Université Catholique de Louvain Domains and Their Cartesian Products

合集下载

2011QS世界大学排名 200强

2011QS世界大学排名 200强
78 Washington University in St. Louis 美国 68.5
79 Aarhus University Denmark 68.0
80= Nagoya University 日本 68.0
80= Utrecht University Netherlands 68.0
31 墨尔本大学 The University of Melbourne 澳大利亚 83.6
32 京都大学 Kyoto University 日本 82.9
33 巴黎高等师范学院 école Normale Supérieure, Paris 法国 82.4
34 加州大学洛杉矶分校 University of California, Los Angeles (UCLA) 美国 81.9
41 威斯康星大学麦迪逊分校 University of Wisconsin-Madison 美国 79.0
42 首尔国立大学 Seoul National University 韩国 78.7
43 卡耐基梅隆大学 Carnegie Mellon University 美国 78.5
10 哥伦比亚大学 Columbia University 美国 95.3
11 斯坦福大学 Stanford University 美国 93.4
12 加州理工学院 California Institute of Technology (Caltech) 美国 93.0
13 普林斯顿大学 Princeton University 美国 91.9
99 Dartmouth College 美国 64.9
100 University of Alberta 加拿大 64.5

2014QS世界大学排名

2014QS世界大学排名

排名学校学校英文名国家/地区得分77鲁汶大学Katholieke Universiteit Leuven比利时73 122根特大学University of Ghent比利时63.7 138鲁汶天主大学Université Catholique de Louvain (UCL)比利时61.3 168布鲁塞尔自治大学Université Libre de Bruxelles (ULB)比利时56.8 172布鲁塞尔自由大学Vrije Universiteit Brussel (VUB)比利时56.1 185安特卫普大学University of Antwerp比利时54.2 240列日大学University of Liege比利时45.9 765波多黎各大学Universidad de Puerto Rico波多黎各338华沙大学University of Warsaw波兰37.8 376雅盖隆大学Jagiellonian University波兰34.6601 -华沙理工大学Warsaw University of Technology波兰738罗兹大学Lodz University波兰743哥白尼大学Nicolaus Copernicus University波兰828弗罗茨瓦夫大学University of Wroclaw波兰45哥本哈根大学University of Copenhagen丹麦80.5 91奥胡斯大学Aarhus University丹麦70.3 134丹麦科技大学Technical University of Denmark丹麦61.8 311南丹麦大学University of Southern Denmark丹麦39.3 334奥尔堡大学Aalborg University丹麦38 50海德堡大学Ruprecht-Karls-Universität Heidelberg德国79.3 53慕尼黑工业大学Technische Universität München德国78.5 65慕尼黑大学Ludwig-Maximilians-Universität München德国74.4 102弗莱堡大学Universität Freiburg德国67.9 109柏林自由大学Freie Universität Berlin德国66.9 116卡尔斯鲁厄理工学院Karlsruhe Institute of Technology (KIT)德国64.7 126柏林洪堡大学Humboldt-Universität zu Berlin德国63.1 128哥廷根大学Georg-August-Universität Göttingen德国62.8 134蒂宾根大学Eberhard Karls Universität Tübingen德国61.8147亚琛工业大学Rheinisch-Westfälische TechnischeHochschule Aachen 德国60.1163波恩大学Rheinische Friedrich-Wilhelms-UniversitätBonn 德国57.3183柏林工业大学Technische Universität Berlin德国54.62014QS世界大学排名186汉堡大学Universität Hamburg德国54.1 208法兰克福大学Universität Frankfurt am Main德国51 236明斯特大学Westfälische Wilhelms-Universität Münster德国46.5 243科隆大学Universität zu Köln德国45.7 248斯图加特大学Universität Stuttgart德国45.4 258乌尔姆大学Universität Ulm德国44 260达姆施塔特工业大学Technische Universität Darmstadt德国43.8 262德雷斯顿工业大学Technische Universität Dresden德国43.4 273康斯坦茨大学Universität Konstanz德国42.3 278纽伦堡大学Universität Erlangen-Nürnberg德国42 281曼海姆大学Universität Mannheim德国41.8 293基尔大学Christian-Albrechts-Universität zu Kiel德国40.9 297美因茨大学Johannes Gutenberg Universität Mainz德国40.5 311莱比锡大学Universität Leipzig德国39.3 325维尔茨堡大学Julius-Maximilians-Universität Würzburg德国38.4 363耶拿大学Universität Jena德国35.5 366波鸿鲁尔大学Ruhr-Universität Bochum德国35.4 370不来梅大学Universität Bremen德国35.2 394杜塞尔多夫大学Universität Düsseldorf德国33.4401 -雷根斯堡大学Universität Regensburg德国411 -拜罗伊特大学Universität Bayreuth德国421 -萨尔大学Universität des Saarlandes德国431 -菲利普斯马尔堡大学Philipps-Universität Marburg德国431 -比勒费尔德大学Universität Bielefeld德国451 -汉诺威大学Leibniz Universität Hannover德国481 -杜伊斯堡-埃森大学Universität Duisburg-Essen德国501 -吉森大学Justus-Liebig-Universität Gießen德国501 -布伦瑞克工业大学Technische Universität Braunschweig德国501 -多特蒙德工业大学Technische Universität Dortmund德国501 -韩国天主大学The Catholic University of Korea德国601 -维滕堡大学Martin-Luther-Universität Halle-Wittenberg德国28巴黎高等师范学院Ecole normale supérieure, Paris法国87.8 41巴黎高等理工学院Ecole Polytechnique法国81.1112皮埃尔和玛丽•居里大学Université Pierre et Marie Curie (UPMC)法国65.9158里昂高等师范学校Ecole Normale Supérieure de Lyon法国57.7 189巴黎第一十一大学Université Paris-Sud 11法国53.7 205巴黎第七大学Université Paris Diderot - Paris 7法国51.8 214巴黎政治学院Sciences Po Paris法国50.2 216巴黎第四大学Université Paris-Sorbonne (Paris IV)法国49.9 220格勒诺布尔大学Université Joseph Fourier - Grenoble 1法国49.6 225巴黎第一大学Université Paris 1 Panthéon-Sorbonne法国49.1 226斯特拉斯堡大学Université de Strasbourg法国48.5 274巴黎第五大学Université Paris Descartes法国42.2 299巴黎高等科技学院École des Ponts ParisTech法国40.2309波尔多第一大学Université Bordeaux 1, SciencesTechnologies 法国39.4334卡尚高等师范学院Ecole Normale Supérieure de Cachan法国38 355马赛大学Université Aix-Marseille法国36 358巴黎第九大学Université Paris Dauphine法国35.9385蒙彼利埃第二大学Université Montpellier 2, Sciences etTechniques du Languedoc 法国33.9390图卢兹第三大学Université Paul Sabatier Toulouse III法国33.5401 -里尔第一大学Université Lille 1, Sciences et Technologie法国411 -里昂第一大学Université Claude Bernard Lyon 1法国441 -巴黎第二大学Université Panthéon-Assas (Paris 2)法国471 -蒙彼利埃第一大学Université Montpellier 1法国491 -尼斯大学Université Nice Sophia-Antipolis法国501 -洛林大学Université de Lorraine法国501 -雷恩第一大学Université de Rennes 1法国601 -南特大学Université de Nantes法国651 -里昂第二大学Université Lumière Lyon 2法国651 -图卢兹第一大学Université Toulouse 1, Capitole法国786里尔第三大学Université Charles-de-Gaulle Lille 3法国787卡昂大学Université de Caen Basse-Normandie法国788塞吉-蓬图瓦兹大学Université de Cergy-Pontoise法国789普瓦捷大学Université de Poitiers法国790里昂第三大学Université Jean Moulin Lyon 3法国791里尔第二大学Université Lille 2 Droit et Santé法国792巴黎第十大学Université Paris Ouest Nanterre La Défense法国793蒙彼利埃第三大学Université Paul-Valéry Montpellier 3法国794格勒诺布尔第二大学Université Pierre Mendès France - Grenoble2法国795格勒诺布尔第三大学Université Stendhal Grenoble 3法国796图卢兹第二大学Université Toulouse II, Le Mirail法国69赫尔辛基大学University of Helsinki芬兰73.7 196阿尔托大学Aalto University芬兰52.6 205图库大学University of Turku芬兰51.8 253奥卢大学University of Oulu芬兰44.7 291东芬兰大学University of Eastern Finland芬兰41.2 299韦斯屈莱大学University of Jyväskylä芬兰40.2 376坦佩雷大学University of Tampere芬兰34.6431 -坦佩雷理工大学Tampere University of Technology芬兰451 -埃博学术大学Abo Akademi University芬兰58阿姆斯特丹大学University of Amsterdam荷兰76.4 74莱顿大学Leiden University荷兰73.2 81乌得勒支大学Utrecht UniversityUtrecht University荷兰72.392鹿特丹伊拉斯姆斯大学Erasmus University Rotterdam荷兰70.295代尔夫特理工大学Delft University of Technology荷兰69.497格罗宁根大学University of GroningenUniversity ofGroningen 荷兰69.2121马斯特里赫特大学Maastricht UniversityMaastricht University荷兰63.8 143奈梅亨大学Radboud University Nijmegen荷兰60.8 150瓦格宁根大学Wageningen University荷兰59.4 157埃因霍温科技大学Eindhoven University of Technology荷兰58181阿姆斯特丹自由大学VU University AmsterdamVU UniversityAmsterdam 荷兰54.8228特文特大学University of Twente荷兰48 373蒂尔堡大学Tilburg University荷兰34.8233查尔斯大学Charles University捷克共和国47.1451 -布拉格科技大学Czech Technical University In Prague捷克共和国551 -马萨里克大学Masaryk University捷克共和国651 -布尔诺科技大学Brno University of Technology捷克共和国651 -布拉格经济大学University of Economics Prague捷克共和国89奥斯陆大学University of Oslo挪威70.6151卑尔根大学University of Bergen挪威59.2251挪威科技大学Norwegian University of Science AndTechnology 挪威45306特罗姆瑟大学University of Tromso挪威39.6 343波尔图大学University of Porto葡萄牙37.3 353新星葡京大学Universidade Nova de Lisboa葡萄牙36.1 358科英布拉大学University of Coimbra葡萄牙35.9551 -里斯本天主大学Universidade Catolica Portuguesa, Lisboa葡萄牙551 -里斯本大学University of Lisbon葡萄牙67隆德大学Lund University瑞典74 79乌普萨拉大学Uppsala University瑞典72.5 118瑞典皇家理工学院KTH, Royal Institute of Technology瑞典64.5 170斯德哥尔摩大学Stockholm University瑞典56.4 202查尔姆斯理工大学Chalmers University of Technology瑞典52.1 205哥德堡大学University of Gothenburg瑞典51.8 289于默奥大学Umeå University瑞典41.3 331林雪平大学Linköping University瑞典38.112苏黎世联邦理工学院ETH Zurich (Swiss Federal Institute ofTechnology)瑞士94.319洛桑联邦理工学院Ecole Polytechnique Fédérale de Lausanne瑞士90.9 71日内瓦大学University of Geneva瑞士73.3 78苏黎世大学University of Zurich瑞士72.9 110巴塞尔大学University of Basel瑞士66.2 111洛桑大学University of Lausanne瑞士66.1 154伯尔尼大学University of Bern瑞士58.4411 -圣加仑大学University of St Gallen (HSG)University ofSt Gallen (HSG)瑞士803贝尔格莱德大学University of Belgrade塞尔维亚177巴塞罗那自治大学Universitat Autónoma de Barcelona西班牙55.6 178巴塞罗那大学University of Barcelona西班牙55.4 195马德里自治大学Universidad Autónoma de Madrid西班牙52.7 216马德里康普顿大学University Complutense Madrid西班牙49.9 281庞培法布拉大学Universitat Pompeu Fabra西班牙41.8 315纳瓦拉大学University of Navarra西班牙39317马德里卡洛斯三世大学Universidad Carlos III de Madrid西班牙38.8345加泰罗尼亚理工大学Universitat Politècnica de Catalunya西班牙37.2383瓦伦西亚理工大学Universitat Politècnica de València西班牙34.2 389马德里理工大学Politécnica de Madrid西班牙33.6441 -萨拉曼卡大学University of Salamanca西班牙471 -瓦伦西亚大学Universitat de Valencia西班牙481 -萨拉戈萨大学Universidad de Zaragoza西班牙501 -格拉纳达大学University of Granada西班牙501 -圣地亚哥德孔波斯特拉大学Universidade de Santiago de Compostela西班牙551 -塞维利亚大学Universidad de Sevilla西班牙651 -阿尔卡拉大学Universidad de Alcalá西班牙818穆尔西亚大学University of Murcia西班牙471 -亚里士多德大学Aristotle University of Thessaloniki希腊491 -克里特大学University of Crete希腊501 -雅典大学National and Kapodistrian University ofAthens希腊501 -雅典国立科技大学National Technical University of Athens希腊601 -帕特雷大学University of Patras希腊706雅典经商大学Athens University of Economy And Business希腊501 -塞格德大学University of Szeged匈牙利551 -罗兰大学Eötvös Loránd University匈牙利651 -布达佩斯大学Corvinus University of Budapest匈牙利601 -德布勒森大学University of Debrecen匈牙利188博洛尼亚大学University of Bologna意大利53.8 196罗马第一大学Sapienza University of Rome意大利52.6 230米兰理工大学Politecnico di MilanoPolitecnico di Milano意大利47.5 235米兰大学University of Milano意大利46.8 259比萨大学University of Pisa意大利43.9 267帕多瓦大学University of Padua意大利42.9320罗马第二大学Università¡ degli Studi di Roma - TorVergata 意大利38.7370都灵理工大学Politecnico di Torino意大利35.2 379佛罗伦萨大学University of Florence意大利34.5 397那不勒斯大学University of Naples - Federico Ii意大利33.3 399都灵大学University of Turin意大利33.2411 -帕维亚大学Università degli Studi di Pavia意大利441特伦托大学University of Trento意大利451 -天主教圣心大学Università Cattolica del Sacro Cuore意大利451 -热那亚大学University of Genoa意大利491 -米兰大学University of Milano-Bicocca意大利501 -锡耶纳大学University of Siena意大利501 -的里雅斯特大学University of Trieste意大利601 -佩鲁贾大学Perugia University意大利651 -摩德纳大学University of Modena意大利716卡塔尼亚大学Catania University意大利784罗马第三大学Università degli Studi Roma Tre意大利785威尼斯大学Università Ca' Foscari Venezia意大利802巴里大学University of Bari意大利805布雷西亚大学University of Brescia意大利829维罗纳大学Verona University意大利46北京大学Peking University中国80 48清华大学Tsinghua University中国79.7 88复旦大学Fudan University中国70.8 123上海交通大学Shanghai Jiao Tong University中国63.6 165浙江大学Zhejiang University中国57.2174中国科技大学University of Science and Technology ofChina 中国55.9175南京大学Nanjing University中国55.7 252北京师范大学Beijing Normal University中国44.8 363南开大学Nankai University中国35.5 372西安交通大学Xi'an Jiaotong University中国35.1 384中山大学Sun Yat-sen University中国34.1401 -北京航空航天大学Beihang University (former BUAA)中国401 -武汉大学Wuhan University中国451 -上海大学Shanghai University中国461 -人民大学Renmin (People’s) University of China中国481 -同济大学Tongji University中国491 -哈尔滨工业大学Harbin Institute of Technology中国501 -北京理工大学Beijing Institute of Technology中国501 -华中科技大学Huazhong University of Science andTechnology中国501东南大学Southeast University中国501 -天津大学Tianjin University中国501 -厦门大学Xiamen University中国601 -吉林大学Jilin University中国651 -山东大学Shandong University中国651 -北京科技大学University of Science and TechnologyBeijing中国。

……2012年世界大学排名

……2012年世界大学排名

2012年世界大学排名在全球大学综合排名项目中,美国的哈佛大学夺冠,剑桥和耶鲁大学分列2、3名。

和上海交通大学最近发布的全球大学学术榜单不同的是,英国的剑桥大学备受肯定,杀进前三。

在全球排名前五的大学名单中,英国大学占据了3个席位!1、Harvard University United States 哈佛大学美国2、Yale University 耶鲁大学美国3、University of Cambridge 剑桥大学英国4、University of Oxford 牛津大学英国5、California Institute of Technology (Caltech) 加州理工大学美国6、Imperial College London 伦敦帝国学院英国7、UCL 伦敦大学学院英国8、University of Chicago 芝加哥大学美国9、Massachusetts Institute of Technology (MIT) 麻省理工大学美国10、Columbia University 哥伦比亚大学美国11、Unversity of Pennsylvania 宾夕法尼亚大学美国12、Princeton University 普林斯顿大学美国13、Duke University 杜克大学美国13、Johns Hopkins University 约翰斯霍普金斯大学美国15、Cornell University 康奈尔大学美国16、Australian National University 澳大利亚国立大学澳洲17、Stanford University 斯坦福大学美国18、University Of Michigan 密西根大学美国19、University of Tokyo 东京大学日本20、Mcgill University 麦吉尔大学加拿大21、Carnegie Mellon University 卡内基梅隆大学美国22、King's College London 伦敦国王学院英国23、University of Edinburgh 爱丁堡大学英国24、Eth Zurich(Swiss Federal Institute of Technology)苏黎世联邦理工学院瑞士25、Kyoto University 京都大学日本26、University of Hong Kong 香港大学香港27、Brown University 布朗大学美国28、École Normale Supérieure 巴黎高等师范学院法国29、University of Manchester 曼切斯特大学英国30、National University of Singapore 新加坡国立大学新加坡31、University of California,Los Angeles(UCLA) 加州大学洛杉矶分校美国32、University of Bristol 布里斯托大学英国33、Northwestern University 西北大学美国34、École Polytechnique 法国高等理工大学法国34、University of British Columbia 英属哥伦比亚大学加拿大36、University of California,Berkeley 加州大学伯克利分校美国37、The University of Sydney 悉尼大学澳洲38、The University of Melbourne 墨尔本大学澳洲39、Hong Kong University of Science&Technology 香港科技大学香港40、New York University (NYU) 纽约大学美国41、University of Toronto 多伦多大学加拿大42、The Chinese University of Hong kong 港中文大学香港43、University of Queensland 昆士兰大学澳洲44、Osaka University 大阪大学日本45、University of New South Wales 新南威尔士大学澳洲46、Boston University 波士顿大学美国47、Monash University 莫纳什大学澳洲48、University of Copenhagen 哥本哈根大学丹麦49、Trinity College Dublin 都柏林圣三一学院爱尔兰50、École Polytechnique Fédérale de Lausanne 洛桑联邦高等理工学院瑞士50、Peking University 北京大学中国50、Seoul National University 首尔国立大学韩国53、University of Amsterdam 阿姆斯特丹大学荷兰54、Dartmouth College 达特茅斯学院美国55、University of Wisconsin-madison 威斯康星大学麦迪逊分校美国56、Tsinghua University 清华大学中国57、Heidelberg Universität 海德堡大学德国58、University of California, San Diego 加州大学圣地亚哥分校美国59、University of Washington 华盛顿大学美国60、Washington University in St. Louis 圣路易华盛顿大学美国61、Tokyo Institute of Technology 东京工业大学日本62、Emory University 爱默里大学美国63、Uppsala University 乌普萨拉大学瑞典64、Leiden University 莱顿大学荷兰65、The University of Auckland 奥克兰大学新西兰66 London School of Economics and Political Science 伦敦政治经济学院英国67 Utrecht University 乌德勒支大学荷兰68 University of Geneva 日内瓦大学瑞士69 University of Warwick 华威大学英国70 University of Texas at Austin 德克萨斯大学奥斯汀分校美国71 University of Illinois 伊利诺伊大学美国72 Katholieke Universiteit Leuven 天主教鲁汶大学比利时73 University of Glasgow 格拉斯哥大学英国74 University of Alberta 阿尔伯塔大学加拿大75 University of Birmingham 伯明翰大学英国76 University of Sheffield 谢菲尔德大学英国77 Nanyang Technological University 南洋理工大学新加坡78 Delft University of Technology 尔夫特理工大学荷兰78 Rice University 赖斯大学美国78 Technische Universität München 慕尼黑理工大学德国81 University of Aarhus 奥胡斯大学丹麦81 University of York 约克大学英国83 Georgia Institute of Technology 佐治亚理工学院美国83 The University of Western Australia 西澳大学澳洲83 University of St Andrews 圣安德鲁斯大学英国86 University of Nottingham 诺丁汉大学英国87 University of Minnesota 明尼苏达大学美国88 Lund University 隆德大学瑞典89 University of California, Davis 加州戴维斯分校美国90 Case Western Reserve University 凯斯西储大学美国91 Université de Montréal 蒙特利尔大学加拿大91 University of Helsinki 赫尔辛基大学芬兰93 Hebrew University of Jerusalem 耶路撒冷希伯来大学以色列93 Ludwig-Maximilians-Universität München 慕尼黑路德维希-马克西米利安大学德国95 Kaist - Korea Advanced Institute of Science & Technology 韩国高等科学技术学院韩国96 University of Virginia 弗吉尼亚大学美国97 University of Pittsburgh 匹兹堡大学美国98 University of California, Santa Barbara 加州大学圣塔芭芭拉大学美国99 Purdue University 普渡大学美国99 University of Southampton 南安普敦大学英国101 University of OsloNorway 奥斯陆挪威102 Hebrew University of JerusalemIsrael 耶路撒冷希伯来大学以色列103 Durham UniversityUnited Kingdom 杜伦大学英国103 Fudan UniversityChina 复旦大学中国105 University of MinnesotaUnited States 明尼苏达大学美国106 University of California, Santa BarbaraUnited States 加州大学圣塔芭芭拉分校美国107 Université de MontréalCanada 蒙特利尔大学加拿大108 University of BaselSwitzerland 巴塞尔大学瑞士108 University of California, DavisUnited States 加州大学戴维斯分校美国108 Erasmus University RotterdamNetherlands 鹿特丹伊拉斯漠大学荷兰108 University of HelsinkiFinland 赫尔辛基大学芬兰112 University of Southern CaliforniaUnited States 南加州大学美国113 University of WaterlooCanada 滑铁卢大学加拿大114 University of PittsburghUnited States 匹兹堡大学美国114 Tel Aviv UniversityIsrael 特拉维夫大学以色列116 Maastricht UniversityNetherlands 马斯特里赫特大学荷兰117 Université Pierre-et-Marie-Curie Paris VI France 巴黎第六大学法国118 Queen's University Canada 加拿大女王大学加拿大119 Case Western Reserve University United States 凯斯西储大学美国120 Eindhoven University of Technology Netherlands 埃因霍温工业大学荷兰120 Pennsylvania State University United States 美国宾州州立大学美国122 Universität Freiburg Germany 弗莱堡大学德国122 University of Maryland, College Park United States 马里兰大学帕克分校美国124 City University of Hong Kong 香港城市大学中国125 University of Otago New Zealand 奥塔哥大学新西兰126 Université Catholique de Louvain (UCL)Belgium 鲁汶大学法国126 Ecole Normale Supérieure de Lyon France 里昂高等师范学院法国128 University of Virginia United States 乔治亚大学美国129 University of Aberdeen United Kingdom 阿伯丁大学英国129 Georgetown University United States 乔治城大学美国129 Ohio State University United States 俄亥俄州立大学哥伦布分校美国132 Technion - Israel Institute of Technology Israel 以色列理工学院以色列132 University of Vienna Austria 维也纳大学奥地利134 Pohang University of Science and Technology (POSTECH)Korea, South 浦真理工大学韩国135 Cardiff University United Kingdom 卡迪夫大学英国136 University of Ghent Belgium 根特大学比利时137 University of Liverpool United Kingdom 利物浦大学英国138 Chulalongkorn University Thailand 朱拉隆功大学泰国138 University of Groningen Netherlands 格罗宁根大学荷兰140 Vanderbilt University United States 范德堡大学美国141 University of Rochester United States 罗切斯特大学美国142 Keio University Japan 庆应大学日本143 McMaster University Canada 麦克马斯特大学加拿大144 University of Bath United Kingdom 巴斯大学英国144 University of BergenNorway 卑尔根大学挪威146 University of Cape TownSouth Africa 南非大学南非146 Humboldt-Universität zu Berlin Germany 国立交通大学德国148 Waseda University Japan 早稻田大学日本149 University of Calgary Canada 卡尔加里大学加拿大149 Eberhard Karls University Tübingen Germany 图宾根大学德国151 The University of Western Ontario Canada 西安大略大学加拿大151 Yonsei University Korea, South 首尔市立大学韩国The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from bothYet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart.The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。

2020最新全球医学院排名

2020最新全球医学院排名

2020最新全球医学院排名Nowfeaturing500institutions,theQSUniversityRankingsbySub jectshowcasesthemostprestigiousmedicalschoolsaroundtheworld,helpingyoutodecidewhichoneisforyououtofthethousandsavailable.There’snochangeinthetopthreeofthisyear’smedicinesubjec trankings,withHarvardUniversity,UniversityofOxfordandUniver sityofCambridgecontinuingtoproducethetopdoctorsintheworld.Sweden’sKarolinskaInstitutetisthebiggestmoverinthetop10,climbingfourplacestosixth.Swedenisoneof60countriestofeatur eonthisyear’slist.2017年QS世界大学专业排名向大家展示了全世界范围内最有声望的医学院,在今年的排名中总共包含了500所大学,而去年的排名中只有400所大学。

与去年医学专业排名相比,位于全球前3位的大学并没有变化,哈佛大学、牛津大学以及剑桥大学仍然是全球在医学专业方面最顶尖的三所大学。

瑞典的卡罗林斯卡医学院是全球前10位的大学中上升最多的一所,与去年的排名相比上升了4个名次位列全球第6位。

瑞典也是进入今年的世界大学医学专业排名的60个国家中的一个。

TopuniversitiesformedicineintheUS&CanadaTheUSdominatesthemedicalschoolrankingwithanimpressive89u niversitiesfeaturedintheglobaltop500,including20inthetop50. HarvardUniversitymaintainsitspositionatthetopofthetable,joi nedbyfiveothertopUSmedicalschoolsinthetop10.Alsofeaturedinthetop20thisyearformedicineareMassachusettsInstituteofTechnology(MIT,=12th),ColumbiaUniversity(14th),DukeUniversity(17th),theUniversityofPennsylvania(18th)andtheUniversityofCalifornia,SanDiego(UCSD)(20th).NeighboringCanadah as17representativesinthisyear’smedica lschoolranking,includingfourinthetop50:theUniversityofToronto(11th),McGillUniversity(22nd,upfiveplacesthisyear),theUni versityofBritishColombia(27th)andMcMasterUniversity(35th).位于美国和加拿大的顶尖医学院美国在世界大学医学院排名中占据了绝对的主导地位,在排名列出的500所大学中有89所都来自美国,其中还保留有20所位于全球前50名之内的大学。

【天道独家】2013-2014年QS世界大学排名前500

【天道独家】2013-2014年QS世界大学排名前500
Massachusetts Institute of Technology (MIT)
美国
100
2
哈佛大学
Harvard University
美国
99.2
3
剑桥大学
University of Cambridge
英国
99
4
伦敦大学学院
UCL (University College London)
英国
98.9
澳大利亚
67.7
106
匹兹堡大学
University of Pittsburgh
美国
67.6
107
宾州州立大学公园分校
Pennsylvania State University
美国
67.5
107
浦项科技大学(POSTECH)
Pohang University of Science And Technology (POSTECH)
韩国
67.5
109
柏林自由大学
Freie Universität Berlin
德国
66.9
110
巴塞尔大学
University of Basel
瑞士
66.2
111
洛桑大学
University of Lausanne
瑞士
66.1
112
皮埃尔和玛丽•居里大学
Université Pierre et Marie Curie (UPMC)
荷兰
72.3
82
国立台湾大学
National Taiwan University (NTU)
台湾
72
83
圣安德鲁斯大学

世界知名大学详细及中英文全称

世界知名大学详细及中英文全称

精心整理世界知名大学详细及中英文全称哈佛大学(Harvard University )斯坦福大学(Stanford University )牛津大学(University of Oxford )普林斯顿大学(Princeton University )剑桥大学(University of Cambridge )麻省理工学院(Massachusetts Institute of Technology )芝加哥大学(University of Chicago )加州大学伯克利分校(University of California, Berkeley )耶鲁大学(Yale University )哥伦比亚大学(Columbia University )加州理工学院(California Institute of Technology )加州大学洛杉矶分校(University of California, Los Angeles )约翰?霍普金斯大学(Johns Hopkins University )瑞士联邦理工学院-苏黎世(Swiss Federal Institute of Technology Zürich )宾夕法尼亚大学(University of Pennsylvania )密歇根州立大学(University of Michigan )多伦多大学 (University of Toronto )康奈尔大学 (Cornell University )卡耐基梅隆大学(Carnegie Mellon University )杜克大学(Duke University )英属哥伦比亚大学(University of British Columbia )佐治亚理工学院(Georgia Institute of Technology )西北大学(Northwestern University )威斯康辛麦迪逊大学(University of Wisconsin-Madison)麦吉尔大学 (McGill University )德克萨斯州大学奥斯汀分校(University of Texas at Austin )东京大学(University of Tokyo )伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana Champaign ) 卡罗林斯卡学院(Karolinska Institute )加州大学圣芭芭拉分校(University of California, Santa Barbara )爱丁堡大学(University of Edinburgh )墨尔本大学(University of Melbourne )澳大利亚国立大学(Australian National University )加州大学戴维斯分校(University of California, Davis )新加坡国立大学(National University of Singapore )北卡罗来纳州大学教堂山分校(University of North Carolina at Chapel Hill )纽约大学(New York University)慕尼黑大学(Ludwig-Maximilians-Universit?t München)曼彻斯特大学(University of Manchester )布朗大学(Brown University )京都大学(Kyoto University )南加利福尼亚大学(University of Southern California )伦敦大学国王学院(King's College London )悉尼大学(University of Sydney )巴黎高等师范大学(?cole Normale Supérieure )匹兹堡大学(University of Pittsburgh )苏黎世大学(University of Zürich)麦克马斯特大学(McMaster University )布里斯托大学(University of Bristol )哥廷根大学(Georg-August-Universit?t G?ttingen )范德堡大学(Vanderbilt University )清华大学(Tsinghua University )莱斯大学(Rice University )海德堡大学(Universit?t Heidelberg )昆士兰大学(University of Queensland Australia )埃默里大学(Emory University )瓦格宁根大学(Wageningen University and Research Center ) 科罗拉多大学波尔得分校(University of Colorado Boulder ) 塔夫斯大学(Tufts University )莱顿大学(Leiden University )隆德大学(Lund University )罗彻斯特大学(University of Rochester)巴黎第六大学(Université Pierre et Marie Curie)加州大学欧文分校(University of California, Irvine)乌普萨拉大学(Uppsala University)慕尼黑工业大学(Technische Universit?t München)达特茅斯大学(Dartmouth College)赫尔辛基大学(University of Helsinki)阿姆斯特丹大学(University of Amsterdam)凯斯西储大学(Case Western Reserve University)密歇根州立大学(Michigan State University)亚利桑那大学(University of Arizona)苏塞克斯大学(University of Sussex)阿尔伯塔大学(University of Alberta)谢菲尔德大学(University of Sheffield)格拉斯哥大学(University of Glasgow)代尔夫特理工大学(Delft University of Technology)蒙特利尔大学(University of Montreal)根特大学(Ghent University)东京工业大学(Tokyo Institute of Technology)加州大学圣克鲁兹分校(University of California, Santa Cruz) 巴塞尔大学(Universit?t Basel)伯尔尼大学(University of Bern)纽约州立大学石溪分校(Stony Brook University)莫纳什大学(Monash University)大阪大学 (Osaka University)东北大学(Tohoku University)耶路撒冷希伯来大学(Hebrew University of Jerusalem ) 奥胡斯大学(Aarhus University)佛罗里达大学(University of Florida )南安普顿大学(University of Southampton)日内瓦大学(University of Geneva)斯德哥尔摩大学(Stockholm University)利兹大学(University of Leeds)格罗宁根大学(University of Groningen)弗吉尼亚大学(University of Virginia)哥本哈根大学(University of Copenhagen )维也纳大学(University of Vienna)诺丁汉大学(University of Nottingham)加州大学河滨分校(University of California, Riverside) 伯明翰大学(University of Birmingham)布兰迪斯大学(Brandeis University)香港中文大学(Chinese University of Hong Kong)阿姆斯特丹自由大学(VU University Amsterdam)内梅亨大学(Radboud University Nijmegen)德克萨斯A&M大学(Texas A&M University)特来维夫大学(Tel Aviv University)伊利诺伊大学芝加哥分校(University of Illinois at Chicago)巴黎第七大学(Université Paris Diderot - Paris 7)鲁汶大学(Université Catholique de Louv ain)迈阿密大学(University of Miami)新南威尔士大学(University of New South Wales)丹麦科技大学(Technical University of Denmark)圣保罗大学(University of S?o Paulo)特拉华大学(University of Delaware)奥斯陆大学(University of Oslo)法兰克福大学(Johann Wolfgang Goethe-Universit?t Frankfurt am Main) 利物浦大学(University of Liverpool)弗莱堡大学(Albert-Ludwigs-Universit?t Freiburg)西澳大学(University of Western Australia)。

2010年世界大学排名

2010年世界大学排名

2010年世界大学排名U.S.News《美国新闻与世界报道》(U.S.News & World Report)1983年开始对美国大学及其院系进行排名,该排名具有较高的知名度。

世界大学排名的指标为:1、Academic Peer Review (学术评分) 2、Employer Review (雇主评分) 3、Student to Faculty(师生比例) 4、International Faculty(国际学院评分) 5、International Students (国际学生评分) 。

排名大学1、Harvard University United States 美国哈佛大学2、Yale University 美国耶鲁大学3、University of Cambridge 英国剑桥大学4、University of Oxford 英国牛津大学5、California Institute of Technology (Caltech) 美国加州理工大学6、Imperial College London 英国伦敦帝国学院7、University College London 英国伦敦大学学院8、University of Chicago 美国芝加哥大学9、Massachusetts Institute of Technology (MIT) 美国麻省理工大学10、Columbia University 哥伦比亚大学美国11、Unversity of Pennsylvania 美国宾夕法尼亚大学12、Princeton University 美国普林斯顿大学13、Duke University 美国杜克大学13、Johns Hopkins University 美国约翰斯霍普金斯大学15、Cornell University 美国康奈尔大学16、Australian National University 澳洲澳大利亚国立大学17、Stanford University 美国斯坦福大学18、University Of Michigan 美国密西根大学19、University of Tokyo 日本东京大学20、Mcgill University 加拿大麦吉尔大学21、Carnegie Mellon University 美国卡内基梅隆大学22、King's College London 英国伦敦国王学院23、University of Edinburgh 英国爱丁堡大学24、Eth Zurich(Swiss Federal Institute of Technology)瑞士苏黎世联邦理工学院25、Kyoto University 日本京都大学26、University of Hong Kong 香港香港大学27、Brown University 美国布朗大学28、école Normale Supérieure 法国巴黎高等师范学院29、University of Manchester 英国曼切斯特大学30、National University of Singapore 新加坡新加坡国立大学31、University of California,Los Angeles(UCLA) 美国加州大学洛杉矶分校32、University of Bristol 英国布里斯托大学33、Northwestern University 美国西北大学34、école Polytechnique 法国高等理工大学34、University of British Columbia 加拿大英属哥伦比亚大学36、University of California,Berkeley 美国加州大学伯克利分校37、The University of Sydney 澳洲悉尼大学38、The University of Melbourne 澳洲墨尔本大学39、Hong Kong University of Science&Technology 香港香港科技大学40、New York University (NYU) 美国纽约大学41、University of Toronto 加拿大多伦多大学42、The Chinese University of Hong kong 香港香港中文大学43、University of Queensland 澳洲昆士兰大学44、Osaka University 日本大阪大学45、University of New South Wales 澳洲新南威尔士大学46、Boston University 美国波士顿大学47、Monash University 澳洲莫纳什大学48、University of Copenhagen 丹麦哥本哈根大学49、Trinity College Dublin 爱尔兰都柏林圣三一学院50、école Polytechnique Fédérale de Lausanne 瑞士洛桑联邦高等理工学院50、Peking University 中国北京大学50、Seoul National University 韩国首尔国立大学53、University of Amsterdam 荷兰阿姆斯特丹大学54、Dartmouth College 美国达特茅斯学院55、University of Wisconsin-madison 美国威斯康星大学麦迪逊分校56、Tsinghua University 中国清华大学57、Heidelberg Universit?t 德国海德堡大学58、University of California, San Diego 美国加州大学圣地亚哥分校59、University of Washington 美国华盛顿大学60、Washington University in St. Louis 美国圣路易华盛顿大学61、Tokyo Institute of Technology 日本东京工业大学62、Emory University 美国爱默里大学63、Uppsala University 瑞典乌普萨拉大学64、Leiden University 荷兰莱顿大学65、The University of Auckland 新西兰奥克兰大学66 London School of Economics and Political Science 英国伦敦政治经济学院67 Utrecht University 荷兰乌德勒支大学68 University of Geneva 瑞士日内瓦大学69 University of Warwick 华威大学英国70 University of Texas at Austin 美国德克萨斯大学奥斯汀分校71 University of Illinois 美国伊利诺伊大学72 Katholieke Universiteit Leuven 比利时天主教鲁汶大学73 University of Glasgow 英国格拉斯哥大学74 University of Alberta 加拿大阿尔伯塔大学75 University of Birmingham 英国伯明翰大学76 University of Sheffield 英国谢菲尔德大学77 Nanyang Technological University 新加坡南洋理工大学78 Delft University of Technology 荷兰代尔夫特理工大学78 Rice University 美国赖斯大学78 Technische Universit?t München 德国慕尼黑理工大学81 University of Aarhus 丹麦奥胡斯大学81 University of York 英国约克大学83 Georgia Institute of Technology 美国佐治亚理工学院83 The University of Western Australia 澳洲西澳大学83 University of St Andrews 英国圣安德鲁斯大学86 University of Nottingham 英国诺丁汉大学87 University of Minnesota 美国明尼苏达大学88 Lund University 瑞典隆德大学89 University of California, Davis 美国加州戴维斯分校90 Case Western Reserve University 美国凯斯西储大学91 Université de Montréal 加拿大蒙特利尔大学91 University of Helsinki 芬兰赫尔辛基大学93 Hebrew University of Jerusalem 以色列耶路撒冷希伯来大学93 Ludwig-Maximilians-Universit?t München 德国慕尼黑路德维希-马克西米利安大学95 Kaist - Korea Advanced Institute of Science & Technology 韩国韩国高等科学技术学院96 University of Virginia 美国弗吉尼亚大学97 University of Pittsburgh 美国匹兹堡大学98 University of California, Santa Barbara 美国加州大学圣塔芭芭拉大学99 Purdue University 美国普渡大学99 University of Southampton 英国南安普敦大学100 Sussex University United Kingdom英国萨塞克斯大学101 VANDERBILT University United States 美国范德毕特大学102 University of NORTH CAROLINA United States 美国北科罗拉多大学102 University of SOUTHERN CALIFORNIA United States 美国南加利福尼亚大学104 University of LEEDS United Kingdom 英国利兹大学105 PENNSYLVANIA STATE University United States 美国宾夕法尼亚州州立大学106 University of ADELAIDE Australia 澳大利亚阿德莱德大学106 University of ZURICH Switzerland 瑞士苏黎世大学108 University College DUBLIN Ireland 爱尔兰都柏林大学109 TECHNION - Israel Institute of Technolog... Israel 以色列TECHNION工学院(以色列理工学院)110 GEORGETOWN University United States 美国乔治敦大学111 MAASTRICHT University Netherlands 荷兰马斯特里赫特大学112 TOHOKU University Japan 日本东北大学113 FUDAN University China 中国复旦大学114 TEL AVIV University Israel 以色列特拉维夫大学115 The University of Vienna (Universit t Wien) Austria 奥地利维也纳大学116 Université catholique de LOUVAIN (UCL) Belgium 比利时法语鲁文大学117 MCMASTER University Canada 加拿大麦克马斯特大学117 QUEEN'S University Canada 加拿大皇后学院119 University of ROCHESTER United States 美国罗切斯特大学120 NAGOYA University Japan 日本名古屋大学121 OHIO STATE University United States 美国俄亥俄州立大学122 DURHAM University United Kingdom 英国杜伦大学122 University of MARYLAND United States 美国马里兰大学124 National TAIWAN University Taiwan 台湾国立台湾大学124 University of OTAGO New Zealand 新西兰奥塔哥大学。

世界著名大学最新排名(前100名)

世界著名大学最新排名(前100名)
34、école Polytechnique 法国高等理工大学
34、University of British Columbia 加拿大英属哥伦比亚大学
36、University of California,Berkeley 美国加州大学伯克利分校
37、The University of Sydney 澳洲悉尼大学
53 京都大学 日本 1897年
54 法国国立行政学院 法国 1945年
55 法兰克福大学 德国 20世纪初
56 麦吉尔大学 加拿大 1829年
57 新加坡国立大学 新加坡 1980年
58 安卡拉大学 土耳其 1946年
59 朱拉隆功大学 泰国 1917年
60 西北大学 美国 *
61 博科尼大学 意大利 1902年
71 筑波大学 日本 *
72 冰岛大学 冰岛 1911年
73 珀杜大学 美国 1869年
74 巴西利亚大学 巴西 1963年
75 凡德比特大学 美国 *
76 波士顿大学 美国 *
77 布鲁塞尔自由大学 比利时 1834年
78 特拉华大学 美国 *
79 洛桑高等工科学校 瑞士 1853年
96 美国郡礼学院 美国 1846年
97 澳大利亚国立大学 澳大利亚 *
98 乔治城大学 美国 *
99 卡塔尔大学 卡塔尔 1973年
100 旁遮普大学 巴基斯坦 1882年
2010年排名
1、Harvard University United States 美国哈佛大学
2、Yale University 美国耶鲁大学
44 悉尼大学 澳大利亚 1850年

Comma Category

Comma Category

FORMALIZED MATHEMATICSVol.2,No.5,November–December1991Universit´e Catholique de LouvainComma CategoryGrzegorz Bancerek Warsaw University,Bia l ystok IM PAN,Warszawa Agata Darmochwa l Warsaw Universityma category of two functors is introduced.MML Identifier:COMMACAT.The terminology and notation used in this paper have been introduced in the following articles:[9],[10],[1],[5],[2],[7],[4],[3],[6],and[8].We now define four new functors.Let x be arbitrary.The functor x1,1is defined by: (Def.1)x1,1=(x1)1.The functor x1,2is defined as follows:(Def.2)x1,2=(x1)2.The functor x2,1is defined by:(Def.3)x2,1=(x2)1.The functor x2,2is defined as follows:(Def.4)x2,2=(x2)2.In the sequel x,x1,x2,y,y1,y2are arbitrary.One can prove the following proposition(1) x1,x2 ,y 1,1=x1and x1,x2 ,y 1,2=x2and x, y1,y2 2,1=y1and x, y1,y2 2,2=y2.Let D1,D2,D3be non-empty sets,and let x be an element of[:[:D1,D2:], D3:].Then x1,1is an element of D1.Then x1,2is an element of D2.Let D1,D2,D3be non-empty sets,and let x be an element of[:D1,[:D2, D3:]:].Then x2,1is an element of D2.Then x2,2is an element of D3.For simplicity we follow a convention:C,D,E are categories,c is an object of C,d is an object of D,x is arbitrary,f is a morphism of E,g is a morphism of C,h is a morphism of D,F is a functor from C to E,and G is a functor from D to E.Let us consider C,D,E,and let F be a functor from C to E,and let G be a functor from D to E.Let us assume that there exist c1,d1,f1such679c 1991Fondation Philippe le HodeyISSN0777–4028680grzegorz bancerek and agata darmochwa l that f1∈hom(F(c1),G(d1)).The functor Obj(F,G)yields a non-empty subset of[:[:the objects of C,the objects of D:],the morphisms of E:]and is defined as follows:(Def.5)Obj(F,G)={ c,d ,f :f∈hom(F(c),G(d))}.In the sequel o,o1,o2will denote elements of Obj(F,G).The following propo-sition is true(2)Suppose there exist c,d,f such that f∈hom(F(c),G(d)).Then o=o1,1,o1,2 ,o2 and o2∈hom(F(o1,1),G(o1,2))and dom(o2)=F(o1,1)and cod(o2)=G(o1,2).Let us consider C,D,E,F,G.Let us assume that there exist c1,d1,f1such that f1∈hom(F(c1),G(d1)).The functor Morph(F,G)yielding a non-empty subset of[:[:Obj(F,G),Obj(F,G)qua a non-empty set:],[:the morphisms of C,the morphisms of D:]:]is defined by:(Def.6)Morph(F,G)={ o1,o2 , g,h :dom g=o11,1∧cod g=o21,1∧dom h=o11,2∧cod h=o21,2∧o22·F(g)=G(h)·o12}.In the sequel k,k1,k2,k′denote elements of Morph(F,G).Let us consider C, D,E,F,G,k.Then k1,1is an element of Obj(F,G).Then k1,2is an element of Obj(F,G).Then k2,1is a morphism of C.Then k2,2is a morphism of D.The following proposition is true(3)Suppose There exist c,d,f such that f∈hom(F(c),G(d)).Then(i)k= k1,1,k1,2 , k2,1,k2,2 ,(ii)dom(k2,1)=(k1,1)1,1,(iii)cod(k2,1)=(k1,2)1,1,(iv)dom(k2,2)=(k1,1)1,2,(v)cod(k2,2)=(k1,2)1,2,(vi)(k1,2)2·F(k2,1)=G(k2,2)·(k1,1)2.Let us consider C,D,E,F,G,k1,k2.Let us assume that there exist c1,d1, f1such that f1∈hom(F(c1),G(d1)).Let us assume that k11,2=k21,1.The functor k2·k1yielding an element of Morph(F,G)is defined as follows: (Def.7)k2·k1= k11,1,k21,2 , k22,1·k12,1,k22,2·k12,2 .Let us consider C,D,E,F,G.The functor◦(F,G)yields a partial function from[:Morph(F,G),Morph(F,G):]to Morph(F,G)and is defined by:(Def.8)dom(◦(F,G))={ k1,k2 :k11,1=k21,2}and for all k,k′such that k, k′ ∈dom(◦(F,G))holds◦(F,G)( k,k′ )=k·k′.Let us consider C,D,E,F,G.Let us assume that there exist c1,d1,f1 such that f1∈hom(F(c1),G(d1)).The functor(F,G)yielding a strict category is defined by the conditions(Def.9).(Def.9)(i)The objects of(F,G)=Obj(F,G),(ii)the morphisms of(F,G)=Morph(F,G),(iii)for every k holds(the dom-map of(F,G))(k)=k1,1,(iv)for every k holds(the cod-map of(F,G))(k)=k1,2,(v)for every o holds(the id-map of(F,G))(o)= o,o , id(o1,1),id(o1,2),comma category681(vi)the composition of(F,G)=◦(F,G).We now state two propositions:(4)The objects of˙(x,y)={x}and the morphisms of˙(x,y)={y}.(5)For all objects a,b of˙(x,y)holds hom(a,b)={y}.Let us consider C,c.The functor˙(c)yielding a strict subcategory of C is defined as follows:(Def.10)˙(c)=˙(c,id c).We now define two new functors.Let us consider C,c.The functor(c,C) yields a strict category and is defined by:,id C).(Def.11)(c,C)=(˙(c)֒→The functor(C,c)yields a strict category and is defined as follows:(Def.12)(C,c)=(id C,˙(c)).֒→References[1]Czes l aw Byli´n ski.Functions and their basic properties.Formalized Mathematics,1(1):55–65,1990.[2]Czes l aw Byli´n ski.Functions from a set to a set.Formalized Mathematics,1(1):153–164,1990.[3]Czes l aw Byli´n ski.Introduction to categories and functors.Formalized Mathematics,1(2):409–420,1990.[4]Czes l aw Byli´n ski.The modification of a function by a function and the iteration of thecomposition of a function.Formalized Mathematics,1(3):521–527,1990.[5]Czes l aw Byli´n ski.Partial functions.Formalized Mathematics,1(2):357–367,1990.[6]Czes l aw Byli´n ski.Subcategories and products of categories.Formalized Mathematics,1(4):725–732,1990.[7]Andrzej Trybulec.Binary operations applied to functions.Formalized Mathematics,1(2):329–334,1990.[8]Andrzej Trybulec.Domains and their Cartesian products.Formalized Mathematics,1(1):115–122,1990.[9]Andrzej Trybulec.Tarski Grothendieck set theory.Formalized Mathematics,1(1):9–11,1990.[10]Andrzej Trybulec.Tuples,projections and Cartesian products.Formalized Mathematics,1(1):97–105,1990.Received February20,1992。

08年世界大学排名(泰晤士报)前200

08年世界大学排名(泰晤士报)前200

08年世界⼤学排名(泰晤⼠报)此次是《泰晤⼠报⾼等教育增刊》第五次发布世界⼤学排名,由QuacquarelliSymonds(QS)公司进⾏资料收集调查,根据各⼤学的研究、教职员⼈数、国际知名度、教学质量等进⾏评等与分析。

2008全球顶尖⼤学排⾏榜——《泰晤⼠报》⾼等教育1 HARVARD University United States2 Yale University United States3 University of Cambridge United Kingdom4 University of Oxford United Kingdom5 California Institute of Technology (Calt... United States6 IMPERIAL College London United Kingdom7 UCL (University College London) United Kingdom8 University of Chicago United States9 Massachusetts Institute of Technology (M... United States10 Columbia University United States11 UNIVERSITY OF PENNSYLVANIA United States12 Princeton University United States13= DUKE University United States13= Johns Hopkins University United States15 CORNELL University United States16 AUSTRALIAN National University Australia17 Stanford University United States18 University of Michigan United States19 University of TOKYO Japan20 MCGILL University Canada21 Carnegie Mellon University United States22 KING'S College London United Kingdom23 University of Edinburgh United Kingdom24 ETH Zurich (Swiss Federal Institute of T... Switzerland25 KYOTO University Japan26 University of HONG KONG Hong Kong27 BROWN University United States28 école Normale Supérieure, PARIS France29 University of Manchester United Kingdom30= National University of SINGAPORE(NUS) Singapore30= University of California, Los Angeles (U... United States32 University of Bristol United Kingdom33 NORTHWESTERN University United States34= éCOLE POLYTECHNIQUE France34= University of BRITISH COLUMBIA Canada36 University of California, BERKELey United States37 The University of SYDNEY Australia38 The University of Melbourne Australia39 HONG KONG University of Science & Techno... Hong Kong40 New York University (NYU) United States41 University of TORONTO Canada42 The CHINESE University of Hong Kong Hong Kong43 University of QUEENSLAND Australia44 OSAKA University Japan45 University of NEW SOUTH WALES Australia46 Boston University United States47 MONASH University Australia48 University of COPENHAGEN Denmark49 Trinity College Dublin Ireland50= Ecole Polytechnique Fédérale de LAUSANNE... Switzerland 50= PEKING University China50= SEOUL National University Korea, South53 University of AMSTERDAM Netherlands54 DARTMOUTH College United States55 University of Wisconsin-Madison United States56 TSINGHUA University China57 HEIDELBERG Universit?t Germany58 University of California, San Diego United States59 University of Washington United States60 Washington University in St. Louis United States61 TOKYO Institute of Technology Japan62 EMORY University United States63 UPPSALA University Sweden64 LEIDEN University Netherlands65 The University of AUCKLAND New Zealand66 LONDON School of Economics and Political... United Kingdom67 UTRECHT University Netherlands68 University of GENEVA Switzerland69 University of Warwick United Kingdom70 University of TEXAS at Austin United States71 University of Illinois United States72 Katholieke Universiteit LEUVEN Belgium73 University of Glasgow United Kingdom74 University of ALBERTA Canada75 University of Birmingham United Kingdom76 University of Sheffield United Kingdom77 NANYANG Technological University Singapore78= DELFT University of Technology Netherlands78= RICE University United States78= Technische Universit?t MüNCHEN Germany81= University of AARHUS Denmark81= University of YORK United Kingdom83= GEORGIA Institute of Technology United States83= The University of WESTERN AUSTRALIA Australia83= University of ST ANDREWS United Kingdom86 University of Nottingham United Kingdom87 University of MINNESOTA United States88 LUND University Sweden2 389 University of California, Davis United States90 Case Western Reserve University United States91= Université de Montréal Canada91= University of HELSINKI Finland93= Hebrew University of JERUSALEM Israel93= Ludwig-Maximilians-Universit?t München Germany95 KAIST - Korea Advanced Institute of Scie... Korea, South96 University of Virginia United States97 University of PITTSBURGH United States98 University of California, Santa Barbara United States99= Purdue University United States99= University of Southampton United Kingdom101 Vanderbilt University United States102= University of NORTH CAROLINA United States102= University of Southern California United States104 University of LEEDS United Kingdom105 PENNSYLVANIA STATE University United States 106= University of ADELAIDE Australia106= University of ZURICH Switzerland108 University College Dublin Ireland109 TECHNION - Israel Institute of Technolog... Israel110 GEORGETOWN University United States111 MAASTRICHT University Netherlands112 TOHOKU University Japan113 FUDAN University China114 TEL AVIV University Israel115 University of VIENNA Austria116 Université catholique de LOUVAIN (UCL) Belgium117= MCMASTER University Canada117= QUEEN'S University Canada119 University of Rochester United States120 NAGOYA University Japan121 OHIO STATE University United States122= DURHAM University United Kingdom122= University of MARYLAND United States124= National TAIWAN University Taiwan124= University of OTAGO New Zealand126 ERASMUS University Rotterdam Netherlands127 Stony Brook University United States128 EINDHOVEN University of Technology Netherlands 129 University of WATERLOO Canada130 University of SUSSEX United Kingdom131 University of BASEL Switzerland132 University of California, Irvine United States133= Cardiff University United Kingdom133= Technical University of DENMARK Denmark133= University of Liverpool United Kingdom136 University of GHENT Belgium137= Freie Universit?t BERLIN Germany137= TEXAS A&M University United States139 HUMBOLDT-Universit?t zu Berlin Germany140 Ecole normale supérieure de LYON France141 University of Science and Technology of ... China 142 WAGENINGEN University Netherlands143 NANJING University China144= SHANGHAI JIAO TONG University China144= University of GRONINGEN Netherlands146 University of ARIZONA United States147= CITY University of Hong Kong Hong Kong147= Universit?t FREIBURG Germany149 Université Pierre-et-Marie-Curie PARIS V... France150 Universidad Nacional Autónoma de México ... Mexico151 RUTGERS, The State University of New Jer... United States152 University of Bath United Kingdom153 University of Aberdeen United Kingdom154 Indian Institute of Technology Delhi (II... India155= Eberhard Karls Universit?t TüBINGEN Germany155= VU University AMSTERDAM Netherlands157 TUFTS University United States158 KYUSHU University Japan159 The University of WESTERN ONTARIO Canada160 QUEEN MARY, University of London United Kingdom161 University of LAUSANNE Switzerland162= CHALMERS University of Technology Sweden162= Newcastle University, NEWCASTLE Upon Tyn... United Kingdom 164 SIMON FRASER University Canada165 University of FLORIDA United States166= CHULALONGKORN University Thailand166= Universit?t G?TTINGEN Germany168 University of NOTRE DAME United States169 Universit?t FRANKFURT am Main Germany170= INDIANA University Bloomington United States170= University of CALGARY Canada170= University of LANCASTER United Kingdom173 KTH, ROYAL Institute of Technology Sweden174= HOKKAIDO University Japan174= Indian Institute of Technology Bombay (I... India174= RENSSELAER Polytechnic Institute United States177= University of Leicester United Kingdom177= University of OSLO Norway179 University of CAPE TOWN South Africa180= University of COLORADO at Boulder United States180= WASEDA University Japan1 3182 MACQUARIE University Australia183= Lomonosov MOSCOW STATE University Russia183= Université Libre de BRUXELLES (ULB) Belgium185 BRANDEIS University United States186= University of BARCELONA Spain186= University of CANTERBURY New Zealand188= POHANG University of Science and Technol... Korea, South 188= Technische Universit?t BERLIN Germany190 Universit?t STUTTGART Germany191 University of MASSACHUSETTS, Amherst United States 192= University of BERN Switzerland192= University of BOLOGNA Italy194 University of Reading United Kingdom195 University of ANTWERP Belgium196 University of SAO PAULO Brazil197= DALHOUSIE University Canada197= University of BUENOS AIRES Argentina199 KOBE University Japan200 University of ATHENS Greece。

2011-2012年英国《泰晤士报高等教育副刊》世界大学排名前400强

2011-2012年英国《泰晤士报高等教育副刊》世界大学排名前400强
WORLD RANK 1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48
INSTITUTION California Institute of Technology Harvard University Stanford University University of Oxford Princeton University University of Cambridge Massachusetts Institute of Technology Imperial College London University of Chicago University of California, Berkeley Yale University Columbia University University of California, Los Angeles Johns Hopkins University ETH Zü rich - Swiss Federal Institute of Technology Zü rich University of Pennsylvania University College London University of Michigan University of Toronto Cornell University Carnegie Mellon University University of British Columbia Duke University Georgia Institute of Technology University of Washington Northwestern University University of Wisconsin-Madison McGill University University of Texas at Austin University of Tokyo University of Illinois at Urbana Champaign Karolinska Institute University of California, San Diego University of Hong Kong University of California, Santa Barbara University of Edinburgh University of Melbourne Australian National University University of California, Davis National University of Singapore Washington University in St Louis University of Minnesota University of North Carolina at Chapel Hill New York University Ludwig-Maximilians-Universitä Mü t nchen École Polytechnique Fé rale de Lausanne dé London School of Economics and Political Science University of Manchester

Université Catholique de Louvain Axioms of Incidency

Université Catholique de Louvain Axioms of Incidency

FORMALIZED MATHEMATICSNumber1,January1990Universit´e Catholique de LouvainAxioms of IncidencyWojciech A.Trybulec1Warsaw UniversitySummary.This article is based on“Foundations of Geometry”by Karol Borsuk and Wanda Szmielew([1]).The fourth axiom of incidency is weakened.In[1]it has the form for any plane there exist three non-collinear points in theplane and in the article for any plane there exists one point in the plane.Theoriginal axiom is proved.The article includes:theorems concerning collinearityof points and coplanarity of points and lines,basic theorems concerning lines andplanes,fundamental existence theorems,theorems concerning intersection of linesand planes.The articles[3],[2],and[4]provide the terminology and notation for this paper.We consider structures IncStruct,which are systemsPoints,Lines,Planes,Inc1,Inc2,Inc3where Points,Lines,Planes have the type DOMAIN,Inc1has the type Relation of the Points,the Lines,Inc2has the type Relation of the Points,the Planes,and Inc3 has the type Relation of the Lines,the Planes.We now define three new modes.Let S have the type IncStruct.POINT of S stands for Element of the Points of S.LINE of S stands for Element of the Lines of S.PLANE of S stands for Element of the Planes of S.In the sequel S will have the type IncStruct;A will have the type Element of the Points of S;L will have the type Element of the Lines of S;P will have the type Element of the Planes of S.The following propositions are true:(1)A is POINT of S,(2)L is LINE of S,206Wojciech A.Trybulec(3)P is PLANE of S.For simplicity we adopt the following convention:A,B,C,D will denote objects of the type POINT of S;L will denote an object of the type LINE of S;P will denote an object of the type PLANE of S;F,G will denote objects of the type Subset of the Points of S.The arguments of the notions defined below are the following:S which is an object of the type reserved above;A which is an object of the type POINT of S;L which is an object of the type LINE of S.The predicateA on L is defined by A,L ∈the Inc1of S.The arguments of the notions defined below are the following:S which is an object of the type reserved above;A which is an object of the type POINT of S;P which is an object of the type PLANE of S.The predicateA on P is defined by A,P ∈the Inc2of S.The arguments of the notions defined below are the following:S which is an object of the type reserved above;L which is an object of the type LINE of S;P which is an object of the type PLANE of S.The predicateL on P is defined by L,P ∈the Inc3of S.The arguments of the notions defined below are the following:S which is an object of the type reserved above;F which is an object of the type set of POINT of S;L which is an object of the type LINE of S.The predicateF on L is defined by for A being POINT of S st A∈F holds A on L.The arguments of the notions defined below are the following:S which is an object of the type reserved above;F which is an object of the type set of POINT of S;P which is an object of the type PLANE of S.The predicateF on P is defined by for A st A∈F holds A on P.The arguments of the notions defined below are the following:S which is an object of the type reserved above;F which is an object of the type set of POINT of S.The predicateF isplanar is defined by ex P st F on P.Next we state a number of propositions:(4)A on L iff A,L ∈the Inc1of S,Axioms of Incidency207(5)A on P iff A,P ∈the Inc2of S,(6)L on P iff L,P ∈the Inc3of S,(7)F on L ifffor A st A∈F holds A on L,(8)F on P ifffor A st A∈F holds A on P,(9)F isplanar iffex P st F on P,(11){A,B}on L iffA on L&B on L,(12){A,B,C}on L iffA on L&B on L&C on L,(13){A,B}on P iffA on P&B on P,(14){A,B,C}on P iffA on P&B on P&C on P,(15){A,B,C,D}on P iffA on P&B on P&C on P&D on P,(16)G⊆F&F on L implies G on L,(17)G⊆F&F on P implies G on P,(18)F on L&A on L iffF∪{A}on L,(19)F on P&A on P iffF∪{A}on P,(20)F∪G on L iffF on L&G on L,(21)F∪G on P iffF on P&G on P,(22)G⊆F&F is linear,(23)G⊆F&F is planar.The modeIncSpace,which widens to the type IncStruct,is defined by(for L being LINE of it ex A,B being POINT of it st A=B&{A,B}on L)& (for A,B being POINT of it ex L being LINE of it st{A,B}on L)&(for A,B being POINT of it,K,L being LINE of itst A=B&{A,B}on K&{A,B}on L holds K=L)&(for P being PLANE of it ex A being POINT of it st A on P)&208Wojciech A.Trybulec(for A,B,C being POINT of it ex P being PLANE of it st{A,B,C}on P)& (for A,B,C being POINT of it,P,Q being PLANE of it st not{A,B,C}isplanar)& for A being POINT of it,L being LINE of it,P being PLANE of itst A on L&L on P holds A on P.The following proposition is true(24)(for L being LINE of S ex A,B being POINT of S st A=B&{A,B}on L)&(for A,B being POINT of S ex L being LINE of S st{A,B}on L)&(for A,B being POINT of S,K,L being LINE of Sst A=B&{A,B}on K&{A,B}on L holds K=L)&(for P being PLANE of S ex A being POINT of S st A on P)& (for A,B,C being POINT of S ex P being PLANE of S st{A,B,C}on P)&(for A,B,C being POINT of S,P,Q being PLANE of S st not{A,B,C}isplanar)&( for A being POINT of S,L being LINE of S,P being PLANE of Sst A on L&L on P holds A on P)implies S is IncSpace.Axioms of Incidency209For simplicity we adopt the following convention:S will denote an object of the type IncSpace;A,B,C,D will denote objects of the type POINT of S;K,L,L1,L2will denote objects of the type LINE of S;P,Q will denote objects of the type PLANEof S;F will denote an object of the type Subset of the Points of S.The following propositions are true:(25)ex A,B st A=B&{A,B}on L,(26)ex L st{A,B}on L,(27)A=B&{A,B}on K&{A,B}on L implies K=L,(28)ex A st A on P,(29)ex P st{A,B,C}on P,(30)not{A,B,C}isplanar,(34)A on L&L on P implies A on P,(35)F on L&L on P implies F on P,(36){A,A,B}isplanar,(38){A,B,C}is planar,(39)A=B&{A,B}on L&not C on L implies not{A,B,C}islinear&{A,B,C}on P&not D on Pimplies not{A,B,C,D}is210Wojciech A.Trybulec(44)ex P st A on P&L on P,(45)(ex A st A on K&A on L)implies ex P st K on P&L on P,(46)A=B implies ex L st for K holds{A,B}on K iffK=L,(47)not{A,B,C}islinear.The functorPlane(A,B,C),yields the type PLANE of S and is defined by{A,B,C}on it.Let us consider S,A,L.Assume that the following holdsnot A on L.The functorPlane(A,L),with values of the type PLANE of S,is defined byA on it&L on it.Let us consider S,K,L.Assume that the following holdsK=L.Axioms of Incidency211Moreover we assume thatex A st A on K&A on L.The functorPlane(K,L),with values of the type PLANE of S,is defined byK on it&L on it.Next we state a number of propositions:(50)A=B implies{A,B}on Line(A,B),(51)A=B&{A,B}on K implies K=Line(A,B),(52)not{A,B,C}islinear&{A,B,C}on Q implies Q=Plane(A,B,C),(54)not A on L implies A on Plane(A,L)&L on Plane(A,L),(55)not A on L&A on Q&L on Q implies Q=Plane(A,L),(56)K=L&(ex A st A on K&A on L)implies K on Plane(K,L)&L on Plane(K,L),(57)A=B implies Line(A,B)=Line(B,A),(58)not{A,B,C}islinear implies Plane(A,B,C)=Plane(B,A,C),(60)not{A,B,C}islinear implies Plane(A,B,C)=Plane(C,A,B),(62)not{A,B,C}islinear,(66)A=B&A=C&{A,B,C}islinear implies Plane(A,B,C)=Plane(C,Line(A,B)),212Wojciech A.Trybulec(68)not{A,B,C}isplanar,(69)not C on L&{A,B}on L&A=B implies Plane(C,L)=Plane(A,B,C),(70)not{A,B,C}islinear,(72)ex A,B,C,D st A on P&not{A,B,C,D}islinear,(75)not{A,B,C}is planar,(76)ex B,C st{B,C}on P&not{A,B,C}isplanar,(78)ex B,C,D st not{A,B,C,D}isAxioms of Incidency213 References[1]Karol Borsuk and Wanda Szmielew.Foundations of Geometry.North Holland,1960.[2]Andrzej Trybulec.Domains and their Cartesian products.Formalized Mathematics,1,1990.[3]Andrzej Trybulec.Tarski Grothendieck set theory.Formalized Mathematics,1,1990.[4]Edmund Woronowicz.Relations defined on sets.Formalized Mathematics,1,1990.Received April14,1989。

2011年全球大学排名

2011年全球大学排名

2011 NSST US NEWS RANKING OF GLOBAL UNIVERSITIES1 Harvard UniversityUnited States 100.02 University of CambridgeUnited Kingdom 99.63 Yale UniversityUnited States 99.14 UCL (University College London)United Kingdom 99.05 Imperial College LondonUnited Kingdom 97.85 University of OxfordUnited Kingdom 97.87 University of ChicagoUnited States 96.88 Princeton UniversityUnited States 96.69 Massachusetts Institute of Technology (MIT) United States 96.110 California Institute of Technology (Caltech)United States 95.911 Columbia UniversityUnited States 95.612 University of PennsylvaniaUnited States 94.213 Johns Hopkins UniversityUnited States 94.114 Duke UniversityUnited States 92.915 Cornell UniversityUnited States 92.516 Stanford UniversityUnited States 92.217 Australian National UniversityAustralia 90.518 McGill UniversityCanada 90.419 University of MichiganUnited States 89.920 University of EdinburghUnited Kingdom 89.320 ETH Zurich (Swiss Federal Institute of Technology)Switzerland 89.322 University of TokyoJapan 88.923 King's College LondonUnited Kingdom 88.424 University of Hong KongHong Kong 87.525 Kyoto UniversityJapan 87.126 University of ManchesterUnited Kingdom 85.727 Carnegie Mellon UniversityUnited States 85.628 Ecole Normale Supérieure, ParisFrance 85.429 University of TorontoCanada 85.330 National University of Singapore (NUS)Singapore 84.331 Brown UniversityUnited States 83.932 University of California, Los Angeles (UCLA)United States 83.532 Northwestern UniversityUnited States 83.534 University of BristolUnited Kingdom 83.435 Hong Kong University of Science and TechnologyHong Kong 83.336 École PolytechniqueFrance 83.136 University of MelbourneAustralia 83.136 University of SydneyAustralia 83.139 University of California, BerkeleyUnited States 82.740 University of British ColumbiaCanada 81.241 University of QueenslandAustralia 80.742 École Polytechnique Fédérale de Lausanne Switzerland 80.643 Osaka UniversityJapan 80.143 Trinity College DublinIreland 80.145 Monash UniversityAustralia 80.046 The Chinese University of Hong KongHong Kong 79.647 University of New South WalesAustralia 79.047 Seoul National UniversityKorea, South 79.049 University of AmsterdamNetherlands 78.949 Tsinghua UniversityChina 78.951 University of CopenhagenDenmark 78.852 New York University (NYU)United States 78.452 Peking UniversityChina 78.454 Boston UniversityUnited States 77.855 Technische Universität MünchenGermany 76.355 Tokyo Institute of TechnologyJapan 76.357 Heidelberg UniversityGermany 76.258 University of WarwickUnited Kingdom 75.759 University of AlbertaCanada 75.460 Leiden UniversityNetherlands 75.361 The University of AucklandNew Zealand 74.761 University of Wisconsin-MadisonUnited States 74.763 Aarhus UniversityDenmark 74.563 University of Illinois, Urbana-ChampaignUnited States 74.565 Katholieke Universiteit Leuven Belgium 74.266 University of BirminghamUnited Kingdom 73.967 London School of Economics and Political Science (LSE)United Kingdom 73.767 Lund UniversitySweden 73.769 KAIST - Korea Advanced Institute of Science & TechnologyKorea, South 72.670 Utrecht UniversityNetherlands 72.470 University of YorkUnited Kingdom 72.472 University of GenevaSwitzerland 72.373 Nanyang Technological University (NTU)Singapore 72.073 Washington University in St. LouisUnited States 72.075 Uppsala UniversitySweden 71.976 University of California, San DiegoUnited States 71.576 University of Texas at AustinUnited States 71.578 University of North Carolina, Chapel HillUnited States 71.379 University of GlasgowUnited Kingdom 71.280 University of WashingtonUnited States 71.181 University of AdelaideAustralia 70.882 University of SheffieldUnited Kingdom 70.683 Delft University of TechnologyNetherlands 70.484 University of Western AustraliaAustralia 70.285 Dartmouth CollegeUnited States 70.186 Georgia Institute of TechnologyUnited States 70.087 Purdue UniversityUnited States 69.887 University of St AndrewsUnited Kingdom 69.889 University College DublinIreland 69.790 Emory UniversityUnited States 69.691 University of NottinghamUnited Kingdom 69.492 Nagoya UniversityJapan 69.292 University of ZurichSwitzerland 69.294 Freie Universität BerlinGermany 69.095 University of SouthamptonUnited Kingdom 68.995 National Taiwan UniversityTaiwan 68.997 Tohoku UniversityJapan 68.698 Ludwig-Maximilians-Universität MünchenGermany 68.499 University of LeedsUnited Kingdom 68.3100 Rice UniversityUnited States 68.1101 University of OsloNorway 67.7102 Hebrew University of JerusalemIsrael 67.3103 Durham UniversityUnited Kingdom 67.2103 Fudan UniversityChina 67.2105 University of MinnesotaUnited States 67.1106 University of California, Santa BarbaraUnited States 66.6 107 Université de MontréalCanada 66.2108 University of BaselSwitzerland 66.1108 University of California, DavisUnited States 66.1108 Erasmus University RotterdamNetherlands 66.1108 University of HelsinkiFinland 66.1112 University of Southern CaliforniaUnited States 66.0113 University of WaterlooCanada 65.8114 University of PittsburghUnited States 65.6114 Tel Aviv UniversityIsrael 65.6116 Maastricht UniversityNetherlands 65.3117 Université Pierre-et-Marie-Curie Paris VIFrance 65.0118 Queen's UniversityCanada 64.7119 Case Western Reserve UniversityUnited States 64.6120 Eindhoven University of TechnologyNetherlands 64.4120 Pennsylvania State UniversityUnited States 64.4122 Universität FreiburgGermany 64.0122 University of Maryland, College ParkUnited States 64.0124 City University of Hong KongHong Kong 63.9125 University of OtagoNew Zealand 63.8126 Université Catholique de Louvain (UCL)Belgium 63.7126 Ecole Normale Supérieure de LyonFrance 63.7128 University of VirginiaUnited States 63.5129 University of AberdeenUnited Kingdom 63.4129 Georgetown UniversityUnited States 63.4129 Ohio State UniversityUnited States 63.4132 Technion - Israel Institute of TechnologyIsrael 63.0132 University of ViennaAustria 63.0134 Pohang University of Science and Technology (POSTECH)Korea, South 62.9 135 Cardiff UniversityUnited Kingdom 62.8136 University of GhentBelgium 62.6137 University of LiverpoolUnited Kingdom 62.4138 Chulalongkorn UniversityThailand 62.3138 University of GroningenNetherlands 62.3140 Vanderbilt UniversityUnited States 62.2141 University of RochesterUnited States 61.8142 Keio UniversityJapan 61.6143 McMaster UniversityCanada 60.9144 University of BathUnited Kingdom 60.7144 University of BergenNorway 60.7146 University of Cape TownSouth Africa 60.6146 Humboldt-Universität zu BerlinGermany 60.6148 Waseda UniversityJapan 60.5149 University of CalgaryCanada 60.4149 Eberhard Karls University TübingenGermany 60.4151 The University of Western OntarioCanada 60.3151 Yonsei UniversityKorea, South 60.3153 Shanghai Jiao Tong UniversityChina 60.2154 University of Science and Technology of ChinaChina 60.1 155 Kyushu UniversityJapan 60.0155 Lomonosov Moscow State University Russia 60.0155 Wageningen UniversityNetherlands 60.0158 Newcastle UniversityUnited Kingdom 59.6159 Technical University of DenmarkDenmark 59.5160 Tufts UniversityUnited States 59.4161 University of California, Irvine United States 59.0162 Lancaster UniversityUnited Kingdom 58.9163 Indian Institute of Technology Bombay (IITB)India 58.6 164 Queen Mary, University of LondonUnited Kingdom 58.5165 VU University AmsterdamNetherlands 58.3166 University of ArizonaUnited States 58.0166 University of SussexUnited Kingdom 58.0168 University of LausanneSwitzerland 57.4168 Nanjing UniversityChina 57.4168 Saint-Petersburg State UniversityRussia 57.4171 University of BarcelonaSpain 57.2171 Hokkaido UniversityJapan 57.2173 Stony Brook University, State University of New YorkUnited States 57.1 174 University of BolognaItaly 56.9174 KTH, Royal Institute of TechnologySweden 56.9174 University of TsukubaJapan 56.9177 University of AntwerpBelgium 56.7177 University of AthensGreece 56.7179 Texas A&M UniversityUnited States 56.6180 Universiti Malaya (UM)Malaysia 56.5181 Indian Institute of Technology Delhi (IITD)India 56.4182 Rheinisch-Westfälische Technische Hochschule AachenGermany 56.3183 Rutgers, The State University of New Jersey, New BrunswickUnited States 56.2184 Universität KarlsruheGermany 56.1185 University of GothenburgSweden 55.8186 University of Colorado at BoulderUnited States 55.6186 Universität GöttingenGermany 55.6188 University of CanterburyNew Zealand 55.2189 Macquarie UniversityAustralia 54.9190 Universidad Nacional Autónoma de México (UNAM)Mexico 54.8191 Universite Libre de Bruxelles (ULB)Belgium 54.7191 University of ReadingUnited Kingdom 54.7193 University of BernSwitzerland 54.5193 Indiana University BloomingtonUnited States 54.5195 The Hong Kong Polytechnic UniversityHong Kong 54.4196 University of LeicesterUnited Kingdom 53.9196 Simon Fraser UniversityCanada 53.9198 Chalmers University of TechnologySweden 53.8199 University of Notre DameUnited States 53.6200 University of TwenteNetherlands 53.5【内地大学依次为:清华大学、北京大学、复旦大学、上海交通大学、中国科技大学、南京大学,这六所才是中国名符其实的名牌大学。

2022年世界大学排行榜

2022年世界大学排行榜

此次世界大学排名中,前10名被英美两国全部包揽,在200名榜单中共有30所英国大学。

中国大陆仅有3所学校进入榜单前100,分别是北大、清华、复旦。

在世界大学排名前50名中,有8所英国大学入围,分别是:第2名剑桥大学、第4名伦敦大学学院UCL、第5名牛津大学、第6名帝国理工学院、第21名爱丁堡大学、第26名伦敦国王学院、第28名布里斯托大学和第32名曼彻斯特大学。

12University of Pennsylvania ETH Zurich (Swiss Federal Institute美国94.513 of Technology) 14 15 16 17 18 19 20 21 Cornell University Stanford University Johns Hopkins University University of Michigan McGill University University of Toronto Duke University University of Edinburgh University of California, Berkeley 22 (UCB) 23 24 University of Hong Kong Australian National University National University of Singapore 25 (NUS) King?s College London (University 26 of London) 27 28 Northwestern University University of Bristol瑞士92.8美国美国美国美国加拿大加拿大美国英国92.1 91.7 91.2 91.2 90.4 89.6 89.5 89.2美国88.1中国香港澳大利亚87.9 87.6新加坡87.2英国87.1美国英国85.4 85.4Ecole Polytechnique Fédérale de 29 Lausanne 30 The University of Tokyo University of California, Los Angeles 31 (UCLA) 32 The University of Manchester The Hong Kong University of 33 Science and Technology 34 35 36 37 38 39 école Normale Supérieure, Paris Kyoto University The University of Melbourne Seoul National University University of Wisconsin-Madison The University of Sydney The Chinese University of Hong 40 Kong 41 42 43 44 45 Ecole Polytechnique Brown University New York University (NYU) Peking University University of British Columbia 法国美国美国中国加拿大 79.6 79.5 78.9 78.8 78.6 中国香港 80.1 法国日本澳大利亚韩国美国澳大利亚 83.3 83.3 83.2 82.2 81.4 81.3 中国香港 83.5 英国 84.2 美国 84.6 日本 85 瑞士 85.146The University of Queensland Nanyang Technological University澳大利亚78.247 (NTU) 48 49 50 51 52 53 54 Tsinghua University Carnegie Mellon University Osaka University University of Copenhagen The University of New South Wales Technische Universit?t München University of Glasgow Ruprecht-Karls-Universit?t 55 Heidelberg University of Illinois at 56 Urbana-Champaign University of North Carolina, Chapel 57 Hill 58 59 The University of Warwick University of Washington Ludwig-Maximilians-Universit?t Mü 60 nchen 61 Monash University新加坡77.7中国美国日本丹麦澳大利亚德国英国77.5 77.4 76.8 76.7 76.6 76.4 76.3德国75.5美国75.5美国75.4英国美国73.9 73.7德国72.9澳大利亚72.262University of Amsterdam KAIST - Korea Advanced Institute of荷兰72.163 Science & Technology 64 65 66 67 68 Boston University Tokyo Institute of Technology The University of Sheffield Trinity College Dublin University of Texas at Austin London School of Economics and 69 Political Science (LSE) University of California, San Diego 70 (UCSD) 71 72 73 74 75 76 77 78 79 Lund University The University of Nottingham University of Southampton University of Geneva Leiden University Tohoku University University of Birmingham University of Helsinki The University of Western Australia韩国71.8美国日本英国爱尔兰美国71.7 71.4 71.3 71.3 71.2英国71.1美国70.9瑞典英国英国瑞士荷兰日本英国芬兰澳大利亚70.9 70.7 70.7 70.6 =70.5 =70.5 70.3 70.1 7080 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96National Taiwan University (NTU) Uppsala University KU Leuven The University of Auckland Washington University in St. Louis Utrecht University Nagoya University Freie Universit?t Berlin Georgia Institute of Technology Aarhus University Fudan University University of Zurich Durham University University of St Andrews University of Leeds City University of Hong Kong Purdue University Pohang University of Science And台湾瑞典比利时新西兰美国荷兰日本德国美国丹麦中国瑞士英国英国英国中国香港美国69.9 69.8 69.7 69.3 69.1 68.7 68.6 68.6 68.4 68.4 =68.3 =68.3 67.9 67.6 67.3 =66.9 =66.997 Technology (POSTECH) 98 99 University of Pittsburgh Erasmus University Rotterdam韩国66.8美国荷兰66.1 65.9100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115University of California, Davis Pennsylvania State University The University of Adelaide Delft University of Technology University of Minnesota Ohio State University Universit?t Freiburg Maastricht University University of Alberta University of Groningen University of York University of Oslo Yonsei University Dartmouth College Université de Montréal University of Lausanne Lomonosov Moscow State美国美国澳大利亚荷兰美国美国德国荷兰加拿大荷兰英国挪威韩国美国加拿大瑞士65.9 65.7 65.3 65.1 64.9 64.7 64.4 64.4 64.2 64.2 63.8 63.7 63.5 63.5 63.5 62.4116 University 117 University of Maryland, College Park University of California, Santa 118 Barbara (UCSB)俄罗斯61.8美国61.5美国61.3119 120 121 122 123 124 125 126Georg-August-Universit?t G?ttingen Rice University University of Basel Emory University University of Virginia University of Liverpool Shanghai Jiao Tong Universi ty Newcastle University Université Catholique de Louvain德国美国瑞士美国美国英国中国英国60.9 60.8 60.5 60.4 60.4 60 59.9 59.7比利时59.7日本59.6法国59.6德国爱尔兰丹麦新西兰美国美国荷兰韩国59.4 59.1 59 58.9 58.8 58.7 58.5 58.4Hokkaido University Universidade de S?o Paulo Hebrew University of Jerusalem Karlsruher Institut für Technologie日本巴西以色列58.3 58.1 58141 (KIT) 142 143 144 145 KTH, Royal Institute of Technology Cardiff University Eberhard Karls Universit?t Tübingen University of Bergen Universidad Nacional Autónoma de 146 México (UNAM) Queen Mary, University of London 147 (QMUL) 148 149 University of Ghent University of Bern Rheinisch-Westf?lische Technische 150 Hochschule Aachen Rheinische 151 Friedrich-Wilhelms-Universit?t Bonn 152 153 McMaster University école Normale Supérieure de Lyon德国57.9瑞典英国德国挪威57.7 57.5 57.4 57墨西哥56.8英国56.7比利时瑞士56.6 56.5德国56.3德国56.3加拿大法国56.1 56.1154 155 156 157 158University of Cape Town University of California, Irvine Universiti Malaya (UM) University of Colorado at Boulder Eindhoven University of Technology The Hong Kong Polytechnic南非美国马来西亚美国荷兰55.7 55.7 55.6 55.5 54.9159 University 160 161 162 163 164 165 166 167 168 169 170 171 172 173 Universit?t Wien Wageningen University University of Aberdeen Lancaster University Case Western Reserve University Texas A&M University Queen's University of Belfast Vanderbilt University Nanjing University University of Florida Zhejiang University Stockholm University Université Libre de Bruxelles (ULB) The University of Western Ontario中国香港54.6奥地利荷兰英国英国美国美国英国美国中国美国中国瑞典比利时加拿大54.6 54.6 54.3 54 53.8 53.7 53.5 53.5 53.2 52.9 52.8 52.6 52.6 52.6174 175 176 177 178 179 180 181 182 183 184 185Michigan State University Queen's University Universitat Autònoma de Barcelona VU University Amsterdam University of Bath Sungkyunkwan University University of Illinois, Chicago (UIC) Tufts University University of Exeter Georgetown University University of Arizona University of Leicester University of Science and 美国加拿大西班牙荷兰英国韩国美国美国英国美国美国英国52.3 52.1 52 51.8 51.8 51.7 51.6 51.5 51.4 =51.2 =51.2 51.1186 Technology of China 187 188 189 190 191 192 193 Universitat de Barcelona (UB) University of Sussex Vrije Universiteit Brussel (VUB) University College Cork University of Waterloo National Tsing Hua University University of Gothenburg中国51西班牙英国比利时爱尔兰加拿大台湾瑞典50.9 50.6 50.5 50.2 50.2 50.2 50194Università di Bologna (UNIBO) Pontificia Universidad Católica de意大利49.8195 Chile 196 197 198 199 200 University of Antwerp King Saud University Waseda University University of Iowa Keio University智利49.7比利时沙特阿拉伯日本美国日本49.5 49.4 49.2 49.2 49.1。

QS世界大学排名完整榜单

QS世界大学排名完整榜单

北京时间2018年6月6日,全球高等教育研究机构QS Quacquarelli Symonds发布了2019年QS世界大学排名,以下鑫泉留学为您带来2018-2019年QS世界大学排名完整榜单,想看完整版的小伙伴们快戳进来吧!最新的QS世界大学综合排名发布了!美国麻省理工大学MIT创造了历史,连续7年稳坐QS综排霸主地位无人能敌!此次排名中,英美大学表现稳定,Top10中牛津剑桥分列其中。

新加坡国立大学依旧是亚洲排名最高,并上升至11位;澳大利亚国立大学列榜上24名,为澳洲最高。

[排名亮点]美国:依然主导和去年一样,今年的QS世界大学排行榜的前四名依然被美国大学包揽!斯坦福大学、哈佛大学、加州理工大学分列二到四名。

多数美国大学的排名都有所上升,TOP20里的耶鲁大学、哥伦比亚大学、密歇根大学都至少上升了一个名次。

英国:无惧脱欧,排名坚挺在本次QS排名发布以前,舆论普遍猜测,脱欧是否会对英国大学的排名产生不良影响。

目前从结果来看,英国大学的排名基本保持稳定,多数英国大学的排名都有所上升,除了少数学校,如剑桥大学,今年下降了一位,输给了老对手牛津。

牛津大学副校长Louise Richardson 在得知这一结果后表示:对牛津排名欧洲大学第一感到非常骄傲,希望在英国脱欧以后也能保持这一排名。

值得注意的是,牛津剑桥最近都深陷在招生中歧视黑人的舆论风波,可谓是难兄难弟。

澳洲:缺席TOP20去年,澳洲国立大学ANU冲进了QS榜单的TOP20,成为TOP20中唯一一所澳洲大学。

可惜的是好消息没有继续,今年ANU跌出了排名的TOP20。

加拿大:排名稳定加拿大大学今年在排名上建树不多。

多伦多大学仍然是加拿大排名最高的大学,领先麦吉尔大学5个身位,两校的排名差距进一步加大。

今年加拿大共有3所大学挺进TOP50,但在51-100的排名位置并没有加拿大大学的身影。

中国:清华首次挺进TOP20今年依然有六所中国大陆的大学进入QS榜单的TOP100名,值得注意的是,今年清华大学首次冲进前20名,位列17名。

The COST 2100 MIMO channel model

The COST 2100 MIMO channel model

I NTRODUCTIONMultiple-input multiple-output (MIMO) is an enabling technology in order to meet the grow-ing demands for faster and more reliable trans-missions over harsh wireless channels. Overrecent years, research on MIMO technology has covered the gamut from theory to applications, and the technology is now included as a key component in standards such as Third Genera-tion Partnership Project Long Term Evolution (3GPP LTE) and WiMAX 802.16e.In MIMO systems, multiple collocated or dis-tributed antenna arrays replace the traditional single-antenna units, enabling the system to exploit the spatial dimension of radio channels.The technology can be used to increase the channel capacity by spatial multiplexing, to miti-gate multipath fading by spatial diversity, and to achieve a better signal-to-noise (SNR) level by directional transmission (i.e., beamforming) [1].As new wireless applications have become more and more sophisticated, the need for more accurate channel models has increased accord-ingly. For instance, in the planning of conven-tional GSM networks, simple path loss models were sufficient for sensible coverage prediction, whereas nowadays, the channel models needed in the development of MIMO systems have to represent the signal dispersion in the angular, delay, and Doppler domains simultaneously. The emergence of multi-user MIMO and cooperative communication techniques also calls for realistic multi-link channel models.Stochastic MIMO channel models rely on a limited number of parameters to efficiently describe the channel statistics in different domains. The computational complexity of the model depends on the scope of the systems. In this respect, there are two major approaches. On one hand, analytical (non-physical) models char-acterize the MIMO channel matrix, including the antenna effects, by a mathematical descrip-tion. Examples include the 802.11n tapped angu-lar-delay line model, the correlation-based Kronecker model, and the eigenspace-based Weichselberger model [2]. On the other hand, physical models characterize the radio waves by their delay, directions of departure (DoD), directions of arrival (DoA), and complex path weight for different polarizations. Physical mod-els are antenna-independent; hence, they can be directly combined with the antenna array responses to synthesize the MIMO channel matrix. Geometry-based stochastic channel mod-els (GSCMs) further constitute a group of advanced stochastic physical MIMO channel models that statistically describe the explicit locations of the scatterers.The COST 2100 MIMO channel model is a GSCM that was built on the framework of the earlier COST 259 and 273 models [3]. The COST 259 channel model [4] was the first GSCM con-sidering multi-antenna base stations, while full MIMO systems were later targeted by the COST 273 model. The COST 2100 channel model extends the COST 273 model to cover MIMO systems at large, including multi-user, multicellu-lar, and cooperative aspects, without requiring a fundamental shift in the original modeling phi-losophy.This article aims to give a concise overview of the COST 2100 channel model, covering the overall structure as well as the individual key elements constituting the model framework. TheL INGFENG L IU AND C LAUDE O ESTGES, U NIVERSITÉCA THOLIQUE DE L OUV AINJ UHO P OUTANEN, K A TSUYUKI H ANEDA, AND P ERTTI V AINIKAINEN, A ALTO U NIVERSITY S CHOOLOF E LECTRICAL E NGINEERINGF RANÇOIS Q UITIN, U NIVERSITY OF C ALIFORNIA A T S ANTA B ARBARAF REDRIK T UFVESSON, L UND U NIVERSITYP HILIPPE D E D ONCKER, U NIVERSITÉLIBRE DE B RUXELLESA BSTRACTThe COST 2100 channel model is a geome-try-based stochastic channel model (GSCM) thatcan reproduce the stochastic properties ofMIMO channels over time, frequency, and space.In contrast to other popular GSCMs, the COST2100 approach is generic and flexible, making itsuitable to model multi-user or distributedMIMO scenarios. In this article a conciseoverview of the COST 2100 channel model ispresented. Main concepts are described, togeth-er with useful implementation guidelines. Recentdevelopments, including dense multipath compo-nents, polarization, and multi-link aspects, arealso discussed.T HE COST 2100 MIMO C HANNEL M ODELmost recent achievements, including multi-link aspects, are presented, while considerations about parameterization, implementation, and validation are discussed later.R EVIEW OF G EOMETRY-B ASEDS TOCHASTIC C HANNEL M ODELSThe principle of GSCMs is to model the stochas-tic properties of wireless channels, with respect to the delay and double-directional domains, by analyzing the geometric distribution of the inter-acting objects (or scatterers) in the environment that contribute scattering to the radio channels. In GSCMs, a radio channel results from the superposition of different propagation paths, known as the multipath components (MPCs). Those MPCs are caused by the interaction between the radio waves and the objects in the environment, where each scattered contribution is characterized in both delay and direction domains. These scattering mechanisms may con-sist of a single interaction, that is, with one object (single-bounce), or of a number of con-secutive interactions with multiple objects (mul-tiple-bounce). The MPCs generated by either ofthese scattering mechanisms are representedthrough a geometric description of their proper-ties in three parameter space domains: delay,DoD, and DoA.Experimentally, it was observed that MPCstend to appear in packets in these domains.Intuitively, this makes sense: if a building acts asan interacting object, it is likely that the buildingwill create several reflected paths, caused bywindows, balconies, and so on, with similardelays and directions, given the finite size of thebuilding. In addition to being experiment-based,grouping MPCs with similar delays and direc-tions into packets (or clusters, as they are usuallyknown) enables the number of modeling param-eters to be significantly reduced. This explainswhy clusters constitute the basis of all recentGSCMs, from COST 259 to WINNER II.Whereas clusters are the parameterized quan-tities, it is important that overall models reflectreality. In particular, the channel large-scaleparameters (LSPs), such as the global delay andangular spreads, as synthesized from GSCMs,should be statistically reliable and consistent withexperimental observations. This means that clus-ters should be parameterized individually, yet insuch way that the global accuracy is guaranteed.This is where two main approaches can be used:a system-level approach, such as the widelyknown 3GPP Spatial Channel Model (SCM) [5]and the recent WINNER II model [6], or a clus-ter-level approach, such as the COST family ofchannel models. Both approaches rely on essen-tially different simulation processes. In system-level GSCMs (taking WINNER II as anexample), the modeling process is specified foreach instance of the channel between a base sta-tion (BS) and a mobile station (MS) by:•Defining the LSPs by their stochastic distribu-tion for each channel instance•Generating the clusters and MPCs accordingto these LSPs for any given locations of bothBS and MSBy contrast, in the cluster-level COST 2100model, the modeling process is specified oncefor the entire environment by:•Defining a large quantity of clusters with con-sistent stochastic parameters throughout thesimulation environment based on the BS loca-tion (yet not all clusters are visible at any timeinstant)•Defining the MS location and determining thescattering from the so-called visible clusters ateach channel instance•Synthesizing the LSPs based on the clusterscatteringThe advantage of such a system-level channelmodel is that the LSP statistics in a specific sce-nario are always guaranteed in each series ofchannel instances. However, forcing the statisti-cal consistency of the LSPs brings two criticallimitations:•The rigid structure of the approach does notspontaneously support continuous channeldescriptions over intervals larger than theauto-correlation distance, hence hamperingthe simulation of larger MS motions.•As the propagation environment is describedfrom the original LSPs only, adding new LSPs(e.g., the inter-link correlation) requires thatwe redefine the entire initialization of theenvironment, thereby hindering a straightfor-ward extension of the model.By contrast, the cluster-level COST 2100model is not constrained by the LSPs, and theenvironment is described independent of the MSlocation. This allows for smoother modeling oftime-variant channels. Basically, it is the MSmotion through the environment that will causethe channel statistics to vary, even over periodslarger than the auto-correlation distance. Fur-thermore, accounting for new LSPs, such as thecorrelation properties of multi-link channels, canbe carried out in a flexible fashion (i.e., withoutmodifying the model structure) by exploringadvanced properties of the clusters. Naturally, inany single realization of the channel, a cluster-level GSCM is expected to exhibit larger devia-tions of the LSP statistics than system-levelGSCMs, as these statistics are not expresslyforced by the model. Nevertheless, the averageLSP statistics remain typically consistent withmeasurements, as illustrated later.Regarding complexity, both system- and clus-ter-level GSCMs are similar as far as simulationsare concerned, as they both rely on adding con-tributions from a number of MPCs. Arguably,the cluster-level COST 2100 model probablyrelies on a more complex representation of theclusters, making their identification, estimation,and parameterization from measurements a criti-cal task.G ENERAL S TRUCTURE OF THECOST 2100 C HANNEL M ODELThe COST 2100 channel model was originallyproposed for simulating the radio channelbetween a static multiple-antenna BS and a mul-tiple-antenna MS. In most cases, the MPCs aremapped to the corresponding scatterers, and arecharacterized by their delay, azimuth of depar-Arguably, thecluster-level COST2100 modelprobably relies on amore complexrepresentation of theclusters, makingtheir identification,estimation, andparameterizationfrom measurementsa critical task.K ATSUYUKI H ANEDA(katsuyuki.haneda@aalto.fi) received his Doctor of Engineering from the Tokyo Institute of Technol-ogy, Japan, in 2007. He has been a post-doctoral researcher at the SMARAD Centre of Excellence in the Aalto University (former Helsinki University of Technology) School of Electri-cal Engineering, Espoo, Finland, since 2007. He was the recipient of the Student Paper Award presented at the 7th International Symposium on Wireless Personal Multimedia Communications. He has been serving as a co-chair of the Topical Working Group Indoor of the Euro-COST Action IC1004 “Cooperative Radio Communications for Green Smart Environments”. His research expertise includes radio wave propagation measurements and modeling, ultrawide-band radio, and multiple-input multiple-output radio com-munications, radio sensors and antennas, and applied electromagnetics for medical scenarios. Since 2012, he has been serving as an Associate Editor of IEEE Transactions on Antennas and Propagation.P HILIPPE D E D ONCKER(pdedonck@ulb.ac.be) received his engineering and Ph.D. degrees from ULB in 1996 and 2001, respectively. He is currently a professor with ULB. His research interests focus on wireless communications andelectromagnetics.F REDRIK T UFVESSON(fredrik.tufvesson@eit.lth.se) received hisM.S. degree in electrical engineering in 1994, his Licentiatedegree, in 1998 and his Ph.D. degree in 2000, all fromLund University, Sweden. After almost two years at a start-up company, Fiberless Society, he is now an associate pro-fessor at the Department of Electrical and InformationTechnology. His main research interests are channel mea-surements and modeling for wireless communication,including channels for both MIMO and UWB systems.Besides this, he also works with research projects on radio-based positioning as well as on his company on wirelesssearch and rescue equipment.P ERTTI V AINIKAINEN(pertti.vainikainen@aalto.fi) received hisM.S. in technology, Licentiate of Science in technology,and Doctor of Science in technology from Helsinki Universi-ty of Technology (TKK) in 1982, 1989, and 1991, respec-tively. Since 1998 he has been a professor in radioengineering in the Radio Laboratory (since 2008 theDepartment of Radio Science and Engineering) of TKK(since 2010, Aalto University School of Science and Tech-nology). His main fields of interest are antennas and prop-agation in radio communications and industrialmeasurement applications of radio waves. He is the authoror coauthor of six books or book chapters and about 380refereed international journal or conference publications,and the holder of 11 patents.C LAUDE O ESTGES(claude.oestges@uclouvain.be) receivedM.S. and Ph.D. degrees in electrical engineering from UCLin 1996 and 2000. In January 2001, he joined as a post-doctoral scholar the Smart Antennas Research Group(Information Systems Laboratory), Stanford University, Cali-fornia. He is presently a research associate of the BelgianFonds de la Recherche Scientifique and assistant professorwith the Electrical Engineering Department, Institute forInformation and Communication Technologies, Electronicsand Applied Mathematics, UCL. He also currently serves asan Associate Editor for IEEE Transactions on Antennas andPropagation and IEEE Transactions on Vehicular Technolo-gy. He is the author or co-author of two books and morethan 170 journal papers and conference communications,and was the recipient of the 1999-2000 IET Marconi Premi-um Award and the 2004 IEEE Vehicular Technology SocietyNeal Shepherd Award.。

Cardinal

Cardinal

FORMALIZED MATHEMATICSVol.1,No.2,March–April1990Universit´e Catholique de LouvainCardinal NumbersGrzegorz Bancerek1Warsaw UniversityBia l ystokSummary.We present the choice function rule in the beginning of the article.In the main part of the article we formalize the base of cardinaltheory.In thefirst section we introduce the concept of cardinal numbersand order relations between them.We present here Cantor-Bernstein the-orem and other properties of order relation of cardinals.In the secondsection we show that every set has cardinal number equipotence to it.Weintroduce notion of alephs and we deal with the concept offinite set.Atthe end of the article we show two schemes of cardinal induction.Somedefinitions are based on[9]and[11].MML Identifier:CARDM yielding an ordinal number,is defined by:1Supported by RPBP III.24C1377c 1990Fondation Philippe le HodeyISSN0777–4028378Grzegorz BancerekIn the sequel K,M,N will be cardinal numbers.We now state three propo-sitions:(3)R.(23)If X⊆M,then X≤M.(24)A⊆A.(25)If X∈M,then X<M.(26)X≤Y if and only if there exists f such that f is one-to-one anddom f=X and rng f⊆Y.(27)If X⊆Y,then X≤Y.(28)X≤Y if and only if there exists f such that dom f=Y and X⊆rng f.Cardinal Numbers379(29)X≈2X.(30)X<2X.Let us consider X.The functor X+yielding a cardinal number,is defined by: X<X+and for every M such that X<M holds X+≤M.We now state several propositions:(31)M=X+if and only if X<M and for every N such that X<N holdsM≤N.(32)M<M+.(33)0<X+.(34)If X=Y,then X+=Y+.(35)If X≈Y,then X+=Y+.(36)A∈A+.In the sequel L,L1will be transfinite sequences.Let us consider M.The predicate M is a limit cardinal number is defined by:for no N holds M=N+.One can prove the following proposition(37)M is a limit cardinal number if and only if for no N holds M=N+.Let us consider A.The functorℵA yielding any,is defined by:there exists L such thatℵA=last L and dom L=succ A and L(0)=and{y})+ for all B,y such that succ B∈succ A and y=L(B)holds L(succ B)=(and for all B,L1such that B∈succ A and B=0and B is a limit ordinal number and L1=L B holds L(B)=sup L1.Let us consider A.ThenℵA is a cardinal number.The following propositions are true:(38)ℵ0=.(39)ℵsucc A=ℵA+.(40)If A=0and A is a limit ordinal number,then for every L such thatdom L=A and for every B such that B∈A holds L(B)=ℵB holdsℵA=sup L.(41)A∈B if and only ifℵA<ℵB.(42)IfℵA=ℵB,then A=B.(43)A⊆B if and only ifℵA≤ℵB.(44)If X⊆Y and Y⊆Z and X≈Z,then X≈Y and Y≈Z.(45)If2Y⊆X,then Y<X and Y≈X.(46)X≈∅if and only if X=∅.(47)∅=0.(48)X≈{x}if and only if there exists x such that X={x}.(49)X={x}if and only if there exists x such that X={x}.(50){x}=1.380Grzegorz BancerekLet us consider n.The functorn=f(n)and dom f=and f(0)=0and for every{x}).element n of for every x such that x=f(n)holds f(n+1)=succ( We now state a number of propositions:(51)n+1=succ(n∈ω.(54)If A is natural,then there exists n such thatn=n⊆n.(64)If m,then n=m.(65)If A∈ω,then A is a cardinal number.(66)n.Let us consider n.The functor n yielding a cardinal number,is defined by: n=n.(68)If X≈Y or Y≈X but X isfinite,then Y isfinite.(69)n.(75)If X isfinite,then there exists n such that X≈Seg n.(76)n+=n+1.Let us consider X.Let us assume that X isfinite.The functor card X yieldsa natural number and is defined by:card X=X.We now state several propositions:(77)If X isfinite,then card X=n if and only if n=X.(78)card∅=0.Cardinal Numbers381(79)card{x}=1.(80)If Y isfinite and X⊆Y,then card X≤card Y.(81)If X isfinite or Y isfinite but X≈Y,then card X=card Y.(82)If X isfinite,then X+isfinite.In the article we present several logical schemes.The scheme CardinalCompInd concerns a unary predicate P and states that: for every M holds P[M]provided the parameter satisfies the following condition:•for every M such that for every N such that N<M holds P[N] holds P[M].Next we state several propositions:(83)ℵ0=ω.(84)ω=ωand=ω.(85)ωis a limit cardinal number.(86)If M isfinite,then there exists n such that M=n.(87)card(Seg n)=n and card(382Grzegorz Bancerek[8]Agata Darmochwa l.Finite sets.Formalized Mathematics,1(1):165–167,1990.[9]Wojciech Guzicki and Pawe l Zbierski.Podstawy teorii mnogo´s ci.PWN,Warszawa,1978.[10]Krzysztof Hryniewiecki.Basic properties of real numbers.FormalizedMathematics,1(1):35–40,1990.[11]Kazimierz Kuratowski and Andrzej Mostowski.Teoria mnogo´s ci.PTM,Wroc l aw,1952.[12]Andrzej Trybulec.Tarski Grothendieck set theory.Formalized Mathemat-ics,1(1):9–11,1990.[13]Edmund Woronowicz.Relations and their basic properties.FormalizedMathematics,1(1):73–83,1990.Received September19,1989。

Université Catholique de Louvain Introduction to Lattice Theory

Université Catholique de Louvain Introduction to Lattice Theory

FORMALIZED MATHEMATICSNumber1,January1990Universit´e Catholique de LouvainIntroduction to Lattice TheoryStanis l aw˙Zukowski1Warsaw UniversityBia l ystokSummary.A lattice is defined as an algebra on a nonempty set with binary operations join and meet which are commutative and associative,and satisfy theabsorption identities.The following kinds of lattices are considered:distributive,modular,bounded(with zero and unit elements),complemented,and Boolean(withcomplement).The article includes also theorems which immediately follow fromdefinitions.The terminology and notation used in this paper are introduced in the papers[1]and [2].The scheme BooleDomBinOpLam deals with a constant A that has the type BOOLEOperation of Ast for a,b being Element of A holds o.(a,b)=F(a,b)for all values of the parameters.We consider structures LattStr,which are systemscarrier,join,meetwhere carrier has the type DOMAIN,and join,meet have the type Binary 1Supported by RPBP.III-24.C1.215c1990Fondation Philippe le Hodey ISSN0777-4028216Stanis l aw˙ZukowskiThe functorp⊓q,with values of the type Element of the carrier of G,is defined byit=(the meet of G).(p,q).The following propositions are true:(1)p⊔q=(the join of G).(p,q),(2)p⊓q=(the meet of G).(p,q).Let us consider G,p,q.The predicatep⊑q is defined by p⊔q=q.We now state a proposition(3)p⊑q iffp⊔q=q.The modeLattice,which widens to the type LattStr,is defined by(for a,b being Element of the carrier of it holds a⊔b=b⊔a)& (for a,b,c being Element of the carrier of it holds a⊔(b⊔c)=(a⊔b)⊔c)& (for a,b being Element of the carrier of it holds(a⊓b)⊔b=b)&(for a,b being Element of the carrier of it holds a⊓b=b⊓a)& (for a,b,c being Element of the carrier of it holds a⊓(b⊓c)=(a⊓b)⊓c) &for a,b being Element of the carrier of it holds a⊓(a⊔b)=a.One can prove the following proposition(4)(for p,q holds p⊔q=q⊔p)&(for p,q,r holds p⊔(q⊔r)=(p⊔q)⊔r)&(for p,q holds(p⊓q)⊔q=q)&(for p,q holds p⊓q=q⊓p)&(for p,q,r holds p⊓(q⊓r)=(p⊓q)⊓r)&(for p,q holds p⊓(p⊔q)=p)implies G is Lattice.In the sequel L has the type Lattice;a,b,c have the type Element of the carrier of L.One can prove the following propositions:(5)a⊔b=b⊔a,(6)a⊓b=b⊓a,(7)a⊔(b⊔c)=(a⊔b)⊔c,Introduction to Lattice Theory217(8)a⊓(b⊓c)=(a⊓b)⊓c,(9)(a⊓b)⊔b=b&b⊔(a⊓b)=b&b⊔(b⊓a)=b&(b⊓a)⊔b=b,(10)a⊓(a⊔b)=a&(a⊔b)⊓a=a&(b⊔a)⊓a=a&a⊓(b⊔a)=a.The modeDistributiveLattice.The modeModularLattice.The modeLower Lattice,which widens to the type Lattice,is defined byex c being Element of the carrier of itst for a being Element of the carrier of it holds c⊓a=c.Next we state a proposition(13)(ex c st for a holds c⊓a=c)implies L is Lower Lattice.The modeUpper Lattice,which widens to the type Lattice,is defined byex c being Element of the carrier of itst for a being Element of the carrier of it holds c⊔a=c.218Stanis l aw˙ZukowskiOne can prove the following proposition(14)(ex c st for a holds c⊔a=c)implies L is Upper Lattice.The modeBoundBound BoundBound BoundLattice.Let us consider L.Assume that the following holdsex c st for a holds c⊓a=c.The functor⊥L,yields the type Element of the carrier of L and is defined byit⊓a=it.Let L have the type Lower Lattice.Let us note that it makes sense to consider the following functor on a restricted area.Then⊥L is Element of the carrier of L.Let us consider L.Assume that the following holdsex c st for a holds c⊔a=c.The functor⊤L,with values of the type Element of the carrier of L,is defined byit⊔a=it.Let L have the type Upper Lattice.Let us note that it makes sense to consider the following functor on a restricted area.Then⊤L is Element of the carrier of L.Let L have the type BoundIntroduction to Lattice Theory219⊤L is Element of the carrier of L.Let us consider L,a,b.Assume that the following holdsL is Bounda ofb is defined by a⊔b=⊤L&a⊓b=⊥L.The modeLattice Complement,which widens to the type Bounda of b.The modeBooleanwithLattice.The following propositions are true:(16)a⊔b=b iffa⊓b=a,(17)a⊔a=a,(18)a⊓a=a,(19)for L holds(for a,b,c holds a⊓(b⊔c)=(a⊓b)⊔(a⊓c))ifffor a,b,c holds a⊔(b⊓c)=(a⊔b)⊓(a⊔c),(20)a⊑b iffa⊔b=b,(21)a⊑b iffa⊓b=a,(22)a⊑a⊔b,(23)a⊓b⊑a,(24)a⊑a,(25)a⊑b&b⊑c implies a⊑c,(26)a⊑b&b⊑a implies a=b,(27)a⊑b implies a⊓c⊑b⊓c,220Stanis l aw˙Zukowski(28)a⊑b implies c⊓a⊑c⊓b,(29)(for a,b,c holds(a⊓b)⊔(b⊓c)⊔(c⊓a)=(a⊔b)⊓(b⊔c)⊓(c⊔a))implies L is DistributiveLattice;a,b,c de-note objects of the type Element of the carrier of L.One can prove the following propositions:(30)for L holds(for a,b,c holds a⊓(b⊔c)=(a⊓b)⊔(a⊓c))&for a,b,c holds(b⊔c)⊓a=(b⊓a)⊔(c⊓a),(31)for L holds(for a,b,c holds a⊔(b⊓c)=(a⊔b)⊓(a⊔c))&for a,b,c holds(b⊓c)⊔a=(b⊔a)⊓(c⊔a),(32)c⊓a=c⊓b&c⊔a=c⊔b implies a=b,(33)a⊓c=b⊓c&a⊔c=b⊔c implies a=b,(34)(a⊔b)⊓(b⊔c)⊓(c⊔a)=(a⊓b)⊔(b⊓c)⊔(c⊓a),(35)L is ModularLattice;a,b,c have the type Element of the carrier of L.One can prove the following two propositions:(36)a⊑c implies a⊔(b⊓c)=(a⊔b)⊓c,(37)c⊑a implies a⊓(b⊔c)=(a⊓b)⊔c.In the sequel L has the type Lower Lattice;a,c have the type Element of the carrier of L.We now state four propositions:(38)ex c st for a holds c⊓a=c,(39)⊥L⊔a=a&a⊔⊥L=a,(40)⊥L⊓a=⊥L&a⊓⊥L=⊥L,(41)⊥L⊑a.In the sequel L denotes an object of the type Upper Lattice;a,c denote objects of the type Element of the carrier of L.The following four propositions are true:(42)ex c st for a holds c⊔a=c,(43)⊤L⊓a=a&a⊓⊤L=a,Introduction to Lattice Theory221(44)⊤L⊔a=⊤L&a⊔⊤L=⊤L,(45)a⊑⊤L.In the sequel L has the type Lattice Complement;a,b have the type Elementof the carrier of L.One can prove the following proposition(46)ex a st a is complementLattice.The functorx c,yields the type Element of the carrier of L and is defined byit is complementLattice;x which is an object of the type Element of the carrier of L. Let us note that it makes sense to consider the following functor on a restricted area. Thenx c is Element of the carrier of L.In the sequel L will denote an object of the type BooleanLattice;a,b will have the type Elementof the carrier of L.We now state three propositions:(54)L is Lower Lattice&L is Upper Lattice,222Stanis l aw˙Zukowski(55)a is complementa of b)implies L is Lattice Complement.In the sequel L has the type Lattice Complement.One can prove the following proposition(57)L is Distributive Lattice.In the sequel L has the type BooleanwithLattice.References[1]Czes l aw Byli´n ski.Binary operations.Formalized Mathematics,1,1990.[2]Andrzej Trybulec and Agata Darmochwa l.Boolean domains.Formalized Mathemat-ics,1,1990.Received April14,1989。

IMAGE SENSOR

IMAGE SENSOR

专利名称:IMAGE SENSOR发明人:BOL, David,COUNIOT, Numa 申请号:EP15701349.1申请日:20150126公开号:EP3097685A1公开日:20161130专利内容由知识产权出版社提供摘要:In an image sensor, a front-end circuit provides an output signal indicative of the amount of light in response to at least one input signal. The front-end circuit includes a transistor having a threshold voltage that affects a relationship between the output signal and the level of the detection quantity. This transistor has a biasing node via which a biasing voltage can be applied to a semiconductor region that affects the threshold voltage of the transistor. A replica of the front-end circuit receives at least one defined input signal, among which is a substitute of the detection quantity having a defined level. The replica is arranged in a control loop that controls the biasing voltage that is applied to the biasing node in the replica, so that the replica provides a defined output signal. This biasing voltage is then also applied to the biasing node in the front-end circuit.申请人:Université Catholique de Louvain地址:Place de l'Université 1 1348 Louvain-la-Neuve BE国籍:BE代理机构:den Braber, Gerard Paul更多信息请下载全文后查看。

世界知名大学详细及中英文全称

世界知名大学详细及中英文全称

世界知名大学详细及中英文全称哈佛大学(Harvard University )斯坦福大学(Stanford University )牛津大学(University of Oxford )普林斯顿大学(Princeton University )剑桥大学(University of Cambridge )麻省理工学院(Massachusetts Institute of Technology )芝加哥大学(University of Chicago )加州大学伯克利分校(University of California, Berkeley )耶鲁大学(Yale University )哥伦比亚大学(Columbia University )加州理工学院(California Institute of Technology )加州大学洛杉矶分校(University of California, Los Angeles ) 约翰?霍普金斯大学(Johns Hopkins University )瑞士联邦理工学院-苏黎世(Swiss Federal Institute of Technology Zürich )宾夕法尼亚大学(University of Pennsylvania )密歇根州立大学(University of Michigan )多伦多大学 (University of Toronto )康奈尔大学 (Cornell University )卡耐基梅隆大学(Carnegie Mellon University )杜克大学(Duke University )英属哥伦比亚大学(University of British Columbia )佐治亚理工学院(Georgia Institute of Technology )西北大学(Northwestern University )威斯康辛麦迪逊大学(University of Wisconsin-Madison)麦吉尔大学 (McGill University )德克萨斯州大学奥斯汀分校(University of Texas at Austin )东京大学(University of Tokyo )伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana Champaign ) 卡罗林斯卡学院(Karolinska Institute )加州大学圣芭芭拉分校(University of California, Santa Barbara ) 爱丁堡大学(University of Edinburgh )墨尔本大学(University of Melbourne )澳大利亚国立大学(Australian National University )加州大学戴维斯分校(University of California, Davis )新加坡国立大学(National University of Singapore )北卡罗来纳州大学教堂山分校(University of North Carolina at Chapel Hill )纽约大学(New York University)慕尼黑大学(Ludwig-Maximilians-Universit?t München)曼彻斯特大学(University of Manchester )布朗大学(Brown University )京都大学(Kyoto University )波士顿大学(Boston University )南加利福尼亚大学(University of Southern California )伦敦大学国王学院(King's College London )悉尼大学(University of Sydney )巴黎高等师范大学(?cole Normale Supérieure )匹兹堡大学(University of Pittsburgh )苏黎世大学(University of Zürich)麦克马斯特大学(McMaster University )布里斯托大学(University of Bristol )哥廷根大学(Georg-August-Universit?t G?ttingen )范德堡大学(Vanderbilt University )清华大学(Tsinghua University )莱斯大学(Rice University )海德堡大学(Universit?t Heidelberg )昆士兰大学(University of Queensland Australia )埃默里大学(Emory University )瓦格宁根大学(Wageningen University and Research Center ) 科罗拉多大学波尔得分校(University of Colorado Boulder ) 塔夫斯大学(Tufts University )莱顿大学(Leiden University )隆德大学(Lund University )罗彻斯特大学(University of Rochester)杜伦大学(Durham University )巴黎第六大学(Université Pierre et Marie Curie)加州大学欧文分校(University of California, Irvine) 乌普萨拉大学(Uppsala University)慕尼黑工业大学(Technische Universit?t München)达特茅斯大学(Dartmouth College)赫尔辛基大学(University of Helsinki)阿姆斯特丹大学(University of Amsterdam)凯斯西储大学(Case Western Reserve University)密歇根州立大学(Michigan State University)亚利桑那大学(University of Arizona)苏塞克斯大学(University of Sussex)阿尔伯塔大学(University of Alberta)谢菲尔德大学(University of Sheffield)格拉斯哥大学(University of Glasgow)代尔夫特理工大学(Delft University of Technology)蒙特利尔大学(University of Montreal)根特大学(Ghent University)东京工业大学(Tokyo Institute of Technology)加州大学圣克鲁兹分校(University of California, Santa Cruz) 巴塞尔大学(Universit?t Basel)伯尔尼大学(University of Bern)犹他大学(University of Utah)纽约州立大学石溪分校(Stony Brook University)莫纳什大学(Monash University)大阪大学 (Osaka University)东北大学(Tohoku University)耶路撒冷希伯来大学(Hebrew University of Jerusalem )奥胡斯大学(Aarhus University)佛罗里达大学(University of Florida )南安普顿大学(University of Southampton)日内瓦大学(University of Geneva)斯德哥尔摩大学(Stockholm University)利兹大学(University of Leeds)格罗宁根大学(University of Groningen)弗吉尼亚大学(University of Virginia)哥本哈根大学(University of Copenhagen )维也纳大学(University of Vienna)诺丁汉大学(University of Nottingham)加州大学河滨分校(University of California, Riverside) 伯明翰大学(University of Birmingham)布兰迪斯大学(Brandeis University)香港中文大学(Chinese University of Hong Kong)阿姆斯特丹自由大学(VU University Amsterdam)内梅亨大学(Radboud University Nijmegen)德克萨斯A&M大学(Texas A&M University)特来维夫大学(Tel Aviv University)伊利诺伊大学芝加哥分校(University of Illinois at Chicago)巴黎第七大学(Université Paris Diderot - Paris 7)鲁汶大学(Université Catholique d e Louvain)迈阿密大学(University of Miami)新南威尔士大学(University of New South Wales)丹麦科技大学(Technical University of Denmark)圣保罗大学(University of S?o Paulo)特拉华大学(University of Delaware)奥斯陆大学(University of Oslo)法兰克福大学(Johann Wolfgang Goethe-Universit?t Frankfurt am Main) 利物浦大学(University of Liverpool)弗莱堡大学(Albert-Ludwigs-Universit?t Freiburg)西澳大学(University of Western Australia)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FORMALIZED MATHEMATICSNumber1,January1990Universit´e Catholique de LouvainDomains and Their Cartesian ProductsAndrzej Trybulec1Warsaw UniversityBia l ystokSummary.The article includes:theorems related to domains,theorems re-lated to Cartesian products presented earlier in various articles and simplified hereby substituting domains for sets and omitting the assumption that the sets involvedmust not be empty.Several schemes and theorems related to Fraenkel operator aregiven.We also redefine subset yielding functions such as the pair of elements of aset and the union of two subsets of a set.The terminology and notation used in this paper have been introduced in the following articles:[2],[5],[1],[4],and[3].For simplicity we adopt the following convention:a, b,c,d will have the type Any;A,B will have the type set;D,X1,X2,X3,X4,Y1, Y2,Y3,Y4will have the type DOMAIN;x1,y1,z1will have the type Element of X1;x2will have the type Element of X2;x3will have the type Element of X3;x4 will have the type Element of X4.The following three propositions are true:(1)A is DOMAIN iffA=∅,(2)D=∅,(3)a is Element of D implies a∈D.In the sequel A1,B1will denote objects of the type Subset of X1.One can prove the following propositions:(4)A1=B1c ifffor x1holds x1∈A1iffnot x1∈B1,(5)A1=B1c ifffor x1holds not x1∈A1iffx1∈B1,(6)A1=B1c ifffor x1holds not(x1∈A1iffx1∈B1),(7) x1,x2 ∈[:X1,X2:],116Andrzej Trybulec(8) x1,x2 is Element of[:X1,X2:],(9)a∈[:X1,X2:]implies ex x1,x2st a= x1,x2 .In the sequel x denotes an object of the type Element of[:X1,X2:].One can prove the following propositions:(10)x= x1,x2 ,(11)x=x1&x=x2,(12)for x,y being Element of[:X1,X2:]st x1=y1&x2=y2holds x=y,(13)[:A,D:]⊆[:B,D:]or[:D,A:]⊆[:D,B:]implies A⊆B,(14)[:X1,X2:]=[:A,B:]implies X1=A&X2=B.Let us consider X1,X2,x1,x2.Let us note that it makes sense to consider the following functor on a restricted area.Thenx1,x2 is Element of[:X1,X2:].The arguments of the notions defined below are the following:X1,X2which are objects of the type reserved above;x which is an object of the type Element of[:X1,X2:].Let us note that it makes sense to consider the following functors on restricted areas.Thenx1is Element of X1,x2is Element of X2.One can prove the following propositions:(15)a∈[:X1,X2,X3:]iffex x1,x2,x3st a= x1,x2,x3 ,(16)(for a holds a∈D iffex x1,x2,x3st a= x1,x2,x3 )implies D=[:X1,X2,X3:],(17)D=[:X1,X2,X3:]ifffor a holds a∈D iffex x1,x2,x3st a= x1,x2,x3 ,(18)[:X1,X2,X3:]=[:Y1,Y2,Y3:]implies X1=Y1&X2=Y2&X3=Y3.In the sequel x,y will have the type Element of[:X1,X2,X3:].Next we state several propositions:(19)x= a,b,c implies x1=a&x2=b&x3=c,(20)x= x1,x2,x3 ,(21)x1=(x qua Any)11&x2=(x qua Any)12&x3=(x qua Any)2,Domains and Their Cartesian Products117(22)x=x1&x=x2&x=x3,(23) x1,x2,x3 ∈[:X1,X2,X3:].Let us consider X1,X2,X3,x1,x2,x3.Let us note that it makes sense to consider the following functor on a restricted area.Thenx1,x2,x3 is Element of[:X1,X2,X3:].The arguments of the notions defined below are the following:X1,X2,X3which are objects of the type reserved above;x which is an object of the type Element of [:X1,X2,X3:].Let us note that it makes sense to consider the following functors on restricted areas.Thenx1is Element of X1,x2is Element of X2,x3is Element of X3.The following propositions are true:(24)a=x1ifffor x1,x2,x3st x= x1,x2,x3 holds a=x1,(25)b=x2ifffor x1,x2,x3st x= x1,x2,x3 holds b=x2,(26)c=x3ifffor x1,x2,x3st x= x1,x2,x3 holds c=x3,(27) x1,x2,x3 =x,(28)x1=y1&x2=y2&x3=y3implies x=y,(29) x1,x2,x3 1=x1& x1,x2,x3 2=x2& x1,x2,x3 3=x3,(30)for x being Element of[:X1,X2,X3:],y being Element of[:Y1,Y2,Y3:]holds x=y implies x1=y1&x2=y2&x3=y3,(31)a∈[:X1,X2,X3,X4:]iffex x1,x2,x3,x4st a= x1,x2,x3,x4 ,(32)(for a holds a∈D iffex x1,x2,x3,x4st a= x1,x2,x3,x4 )implies D=[:X1,X2,X3,X4:],(33)D=[:X1,X2,X3,X4:]ifffor a holds a∈D iffex x1,x2,x3,x4st a= x1,x2,x3,x4 .In the sequel x denotes an object of the type Element of[:X1,X2,X3,X4:].The following propositions are true:(34)[:X1,X2,X3,X4:]=[:Y1,Y2,Y3,Y4:]implies X1=Y1&X2=Y2&X3=Y3&X4=Y4,118Andrzej Trybulec(35)x= a,b,c,d implies x1=a&x2=b&x3=c&x4=d,(36)x= x1,x2,x3,x4 ,(37)x1=(x qua Any)111&x2=(x qua Any)112&x3=(x qua Any)12&x4=(x qua Any)2,(38)x=x1&x=x2&x=x3&x=x4,(39) x1,x2,x3,x4 ∈[:X1,X2,X3,X4:].Let us consider X1,X2,X3,X4,x1,x2,x3,x4.Let us note that it makes sense to consider the following functor on a restricted area.Thenx1,x2,x3,x4 is Element of[:X1,X2,X3,X4:].The arguments of the notions defined below are the following:X1,X2,X3,X4 which are objects of the type reserved above;x which is an object of the type Element of[:X1,X2,X3,X4:].Let us note that it makes sense to consider the following functors on restricted areas.Thenx1is Element of X1,x2is Element of X2,x3is Element of X3,x4is Element of X4.The following propositions are true:(40)a=x1ifffor x1,x2,x3,x4st x= x1,x2,x3,x4 holds a=x1,(41)b=x2ifffor x1,x2,x3,x4st x= x1,x2,x3,x4 holds b=x2,(42)c=x3ifffor x1,x2,x3,x4st x= x1,x2,x3,x4 holds c=x3,(43)d=x4ifffor x1,x2,x3,x4st x= x1,x2,x3,x4 holds d=x4,(44)for x being Element of[:X1,X2,X3,X4:]holds x1,x2,x3,x4 =x,(45)for x,y being Element of[:X1,X2,X3,X4:]st x1=y1&x2=y2&x3=y3&x4=y4holds x=y,(46) x1,x2,x3,x4 1=x1& x1,x2,x3,x4 2=x2& x1,x2,x3,x4 3=x3& x1,x2,x3,x4 4=x4,(47)for x being Element of[:X1,X2,X3,X4:],y being Element of[:Y1,Y2,Y3,Y4:]holds x=y implies x1=y1&x2=y2&x3=y3&x4=y4.Domains and Their Cartesian Products119In the sequel A2will denote an object of the type Subset of X2;A3will denotean object of the type Subset of X3;A4will denote an object of the type Subset ofX4.In the article we present several logical schemes.The scheme Fraenkel1deals witha unary predicate P states that the following holdsfor X1holds{x1:P[x1]}is Subset of X1for all values of the parameter.The scheme Fraenkel2deals with a binary predicate P states that the following holds for X1,X2holds{ x1,x2 :P[x1,x2]}is Subset of[:X1,X2:]for all values of the parameter.The scheme Fraenkel3concerns a ternary predicate P states that the following holds for X1,X2,X3holds{ x1,x2,x3 :P[x1,x2,x3]}is Subset of[:X1,X2,X3:]for all values of the parameter.The scheme Fraenkel4deals with a4-ary predicate P states that the following holdsfor X1,X2,X3,X4holds{ x1,x2,x3,x4 :P[x1,x2,x3,x4]}is Subset of[:X1,X2,X3,X4:]for all values of the parameter.The scheme Fraenkel5concerns a unary predicate P and a unary predicate Q and states that the following holdsfor X1st for x1holds P[x1]implies Q[x1]holds{y1:P[y1]}⊆{z1:Q[z1]}for all values of the parameters.The scheme Fraenkel6deals with a unary predicate P and a unary predicate Q and states that the following holdsfor X1st for x1holds P[x1]iffQ[x1]holds{y1:P[y1]}={z1:Q[z1]}for all values of the parameters.Next we state several propositions:(48)X1={x1:not contradiction},(49)[:X1,X2:]={ x1,x2 :not contradiction},(50)[:X1,X2,X3:]={ x1,x2,x3 :not contradiction},(51)[:X1,X2,X3,X4:]={ x1,x2,x3,x4 :not contradiction},(52)A1={x1:x1∈A1}.120Andrzej TrybulecLet us consider X1,X2,A1,A2.Let us note that it makes sense to consider the following functor on a restricted area.Then[:A1,A2:]is Subset of[:X1,X2:].Next we state a proposition(53)[:A1,A2:]={ x1,x2 :x1∈A1&x2∈A2}.Let us consider X1,X2,X3,A1,A2,A3.Let us note that it makes sense to consider the following functor on a restricted area.Then[:A1,A2,A3:]is Subset of[:X1,X2,X3:].Next we state a proposition(54)[:A1,A2,A3:]={ x1,x2,x3 :x1∈A1&x2∈A2&x3∈A3}.Let us consider X1,X2,X3,X4,A1,A2,A3,A4.Let us note that it makes sense to consider the following functor on a restricted area.Then[:A1,A2,A3,A4:]is Subset of[:X1,X2,X3,X4:].Next we state a number of propositions:(55)[:A1,A2,A3,A4:]={ x1,x2,x3,x4 :x1∈A1&x2∈A2&x3∈A3&x4∈A4},(56)∅X1={x1:contradiction},(57)A1c={x1:not x1∈A1},(58)A1∩B1={x1:x1∈A1&x1∈B1},(59)A1∪B1={x1:x1∈A1or x1∈B1},(60)A1\B1={x1:x1∈A1&not x1∈B1},(61)A1−.B1={x1:x1∈A1&not x1∈B1or not x1∈A1&x1∈B1},(62)A1−.B1={x1:not x1∈A1iffx1∈B1},(63)A1−.B1={x1:x1∈A1iffnot x1∈B1},(64)A1−.B1={x1:not(x1∈A1iffx1∈B1)}.In the sequel x1,x2,x3,x4,x5,x6,x7,x8will have the type Element of D.We now state several propositions:(65){x1}is Subset of D,Domains and Their Cartesian Products121(66){x1,x2}is Subset of D,(67){x1,x2,x3}is Subset of D,(68){x1,x2,x3,x4}is Subset of D,(69){x1,x2,x3,x4,x5}is Subset of D,(70){x1,x2,x3,x4,x5,x6}is Subset of D,(71){x1,x2,x3,x4,x5,x6,x7}is Subset of D,(72){x1,x2,x3,x4,x5,x6,x7,x8}is Subset of D.Let us consider D.Let x1have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1}is Subset of D.Let x2have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1,x2}is Subset of D.Let x3have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1,x2,x3}is Subset of D.Let x4have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1,x2,x3,x4}is Subset of D.Let x5have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1,x2,x3,x4,x5}is Subset of D.Let x6have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1,x2,x3,x4,x5,x6}is Subset of D.Let x7have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1,x2,x3,x4,x5,x6,x7}is Subset of D.122Andrzej TrybulecLet x8have the type Element of D.Let us note that it makes sense to consider the following functor on a restricted area.Then{x1,x2,x3,x4,x5,x6,x7,x8}is Subset of D.Let us consider X1,A1.Let us note that it makes sense to consider the following functor on a restricted area.ThenA1c is Subset of X1.Let us consider B1.Let us note that it makes sense to consider the following functors on restricted areas.ThenA1∪B1is Subset of X1,A1∩B1is Subset of X1,A1\B1is Subset of X1,A1−.B1is Subset of X1.References[1]Andrzej Trybulec.Enumerated sets.Formalized Mathematics,1,1990.[2]Andrzej Trybulec.Tarski Grothendieck set theory.Formalized Mathematics,1,1990.[3]Andrzej Trybulec.Tuples,projections and Cartesian products.Formalized Mathe-matics,1,1990.[4]Zinaida Trybulec.Properties of subsets.Formalized Mathematics,1,1990.[5]Zinaida Trybulec and Halina´Swie‘czkowska.Boolean properties of sets.FormalizedMathematics,1,1990.Received April3,1989。

相关文档
最新文档