?答案:(1)S=-3x+24(0<x<8);(2)9;(3)不能大于24,因为0<x<8,所以0<S=-3x+24<24.10、不画图象,仅从函数解析式能否看出直线y=3x+4与y=3x-4具有什么样的位置关系?答案:平行.11、从A地向B地打长途电话,通话时间不超过3min收费2.4元,超过3min后每分加收1元.写出通话费用y(单位:元)关于通话时间x(单位:min)的函数解析式.有10元钱时,打一次电话最多可以通话多长时间?(本题中x取整数,不足1min的通话时间按1min计费.)答案:2.4, 03,0.6, 3.xyx x<⎧=⎨->⎩≤由函数解析式得x=10.6.由不足1min的通话时间要按1min计算可知,有10元钱最多通话10min.。

2019-2020学年度初中数学八年级下册27.3 一元二次方程与实际问题人教五四学制版课后练习五十

2019-2020学年度初中数学八年级下册27.3 一元二次方程与实际问题人教五四学制版课后练习五十

2019-2020学年度初中数学八年级下册27.3 一元二次方程与实际问题人教五四学制版课后练习五十第1题【单选题】某厂一月份的总产量为500吨,三月份的总产量达到为700吨.若平均每月增长率是x,则可以列方程( )A、500(1+2x)=700B、500(1+x^2)=700C、500(1+x)^2=700D、700(1+x^2)=500【答案】:【解析】:第2题【单选题】已知直角三角形的两条边长分别是方程x^2-14x+48=0的两个根,则此三角形的第三边是( )A、6或8B、10或2有误C、10或8D、2有误【答案】:【解析】:第3题【单选题】某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A、560(1+x)^2=315B、560(1-x)^2=315C、560(1-2x)^2=315D、560(1-x^2)=315【答案】:【解析】:第4题【单选题】某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A、19%B、21%C、20%D、22%【答案】:【解析】:第5题【单选题】某学校组织篮球比赛,实行单循环制,共有36场比赛,则参加的队数为( )A、8支B、9支C、10支D、11支【答案】:【解析】:第6题【单选题】某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为( )A、10%B、31%C、13%D、11%【答案】:【解析】:第7题【单选题】某超市一月份的营业额为200万元,三月份的营业额为288万元,若每月比上月增长的百分率相同,则这两个月的营业额增长的百分率是( )A、10%B、15%C、18%D、20%【答案】:【解析】:第8题【单选题】在一次同学聚会上,同学之间每两人都握了一次手,聚会所有人共握手45次,则参加这次聚会的同学共有( )A、11人B、10人C、9人D、8人【答案】:【解析】:第9题【单选题】奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?( )A、4元B、6元C、4元或6元D、5元【答案】:【解析】:第10题【填空题】某校准备组织一次排球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,共有多少个队参加?设有x个队参赛,则所列方程为______【答案】:【解析】:第11题【解答题】如图,用一根长为22cm的铁丝分段围成一个面积为10cm^2的“田”字形的长方形铁丝框.设宽为x,请列出关于x的方程并化成一般形式.【答案】:【解析】:第12题【解答题】(教材变式题)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm^2 ,设金色纸边的宽为xcm,求满足x的方程.【答案】:【解析】:第13题【解答题】某汽车生产企业产量和效益逐年增加.据统计,2009年某种品牌汽车的年产量为6.4万辆,到2011年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2009年开始五年内保持不变,求该品牌汽车年平均增长率和2012年的年产量.【答案】:【解析】:第14题【综合题】如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x米.填空:(用含x的代数式表示)另一边长为______米;列出方程,并求出问题的解.【答案】:【解析】:第15题【综合题】近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.求2009年至2011年该县投入教育经费的年平均增长率;该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.【答案】:无【解析】:。

八下初中数学课后习题答案

八下初中数学课后习题答案

八下初中数学课后习题答案八下初中数学课后习题答案数学是一门需要不断练习和巩固的学科,而课后习题是提高数学能力的重要途径之一。

在初中八年级的数学学习中,课后习题的答案是学生们检查自己学习成果的重要依据。

下面我将为大家提供一些八下初中数学课后习题的答案,希望能对你们的学习有所帮助。

一、整数运算1. 计算下列各题:(1) -7 + (-3) = -10(2) -5 - (-2) = -3(3) -9 × (-4) = 36(4) 28 ÷ (-7) = -42. 求下列各题的值:(1) 12 - 5 × 3 = -3(2) 7 - 2 × (-4) = 15(3) -6 × (-2) + 5 = 17(4) -8 ÷ (-2) + 3 = 7二、平方根与立方根1. 计算下列各题:(1) √16 = 4(2) √25 = 5(3) √36 = 6(4) √49 = 72. 计算下列各题:(1) ∛8 = 2(2) ∛27 = 3(3) ∛64 = 4(4) ∛125 = 5三、比例与比例的应用1. 求下列各题的值:(1) 4:5 = 8:x,x = 10(2) 3:7 = 15:x,x = 35(3) 1:2 = 6:x,x = 12(4) 2:3 = 8:x,x = 122. 求下列各题的值:(1) 5:9 = x:18,x = 10(2) 2:7 = x:14,x = 4(3) 3:5 = x:15,x = 9(4) 4:11 = x:44,x = 16四、图形的认识1. 判断下列各题的说法是否正确:(1) 一个等腰三角形的两个底角相等,正确。

(2) 一个直角三角形的两个锐角相等,正确。

(3) 一个等边三角形的三个角都相等,正确。

(4) 一个梯形的两个底角相等,错误。

2. 判断下列各题的说法是否正确:(1) 一个平行四边形的对边相等,正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档