中考数学真题试卷(I)卷新版
2024年河北省中考数学试卷附解析可修改文字
2024年河北省中考数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A. B.C. D.2.下列运算正确的是()A.734a a a -= B.222326a a a ⋅= C.33(2)8a a -=- D.44a a a÷=3.如图,AD 与BC 交于点O,ABO 和CDO 关于直线PQ 对称,点A,B 的对称点分别是点C,D .下列不一定正确的是()A.AD BC ⊥B.AC PQ ⊥C.ABO CDO △≌△D.AC BD∥4.下列数中,能使不等式516x -<成立的x 的值为()A.1B.2C.3D.45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC ∆的()A.角平分线B.高线C.中位线D.中线6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A. B. C. D.7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A.若5x =,则100y =B.若125y =,则4x =C.若x 减小,则y 也减小D.若x 减小一半,则y 增大一倍8.若a,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A.38a b +=B.38a b =C.83a b +=D.38a b=+9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A.1 B.21 C.21+ D.1或21+10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠∴①______.又∵45∠=∠,MA MC=∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为()A.13∠=∠,AASB.13∠=∠,ASAC.23∠∠=,AASD.23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M,N,如图所示,则a β+=()A.115︒B.120︒C.135︒D.144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点AB.点BC.点CD.点D13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy-,则A =()A.xB.yC.x y +D.x y-14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S ,该折扇张开的角度为n ︒时,扇面面积为n S ,若n m S S =,则m 与n 关系的图象大致是()A. B. C. D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“□”表示5C.运算结果小于6000D.运算结果可以表示为41001025a +16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”(2,1)P 按上迷规则连续平移3次后,到达点3(2,2)P 其平移过程如下:312012(2,2)(3,1)(3,2)(2,1)PP P P →→→右上左余余余若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A.()6,1或()7,1 B.()15,7-或()8,0 C.()6,0或()8,0 D.()5,1或()7,1二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.18.已知a,b,n 均为正整数.(1)若1n n <<+,则n =______.(2)若1,1n n n n -<<<+,则满足条件的a 的个数总比b 的个数少______个.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______.(2)143B C D △的面积为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C 所对应的数依次为4-,2,32,乙数轴上的三点D,E,F 所对应的数依次为0,x ,12.(1)计算A,B,C 三点所对应的数的和,并求AB AC的值.(2)当点A 与点D 上下对齐时,点B,C 恰好分别与点E,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b+2a b +a b -a b+22a b+2a 2a b+a b -2a (1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率.(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值.(2)求CP 的长及sin APC ∠的值.23.情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长.(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80x y p =.当150p x ≤≤时,()2080150x p y p-=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩.(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数.②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =,ABC 中,90,3,ABC AB BC ∠=︒==.在平面上,先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B 与点N 重合时,求劣弧 AN 的长.(2)当OA MN ∥时,如图2,求点B 到OA 的距离,并求此时x 的值.(3)设点O 到BC 的距离为d .①当点A 在劣弧 MN上,且过点A 的切线与AC 垂直时,求d 的值.②直接写出d 的最小值.26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时①求直线PQ 的解析式.②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d,直接用含t 和m 的式子表示n.2024年河北省中考数学真题试卷答案一、选择题.1.【答案】A2.【答案】C3.【答案】A4.【答案】A5.【答案】B6.【答案】D7.【答案】C8.【答案】A【解析】解:由题意得:()8822a b⨯=∴38222a b⨯=∴38a b+=故选:A .9.【答案】C【解析】解:由题意得:221a a +=解得:1x =或1x =-(舍)故选:C .10.【答案】D【解析】证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠∴①23∠=∠.又∵45∠=∠,MA MC=∴MAD MCB △≌△(②ASA ).∴MD MB =.∴四边形ABCD 是平行四边形.故选:D .11.【答案】B【解析】解:正六边形每个内角为:()621801206-⨯︒=︒而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒∴720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒∴7204120240ENM NMB ∠+∠=︒-⨯︒=︒∵1802360ENM NMB βα+∠++∠=︒⨯=︒∴360240120αβ+=︒-︒=︒故选:B .12.【答案】B【解析】解:设(),A a b ,AB m =,AD n=∵矩形ABCD∴AD BC n ==,AB CD m==∴(),D a b n +,(),B a m b +,(),C a m b n ++∵b b b n a m a a +<<+,而b b n a m a m+<++∴该矩形四个顶点中“特征值”最小的是点B.故选:B .13.【答案】A【解析】解:∵22A y xy y x xy -++的结果为x y xy-∴22y x y A x xy xy xy y -+=++∴()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++∴A x=故选:A .14.【答案】C【解析】解:设该扇面所在圆的半径为R221203603R R S ππ==∴23R Sπ=∵该折扇张开的角度为n ︒时,扇面面积为nS ∴223360360360120n R S R n n n nS S π=⨯⨯===π∴1120120120n S m n S nS n S ====∴m 是n 的正比例函数∵0n ≥∴它的图像是过原点的一条射线.故选:C .15.【答案】D【解析】解:设一个三位数与一个两位数分别为10010x y z ++和10m n+则由题意得:20,5,2,mz nz ny nx a====∴4mz nz=,即4=m n ∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍.当1,2n y ==时,则4,5,m z x a===∴A.“20”左边的数是248⨯=,故本选项不符合题意.B.“20”右边的“□”表示4,故本选项不符合题意.∴a 上面的数应为4a∴运算结果可以表示为:()1000411002541001025a a a +++=+∴D 选项符合题意当2a =时,计算的结果大于6000,故C 选项不符合题意故选:D .16.【答案】D【解析】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立.②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.故选:D .二、填空题.17.【答案】8918.【答案】①.3②.2【解析】解:(1)∵34<<,而1n n <<+∴3n =.故答案为:3.(2)∵a,b,n 均为正整数.∴n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<<+<<<<观察0,1,2,3,4,5,6,7,8,9,而200=,211=,224=,239=,2416=∴()21n -与2n 之间的整数有()22n -个2n 与()21n +之间的整数有2n 个∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个)故答案为:2.19.【答案】①.1②.7【解析】解:(1)连接11B D ,12B D ,12B C ,13B C ,33C D ∵ABC 的面积为2,AD 为BC 边上的中线∴112122ABD ACD ABC S S S △△△===´=∵点A ,1C ,2C ,3C 是线段4CC 的五等分点∴1122334415AC AC C C C C C C CC =====∵点A ,1D ,2D 是线段3DD 的四等分点∴11223314AD AD D D D D DD ====∵点A 是线段1BB 的中点∴1112AB AB BB ==在11AC D △和ACD 中1111AC AC C AD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴()11SAS AC D ACD ≌∴111AC D ACD S S ==△△,11C D A CDA∠=∠∴11AC D △的面积为1故答案为:1.(2)在11AB D 和ABD △中1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴()11SAS AB D ABD ≌∴111AB D ABD S S ==△△,11B D A BDA∠=∠∵180BDA CDA ∠+∠=︒∴1111180B D A C D A ∠+∠=︒∴1C ,1D ,1B 三点共线∴111111112AB C AB D AC D S S S △△△=+=+=∵1122334AC C C C C C C ===∴14114428AB C AB C S S △△==´=∵11223AD D D D D ==,111AB D S =△∴13113313AB D AB D S S ==⨯=△△在33AC D △和ACD 中∵333AC AD AC AD==,33C AD CAD ∠=∠∴33C AD CAD△∽△∴3322339C AD CAD S AC S AC ⎛⎫=== ⎪⎝⎭ ∴339919C AD CAD S S ==⨯=△△∵1122334AC C C C C C C ===∴43334491233AC D C AD S S ==⨯=△△∴41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△∴143B C D △的面积为7故答案为:7.三、解答题.20.【答案】(1)30,16(2)2x =21.【答案】(1)13(2)填表见解析,49【小问1详解】解:当1,2a b ==-时1a b +=-,20a b +=,()123a b -=--=∴取出的卡片上代数式的值为负数的概率为:13.【小问2详解】解:补全表格如下:a b +2a b +a b -a b+22a b +32a b +2a 2a b+32a b +42a b +3a a b -2a 3a22a b -∴所有等可能的结果数有9种,和为单项式的结果数有4种∴和为单项式的概率为49.22.【答案】(1)45︒,14(2)2m ,33434【小问1详解】解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m 4AE BQ ==()m ,3AC BD ==()m ∴431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒∴CE PE=∴45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==.【小问2详解】解:∵1CE PE ==m ,90CEP ∠=︒∴22112CP =+=m如图,过C 作CH AP ⊥于H∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ∴()22249x x AC +==解得:31717x =∴31717CH =m ∴31733417sin 342CH APC CP ∠===.23.【答案】(1)1EF =;(2)BE GE AH GH ===,22BE =-;BP 的长为2或22-.【解析】解:如图,过G '作G K FH ''⊥于K结合题意可得:四边形FOG K '为矩形∴FO KG '=由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=︒∴AHG ,H G D '' ,AFE △为等腰直角三角形∴G KH '' 为等腰直角三角形设H K KG x''==∴2H G H D x '''==∴2AH HG x ==,HF FO x==∵正方形的边长为222222+=∴2OA =∴x x ++=解得:1x =∴))1111EF AF x ====.(2)∵AFE △为等腰直角三角形,1EF AF ==.∴AE ==∴2BE =∵)12GE H G =='='=-2AH GH ===∴BE GE AH GH ===.如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线此时BP '=,2P Q ''==,符合要求或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线此时CP CQ ==,2PQ ==∴2BP =-综上:BP 或2-.24.【答案】(1)甲、乙的报告成绩分别为76,92分(2)125(3)①130;②95%【小问1详解】解:当100p =时,甲的报告成绩为:809576100y ⨯==分乙的报告成绩为:()201301008092150100y ⨯-=+=-分.【小问2详解】解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分①10x p ≤<时,18092x y p ==丙①,()1804064x y p -== 丁②由①-②得320028p=∴8007p =∴1800929207131807x p ⨯==≈>,故不成立,舍.②140150p x ≤-≤时,()1209280150x p y p -==+- 丙③,()120406480150x p y p--==+- 丁④由③-④得:80028150p =-∴8507p =∴185020792808501507x ⎛⎫- ⎪⎝⎭=+-∴19707x =∴16908504077x p -=<=,故不成立,舍.③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+- 丙⑤()1804064x y p-== 丁⑥联立⑤⑥解得:1125,140p x ==,且符合题意综上所述125p =.【小问3详解】解:①共计100名员工,且成绩已经排列好∴中位数是第50,51名员工成绩的平均数由表格得第50,51名员工成绩都是130分∴中位数为130.②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍.当130p ≤时,则()201309080150p p -=+-,解得110p =,符合题意∴由表格得到原始成绩为110及110以上的人数为()10012295-++=∴合格率为:95100%95%100⨯=.25.【答案】(1)π(2)点B 到OA 的距离为2;3(3)①33d =-;②23【小问1详解】解:如图,连接OA ,OB∵O 的半径为3,3AB =∴3OA OB AB ===∴AOB 为等边三角形∴60AOB ∠=︒∴ AN 的长为60π3π180´=.【小问2详解】解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO∵OA MN∥∴90IBH BHO HOI BIO ∠=∠=∠=∠=︒∴四边形BIOH 是矩形∴BH OI =,BI OH =∵5MN =OH MN⊥∴5MH NH ==,而3OM =∴222OH OM MH BI=-==∴点B 到OA 的距离为2.∵3AB =,BI OA⊥∴225AI AB BI =-=∴35OI OA AI BH=-=-=∴3553x BN BH NH ==+=-.【小问3详解】解:①如图,∵过点A 的切线与AC 垂直∴AC 过圆心过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒∴四边形KOJB 为矩形∴OJ KB=∵3AB =,32BC =∴2233AC AB BC =+=∴31cos 333AB AK BAC AC AO∠====∴3AK =∴33OJ BK ==-,即33d =-.②如图,当B 为MN 中点时过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∴90OJL ∠>︒∴OL OJ >,此时OJ 最短如图,过A 作AQ OB ⊥于Q ,而3AB AO ==∵B 为MN 中点,则OB MN⊥∴由(2)可得2OB =∴1BQ OQ ==∴223122AQ =-=∵90ABC AQB∠=︒=∠∴90OBJ ABO ABO BAQ∠+∠=︒=∠+∠∴OBJ BAQ∠=∠∴tan tan OBJ BAQ∠=∠∴OJ BQ BJ AQ ==设OJ m =,则BJ =∴()2222m +=解得:23m =(不符合题意的根舍去)∴d 的最小值为23.26.【答案】(1)12a =,()2,2Q -(2)两人说法都正确,理由见解析(3)①410=-y x ;②112-112+(4)2n t m =+-【小问1详解】解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q .∴1680a -=解得:12a =∴抛物线为:()221122222y x x x =-=--∴()2,2Q -.【小问2详解】解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-当0x =时∴222221111:()2222222C y x t t t =--+-=-+-=-∴()0,2-在2C 上∴嘉嘉说法正确.∵22211:()222C y x t t =--+-2122x xt =-+-当0x =时,=2y -∴22211:()222C y x t t =--+-过定点()0,2-.∴淇淇说法正确.【小问3详解】解:①当4t =时()2222111:()246222C y x t t x =--+-=--+∴顶点()4,6P ,而()2,2Q -设PQ 为y ex f =+∴4622e f e f +=⎧⎨+=-⎩解得:410e f =⎧⎨=-⎩∴PQ 为410=-y x .②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意)∴426x =±∴交点()46,6J --,交点()426,6K +由直线l PQ ∥,设直线l 为4y x b=+∴(4466b -+=-解得:8622b =∴直线l 为:4622y x =+当486220y x =+-=时,1162x =-此时直线l 与x 轴交点的横坐标为11262-同理当直线l 过点()46,6K +直线l 为:48622y x =--当4220y x =--=时,112x =+此时直线l 与x 轴交点的横坐标为112+【小问4详解】解:如图,∵()21222y x =--,22211:()222C y x t t =--+-∴2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP∴四边形APBQ 是平行四边形当点M 是到直线PQ 的距离最大的点,最大距离为d,点N 到直线PQ 的距离恰好也为d 此时M 与B 重合,N 与A 重合∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭∴L 的横坐标为2t 2+∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦∴L 的横坐标为2m n+∴222m n t ++=解得:2n t m =+-.。
2024年吉林省中考数学真题卷含答案解析
吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2 B.1 C.0 D.1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.8.因式分解:a 2﹣3a=_______.9.不等式组2030x x ->⎧⎨-<⎩的解集为______.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11.正六边形的每个内角等于______________°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =.16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:x16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2B.1C.0D.1-【答案】D【解析】【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯【答案】B【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:92040000000 2.0410⨯=故选B .3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同【答案】A【解析】【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=【答案】B【解析】【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键.分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==,故本选项不符合题意.故选:B .5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,2【答案】C【解析】【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒【答案】C【解析】【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.【答案】0(答案不唯一)【解析】【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案.【详解】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.因式分解:a 2﹣3a=_______.【答案】a (a ﹣3)【解析】【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为______.【答案】23x <<##32x >>【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.【答案】两点之间,线段最短【解析】【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于______________°.【答案】120【解析】【详解】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.【答案】12【解析】【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒,AD BC =,再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =.【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.【答案】()22220.5x x +=+【解析】【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).【答案】11π【解析】【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360Sππ-==阴影,故答案为:11π.三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =.【答案】22a ,6【解析】【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =,当3a =原式223=⨯6=.16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.【答案】13【解析】【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【解析】【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【解析】【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴白色琴键:361652+=(个),答:白色琴键52个,黑色琴键36个.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【解析】【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E、F,作直线EF,则直线EF即为所求;、,作直线GH,则直线GH即为所求.(2)如图所示,取格点G H【小问1详解】解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD【小问2详解】、,作直线GH,则直线GH即为所求;解:如图所示,取格点G H.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)36I R=(2)12A【解析】【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【小问1详解】解:设这个反比例函数的解析式为()0U I U R =≠,把()94,代入()0U I U R =≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.中华人民共和国20192023-年全国居民人均可支配收入及其增长速度情况如图所示.根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5②20192023年中,2020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【解析】【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【小问1详解】-=元,解:39218307338485-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485答:20192023元.【小问2详解】-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128解:20192023元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)【答案】218.3m【解析】【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △,tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DG AG DG EAD===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mmx 16.519.823.126.429.7凳面的宽度/mmy 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【解析】【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【小问1详解】,解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;【小问2详解】解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【解析】【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+ 四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解;(4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题。
2024年重庆市中考数学试卷正式版含答案解析
绝密★启用前2024年重庆市中考数学试卷(A卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,最小的数是( )A. −2B. 0C. 3D. −122.下列四种化学仪器的示意图中,是轴对称图形的是( )A. B. C. D.3.已知点(−3,2)在反比例函数y=k(k≠0)的图象上,则k的值为( )xA. −3B. 3C. −6D. 64.如图,AB//CD,∠1=65°,则∠2的度数是( )A. 105°B. 115°C. 125°D. 135°5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96.烷烃是一类由碳、氢元素组成的有机化合物质,如图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267.已知m=√ 27−√ 3,则实数m的范围是( )A. 2<m<3B. 3<m<4C. 4<m<5D. 5<m<68.如图,在矩形ABCD中,分别以点A和C为圆心,AD长为半径画弧,两弧有且仅有一个公共点.若AD=4,则图中阴影部分的面积为( )A. 32−8πB. 16√ 3−4πC. 32−4πD. 16√ 3−8π9.如图,在正方形ABCD的边CD上有一点E,连接AE,把AE绕点E逆时的值为针旋转90°,得到FE,连接CF并延长与AB的延长线交于点G.则FGCE( )A. √ 2B. √ 3C. 3√ 22D. 3√ 3210.已知整式M:a n x n+a n−1x n−1+⋯+a1x+a0,其中n,a n−1,…,a0为自然数,a n为正整数,且n+a n+a n−1+⋯+a1+a0=5.下列说法:①满足条件的整式M中有5个单项式;②不存在任何一个n,使得满足条件的整式M有且仅有3个;③满足条件的整式M共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3第II卷(非选择题)二、填空题:本题共8小题,每小题4分,共32分。
中招考试数学试题及答案
中招考试数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 22/7D. 3.14答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 16B. 18C. 20D. 22答案:C3. 以下哪个方程的解是x=1?A. x^2 - 2x + 1 = 0B. x^2 - x - 6 = 0C. x^2 + x - 6 = 0D. x^2 - 2x - 3 = 0答案:A4. 函数y=2x+3的图象与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)5. 一个数的平方是36,这个数是多少?A. 6B. ±6C. 36D. ±36答案:B6. 下列哪个图形是轴对称图形?A. 平行四边形B. 圆C. 任意三角形D. 不规则四边形答案:B7. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B8. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是多少?A. 60B. 48C. 120D. 180答案:A9. 一个等差数列的首项是2,公差是3,那么第5项是多少?B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(2, -1),且开口向上,那么它的对称轴是?A. x=-2B. x=2C. x=1D. x=3答案:B二、填空题(每题3分,共15分)11. 一个直角三角形的两直角边长分别为3和4,那么斜边长是________。
答案:512. 一个数的立方是-8,那么这个数是________。
答案:-213. 函数y=-x+1与y轴的交点坐标是________。
答案:(0, 1)14. 一个正五边形的内角和是________。
答案:540°15. 一个等比数列的首项是1/2,公比是2,那么第4项是________。
2023年浙江省嘉兴市中考数学真题(解析版)
嘉兴市2023年初中毕业生学业水平考试数学(本试卷满分120分,考试时间120分钟)第I 卷(选择题共30分)一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.【答案】B【解析】解:()236⨯-=-.故选:B .2.【答案】C【解析】解:从上面看从下往上数,左边有1个正方形,右边有1个正方形,∴俯视图是:.故选:C .3.【答案】B【解析】A 选项,了解一批节能灯管的使用寿命,具有破坏性,适合采用抽样调查,不符合题意;B 选项,了解某校803班学生的视力情况,适合采用普查,符合题意;C 选项,了解某省初中生每周上网时长情况,适合采用抽样调查,不合题意;D 选项,了解京杭大运河中鱼的种类,适合采用抽样调查,不合题意.故选:B .4.【答案】D【解析】解:A 选项,3332a a a +=,故错误;B 选项,660a a -=,故错误;C 选项,()339a a =,故错误;D 选项,12212210a a a a -÷==,故正确;故选:D .5.【答案】C【解析】解:∵ABC 的位似比为2的位似图形是A B C ''' ,且()3,2C ,()23,22C '∴⨯⨯,即()6,4C ',故选:C .6.【答案】D【解析】解:由数轴得:0a c b <<<,a b <,故选项A 不符合题意;∵c b <,∴c a b a -<-,故选项B 不符合题意;∵a b <,a b <,∴0a b +>,故选项C 不符合题意;∵a b <,0c ≠,∴22ac bc <,故选项D 符合题意;故选:D .7.【答案】D 【解析】解:如图所示,连接CH ,∵折叠,∴EB EH EC==∴,,B C H 在以E 为圆心,BC 为直径的圆上,∴90BHC ∠=︒,∴CH BD⊥∵矩形ABCD ,其中34AB BC ==,,∴4,3BC CD ==∴5BD ==,∴125BC CD CH BD ⨯==,∵tan BC CH BDC CD HD ∠==∴95HD =,故选:D .8.【答案】C【解析】解:∵30k =>,∴图象在一、三象限,且在每个象限内y 随x 的增大而减小,∵2101-<-<<,∴2130y y y <<<.故选:C .9.【答案】B【解析】解:如图,连接BD,点P 是ABC 的重心,点D 是边AC 的中点,P 在BD 上,∴2ABC BDC S S = ,:2:1BP PD =,D F B C ∥ ,∴DFP BEP14DFP BEP S S ∴= ,EF AC ∥Q ,∴BEP BCD △△,222439BEP BCD S BP S BD ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,设DFP △的面积为m ,则BEP △的面积为4m ,BCD △的面积为9m ,四边形CDFE 的面积为6,946m m m ∴+-=,1m ∴=,∴BCD △的面积为9,ABC ∴ 的面积是18.故选:B .10.【答案】D【解析】解:由蓄水池的横断面示意图可得,水的深度增长的速度由慢到快,然后再由快到慢,最后不变,故选:D .第Ⅱ卷(非选择题共90分)二、填空题(本题有6小题,每小题4分,共24分)11.【答案】2023【解析】解:2023-的相反数是2023,故20232023-=,故答案为:2023.12.【答案】OA OC =或OB OD =或AB CD=【解析】解:∵在AOB 与COD △中,A C ∠=∠,AOB COD ∠=∠,∴添加OA OC =,则()ASA AOB COD ≌;或添加OB OD =,则()AAS AOB COD V V ≌;或添加AB CD =,则()AAS AOB COD V V ≌;故答案为:OA OC =(答案不唯一).13.【答案】13【解析】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.14.【答案】65︒##65度【解析】解:如图,CO BO ,∵AB ,AC 分别与O 相切于点B ,C ,∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050130COB ∠=︒-︒-︒-︒=︒,∵ BCBC =,∴1652D BOC ∠=∠=︒,故答案为:65︒.15.【答案】158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩【解析】解:依题意得:158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩,故答案为:158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩.16.【答案】①.-②.1218π-+【解析】解:如图1,过点G 作GH BC ⊥于H,∵3045ABC DEF DFE ∠=︒∠=∠=︒,,90GHB GHC ∠=∠=︒,∴BH =,GH CH =,∵12BC BH CH GH =+=+=,∴6GH =,∴()6CG ===;如图2,将DEF 绕点C 顺时针旋转60︒得到11D E F ,1FE 与AB 交于1G ,连接1D D ,由旋转的性质得:1160E CB DCD ∠=∠=︒,1CD CD =,∴1CDD 是等边三角形,∵30ABC ∠=︒,∴190CG B ∠=︒,∴112CG BC =,∵1CE BC =,∴1112CG CE =,即AB 垂直平分1CE ,∵11CD E 是等腰直角三角形,∴点1D 在直线AB 上,连接1AD ,22D E F 是DEF 旋转0︒到60︒的过程中任意位置,则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积,∵12BC EF ==,∴22DC DB BC ===∴11D C D D ==作1DN CD ⊥于N ,则1ND NC ==∴DN ==,过点B 作1BM D D ⊥交1D D 的延长线于M ,则90M ∠=︒,∵160D DC ∠=︒,90CDB ∠=︒,∴118030BDM D DC CDB ∠=︒-∠-∠=︒,∴12BM BD ==,∴线段DH 扫过的面积112D DB D D D S S =+ 弓形,111CD D D DB CD D S S S =-+ 扇形,(2601136022π⋅=-⨯+⨯1218π=-+,故答案为:-,1218π-+.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.【答案】(1)()2a a +;(2)3x >.【解析】解:(1)()222a a a a +=+;(2)()211x x ->+去括号,得221x x ->+,移项合并,得3x >.18.【答案】都错误,见解析【解析】小丁和小迪的解法都错误;解:去分母,得(3)2x x x +-=-,去括号,得232x x -=-,解得,1x =,经检验:1x =是方程的解.19.【答案】(1)①见解析;②见解析(2)四边形BECD 是菱形,见解析【解析】(1)①如图:直线MN 即为所求;②如图,即为所求;;(2)四边形BECD 是菱形,理由如下:∵MN 垂直平分BC ,∴,OB OC BD CD ==,∵OD OE =,∴四边形BECD 是平行四边形,又∵BD CD =,∴四边形BECD 是菱形.20.【答案】(1)6(2)n(3)见解析【解析】(1)解:∵223181-=⨯,225382-=⨯,227583-=⨯,229784-=⨯,∴2211985-=⨯,22131186-=⨯,故答案为:6;(2)由题意得:()()2221218+--=n n n ,故答案为:n ;(3)()()222121n n +--()()21212121n n n n =++-+-+42n =⨯8n =.21.【答案】(1)①3015辆,②68.3分(2)选B 款,理由见解析【解析】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆;②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分;(2)给出1:2:1:2的权重时,72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量,∴可以选B 款.22.【答案】(1)12.9cm (2)能,见解析【解析】(1)解:过点C 作OB 的垂线分别交仰角、俯角线于点E ,D ,交水平线于点F ,如图所示,在Rt AEF 中,tan EAF EF AF∠=.tan151300.2735.1(cm)EF AF ∴=⋅︒=⨯=.,,90AF AF EAF DAF AFE AFD =∠=∠∠=∠=︒ ,ADF AEF ∴△≌△.35.1(cm)EF DF ∴==.16035.1195.1(cm)CE CF EF ∴=+=+=,235.1270.2(cm)26(cm)ED EF ==⨯=>,∴小杜下蹲的最小距离208195.112.9(cm)=-=.(2)解:能,理由如下:过点B 作OB 的垂线分别交仰角、俯角线于点M ,N ,交水平线于点P ,如图所示,在Rt APM △中,tan MP MAP AP∠=.tan 201500.3654.0(cm)MP AP =⋅⨯=︒∴=,,,90AP AP MAP NAP APM APN =∠=∠∠=∠=︒ ,AMP ANP ∴△≌△.54.0(cm)PN MP ∴==,16054.0106.0(cm)BN BP PN ∴=-=-=.小若垫起脚尖后头顶的高度为1203123(cm)+=.∴小若头顶超出点N 的高度123106.017.0(cm)15(cm)-=>.∴小若垫起脚尖后能被识别.23.【答案】任务一:4m ;任务二:22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角【解析】任务一:建立如图所示的直角坐标系,由题意得:抛物线的顶点坐标为()1,1.8,设抛物线的解析式为()21 1.8y a x =-+,过点()0,1.6,∴ 1.8 1.6a +=,解得0.2a =-,∴()20.21 1.8y x =--+,当0y =时,()20.21 1.80x --+=,得14,2x x ==-(舍去),∴素材1中的投掷距离OB 为4m ;(2)建立直角坐标系,如图,设素材2中抛物线的解析式为2y ax bx c =++,由题意得,过点()()()0,1.6,1,2.45,8,0,∴ 1.6 2.456480c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得0.1511.6a b c =-⎧⎪=⎨⎪=⎩,∴20.15 1.6y x x =-++∴顶点纵坐标为()()2240.15 1.61449440.1515ac b a ⨯-⨯--==⨯-,49221.81515-=(m ),∴素材2和素材1中球的最大高度的变化量为22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.24.【答案】(1)8AB =;(2)①见解析;②80y x =;③BG 的长为5或【解析】(1)解:连接OA ,∵O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =,∴10CD CE DE =+=,AE BE =,∴152OA OD CD ===,3OE OD DE =-=,在Rt OAE △中,4AE ===,∴28AB AE ==;(2)解:①连接DG ,∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,∵O 的直径CD 垂直弦AB 于点E ,∴90CGD CEF ∠=∠=︒,∴90F DCG D ∠=︒-∠=∠,∴GAF F ∠=∠;②∵8CE =,4AE=,90CEA ∠=︒,∴22224845AC AE CE =+=+=∵O 的直径CD 垂直弦AB 于点E ,∴ AC BC=,∴CAF CGA ∠=∠,∵ACF GCA =∠∠,∴CAF CGA ∽△△,∴AC CF CG AC =,即x =,∴80y x =;③当10CF CD ==时,在Rt CEF △中,6EF ===,∴2BF EF BE =-=,∵180FGB BGC FAC ∠=︒-∠=∠,∴FGB FAC ∽△△,∴BG BFAC CF =,即210=,∴5BG =;当10DF CD ==时,在Rt DEF △中,222210246EF DF DE =-=-=,在Rt CEF △中,()222284610CF CE EF =+=+∴64BF EF BE =-=,同理FGB FAC ∽△△,∴BG BF AC CF =,即645410=,∴32BG =综上,BG 的长为455或32-.。
中考数学试题真题含答案试题
中考数学试题真题含答案试题一、选择题1. 已知a、b是实数,下列哪个选项是正确的?A. a² + b² = 0B. a² + b² ≥ 0C. a² + b² < 0D. a² + b² > 0答案:B解析:实数的平方总是非负的,所以a² + b² ≥ 0。
2. 已知函数f(x) = 2x + 1,下列哪个选项是正确的?A. f(1) = 1B. f(0) = 1C. f(1) = 2D. f(2) = 3答案:B解析:将x = 0代入函数f(x) = 2x + 1,得到f(0) = 20 + 1 = 1。
3. 已知等差数列{an}的公差为2,首项为1,下列哪个选项是正确的?A. a2 = 3B. a3 = 5C. a4 = 7D. a5 = 9答案:C解析:等差数列的通项公式为an = a1 + (n1)d,将a1 = 1,d = 2代入,得到an = 1 + (n1)2。
将n = 4代入,得到a4 = 1 + (41)2 = 7。
4. 已知圆的半径为5,下列哪个选项是正确的?A. 圆的面积是25πB. 圆的周长是10πC. 圆的直径是10D. 圆的面积是10π答案:C解析:圆的直径是半径的两倍,所以圆的直径是52 = 10。
5. 已知正方形的边长为4,下列哪个选项是正确的?A. 正方形的面积是16B. 正方形的周长是16C. 正方形的对角线长度是8D. 正方形的面积是8答案:A解析:正方形的面积是边长的平方,所以正方形的面积是44 = 16。
二、填空题1. 已知a、b是实数,且a² + b² = 0,求a和b的值。
答案:a = 0,b = 0解析:由于a² + b² = 0,且a²和b²都是非负的,所以a和b都必须为0。
2. 已知函数f(x) = 3x 2,求f(5)的值。
2023年山东省枣庄市中考数学真题(解析版)
2023年枣庄市初中学业水平考试数学注意事项:1.本试题分第I卷和第II卷两部分,第I卷为选择题,30分;第II卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第I卷和第II卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号,考试结束,将试卷和答题卡一并交回.第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的.1. 下列各数中比1大的数是()A. 2B. 0C. -1D. -3【答案】A【解析】【详解】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.【答案】C【解析】【分析】根据主视图是从前向后观察到的图形,进行判断即可.【详解】解:由题意,得:“卯”的主视图为:【点睛】本题考查三视图,熟练掌握三视图的画法,是解题的关键.3. 随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为( )A. 61.5910×B. 515910×.C. 415910×D. 215910×. 【答案】A【解析】【分析】根据科学记数法的表示方法进行表示即可.【详解】解:159万61590000 1.5910=×;故选A . 【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:()11100≤×<n a a ,n 为整数,是解题的关键.4. 我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A. 24015015012x x +=×B. 24015024012x x −=×C. 24015024012x x +=×D. 24015015012x x −=× 【答案】D【解析】【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解.【详解】解:设快马x 天可以追上慢马,依题意,得: 240x -150x =150×12.故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5. 下列运算结果正确的是( )A. 4482x x x +=B. ()32626x x −=−C. 633x x x ÷=D. 236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意;B 、()32628x x −=−,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ?,选项计算错误,不符合题意; 故选C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.6. 4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示: 人数 6 7 10 7课外书数量(本) 6 7 9 12 则阅读课外书数量的中位数和众数分别是( )A 8,9B. 10,9C. 7,12D. 9,9 【答案】D【解析】【分析】利用中位数,众数的定义即可解决问题.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】解:中位数为第15个和第16个的平均数为:9992+=,众数为9. 故选:D .【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.7. 如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=°∠=°,,则B ∠的度数为( ).A. 32°B. 42°C. 48°D. 52°【答案】A【解析】 【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=° ,,48D ∴∠=°,80APD APD B D ∠=°∠=∠+∠ ,,804832B APD D ∴∠=∠−∠=°−°=°,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.8. 如图,一束太阳光线平行照射在放置于地面的正六边形上,若144∠=°,则2∠的度数为( )A. 14°B. 16°C. 24°D. 26°【答案】B【解析】 【分析】如图,求出正六边形的一个内角和一个外角的度数,得到460,25120∠=°∠+∠=°,平行线的性质,得到3144∠=∠=°,三角形的外角的性质,得到534104∠=∠+∠=°,进而求出2∠的度数.【详解】解:如图:∵正六边形的一个外角的度数为:360606°=°, ∴正六边形的一个内角的度数为:18060120°−°=°,即:460,25120∠=°∠+∠=°, ∵一束太阳光线平行照射在放置于地面的正六边形上,144∠=°,∴3144∠=∠=°,∴2120516∠=°−∠=°;故选B .【点睛】本题考查正多边形的内角和、外角和的综合应用,平行线的性质.熟练掌握多边形的外角和是360°,是解题的关键.9. 如图,在ABC 中,9030ABC C ∠=°∠=°,,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是( )A. BE DE =B. AE CE =C. 2CE BE =D. EDC ABCS S =△△【答案】D【解析】 【分析】利用等腰三角形的性质和线段垂直平分线的性质可以判断①的正确;利用等边三角形的性质结合①的结论和等腰三角形的三线合一的性质可以判断②正确;利用直有三角形中30度角所对的直角边等于斜边的一半判断③的正确;利用相似三角形的面积比等于相似比的平方即可判断④的错误.【详解】解:由题意得:AB AD =,AP 为BAC ∠的平分线,90ABC ∠=° ,30C ∠=°, 60BAC ∴∠=°,ABD ∴ 为等边三角形,AP ∴为BD 的垂直平分线,BE DE ∴=,故A 的结论正确;ABD 为等边三角形,60ABD ∴∠=°,60ADB ∠=°,30DBE ∴∠=°,BE DE = ,90ADE ADB EDB ∴∠=∠+∠=°,DE AC ∴⊥.90ABC ∠=° ,30C ∠=°, 2AC AB ∴=,AB AD = ,AD CD ∴=,DE ∴垂直平分线段AC ,AE CE ∴=,故B 的结论正确;Rt CDE 中,30C ∠=°,2CE DE ∴=,BE DE = ,2CE BE ∴=,故C 的结论正确.90EDC ABC ∠=∠=° ,C C ∠=∠, CDE CBA ∴ ∽, ∴2()CDE CBA S DE S AB∆∆=, = AD AB ,∴tan tan 30DE DE DAE AB AD ==∠=°= ∴21()3CDE CBA S DE S AB∆∆==, 故D 的结论错误;故选:D .【点睛】本题主要考查了含30°角的直角三角形的性质,角平分线,线段垂直平分线的判定与性质,相似三角形的判定与性质,等边三角形的判定与性质,等腰三角形的性质,熟练掌握含30°角的直角三角形的性质和相似三角形的判定与性质是解题的关键.10. 二次函数2(0)y ax bx c a ++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;③若()1230,,,2y y是抛物线上的两点,那么12y y <;④1120a c +>;⑤对于任意实数m ,都有()m am b a b +≥+,其中正确结论的个数是( )A. 5B. 4C. 3D. 2【答案】C【解析】 【分析】根据抛物线的开口方向,对称轴,与y 轴的交点位置,判断①;对称性判断②;增减性,判断③;对称轴和特殊点判断④;最值判断⑤. 【详解】解:∵抛物线开口向上,对称轴为直线12b x a=−=,与y 轴交于负半轴, ∴0,20,0a b a c >=−<<, ∴0abc >;故①错误; 由图可知,抛物线与x 轴一个交点的横坐标的取值范围为:10x −<<,∵抛物线关于直线1x =对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x <<,∴方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;�②正确;∵0a >,∴抛物线上的点离对称轴的距离越远,函数值越大,∵()1230,,,2y y 是抛物线上的两点,且30112−>−, ∴12y y >;故③错误;∵0,2a b a >=− ∴()112522252a c a a b c a a b c +=+−+=+−+,由图象知:=1x −,0y a b c =−+>,∴()112520a c a a b c ++−+>;故④正确;的∵0a >,对称轴为直线1x =,∴当1x =时,函数值最小为:a b c ++,∴对于任意实数m ,都有2am bm c a b c ++≥++,即:2am bm a b +≥+,∴()m am b a b +≥+;故⑤正确;综上:正确的有3个;故选C .【点睛】本题考查二次函数的图象和性质,正确的识图,熟练掌握二次函数的性质,是解题的关键.第II 卷(非选择题 共90分)二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果.11. 计算)10112− += _________. 【答案】3【解析】【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【详解】解:)10112− −+ 12=+3=故答案为:3.【点睛】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.12. 若3x =是关x 的方程26ax bx −=的解,则202362a b −+的值为___________.【答案】2019【解析】【分析】将3x =代入方程,得到32a b −=,利用整体思想代入求值即可.【详解】解:∵3x =是关x 的方程26ax bx −=的解,∴2336a b ⋅−=,即:32a b −=, ∴202362a b −+()202323a b =−−202322=−×20234−2019=;故答案为:2019.【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.13. 银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B ,C 的坐标分别为(3,2),(4,3)−,将银杏叶绕原点顺时针旋转90°后,叶柄上点A 对应点的坐标为___________.【答案】()3,1−【解析】【分析】根据点的坐标,确定坐标系的位置,再根据旋转的性质,进行求解即可.【详解】解:∵B ,C 的坐标分别为(3,2),(4,3)−,∴坐标系的位置如图所示:∴点A 的坐标为:()1,3−−,连接OA ,将OA 绕点O 顺时针旋转90°后,如图,叶柄上点A 对应点的坐标为()3,1−;故答案:()3,1−【点睛】本题考查坐标与旋转.解题的关键是确定原点的位置,熟练掌握旋转的性质.14. 如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=°,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)【答案】(3+##)3 【解析】 【分析】过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,易得四边形MDCN 为矩形,分别解Rt ANO ,Rt ACB △,求出,,ON BC CD 长,利用BDBC CD =+进行求解即可.【详解】解:过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,∵OM EF ⊥,∴OM BC ∥,∴AN OM ⊥,∴四边形MDCN 为矩形,∴MN CD =,∵6AB =,:2:1AO OB =,为的∴243AO AB ==, 在Rt ANO 中,4AO =,45AOM ∠=°,∴cos 454ON OA =⋅°=;∴3CD MN OM ON ==−=− 在Rt ACB △中,6AB =,45AOM ∠=°,∴cos 456BC AB ⋅°;∴33BD BC CD =+=−=+;故答案为:3+.【点睛】本题考查解直角三角形的实际应用,矩形的性质与判定.解题的关键是添加辅助线,构造直角三角形.15. 如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,7CE =,F 为DE 的中点,若CEF △的周长为32,则OF 的长为___________.【答案】172【解析】【分析】利用斜边上的中线等于斜边的一半和CEF △的周长,求出,CF EF 的长,进而求出DE 的长,勾股定理求出CD 的长,进而求出BE 的长,利用三角形的中位线定理,即可得解. 【详解】解:7,CE CEF = 的周长为32,32725CF EF ∴+=−=.F 为DE 的中点,DF EF ∴=.90BCD ∠=° ,12CF DE ∴=,112.52EF CF DE ∴===, 225DE EF ∴,24CD ∴=.四边形ABCD 是正方形,24BC CD ∴==,O 为BD 的中点,OF ∴是BDE 的中位线,1117()(247)222OF BC CE ∴=−=−=. 故答案为:172. 【点睛】本题考查正方形的性质,斜边上的中线,三角形的中位线定理.熟练掌握斜边上的中线等于斜边的一半,是解题的关键. 16. 如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= ___________.【答案】2023253【解析】【分析】求出1234,,,P P P P …的纵坐标,从而可计算出1234,,,S S S S …的高,进而求出1234,,,S S S S …,从而得出123n S S S S +++…+的值. 【详解】当1x =时,1P 的纵坐标为8, 当2x =时,2P 的纵坐标为4, 当3x =时,3P 的纵坐标为83, 当4x =时,4P 的纵坐标为2, 当5x =时,5P 的纵坐标为85, …则11(84)84S =×−=−; 2881(4)433S =×−=−;3881(2)233S =×−=−;481(2)2558S =×−=−;…881n S n n =−+; 1238888888844228335111n nS S S S n n n n +++…+=−+−+−+−++−=−=+++ ,�12320238202320242532023S S S S ×+++…+==.故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881nS n n =−+. 三、解答题:本大题共8小题,共72分,解答时,要写出必要的文字说明,证明过程或演算步骤.17. 先化简,再求值:222211a a a a a −÷ −−,其中a 的值从不等式组1a −<<的整数.【答案】21a a a−−,12 【解析】【分析】先根据分式的混合运算法则,进行化简,再选择一个合适的整数,代入求值即可.【详解】解:原式222223111a a a a a a a =−÷ − −−− ()2222111a a a a a a ⋅−−−− 21a aa =−−; ∵220,10a a ≠−≠, ∴0,1a a ≠≠±,23=<<=,∴1a −<<的整数解有:0,1,2, ∵0,1a a ≠≠±, ∴2a =,原式2122221−−=. 【点睛】本题考查分式的化简求值,求不等式组的整数解.熟练掌握相关运算法则,正确的进行计算,是解题的关键.18. (1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析 【解析】【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等; 故答案为:观察发现四个图形都是轴对称图形,且面积相等; (2)如图:【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案. 19. 对于任意实数a ,b ,定义一种新运算:()26(2)a b a b a b a b a b −≥=+−<※,例如:31312=−=※,545463=+−=※.根据上面的材料,请完成下列问题:(1)43=※___________,(1)(3)−−=※___________; (2)若(32)(1)5x x +−=※,求x 的值. 【答案】(1)1;2; (2)1x =, 【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x 的值即可. 【小问1详解】4× <32,434361∴=+−=※, ()132−−× >(1)(3)1(3)2∴−−=−−−=※;故答案为:1;2; 【小问2详解】若322(1)x x +≥−时,即4x ≥−时,则(32)(1)5x x +−−=,解得:1x =,若322(1)x x +−<时,即4x −<时,则(32)(1)65x x ++−−=,解得:52x =,不合题意,舍去, 1x ∴=,【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键. 20. 《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A 清洁与卫生,B 整理与收纳,C 家用器具使用与维护,D 烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C 家用器具使用与维护”的女生有___________名,“D 烹饪与营养”的男生有___________名. (2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C 家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率. 【答案】(1)20,2,1 (2)图见解析 (3)35【解析】【分析】(1)利用A 组人数除以所占的百分比求出总数,总数乘以C 组的百分比,求出C 组人数,进而求出C 组女生人数,总数乘以D 组的百分比,求出D 组的人数,进而求出D 组男生人数; (2)根据(1)中所求数据,补全图形即可; (3)利用列表法求出概率即可. 【小问1详解】解:()1215%20+÷=(人),�一共调查了20人;∴C 组人数为:2025%5×=(人), ∴C 组女生有:532−=(人); 由扇形统计图可知:D 组的百分比为115%25%50%10%−−−=, ∴D 组人数为:2010%2×=(人), ∴D 组男生有:211−=(人); 故答案为:20,2,1 【小问2详解】 补全图形如下:【小问3详解】用,,A B C 表示3名男生,用,D E 表示两名女生,列表如下: A BCDEA(),A B(),A C (),A D (),A E B (),B A(),B C(),B D (),B E C (),C A (),C B(),C D(),C E D (),D A(),D B(),D C(),D EE(),E A(),E B(),E C(),E D共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果有12种,∴123205P ==. 【点睛】本题考查扇形图与条形图的综合应用,以及利用列表法求概率.从统计图中有效的获取信息,利用频数除以百分比求出总数,熟练掌握列表法求概率,是解题的关键.21. 如图,一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n −两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象; (2)观察图象,直接写出不等式4kx b x+<的解集; (3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.【答案】(1)112y x =−,图见解析 (2)<2x −或04x << (3)30,2P或70,2P−【解析】【分析】(1)先根据反比例函数的解析式,求出,A B 的坐标,待定系数法,求出一次函数的解析式即可,连接AB ,画出一次函数的图象即可; (2)图象法求出不等式的解集即可;(3)分点P 在y 轴的正半轴和负半轴,两种情况进行讨论求解. 【小问1详解】解:∵一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n −两点, ∴24m n =−=, ∴4,2m n ==−, ∴(4,1),(2,2)A B −−,∴4122k b k b += −+=− ,解得:121k b==− ,∴112y x =−, 图象如图所示:【小问2详解】解:由图象可知:不等式4kx b x+<的解集为<2x −或04x <<; 【小问3详解】解:当点P 在y 轴正半轴上时:设直线AB 与y 轴交于点D ,∵112y x =−, 当0x =时,1y =−,当0y =时,2x =,∴()()2,0,0,1C D −,∴1PD a =+,∴()()1151412222APC APD PCD S S S a a =−=×+×−×+×= , 解得:32a =; ∴30,2P; 当点P 在y 轴负半轴上时:1PD a =−−,∴1151412222APC APD PCD S S S a a =−=×−−×−×−−×= 解得:72a =−或32a =(不合题意,舍去); ∴70,2P−. 综上:30,2P或70,2P−. 【点睛】本题考查一次函数与反比例函数的综合应用.正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.22. 如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长; (3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示). 【答案】(1)见解析;(2)BC =;(3)23π 【解析】【分析】(1)连接OC ,证明OC BE ∥,即可得到结论;(2)连接AC ,证明ACB CEB ∽,从而可得AB BC BC BE=,再代入求值即可; (2)连接OD CD ,,证明CD AB ∥,从而可得COD CBD S S = ,,求出扇形COD 的面积即可得到阴影部分的面积.【小问1详解】证明:连接OC ,∵点C 是 AD 的中点,, ∴ AC DC=, ∴ABC EBC ∠=∠,∵OC OB =,∴ABC OCB ∠=∠,∴EBC OCB ∠=∠,∴OC BE ∥,∵BE CE ⊥,∴半径OC CE ⊥,∴CE 是O 切线;【小问2详解】连接AC ,∵AB 是O 的直径,∴90ACB ∠=°,∴90ACB CEB ∠=∠=°,∵ABC EBC ∠=∠,∴ACB CEB ∽, ∴AB BCBC BE =, ∴43BCBC =,∴BC =;【小问3详解】连接OD CD ,,∵4AB =,∴2OC OB ==,∵在Rt BCE △中,3BC BE =,∴cos BE CBE BC ∠=, ∴30CBE ∠=°,∴60COD ∠=°,∴60AOC ∠=°,∵OC OD =,∴COD △是等边三角形,∴60CDO ∠=°, ∴CDO AOC ∠=∠,∴CD AB ∥,∴COD CBD S S = ,∴COD S S =阴扇形260223603ππ×=, 【点睛】本题主要考查了相似三角形的性质及判定、切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23. 如图,抛物线2y x bx c =−++经过(1,0),(0,3)A C −两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由. 【答案】(1)223y x x =−++的(2(3)存在,()1,3Q 或()1,1Q 或()1,5Q【解析】【分析】(1)待定系数法求出函数解析式即可;(2)作点D 关于x 轴的对称点D ¢,连接D M ′,D M ′与x 轴的交点即为点H ,进而得到MH DH +的最小值为D M ′的长,利用两点间距离公式进行求解即可;(3)分DM ,DP ,MP 分别为对角线,三种情况进行讨论求解即可.【小问1详解】解:∵抛物线2y x bx c =−++经过(1,0),(0,3)A C −两点,∴103b c c −−+= = ,解得:23b c = = , ∴223y x x =−++;【小问2详解】∵()222314y x x x =−++=−−+,∴()1,4M ,设直线)0:(A y k M x m k =+≠,则:04k m k m −+= += ,解得:22k m = = , ∴22:A y M x =+,当0x =时,2y =,∴()0,2D ;作点D 关于x 轴的对称点D ¢,连接D M ′,则:()0,2D ′−,MH DH MH D H D M ′′+=+≥,∴当,,M H D ′三点共线时,MH DH +有最小值为D M ′的长,∵()0,2D ′−,()1,4M ,∴D M ′,即:MH DH +;【小问3详解】解:存在;∵()222314y x x x =−++=−−+,∴对称轴为直线1x =,设(),P p t ,()1,Q n ,当以D ,M ,P ,Q 为顶点的四边形是平行四边形时:①DM 为对角线时:10142p t n +=+ +=+ ,∴06p t n = += ,当0p =时,3t =, ∴3n =,∴()1,3Q ;②当DP 为对角线时:01124p t n +=+ +=+ ,∴224p t n = +=+, 当2p =时,222233t =−+×+=,∴1n =,∴()1,1Q ;③当MP 为对角线时:10142p t n +=+ +=+ ,∴02p n t = −= ,当0p =时,3t =,∴3n =,∴()1,5Q ;综上:当以D ,M ,P ,Q 为顶点的四边形是平行四边形时,()1,3Q 或()1,1Q 或()1,5Q .【点睛】本题考查二次函数的综合应用,是中考常见的压轴题.正确的求出函数解析式,熟练掌握二次函数的性质,利用数形结合和分类讨论的思想进行求解,是解题的关键.24. 问题情境:如图1,在ABC 中,1730AB AC BC ===,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.【答案】(1)四边形AEDG 是菱形,理由见解析(2)30【解析】【分析】(1)利用等腰三角形的性质和折叠的性质,得到AE DE DG AG ===,即可得出结论. (2)先证明四边形AMKG 为平行四边形,过点H 作HE CG ⊥于点E ,等积法得到CG HE ⋅的积,推出四边形MKGA 的面积CG HE ⋅,即可得解.【小问1详解】解:四边形AEDG 是菱形,理由如下:∵在ABC 中,AB AC =,AD 是BC 边上的中线, ∴1,2AD BC BD CD BC ⊥==, ∵将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合, ∴11,,,,,22EF BC GH BC BE DE CG CD BF FD BD CH DH CD ⊥⊥======, ∴EF AD ∥,∴1BFBE FD AE==, ∴12BE AE AB ==, 同法可得:12CGAG AC ==, ∴,AE DEAG DG ==, ∵AB AC =,∴AE DE DG AG ===,∴四边形AEDG 是菱形;【小问2详解】解:∵折叠,∴,GDC C MHB B ∠=∠∠=∠, ∵AB AC =,∴B C ∠=∠,∴,GDC B MHB C ∠=∠∠=∠, ∴,MH AC DG AB ∥∥,∴四边形AMKG 为平行四边形,∵1730ABAC BC ===,, 由(1)知:1151522BDCD BC DH CH =====,,11722DG AG AB ===,∴4GH ==,过点H 作HE CG ⊥于点E ,∵1122CHG S CH HG CG HE =⋅=⋅ , ∴154302CG HE ⋅×, ∵四边形MKGA 的面积AG HE ⋅,AG CG =,∴四边形MKGA 的面积30CG HE =⋅=. 【点睛】本题考查等腰三角形的性质,折叠的性质,平行线分线段对应成比例,菱形的判定,平行四边形的判定和性质.熟练掌握相关知识点,并灵活运用,是解题的关键.。
2024年广东省中考数学真题试卷及答案
2024年广东省中考数学真题试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算-5+3的结果是( ) A.-2B.-8C.2D.82.下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.3.2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( ) A.43.8410⨯B.53.8410⨯C.63.8410⨯D.538.410⨯4.如题4图,一把直尺、两个含30°的三角尺拼接在一起,则∠ACE 的度数为( )A.120oB.90oC.60oD.30o5.下列计算正确的是( ) A.2510a a a ⋅=B.824a a a ⋅=C.257a a a -+=D.2510()a a =6.长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( ) A.14 B.13C.12D.347.完全相同的4个正方形面积之和是100,则正方形的边长是( ) A.2B.5C.10D.208. 若点123(0,),(1,),(2,)y y y 都在二次函数2y x =的图象上,则( ) A. 321y y y >> B. 213y y y >> C. 132y y y >>D.312y y y >>9.方程233x x=-的解是 A.3x =- B.9x =- C.3x = D.9x =10.已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B.C. D.二、填空题:本大题共5小题,每小题3分,共15分. 11.数据5,2,5,4,3的众数是____.12.关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是____.13.若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______. 14.计算:333a a a -=--__________. 15.如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若△BEF 的面积为4,则图中阴影部分的面积为_____.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+ 17.如图,在△ABC 中,∠C=90°.(1)实践与操作:用尺规作图法作∠A 的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18.中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,∠ABQ =60°,AB =5.4m,CE =1.6m,GH ⊥CD ,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m, 1.73≈) (1)求PQ 的长.(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19.端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A,B,C三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20.广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21.综合与实践【主题】滤纸与漏斗【素材】如图所示:①一张直径为10cm的圆形滤纸.②一只漏斗口直径与母线均为7cm的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸:步骤2:按如图所示步骤折叠好滤纸.步骤3:将其中一层撑开,围成圆锥形.步骤4:将围成圆锥形的滤纸放入如图所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.【知识技能】(1)如图1,在△ABC中,DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A'DC'.当点E的对应点E′与点A重合时,求证:AB=BC.【数学理解】(2)如图2,在△ABC中(AB<BC),DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A'DC,连接A'B,C'C,作△A'BD的中线DF.求证:2DF·CD=BD·CC′.【拓展探索】如图3,在△ABC中, tan B=43, AD=325.过点D作DE⊥BC ,垂足为E , BE=3, CE=323, 点D在AB上,.在四边形ADEC内是否存在点G,使得∠AGD+∠CGE=180° ?若存在,请给出证明;若不存在,请说明理由.图1 图2 图323.【问题背景】如图1,在平面直角坐标系中,点B,D是直线y=ax (a>0)上第一象限内的两个动点(OD>OB),以线段BD为对角线作矩形ABCD,AD//x轴.反比例函数kyx的图象经过点A.【构建联系】(1)求证:函数的图象必经过点C.(2)如图2,把矩形ABCD沿BD折叠,点C的对应点为E.当点E落在y轴上,且点B的坐标为(1,2)时,求k的值.【深入探究】(3)如图3,把矩形ABCD沿BD折叠,点C的对应点为E.当点E,A重合时,连接AC交BD于点P.以点O为圆心,AC长为半径作O.若OP=当O与△ABC的边有交点时,求k的取值范围.图1 图2 图32024年广东省中考数学真题试卷答案一、选择题.二、填空题.三、解答题. 16. 【答案】2 17. 【答案】(1)如图 (2)过点D 作DE ⊥AB 于E .因为点D 在⊥CAB 平分线AD 上,且DC ⊥AC 所以DC =DE .所以DE 为D 的半径,且DE ⊥AB 所以AB 是D 的切线.18. 【答案】(1) 6.1PQ m ≈;(2)66.7PN m = 19. 【答案】(1)C 景区;(2)A 景区(3)我的设计是:特色美食占40%,自然风光占10%,乡村民宿占20%,科普基地占30%. A 得分:640%810%720%930%7.3⨯+⨯+⨯+⨯= B 得分:740%710%820%730%7.2⨯+⨯+⨯+⨯= C 得分:840%810%620%630%7.0⨯+⨯+⨯+⨯=7.37.27.0>>假如我是王先生,会选择A 景区.(答案不唯一)20. 【答案】当售价为4.5万元/吨时,每天利润最大,为312.5万元. 当售价为3.5万元/吨时,每天的销售收入最大,为612.5万元.21. 【答案】(1)能贴紧内壁;(2)324cm 【小问1详解】 解:能理由:设圆锥展开图的扇形圆心角为n ︒ 根据题意,得77180n ππ⋅= 解得180n⊥将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁. 【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h 根据题意,得18052180ππr ⨯= 解得52r =⊥h ==⊥圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.22.(1) 证明:∵ DE 是⊥ABC 的中位线 ∴12DE BC =∵旋转.∴12DE AD BD AB === ∴AB BC = (2),DC DC DA DA ''==CDC ADA ''∠=∠过点D 作DG CC '⊥于G12CG C G CC ''∴==,12CDG C DG CDC ''∠=∠=∠又BD DA DA '==A BD BA D ''∴∠=∠又A DA A BD BA D '''∠=∠+∠ 12BA D A DA ''∴∠=∠BA D C DG ''∴∠=∠又,DB DA DF '=是中线DF A B '∴⊥90A FD '︒∴∠= ~A FD DGC ''∴∆∆ DF A D C G C D'''∴= 12DF BDCD CC '∴= 2DF CD BD CC '∴⋅=⋅(3)分别以AD,AE 为直径作圆1O 和圆2O .过1O 作1O H BC ⊥于H.12163.2,3r r == 114416(5) 6.56555O H O B ==⨯+= 2221316316 3.415355O H O E EH O E O D =-=-=-⨯≈12127.39O O r r ∴=≈<+所以圆1O 和圆2O 有两个交点.设为1G 和2G此时,0119090180o O AG D CG E ∠+∠=+=022*******o O AG D CG E ∠+∠=+=.故存在这样的点G,使180O AGD CGE ∠+∠=.23. 【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤ (1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭ ⊥//AD x 轴⊥D 点的纵坐标为k m , ⊥将k y m =代入y ax =中得:k m ax =得 ⊥k x am= ⊥,k k D am m ⎛⎫ ⎪⎝⎭⊥,k C am am ⎛⎫ ⎪⎝⎭⊥将k x am =代入k y x=中得出y am = ⊥函数k y x=的图象必经过点C . (2)⊥点()1,2B 在直线y ax =上⊥2a =⊥2y x =⊥A 点的横坐标为1,C 点的纵坐标为2⊥函数k y x=的图象经过点A ,C ⊥22k C ⎛⎫ ⎪⎝⎭,,()1,A k ⊥2k D k ⎛⎫ ⎪⎝⎭, ⊥2DC k =-⊥把矩形ABCD 沿BD 折叠,点C 的对应点为E ⊥12k BE BC ==-,90BED BCD ∠=∠=︒ ⊥2212DC k DE k BC BE -===- 如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴⊥//AD x 轴⊥H ,A ,D 三点共线⊥90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒⊥HED EBF ∠=∠⊥90DHE EFB ∠=∠=︒⊥DHE EFB ∽ ⊥2DH HE DE EF BF BE=== ⊥1BF =,2k DH = ⊥2HE =,4k EF = ⊥24k HF =+ 由图知,HF DC = ⊥224k k +=- ⊥163k =. (3)⊥把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合⊥AC BD ⊥⊥四边形ABCD 为矩形⊥四边形ABCD 为正方形,45ABP DBC ∠=∠=︒⊥sin 45AP AB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥ ⊥//BC x 轴⊥直线y ax =为一,三象限的夹角平分线⊥y x =当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H⊥AD x ∥轴⊥H ,A ,D 三点共线⊥以点O 为圆心,AC 长为半径作O ,OP =⊥23OP OB BP AC BP AP AP AP =+=+=+==⊥AP =⊥2AB AD ===,2BD AP ==2BO AC AP ===⊥AB y ∥轴⊥DHO DAB ∽ ⊥HO DH DO AB AD BD ==⊥22HO DH == ⊥4HO HD ==⊥422HA HD DA =-=-=⊥()2,4A⊥248k =⨯=当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H⊥AO OC AC ==⊥AOC 为等边三角形⊥OP AC ⊥ ⊥160302AOP ∠=⨯︒=︒⊥tan 30AP OP PD =︒⨯===,2AC BD AP ===⊥AB AD ===,OD BP PD =+=, ⊥AB y ∥轴⊥DHO DAB ∽ ⊥HO DH DO AB AD BD ====⊥3HO HD ==+⊥33HA HD DA =-=+=⊥(3A⊥((336k =⨯=⊥当O 与ABC ∆的边有交点时,k 的取值范围为68k ≤≤.。
2024年安徽省中考数学真题试卷及答案
2024年安徽省中考数学真题试卷本卷共8大题,计23小题,满分150分,考试时间120分钟. 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D 的四个选项,其中只有一个是正确的.1.-5的绝对值是( ) A.5B.-5C.15D.15-2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( ) A.70.94410⨯B.69.4410⨯C.79.4410⨯D.694.410⨯3.某几何体的三视图如图所示,则该几何体为( )A. B. C. D.5.若扇形AOB 的半径为6,120AOB ︒∠=,则AB 的长为( ) A.2πB.3πC.4πD.6π6.已知反比例函数(0)ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为( ) A.-3B.-1C.1D.37.如图,在Rt ABC 中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )C.2D.8.已知实数,a b 满足10,011a b a b -+=<++<,则下列判断正确的是( ) A.102a -<< B.112b << C.2241a b -<+< D.1420a b -<+<9.在凸五边形ABCDE 中,,AB AE BC DE ==,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是( )A.ABC AED ∠=∠B.BAF EAF ∠=∠C.BCF EDF ∠=∠D.ABD AEC ∠=∠10.如图,在Rt ABC 中,90,4,2,o ABC AB BC BD ∠===是边AC 上的高.点,E F 分别在边,AB BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若分式14x -有意义,则实数x 的取值范围是___________.12.我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为227.比较大小227(填“>”或“<”) 13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球.1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是_______.14.如图,现有正方形纸片ABCD ,点,E F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点,B C 分别落在正方形所在平面内的点,B C ''处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点,G H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D '处,然后还原.若点D '在线段B C ''上,且四边形EFGH 是正方形,4,8AE EB ==,MN 与GH 的交点为P ,则PH 的长为_______.三、(本大题共2小题,每小题8分,满分16分)15.解方程2:23x x -=.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点),,,A B C D =的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D 为旋转中心,将ABC ∆旋转180°得到111A B C ∆,画出111;A B C ∆ (2)直接写出以11,,,B C B C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地,采用新技术种植,A B 两种农作物.种植这两种农作物每公顷所需人数和投人资金如下表:已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元,问,A B 这两种农作物的种植面积各多少公顷?18.数学兴趣小组开展探究活动,研究了“正整数N =能否表示为22x y -(,x y 均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):按上表规律,完成下列问题: (i)()()2224_______=- (ii)4n =________________.(2)兴趣小组还猜测:像2,6,10,14,...这些形如42n -(n 为正整数)的正整数N 不能表示为22x y - (,x y 均为自然数).师生一起研讨,分析过程如下:阅读以上内容,请在情形②的横线上填写所缺内容。
中招考试数学试题(含答案)
中招考试数学试题(含答案)满分:150分 考试时间:120分钟第I 卷(选择题)一、单选题(每小题5分,共45分)1.若a 的倒数为2,则=a ( )A .12B .2C .12- D .-22.下列运算中,正确的是( )A .623x x x ÷=B .()325x x =C .235x x x +=D .2322x x x ⋅=3.如图所示,左侧的几何体是由若干个大小相同的小正方体组成的,该几何体的主视图(从正:面看)是( )A .B .C .D .4.如图,将一块直角三角板的直角顶点放在直尺的一边上.若∠2=40°,则∠1的度数是( )A .60°B .50°C .40°D .30°5.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( )A .6B .5C .4D .3 6.如图是象棋盘的一部分,若“帅”位于点(1,-2)上,“相”位于点(3,-2),则炮位于点( )A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,-2) 7.如图,函数ky x =与2(0)y kx k =-+≠在同一平面直角坐标系中的图像大致( )A .B .C .D .8.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan OBC ∠为( )A.13 B C D 9.如图,在平面直角坐标系xOy 中,OAB 的顶点A 在x 轴正半轴上,OC 是OAB 的中线,点B 、C 在反比例函数(0)ky x x=>的图象上,若OAB 的面积等于6,则k 的值为( )A .2B .4C .6D .8第II 卷(非选择题)二、填空题(每小题5分,共30分)10.月球沿着一定的轨道围绕地球运动,某一时刻它与地球相距405200千米,用科学记数法表示这个数并保留三个有效数字是____________千米.11.分解因式:2242x x ++=______.12.一个多边形的每个内角都为144︒,那么该正多边形的边数为________.13.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比1月份的利润增加4.2万元,设该产品利润平均每月的增长率为x ,则可列方程为___.14.如图,用一个半径为20cm ,面积为2150cm π的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r 为______cm .15.如图,ABCD 为正方形,∠CAB 的角平分线交BC 于点E ,过点C 作CF ⊥AE 交AE 的延长线于点G ,CF 与AB 的延长线交于点F ,连接BG 、DG 、与AC 相交于点H ,则下列结论:①△ABE≌△CBF ;②GF =CG ;③BG ⊥DG ;④DH =1)AE ,其中正确的是______.三、解答题(共75分)16.(6分)计算:021(2022)()22453sin π-++--︒ 17.(7分)先化简,再求值:2344111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭,其中x 是不等式组14x -≤<的一个整数解.18.(10分)如图,在矩形ABCD 中,O 为对角线BD 的中点,过点O 作直线分别与矩形的边AB ,CD 交于E ,F 两点,连接BF ,DE .(1)求证:四边形BEDF 为平行四边形;(2)若AD =1,AB =3,且EF ⊥BD ,求AE 的长.19.(10分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?20.(10分)为了解温州市民对全市创建全国文明城市工作的满意程度,教研院附校数学兴趣小组在某个小区内进行了调查统计,将调查结果分为不满意、一般、满意、非常满意四类,回收整理好全部间卷后,得到下列不完整的统计图,其中选择“一般..”的人数占总人数的20%.根据以上信息,回答下列问题:(1)此次调查中接受调查的总人数为________人.(2)请补全条形统计图.(3)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性,请用树状图或列表的方法求出选择回访的市民为“一男一女”的概率.21.(10分)如图,为了加快5G网络信号覆盖,某地在附近小山的顶部架设信号发射塔.为了知道信号发射塔的高度,在地面上的A处测得塔顶P处的仰角是31︒,向发射塔方向前行100m 到达地面上的B处,测得塔顶P处的仰角是58︒,塔底Q处的仰角是45︒,根据测得的数据,求信号发射塔PQ的高度(结果取整数).参考数据:tan310.60,tan58 1.60︒≈︒≈.22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=CE AE的长.23.(12分)如图,开口向下顶点为D的抛物线经过点A(0,5),B(-1,0),C(5,0)与x轴交于B、C两点(B在C左侧),点A和点E关于抛物线对称轴对称.(1)求该抛物线的解析式;(2)经过原点O和点E的直线与抛物线的另一个交点为F.①求点F的坐标;②求四边形ADEF的面积;(3)若M为抛物线上一动点,N为抛物线对称轴上一动点,是否存在M,N,使得以A、E、M、N为顶点的四边形为平行四边形,若存在,求出所有满足条件的M、N的坐标;若不存在,请说明理由.参考答案:1.A2.D3.D4.B5.A6.C7.B8.D9.B10.4.05×10511.22(1)x+12.1013.20(1+x)2=20+4.214.7.515.①②③16.817.22xx+-,1(答案不唯一,与x的取值有关)18.(2)4 319.现在每天用水量是8吨.20.(1)40;(2)(3)2321.36m22.(2)3.23.(1)245y x x=-++;(2)①F(54-,2516-);②;(3)M1(﹣2,﹣7),M2(6,﹣7),M3(2,9)N1(2,﹣7),N2(2,﹣7),N3(2,1).。
2024年广东省深圳市中考数学真题试卷附答案
2024年深圳市中考数学真题试卷第一部分选择题一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.下列用七巧板拼成的图案中,为中心对称图形的是()A.B.C.D.2.如图,实数a,b,c,d 在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d3.下列运算正确的是()A.()523m m -=- B.23m n m m n ⋅=C.33mn m n-= D.()2211m m -=-4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A.12B.112C.16D.145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A.40︒B.50︒C.60︒D.70︒6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A.①②B.①③C.②③D.只有①7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A.()7791x y x y +=⎧⎨-=⎩ B.()7791x y x y +=⎧⎨+=⎩C.()7791x y x y-=⎧⎨-=⎩ D.()7791x y x y+=⎧⎨+=⎩8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A.22.7mB.22.4mC.21.2mD.23.0m第二部分非选择题二、填空题(本大题共5小题,每小题3分,共15分)9.已知一元二次方程230x x m -+=的一个根为1,则m =______.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是________.(写出一个答案即可)11.如图,在矩形ABCD 中,2BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为________.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0k y k x=≠上,则k =________.13.如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=________.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.计算:()112cos 45 3.1414π-⎛⎫-⋅︒+-++ ⎪⎝⎭.15.先化简,再求值:2221111a a a a -+⎛⎫-÷⎪++⎝⎭,其中1a =+16.据了解,“i 深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i 深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B 两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)学校平均数众数中位数方差A ①________4883.299B48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE⊥(2)若AB =,5BE =,求O 的半径.19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x,CD 读数为y,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x 023456y 012.2546.259(Ⅱ)描点:请将表格中的(),x y 描在图2中(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________②将点B '坐标代入2y ax =中,解得=a ________;(用含m,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A,B 两点,且1C 和2C 的顶点P,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =,2CE =,则AE =________;AB =________(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具)②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE ,请直接写出PE 的值.2024年深圳市中考数学真题试卷解析一、选择题.题号12345678答案CABDBBAA8.【解析】解:如图:延长DC 交EM 于一点G∵90MEF EFB CDF ∠=∠=∠=︒∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=︒∴四边形EFBM 是矩形同理得四边形CDBN 是矩形依题意,得 1.8m 1.5m EF MB CD ===,,4553AEM ACN ∠=︒∠=︒,∴()1.8 1.5m 0.3m CG =-=,5m FD EG ==∴0.3mCG MN ==∴设m GM x =,则()5mEM x =+在Rt tan AMAEM AEM EM∠= ,,∴1EM AM ⨯=即()5mAM x =+在Rt tan ANACN ACN CN∠= ,,∴4tan 533CN x AN ︒==即4m 3AN x =∴()450.33MN AN AM x x =-=-+=∴15.9mx =∴()15.9520.9m AM =+=∴()20.9 1.822.7m AB AM EF AM MB =+=+=+=故选:A.二、填空题.9.【答案】210.【答案】2(答案不唯一)11.【答案】4π12.【答案】813.【答案】2021【解析】解:如图,过点A 作AH CB ⊥垂足为H∵85BD DC =,AB BC =设13AB BC x ==∴85BD x DC x ==,∵5tan 12B ∠=,AH CB ⊥∴512AH BH =∵13AB BC x==∴2222169AH BH AB x +==解得512AH x BH x ==,,∴1284DH x x x =-=,54HC x x x=-=∴AD =,AC ==∴cos 41DH ADC AD ∠==过点C 作CM AD ⊥垂足为M∴cos 41DM CD ADC =⋅∠=,41AM AD DM =-=∵DE AD ⊥,CM AD⊥∴MC DE ∥∴2041204121214141x CE DM AC AM ===故答案为:2021.三、解答题.14.【答案】415.【答案】11a -,2216.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A,理由见解析【小问1详解】解:①()1283040454848484848505048.310++++++++++=②数据中出现次数最多的是25,故众数为25③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=填表如下:学校平均数众数中位数方差A48.34883.299B 48.42547.5354.04【小问2详解】小明爸爸应该预约学校A,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.【答案】任务1:()0.80.2L n m =+;任务2:一次性最多可以运输18台购物车;任务3:共有3种方案【解析】解:任务1:∵一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m∴()0.80.2L n m=+任务2:依题意,∵已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车令2.60.80.2n≥+解得:9n ≤∴一次性最多可以运输18台购物车任务3:设x 次扶手电梯,则()5x -次直梯由题意∵该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次可列方程为:()24185100x x +-≥解得:53x ≥方案一:直梯3次,扶梯2次方案二:直梯2次,扶梯3次:方案三:直梯1次,扶梯4次答:共有三种方案18.【答案】(1)见解析(2)【小问1详解】证明:连接BO 并延长,交AD 于点H ,连接OD∵AB BD =,OA OD=∴BO 垂直平分AD∴BH AD ⊥,AH DH=∵BE 为O 的切线∴HB BE⊥∵AC 为O 的直径∴90ADC ∠=︒∴四边形BHDE 为矩形∴DE BE⊥【小问2详解】由(1)知四边形BHDE 为矩形,BH AD ⊥,AH DH =∴5AH DH BE ===∴2255BH AB AH =-=设O 的半径为r ,则:,55OA OB r OH BH OB r ===-=-在Rt AOH △中,由勾股定理,得:()()22255r r =+解得:35r =即:O 的半径为35.19.【答案】(1)图见解析,214y x =;(2)方案一:①1,2m n ⎛⎫ ⎪⎝⎭;②24n m ;方案二:①1,2h m k n ⎛⎫++ ⎪⎝⎭;②24n m ;(3)a 的值为12或12-.【小问1详解】解:描点,连线,函数图象如图所示观察图象知,函数为二次函数设抛物线的解析式为2y ax bx c=++由题意得04211644c a b c a b c =⎧⎪++=⎨⎪++=⎩解得1400a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴y 与x 的关系式为214y x =【小问2详解】解:方案一:①∵AB m =,CD n=∴12D B m ''=此时点B '的坐标为1,2m n ⎛⎫ ⎪⎝⎭故答案为:1,2m n ⎛⎫ ⎪⎝⎭②由题意得212m a n ⎛⎫= ⎪⎝⎭解得24na m =故答案为:24n m方案二:①∵C 点坐标为(),h k ,AB m =,CD n=∴12DB m =此时点B 的坐标为1,2h m k n ⎛⎫++ ⎪⎝⎭故答案为:1,2h m k n ⎛⎫++ ⎪⎝⎭②由题意得212k n a h m h k ⎛⎫+=+-+ ⎪⎝⎭解得24na m =故答案为:24n m 【小问3详解】解:根据题意1C 和2C 的对称轴为x h=-则()28A h k --+,,()28B h n -++,,1C 的顶点坐标为()P h k -,∴1C 顶点距线段AB 的距离为()88k k +-=∴2C 的顶点距线段AB 的距离为1082-=∴2C 的顶点坐标为()10Q h k -+,或()6Q h k -+,当2C 的顶点坐标为()10Q h k -+,时,()2210y a x h k =+++将()28A h k --+,代入得4108a k k ++=+,解得12a =-当2C 的顶点坐标为()6Q h k -+,时,()226y a x h k =+++将()28A h k --+,代入得468a k k ++=+,解得12a =综上,a 的值为12或12-.20.【答案】(1)1(2)AF =,理由见解析(3)①见解析;②3414PE =或3412.【小问1详解】解://AD BC ,F 为AD 的中点,AD BC =,AF =,2CE =AEF CEB ∴ ∽,2BC AD AF ===AF AEBC CE ∴=,2AE =,解得1AE =22222216BE BC CE ∴=-=-=AB ∴===故答案为【小问2详解】解:AF =,理由如下:根据题意,在垂中四边形ABCD 中,AF BD ⊥,且F 为BC 的中点∴2AD BC BF ==,90AEB ∠=︒又 AD BC∥AED FEB∴ ∽∴2AE AD DE EF BF EB===设BE a =,则2DE a= AB BD=∴23AB BD BE ED a a a==+=+=∴AE ===,EF =∴AF AE EF =+=+=AB CD=∴323AF AF CD AB a ===AF ∴=【小问3详解】解:①第一种情况:作BC 的平行线AD ,使AD BC =,连接CD则四边形ABCD 为平行四边形延长BE 交AD 于点FBC ADAEF CEB∴ ∽AF AE BC CE∴=AD BC = ,2CE AE =12AF AE BC CE ∴==,即1122AF BC AD ==∴F 为AD 的中点故如图1所示,四边形ABCD 即为所求的垂中平行四边形:第二种情况:作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AF AB =,连接DF故A 为BF 的中点同理可证明:12AB CD =则2BF AB AF AB CD=+==则四边形BCDF 是平行四边形;故如图2所示,四边形BCDF 即为所求的垂中平行四边形:第三种情况:作AD BC∥,交BE的延长线于点D,连接CD,作BC的垂直平分线在DA延长线上取点F,使AF AD=,连接BF则A为DF的中点同理可证明12AD BC=,从而DF BC=故四边形BCDF是平行四边形故如图3所示,四边形BCDF即为所求的垂中平行四边形:②若按照图1作图,由题意可知,ACB ACP∠=∠四边形ABCD是平行四边形ACB PAC∴∠=∠PAC PCA∴∠=∠PAC ∴△是等腰三角形过P 作PH AC ⊥于H,则AH HC= 5BE =,212CE AE ==5B E BE '∴==,6AE =111()(612)9222AH HC AC AE CE ∴===+=+=963EH AH AE ∴=-=-=PH AC ⊥ ,BE AC⊥CPH CB E'∴∽△△PH CH B E CE ∴=',即9515124CH B E PH CE '⋅⨯===∴3414PE ===若按照图2作图,延长CA ,DF 交于点G同理可得:PGC 是等腰三角形连接PAGF BC∥ GAF CAB∴ ∽1AF AG AB AC∴==AG AC∴=PA AC∴⊥同理,CPA CB E'∽△△6AE = ,12EC =,5B E BE '==B E CE PA AC '∴=,即51815122B E AC PA CE '⋅⨯===,3412PE ∴===若按照图3作图,则:没有交点,不存在PE (不符合题意)故答案为:4PE =或2.。
2023年山东省临沂市中考数学真题
②当 时,x越大,函数值越小;
③当 时,x越小,函数值越大;
④当 时,x越大,函数值越大.
其中正确的是_____________(只填写序号).
三、解答题(本大题共7小题,共72分)
17.(1)解不等式 ,并在数轴上表示解集.
(2)下面是某同学计算 的解题过程:
解:
①
②
(参考数据: )
20.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.
(1)这台M型平板电脑价值多少元?
(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?
(2)①这组数据 中位数是_____________;
②分析数据分布的情况(写出一条即可)_____________;
(3)若85分以上(不含85分)成绩为优秀等次,请预估该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数.
19.如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?
A.相交B.相交且垂直C.平行D.不能确定
6.下列运算正确的是( )
A. B.
C. D. .
7.将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是( )
A.60°B.90°C.180°D.360°
8.设 ,则实数m所在的范围是( )
A. B. C. D.
9.在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()
新中考初三数学试卷及答案
一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 12. 已知方程x² - 5x + 6 = 0,则 x 的值为:A. 2 或 3B. 1 或 4C. 2 或 4D. 1 或 33. 在等腰三角形 ABC 中,若 AB = AC,且底边 BC = 6cm,则腰 AB 的长度为:A. 3cmB. 4cmC. 5cmD. 6cm4. 若 a, b, c 是等差数列,且 a + b + c = 12,则a² + b² + c² 的值为:A. 36B. 42C. 48D. 545. 在直角坐标系中,点 P(2, 3) 关于 y 轴的对称点为:A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)6. 若函数 f(x) = 2x + 1 在 x = 3 处的导数为 4,则 f'(3) 的值为:A. 4B. 5C. 6D. 77. 在三角形 ABC 中,若角 A、B、C 的对边分别为 a、b、c,且 a = 5,b = 8,c = 10,则角 A 的余弦值为:A. 0.5B. 0.6C. 0.7D. 0.88. 下列各式中,能表示圆的方程的是:A. x² + y² = 1B. x² + y² = 4C. x² + y² = 9D. x² + y² = 169. 若sin²θ + cos²θ = 1,则下列各式中正确的是:A. sinθ = cosθB. sinθ = -cosθC. sinθ + cosθ = 0D. sinθ - cosθ = 010. 下列函数中,在定义域内是增函数的是:A. f(x) = x²B. f(x) = -x²C. f(x) = x³D. f(x) = -x³二、填空题(每题5分,共20分)11. 已知方程 2x - 3 = 5,则 x = ________。
初三中考试卷数学全国一卷
考试时间:120分钟满分:150分一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. √2B. 3/4C. 0.1010010001…D. -π2. 已知a、b是实数,若a² + b² = 1,则|a| + |b|的取值范围是()A. [0, 1]B. [1, 2]C. [0, 2]D. [1, ∞)3. 下列函数中,有最小值的是()A. y = x² - 2x + 1B. y = -x² + 4x - 3C. y = x³ - 3x² + 4x - 1D. y = 2x - 34. 在等腰三角形ABC中,底边BC=8cm,腰AB=AC=10cm,则高AD的长度是()A. 6cmB. 8cmC. 10cmD. 12cm5. 已知一元二次方程x² - 4x + 3 = 0的解是x₁和x₂,那么方程x² - 4x + 7 = 0的解是()A. x₁ + x₂B. x₁ - x₂C. x₁x₂D. x₁² - x₂²6. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 矩形7. 若等差数列{an}的公差为d,首项为a₁,则第10项a₁₀是()A. a₁ + 9dB. a₁ + 10dC. a₁ + 11dD. a₁ + 12d8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bc(c > 0)C. 若a > b,则a - b > 0D. 若a > b,则a² - b² > 09. 已知等比数列{an}的公比为q,首项为a₁,则第5项a₅是()A. a₁q⁴B. a₁q³C. a₁q²D. a₁q10. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)二、填空题(每题4分,共40分)11. 若sinα = 1/2,且α在第二象限,则cosα = _______。
中考数学试卷新版真题答案
1. 下列各数中,有理数是()A. √3B. πC. -2D. 0.1010010001…答案:C解析:有理数包括整数和分数,而整数包括正整数、0和负整数,故选C。
2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a - 2 < b - 2D. a + 2 < b + 2答案:A解析:由不等式的基本性质可知,若 a > b,则 a + c > b + c(c为任意实数),故选A。
3. 已知函数f(x) = 2x - 1,若f(x) = 3,则x的值为()A. 2B. 1C. 0D. -1答案:B解析:将f(x) = 3代入函数表达式2x - 1,得到2x - 1 = 3,解得x = 2,故选B。
4. 在直角坐标系中,点A(-2, 3),点B(4, -1),则线段AB的中点坐标为()A. (1, 1)B. (1, 2)C. (2, 1)D. (2, 2)答案:C解析:线段AB的中点坐标为两个端点坐标的平均值,即((-2 + 4) / 2, (3 - 1) / 2) = (1, 1),故选C。
5. 若等差数列{an}的公差为d,且a1 = 2,a3 = 8,则d的值为()A. 3B. 4C. 5D. 6答案:B解析:由等差数列的性质可知,a3 = a1 + 2d,代入a1 = 2,a3 = 8,得到8 = 2 + 2d,解得d = 3,故选B。
6. 若a、b、c是等差数列的连续三项,且a + b + c = 9,则b的值为______。
答案:3解析:由等差数列的性质可知,a + b + c = 3b,代入a + b + c = 9,得到3b = 9,解得b = 3。
7. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为______。
答案:-1解析:将x = 2代入函数表达式x^2 - 4x + 3,得到f(2) = 2^2 - 42 + 3 = -1。
中考数学试卷新版真题
一、选择题(每题3分,共30分)1. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,2),则下列选项中正确的是()A. a>0,b>0,c>0B. a>0,b<0,c>0C. a<0,b>0,c>0D. a<0,b<0,c<02. 在直角坐标系中,点A(-1,2)关于x轴的对称点坐标为()A. (-1,-2)B. (1,2)C. (-1,2)D. (1,-2)3. 若等腰三角形底边长为4,腰长为5,则该三角形的面积为()A. 6B. 10C. 12D. 154. 已知数列{an}的前n项和为Sn,且S1=1,S2=3,S3=6,则数列{an}的通项公式为()A. an=2n-1B. an=2nC. an=n^2D. an=n5. 在平面直角坐标系中,直线y=2x+1与圆x^2+y^2=4相交于A、B两点,则线段AB的中点坐标为()A. (1,1)B. (2,2)C. (-1,-1)D. (-2,-2)6. 若函数f(x)=x^2-2ax+1在区间[1,3]上单调递增,则a的取值范围是()A. a≤1B. a≤2C. a≥1D. a≥27. 在等差数列{an}中,若a1=3,公差d=2,则前10项的和S10等于()A. 110B. 120C. 130D. 1408. 若方程x^2-4x+3=0的解为x1、x2,则方程x^2-4x+k=0的解为()A. x1、x2B. x1、x2的相反数C. x1、x2的倒数D. x1、x2的平方9. 已知函数y=|x|+1在x≤0时单调递减,则函数y=-|x|+1的单调性为()A. 单调递增B. 单调递减C. 先增后减D. 先减后增10. 在等腰直角三角形ABC中,若∠A=45°,则边AB的长度为()A. 1B. √2C. 2D. 2√2二、填空题(每题4分,共20分)11. 已知函数y=2x+3,若x=2,则y=________。
中考数学试卷新版及答案
一、选择题(每小题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 4,则函数的图像是()A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一条直线D. 两个相交的直线答案:A2. 下列各数中,属于无理数的是()A. √9B. 2/3C. πD. 1.414答案:C3. 如果等腰三角形底边长为6cm,腰长为8cm,那么该三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm答案:C4. 下列方程中,解为整数的是()A. 2x - 5 = 0B. x^2 + 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 + 2x - 3 = 0答案:D5. 下列命题中,正确的是()A. 平行四边形的对边相等B. 等腰三角形的底角相等C. 矩形的对角线相等D. 正方形的四边相等且四个角都是直角答案:D6. 在△ABC中,∠A = 60°,∠B = 45°,那么∠C的度数是()A. 75°B. 120°C. 135°D. 150°答案:C7. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^4答案:C8. 已知等差数列的前三项分别是2,5,8,那么该数列的第四项是()A. 11B. 13C. 15D. 17答案:C9. 下列图形中,关于y轴对称的是()A. 等腰三角形B. 等边三角形C. 正方形D. 矩形答案:D10. 下列数列中,不是等比数列的是()A. 2,4,8,16,32B. 1,2,4,8,16C. 1,3,9,27,81D. 2,4,8,16,32答案:B二、填空题(每小题3分,共30分)11. 已知等腰三角形底边长为8cm,腰长为10cm,那么该三角形的周长是________cm。
答案:2812. 如果函数f(x) = x^2 - 3x + 2的图像与x轴的交点坐标是(1, 0)和(2, 0),那么该函数的解析式是________。
初中数学新中考试卷及答案
一、选择题(每题4分,共20分)1. 下列选项中,不是有理数的是()A. -3.14B. √9C. 0D. 2.5答案:B2. 下列选项中,下列方程的解为x=2的是()A. 2x + 1 = 5B. 2x - 3 = 1C. 2x + 2 = 4D. 2x - 4 = 0答案:A3. 已知等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm答案:C4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^3答案:B5. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,6)答案:A二、填空题(每题4分,共20分)6. -5 + 3 = ()答案:-27. 2x - 5 = 11的解为x = ()答案:88. 若a = 3,b = -2,则a^2 + b^2 = ()答案:139. 一个数的倒数是1/4,这个数是()答案:410. 若x = -2,那么-x^2 + 2x - 3 = ()答案:5三、解答题(每题10分,共30分)11. (10分)计算下列各式的值:(1)-3 × (-2) + 4 - 5(2)√(16) - √(9) ÷ √(4)(3)(2/3) × (3/4) - (1/2) ÷ (1/3)答案:(1)4(2)1(3)1/412. (10分)已知等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的周长。
答案:28cm13. (10分)解下列方程组:x + y = 52x - y = 3答案:x = 4,y = 1四、应用题(每题10分,共20分)14. (10分)某商店销售A、B两种商品,A商品每件售价为50元,B商品每件售价为30元。
2024年天津市中考数学真题试卷及答案解析
2024年天津市初中学业水平考试试卷数学第I 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果是( )A. 6B. 3C. 0D. -62. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B.C. D.3. 估算的值在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5. 据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A. B.C.D.6.的值等于()A. B. C. D.7. 计算的结果等于()A. B. C. D.8. 若点都在反比例函数的图象上,则的大小关系是()A. B.C. D.9. 《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长尺,绳子长尺,则可以列出的方程组为()A. B.C. D.10. 如图,中,,以点为圆心,适当长为半径画弧,交于点,交于点;再分别以点为圆心,大于的长为半径画弧,两弧(所在圆的半径相等)在的内部相交于点;画射线,与相交于点,则的大小为()A. B. C. D.11. 如图,中,,将绕点顺时针旋转得到,点的对应点分别为,延长交于点,下列结论一定正确的是()A. B.C. D.12. 从地面竖直向上抛出一小球,小球的高度(单位:)与小球的运动时间(单位:)之间的关系式是.有下列结论:①小球从抛出到落地需要;②小球运动中的高度可以是;③小球运动时的高度小于运动时的高度.其中,正确结论的个数是()A. 0B. 1C. 2D. 3第II卷二、填空题(本大题共6小题,每小题3分,共18分)13. 不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______.14. 计算的结果为______.15. 计算的结果为___.16. 若正比例函数(是常数,)的图象经过第一、第三象限,则的值可以是_____________(写出一个即可).17. 如图,正方形的边长为,对角线相交于点,点在的延长线上,,连接.(1)线段的长为______;(2)若为的中点,则线段的长为______.18. 如图,在每个小正方形的边长为1的网格中,点均在格点上.(1)线段的长为______;(2)点在水平网格线上,过点作圆,经过圆与水平网格线的交点作切线,分别与的延长线相交于点中,点在边上,点在边上,点在边上.请用无刻度的直尺,在如图所示的网格中,画出点,使的周长最短,并简要说明点的位置是如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19. 解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.20. 为了解某校八年级学生每周参加科学教育的时间(单位:),随机调查了该校八年级名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:的值为______,图①中的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是的人数约为多少?21. 已知中,为的弦,直线与相切于点.(1)如图①,若,直径与相交于点,求和的大小;(2)如图②,若,垂足为与相交于点,求线段的长.22. 综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔的高度(如图①).某学习小组设计了一个方案:如图②,点依次在同一条水平直线上,,垂足为.在处测得桥塔顶部的仰角()为,测得桥塔底部的俯角()为,又在处测得桥塔顶部的仰角()为.(1)求线段的长(结果取整数);(2)求桥塔的高度(结果取整数).参考数据:.23. 已知张华的家、画社、文化广场依次在同一条直线上,画社离家,文化广场离家.张华从家出发,先匀速骑行了到画社,在画社停留了,之后匀速骑行了到文化广场,在文化广场停留后,再匀速步行了返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张华离开家的时间141330张华离家的距离②填空:张华从文化广场返回家的速度为______;③当时,请直接写出张华离家的距离关于时间的函数解析式;(2)当张华离开家时,他的爸爸也从家出发匀速步行了直接到达了文化广场,那么从画社到文化广场的途中两人相遇时离家的距离是多少?(直接写出结果即可)24. 将一个平行四边形纸片放置在平面直角坐标系中,点,点,点在第一象限,且.(1)填空:如图①,点的坐标为______,点的坐标为______;(2)若为轴的正半轴上一动点,过点作直线轴,沿直线折叠该纸片,折叠后点的对应点落在轴的正半轴上,点的对应点为.设.①如图②,若直线与边相交于点,当折叠后四边形与重叠部分为五边形时,与相交于点.试用含有的式子表示线段的长,并直接写出的取值范围;②设折叠后重叠部分的面积为,当时,求的取值范围(直接写出结果即可).25. 已知抛物线的顶点为,且,对称轴与轴相交于点,点在抛物线上,为坐标原点.(1)当时,求该抛物线顶点的坐标;(2)当时,求的值;(3)若是抛物线上的点,且点在第四象限,,点在线段上,点在线段上,,当取得最小值为时,求的值.参考答案第I卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 【答案】A【解析】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6.故选A.2.【答案】B【解析】【分析】本题主要考查了简单组合体的三视图,根据主视图是指从正前方向看到的图形求解即可.解:由此从正面看,下面第一层是三个正方形,第二层是一个正方形(且在最右边),故选:B.3. A. 1和2之间 B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】【分析】本题考查无理数的估算,根据题意得,即可求解.解:∵∴,∴的值在3和4之间,故选:C.4. 【答案】C【解析】【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.5.【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.解:将数据800000用科学记数法表示应为.故选:C.6.【答案】A【解析】【分析】本题考查特殊角的三角函数值,熟记特殊的三角函数值是解题的关键;根据代入即可求解,故选:A7.【答案】A【解析】【分析】本题考查分式加减运算,熟练运用分式加减法则是解题的关键;运用同分母的分式加减法则进行计算,对分子提取公因式,然后约分即可.解:原式故选:A8.【答案】B【解析】【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.解:,反比例函数的图象分布在第一、三象限,在每一象限随的增大而减小,点,都在反比例函数的图象上,,.∵,在反比例函数的图象上,∴,∴.故选:B.9.【答案】A【解析】【分析】本题考查的是二元一次方程组的应用.用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长5尺得:;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:;从而可得答案.解:由题意可得方程组为:,故选:A.10.【答案】B【解析】【分析】本题主要考查基本作图,直角三角形两锐角互余以及三角形外角的性质,由直角三角形两锐角互余可求出,由作图得,由三角形的外角的性质可得,故可得答案【详解】解:∵,∴,由作图知,平分,∴,又∴故选:B11.【答案】D【解析】【分析】本题考查了旋转性质以及两个锐角互余的三角形是直角三角形,平行线的判定,正确掌握相关性质内容是解题的关键.先根据旋转性质得,结合,即可得证,再根据同旁内角互补证明两直线平行,来分析不一定成立;根据图形性质以及角的运算或线段的运算得出A和C选项是错误的.解:记与相交于一点H,如图所示:∵中,将绕点顺时针旋转得到,∴∵∴在中,∴故D选项是正确的,符合题意;设∴∵∴∴∵不一定等于∴不一定等于∴不一定成立,故B选项不正确,不符合题意;∵不一定等于∴不一定成立,故A选项不正确,不符合题意;∵将绕点顺时针旋转得到,∴∴故C选项不正确,不符合题意;故选:D12.【答案】C【解析】【分析】本题考查二次函数的图像和性质,令解方程即可判断①;配方成顶点式即可判断②;把和代入计算即可判断③.解:令,则,解得:,,∴小球从抛出到落地需要,故①正确;∵,∴最大高度为,∴小球运动中的高度可以是,故②正确;当时,;当时,;∴小球运动时的高度大于运动时的高度,故③错误;故选C.第II卷二、填空题(本大题共6小题,每小题3分,共18分)13.【答案】##0.3【解析】【分析】本题考查了概率公式的应用,熟练掌握概率公式是解题的关键.用绿球的个数除以球的总数即可.解:∵不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别,∴从袋子中随机取出1个球,它是绿球的概率为,故答案为:.14. 【答案】【解析】【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.解:,故答案为:.15. 【答案】【解析】【分析】利用平方差公式计算后再加减即可.解:原式.故答案为:.【点拨】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.【答案】1(答案不唯一)【解析】【分析】根据正比例函数图象所经过象限确定的符号.解:正比例函数(是常数,)的图象经过第一、三象限,.∴k的值可以为1,故答案为:1(答案不唯一).【点拨】本题主要考查正比例函数图象在坐标平面内的位置与的关系.解答本题注意理解:直线所在的位置与的符号有直接的关系.时,直线必经过一、三象限.时,直线必经过二、四象限.17. 【答案】①. 2 ②. ##【解析】【分析】本题考查正方形的性质,中位线定理,熟练运用中位线定理是解题的关键;(1)运用正方形性质对角线互相平分、相等且垂直,即可求解,(2)作辅助线,构造中位线即可.(1)四边形是正方形,,在中,,,,(2)延长到点,使,连接由点向作垂线,垂足为∵为的中点,为的中点,∴为的中位线,在中,,,在中,,为的中位线,18. 【答案】①. ②. 图见解析,说明见解析【解析】【分析】此题考查了勾股定理、切线的性质等知识,根据题意正确作图是解题的关键.(1)利用勾股定理即可求解;(2)根据圆的相关性质和网格特点进行作图即可.(1)由勾股定理可知,,故答案为:(2)如图,根据题意,切点为;连接并延长,与网格线相交于点;取圆与网格线的交点和格点,连接并延长,与网格线相交于点;连接,分别与相交于点,则点即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19. 【答案】(1)(2)(3)见解析(4)【解析】【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(3)根据前两问的结果,在数轴上表示不等式的解集;(4)根据数轴上的解集取公共部分即可.小问1解:解不等式①得,故答案为:;小问2解:解不等式②得,故答案为:;小问3解:在数轴上表示如下:小问4解:由数轴可得原不等式组的解集为,故答案为:.20. 【答案】(1)(2)8.36 (3)150人【解析】【分析】本题考查条形统计图、扇形统计图,用样本估计总体,众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据的人数和百分比可以求得本次接受调查的学生人数,再由总人数和的人数即可求出m;根据条形统计图中的数据,可以得到这50个样本数据的众数、中位数;(2)根据平均数的定义进行解答即可;(3)在所抽取的样本中,每周参加科学教育的时间是的学生占,用八年级共有学生数乘以即可得到答案.小问1解:(人,,,这组数据中,8出现了17次,次数最多,众数是8,将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8,中位数是,故答案为:.小问2解这组数据的平均数是8.36.小问3解在所抽取的样本中,每周参加科学教育的时间是的学生占,根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是的学生占,有.估计该校八年级学生每周参加科学教育的时间是的人数约为150.21. 【答案】(1);(2)【解析】【分析】本题考查等腰三角形的性质,切线的性质,解直角三角形,灵活运用相关性质定理是解答本题的关键.(1)根据等边对等角得到,然后利用三角形的内角和得到,然后利用平行线的性质解题即可;(2)连接,则,然后求出,再在中运用三角函数解题即可.小问1解为的弦,.得.中,,又,.直线与相切于点为的直径,.即.又,.在中,.,.小问2解如图,连接.∵直线与相切于点为的直径,∴∵∴.,得.在中,由,得..在中,,.22.【答案】(1)(2)【解析】【分析】此题考查了解直角三角形的应用,数形结合是解题的关键.(1)设,在中,.在中,.则.解方程即可;(2)求出,根据即可得到答案.小问1解:设,由,得.,垂足为,.在中,,.在中,,..得.答:线段的长约为.小问2解在中,,..答:桥塔的高度约为.23. 【答案】(1)①;②0.075;③当时,;当时,;当时,(2)【解析】【分析】本题考查了从函数图象获取信息,求函数的解析式,列一元一次方程解决实际问题,准确理解题意,熟练掌握知识点是解题的关键.(1)①根据图象作答即可;②根据图象,由张华从文化广场返回家的距离除以时间求解即可;③分段求解,,可得出,当时,;当时,设一次函数解析式为:,把,代入,用待定系数法求解即可.(2)先求出张华爸爸的速度,设张华爸爸距家,则,当两人相遇时有,列一元一次方程求解即可进一步得出答案.小问1解:①画社离家,张华从家出发,先匀速骑行了到画社,∴张华的骑行速度为,∴张华离家时,张华离家,张华离家时,还在画社,故此时张华离家还是,张华离家时,在文化广场,故此时张华离家还是.故答案为:.②,故答案:.③当时,张华的匀速骑行速度为,∴;当时,;当时,设一次函数解析式为:,把,代入,可得出:,解得:,∴,综上:当时,,当时,,当时,.小问2解张华爸爸的速度为:,设张华爸爸距家,则,当两人从画社到文化广场的途中两人相遇时,有,解得:,∴,故从画社到文化广场的途中两人相遇时离家的距离是.24.【答案】(1)(2)①;②【解析】【分析】(1)根据平行四边形的性质,得出结合勾股定理,即可作答.(2)①由折叠得,,再证明是等边三角形,运用线段的和差关系列式化简,,考虑当与点重合时,和当与点B重合时,分别作图,得出的取值范围,即可作答.②根据①的结论,根据解直角三角形的性质得出,再分别以时,时,,分别作图,运用数形结合思路列式计算,即可作答.小问1解:如图:过点C作∵四边形是平行四边形,,∴∵∴∴∴∴∵∴∴故答案为:,小问2解:①∵过点作直线轴,沿直线折叠该纸片,折叠后点的对应点落在轴的正半轴上,∴,,∴∵∴∴∵四边形为平行四边形,∴,,∴是等边三角形∴∵∴∴;当与点重合时,此时与的交点为E与A重合,如图:当与点B重合时,此时与的交点为E与B重合,∴的取值范围为;②如图:过点C作由(1)得出,∴,∴当时,∴,开口向上,对称轴直线∴在时,随着的增大而增大∴;当时,如图:∴,随着的增大而增大∴在时;在时;∴当时,∵当时,过点E作,如图:∵由①得出是等边三角形,∴,∴,∴∵∴开口向下,在时,有最大值∴∴在时,∴则在时,;当时,如图,∴,随着的增大而减小∴在时,则把分别代入得出,∴时,综上:【点拨】本题考查了平行四边形的性质,解直角三角形的性质,折叠性质,二次函数的图象性质,正确掌握相关性质内容是解题的关键.25. 【答案】(1)该抛物线顶点的坐标为(2)10 (3)1【解析】【分析】(1)先求得的值,再配成顶点式,即可求解;(2)过点作轴,在中,利用勾股定理求得,在中,勾股定理求得,得该抛物线顶点的坐标为,再利用待定系数法求解即可;(3)过点作轴,过点作轴,证明,求得点坐标为,在中,利用勾股定理结合题意求得,在的外部,作,且,证明,得到,当满足条件的点落在线段上时,取得最小值,求得点的坐标为,再利用待定系数法求解即可.小问1解:,得.又,该抛物线的解析式为.,该抛物线顶点的坐标为;小问2解:过点作轴,垂足为,则.在中,由,.解得(舍).点的坐标为.,即.抛物线的对称轴为.对称轴与轴相交于点,则.在中,由,.解得负值舍去.由,得该抛物线顶点的坐标为.该抛物线的解析式为.点在该抛物线上,有.;小问3解:过点作轴,垂足为,则..在中,.过点作轴,垂足为,则.,又,.∴,,∴点的坐标为.在中,,,即.根据题意,,得.在的外部,作,且,连接,得..∴..当满足条件的点落在线段上时,取得最小值,即.在中,,.得..解得(舍).点的坐标为,点的坐标为.点都在抛物线上,得..【点拨】本题考查待定系数法求二次函数解析式,二次函数的顶点式,勾股定理,垂线段最短,全等三角形的判定和性质,正确引出辅助线解决问题是解题的关键.。
2024年四川省成都市中考数学真题试卷及答案解析
2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.D.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.3. 下列计算正确的是()A. B.C. D.4. 在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A. 53B. 55C. 58D. 646. 如图,在矩形中,对角线与相交于点,则下列结论一定正确的是()A B. C. D.7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出钱,会多出4钱;每人出钱,又差了3钱.问人数,琎价各是多少?设人数为,琎价为,则可列方程组为()A. B. C. D.8. 如图,在中,按以下步骤作图:①以点为圆心,以适当长为半径作弧,分别交,于点,;②分别以,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交于点,交延长线于点.若,,下列结论错误的是()A. B.C. D.第II卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若,为实数,且,则的值为______.10. 分式方程的解是____.11. 如图,在扇形中,,,则的长为______.12. 盒中有枚黑棋和枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则的值为______.13. 如图,在平面直角坐标系中,已知,,过点作轴的垂线,为直线上一动点,连接,,则的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1)计算:.(2)解不等式组:15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线亲子互动慢游线48园艺小清新线根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子垂直于地面,长8尺.在夏至时,杆子在太阳光线照射下产生的日影为;在冬至时,杆子在太阳光线照射下产生的日影为.已知,,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:,,,,,)17. 如图,在中,,为斜边上一点,以为直径作,交于,两点,连接,,.(1)求证:;(2)若,,,求的长和的直径.18. 如图,在平面直角坐标系中,直线与直线相交于点,与轴交于点,点在反比例函数图象上.(1)求,,的值;(2)若,,,为顶点的四边形为平行四边形,求点的坐标和的值;(3)过,两点的直线与轴负半轴交于点,点与点关于轴对称.若有且只有一点,使得与相似,求的值.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,,若,,则的度数为______.20. 若,是一元二次方程的两个实数根,则的值为______.21. 在综合实践活动中,数学兴趣小组对这个自然数中,任取两数之和大于的取法种数进行了探究.发现:当时,只有一种取法,即;当时,有和两种取法,即;当时,可得;…….若,则的值为______;若,则的值为______.22. 如图,在中,,是的一条角平分线,为中点,连接.若,,则______.23. 在平面直角坐标系中,,,是二次函数图象上三点.若,,则______(填“”或“”);若对于,,,存在,则的取值范围是______.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共进行销售,其中A 种水果收购单价10元/,B种水果收购单价15元/.(1)求A,B两种水果各购进多少千克;(2)已知A种水果运输和仓储过程中质量损失,若合作社计划A种水果至少要获得的利润,不计其他费用,求A种水果的最低销售单价.25. 如图,在平面直角坐标系中,抛物线:与轴交于A,B两点(点在点的左侧),其顶点为,是抛物线第四象限上一点.(1)求线段的长;(2)当时,若的面积与的面积相等,求的值;(3)延长交轴于点,当时,将沿方向平移得到.将抛物线平移得到抛物线,使得点,都落在抛物线上.试判断抛物线与否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26. 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.【初步感知】(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.【拓展延伸】(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.参考答案A卷(共100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. 【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.解:|﹣5|=5.故选A.2. 【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.解:该几何体的主视图为,故选:A.3. 【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.解:A.,原计算错误,故该选项不符合题意;B.和不是同类项,不能合并,故该选项不符合题意;C.,原计算错误,故该选项不符合题意;D.,原计算正确,故该选项符合题意;故选:D.4. 【答案】B【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.解:点关于原点对称的点的坐标为;5.【答案】B【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:,故选:B.6.【答案】C【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.解:∵四边形是矩形,∴,,,则,∴选项A中不一定正确,故不符合题意;选项B中不一定正确,故不符合题意;选项C中一定正确,故符合题意;选项D中不一定正确,故不符合题意,故选:C.7.【答案】B【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.解:设人数为,琎价为,根据每人出钱,会多出4钱可得出,每人出钱,又差了3钱.可得出,则方程组为:,故选:B.8.【答案】D【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到为的角平分,利用平行线证明,从而得到,再利用平行四边形的性质得到,再证明,分别求出,,则各选项可以判定.解:由作图可知,为的角平分,∴,故A正确;∵四边形为平行四边形,∴,∵∴,∴,∴,∴,故B正确;∵,∴,∵,∴,∴,∴,∴,,故D错误;∵,∴,故C正确,故选:D.二、填空题(本大题共5个小题,每小题4分,共20分)9.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m、n值,进而代值求解即可.解:∵,∴,,解得,,∴,故答案为:1.10.【答案】x=3【解析】试题分析:分式方程去分母转化为整式方程x=3(x﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.11.【答案】【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.解:由题意得的长为,故答案为:12.【答案】【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是,可得,进而利用比例性质求解即可.解:∵随机取出一枚棋子,它是黑棋的概率是,∴,则,故答案为:.13.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A关于直线的对称点,连交直线于点C,连,得到,,再由轴对称图形的性质和两点之间线段最短,得到当三点共线时,的最小值为,再利用勾股定理求即可.解:取点A关于直线的对称点,连交直线于点C,连,则可知,,∴,即当三点共线时,的最小值为,∵直线垂直于y轴,∴轴,∵,,∴,∴在中,,故答案为:5三、解答题(本大题共5个小题,共48分)14.【答案】(1)5;(2)【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.解:(1);(2)解不等式①,得,解不等式②,得,∴该不等式组的解集为.15.【答案】(1)160,40(2)(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是可求解x值;(2)由乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.小问1解:调查总人数为(人),选择“世界公园打卡线”的人数为(人),故答案为:160,40;小问2 解:“国风古韵观赏线”对应的圆心角度数为;小问3 解:选择“园艺小清新线”的人数为(人),∴该单位选择“园艺小清新线”的员工人数为(人).16.【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得和,结合题意利用平均数即可求得春分和秋分时日影长度.解:∵,杆子垂直于地面,长8尺.∴,即,∵,∴,即,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为.答:春分和秋分时日影长度9.2尺.17. 【答案】(1)见详解;(2),.【解析】【分析】(1)先证明,然后利用对应边成比例,即可证明;(2)利用,知道,从而推出,结合,知道,推出,接下来证明,那么有,即,不妨设,代入求得的长度,不妨设,在和中利用勾股定理求得和的长度,最后利用,求得的长度,然后在利用勾股定理求得的长度.【小问1】是的直径又【小问2】由(1)可知,不妨设,那么,不妨设,那么在中,,,在中,,的直径是故答案为:,直径是.【点拨】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18. 【答案】(1),,(2)点的坐标为或,(3)【解析】【分析】(1)利用待定系数法求解即可;(2)设,根据平行四边形的性质,分当为对角线时,当为对角线时,当为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点,则,,利用相似三角形的性质得,进而解方程得,则,利用待定系数法求得直线的表达式为,联立方程组得,根据题意,方程有且只有一个实数根,利用根的判别式求解即可.小问1解:由题意,将代入中,得,则,将代入中,得,则,∴,将代入中,得,则;小问2解:设,由(1)知,若,,,为顶点的四边形为平行四边形,分以下情况:当为对角线时,则,解得,∴,则;当为对角线时,则,解得,∴,则;当为对角线时,依题意,这种情况不存在,综上所述,满足条件的点的坐标为或,;小问3解:如图,设点,则,,若,则,即,∴,即,解得,∵,∴,则,设直线的表达式为,则,解得,∴直线的表达式为,联立方程组,得,∵有且只有一点,∴方程有且只有一个实数根,∴,解得;由题意,不存在,故满足条件的k值为.【点拨】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 【答案】##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出,再利用三角形内角和求出的度数即可.解:由,,∴,∵,∴,故答案为:20. 【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出,,从而得到,再将原式利用完全平方公式展开,利用替换项,整理后得到,再将代入即可.解:∵,是一元二次方程的两个实数根,∴,,则∴故答案为:721.【答案】①. 9 ②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n为偶数或奇数时的不同取法是解答的关键.先根据前几个n值所对应k值,找到变化规律求解即可.解:当时,只有一种取法,则;当时,有和两种取法,则;当时,有,,,四种取法,则;故当时,有,,,,,六种取法,则;当时,有,,,,,,,,九种取法,则;依次类推,当n为偶数时,,故当时,,故答案为:9,144.22.【答案】【解析】【分析】连接,过E作于F,设,,根据直角三角形斜边上的中线性质和等腰三角形的性质证得,,,进而利用三角形的外角性质和三角形的中位线性质得到,,证明,利用相似三角形的性质和勾股定理得到;根据角平分线的定义和相似三角形的判定与性质证明得到,进而得到关于x的一元二次方程,进而求解即可.解:连接,过E作于F,设,,∵,为中点,∴,又,∴,,,∴,,∵,∴,则,又,∴,∴,,∴,则;∵是的一条角平分线,∴,又,∴,∴∴,则,∴,即,解得(负值已舍去),故答案为:.【点拨】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 【答案】①. ②.【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.解:由得抛物线对称轴为直线,开口向下,∵,,∴,∴;∵,,,,∴,∵存在,∴,,且离对称轴最远,离对称轴最近,∴,即,且,∵,,∴且,解得,故答案为:;.二、解答题(本大题共3个小题,共30分)24. 【答案】(1)A种水果购进1000千克,B种水果购进500千克(2)A种水果的最低销售单价为元/【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A种水果购进x千克,B种水果购进y千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.小问1解:设A种水果购进x千克,B种水果购进y千克,根据题意有:,解得:,∴A种水果购进1000千克,B种水果购进500千克小问2解设A种水果的销售单价为元/,根据题意有:,解得,故A种水果的最低销售单价为元/25.【答案】(1)(2)(3)抛物线与交于定点【解析】【分析】(1)根据题意可得,整理得,即可知则有;(2)由题意得抛物线:,则设,可求得,结合题意可得直线解析式为,设直线与抛物线对称轴交于点E,则,即可求得,进一步解得点,过D作于点H,则,即可求得;(3)设可求得直线解析式为,过点D作,可得,结合题意得设抛物线解析式为,由于过点,可求得抛物线解析式为,根据解得,即可判断抛物线与交于定点.小问1解:∵抛物线:与轴交于A,B两点,∴,整理得,解得∴则;小问解当时,抛物线:,则设,则,设直线解析式为,∵点D在直线上,∴,解得,则直线解析式为,设直线与抛物线对称轴交于点E,则,∴,∵的面积与的面积相等,∴,解得,∴点,过点D作于点H,则,则;小问3解设直线解析式为,则,解得,那么直线解析式为,过点D作,如图,则,∵,∴,∵将沿方向平移得到,∴由题意知抛物线平移得到抛物线,设抛物线解析式,∵点,都落在抛物线上∴,解得,则抛物线解析式为∵整理得,解得,∴抛物线与交于定点.【点拨】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26. 【答案】(1)的值为;(2);(3)直角三角形的面积分别为4,16,12,【解析】【分析】(1)根据,,.证明,,继而得到,即,再证明,得到.(2)连接,延长交于点Q,根据(1)得,得到,根据中线得到,继而得到,结合,得到即,得到,再证明,得证矩形,再利用勾股定理,三角形相似的判定和性质计算即可.(3)运用分类思想解答即可.(1)∵,,.∴,∴,,∴即,∵∴,∴.(2)连接,延长交于点Q,根据(1)得,∴,∵是中线∴,∴,∵,∴即,∴,∴,∵,∴,∴,∴四边形是平行四边形,∵∴四边形矩形,∴,∴,∴,∴,设,则,∵,∴,∴,∵,∴,解得;∴,,∵,∴,∴,∴,∴,解得.(3)如图,当与重合时,此时,此时是直角三角形,故;如图,当在的延长线上时,此时,此时是直角三角形,故;如图,当时,此时是直角三角形,过点A作于点Q,∵,∴,∵,,,∴四边形是矩形,∴,∴,故;如图,当时,此时是直角三角形,过点A作于点Q,交于点N,∴,,∴,∴,,∵,∴,∴,∴,∴,∴,∵,∴,∴,解得;故.【点拨】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学真题试卷(I)卷新版
一、填空题 (共8题;共9分)
1. (1分) (2019七上·天台月考) 已知a、b互为相反数,cd互为倒数,则a-cd +b=________
2. (1分)如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD=________.
3. (2分) (2019七下·嵊州期末) 若x2-6x+m因式分解的结果是(x-n)2 ,则m=________;n=________。
4. (1分) (2017七上·鄂州期中) 地球离太阳约有一亿五千万千米,一亿五千万用科学记数法表示为________.
5. (1分) (2018九上·十堰期末) 从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________
6. (1分) (2019八下·江北期中) 使代数式有意义的x的取值范围是________.
7. (1分)(2019·海曙模拟) 如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=________.
8. (1分)(2019·海曙模拟) 己知点C为函数y= (x>0)上一点,过点C平行于x轴的直线交y轴于点D,交函数y= 于点A,作AB⊥CO于E,交y轴于B,若∠BCA=45°,△OBC的面积为l4,则m=________.
二、选择题(本大题共10小题,每小题4分,共40分) (共10题;共20分)
9. (2分) (2019七上·龙华期中) 长方形的一边长等于3x+2y ,另一边长比它长x ﹣y ,这个长方形的周长是()
A . 4x+y
B . 12x+2y
C . 8x+2y
D . 14x+6y
10. (2分)(2019·呼和浩特) 已知正方形的对称中心在坐标原点,顶点
按逆时针依次排列,若点的坐标为,则点与点的坐标分别为()
A .
B .
C .
D .
11. (2分)(2019·辽阳模拟) 如图所示是机器零件的立体图,从上面看到的平面图形是()
A .
B .
C .
D .
12. (2分) (2019七下·苏州期末) 若,,则
与的关系为()
A .
B .
C .
D . 与的大小由的取值而定
13. (2分)(2019·瓯海模拟) 若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()
A . 无实数根
B . 有两个正根
C . 有两个根,且都大于﹣3m
D . 有两个根,其中一根大于﹣m
14. (2分)式子2+的结果精确到0.01为(可用计算器计算或笔算)()
A . 4.9
B . 4.87
C . 4.88
D . 4.89
15. (2分) (2018九上·温州期中) 如图,在等腰三角形ABC中,AB=AC,点D是AC 的中点,若以AB为直径作圆,则下列判断正确的是()
A . 点C一定在⊙O外
B . 点C一定在⊙O上
C . 点D一定在⊙O外
D . 点D一定在⊙O上
16. (2分) (2018八上·台州期中) 下列说法:(1)有两对边对应相等的两个等腰三角形全等;(2)三个外角都相等的三角形是等边三角形;(3)等腰三角形一边上的中线、高、角的平分线互相重合;(4)两个图形关于某条直线对称,且对应线段相交,交点一定在对称轴上;其中正确的说法有()
A . 1个
B . 2个
C . 3个
D . 4个
17. (2分) (2019七下·靖远期中) 一根蜡烛长20cm,点燃后每时燃烧5cm,燃烧时剩下的高度h(厘米)与时间t(时)之间的关系图是()
A .
B .
C .
D .
18. (2分) (2019八上·滦州期中) 下列命题中是真命题的是()
A . 相等的角是对顶角
B . 相等的角的余角相等
C . 若,则
D . 若一个数带有根号,则它是无理数
三、解答题:本大题共8小题,共78分 (共8题;共71分)
19. (5分)(2019·容县模拟) 计算:
20. (5分)(2019·通州模拟) 解不等式组:
21. (6分)如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD=________°时,四边形BECD是矩形.
22. (10分)(2019·玉林模拟) 如图,已知矩形OABC中,OA=3,AB=4,双曲线
(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD
(1)求k的值和点E的坐标;
(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.
23. (10分)(2018·北部湾模拟) 如图是某校甲班学生外出去基地参观,乘车、行
步、骑车的人数分布直方图和扇形统计图.
(1)根据统计图求甲班步行的人数;
(2)甲班步行的对象根据步行人数通过全班随机抽号来确定;乙班学生去基地分两段路走,即学校﹣﹣A地﹣﹣基地,每段路走法有乘车或步行或骑车,你认为哪个班的学生有步行的可能性少?(利用列表法或树状图求概率说明).
24. (10分)(2019·余姚会考) 随着科技的发展,智能产品越来越受到人们的喜爱.为了奖励员工,某公司打算采购一批智能音箱.现有A,B两款智能音箱可供选择,已知A款音箱的单价比B款音箱的单价高50元,购买5个A款音箱和4个B款音箱共需1600元.(1)分别求出A款音箱和B款音箱的单价:
(2)公司打算采购A,B两款音箱共20个,且采购A,B两款音箱的总费用不超过3500元,那么A款音箱最多采购多少个?
25. (10分)(2019·资阳) 如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.
(1)求渔船B航行的距离;
(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请
分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)
26. (15分)(2019·玉林) 已知二次函数:y=ax2+(2a+1)x+2(a<0).
(1)求证:二次函数的图象与x轴有两个交点;
(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x轴的两个交点A,B(A在B的左侧),与y轴的交点C及其顶点D这四点画出二次函数的大致图象,同时标出A,B,C,D的位置);
(3)在(2)的条件下,二次函数的图象上是否存在一点P使∠PCA=75°?如果存在,求出点P的坐标;如果不存在,请说明理由.
参考答案
一、填空题 (共8题;共9分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
二、选择题(本大题共10小题,每小题4分,共40分) (共10题;共20分)
9、答案:略
10、答案:略
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题:本大题共8小题,共78分 (共8题;共71分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略。