Stratigraphic Implications of Skeletal Microfossils from the Cambrian of Korea: A Preliminary
小 波阻抗 差 avo 反射 英文
小波阻抗差avo 反射英文全文共3篇示例,供读者参考篇1Wave impedances are important parameters in wave mechanics and are crucial for understanding the behavior of waves when they encounter boundaries or interfaces. One commonly used wave impedance is the acoustic velocity impedance (AVO), which describes the ratio of the acoustic pressure to the acoustic velocity in a medium. AVO plays a crucial role in seismic exploration, where it helps in determining the contrasts in rock properties that can indicate the presence of hydrocarbons underground.In seismic exploration, one key concept that is frequently encountered is the reflection coefficient, which describes the ratio of the reflected wave to the incident wave when a wave encounters a boundary. The reflection coefficient is dependent on the wave impedances of the two media on either side of the boundary and can be used to predict the behavior of waves at interfaces.One important application of wave impedances and reflection coefficients is in seismic inversion, where the goal is to infer the properties of the subsurface rocks from seismic data. By analyzing the reflections of seismic waves at interfaces and their velocities and amplitudes, geophysicists can reconstruct the subsurface structure and identify potential oil and gas reservoirs.Additionally, wave impedances play a crucial role in reservoir characterization, where they are used to assess rock properties such as porosity, permeability, and lithology. By analyzing the variations in wave impedances and reflection coefficients across a reservoir, geoscientists can better understand the reservoir properties and improve their reservoir modeling and production strategies.In conclusion, wave impedances, especially AVO and reflection coefficients, are essential tools in wave mechanics and seismic exploration. By understanding these parameters and their relationships, geophysicists and geoscientists can better interpret seismic data, characterize reservoirs, and improve their understanding of the subsurface geology.篇2A Study on Small Wave Impedance Discrepancy and AVO ReflectionIntroductionIn exploration geophysics, the amplitude variation with offset (AVO) technique is widely used to evaluate subsurface properties by analyzing the reflection amplitudes of seismic waves at different offsets. The AVO response is affected by various factors such as lithology, fluid content, and the presence of small-scale heterogeneities. One important factor that influences the AVO response is the small wave impedance discrepancy, which refers to the difference in wave impedance between neighboring rock layers.Small Wave Impedance DiscrepancyWave impedance is a property that characterizes the ability of a medium to transmit seismic waves. It is defined as the product of the density and seismic velocity of the medium. When seismic waves encounter a boundary between two rock layers with different wave impedances, part of the wave energy is reflected back to the surface, leading to amplitude variations in the recorded seismic data. The small wave impedance discrepancy refers to the difference in wave impedance betweenadjacent rock layers that is too small to be resolved by conventional seismic data processing techniques.AVO ReflectionThe AVO response of a rock layer is determined by its angle-dependent reflectivity, which is influenced by the small wave impedance discrepancy. When the wave impedance discrepancy between two adjacent rock layers is small, the AVO response becomes more sensitive to changes in the angle of incidence of the seismic waves. This sensitivity is characterized by the AVO anomaly, which is a deviation from the expected AVO response based on the properties of the rock layers.Case StudyTo investigate the relationship between small wave impedance discrepancy and AVO reflection, a case study was conducted in a sedimentary basin with alternating layers of sandstone and shale. Seismic data were acquired using a marine seismic survey and processed to estimate the wave impedances of the rock layers. The AVO response was then analyzed to identify any anomalies that could be attributed to the small wave impedance discrepancy.ResultsThe analysis of the seismic data revealed that the small wave impedance discrepancy between the sandstone and shale layers was indeed influencing the AVO response. In areas where the wave impedance discrepancy was significant, the AVO anomaly was more pronounced, indicating a higher sensitivity of the reflectivity to changes in the angle of incidence. This result highlights the importance of incorporating the small wave impedance discrepancy in AVO analysis to improve the accuracy of subsurface property estimation.ConclusionThe study on small wave impedance discrepancy and AVO reflection provides valuable insights into the factors that influence the AVO response in seismic data. By considering the wave impedance discrepancy between adjacent rock layers, geophysicists can better interpret the AVO anomalies and improve the characterization of subsurface properties. Further research is needed to explore the implications of small wave impedance discrepancy on other seismic attributes and develop more advanced processing techniques to account for this phenomenon.篇3Small Wave Impedance Difference AVO ReflectionIntroductionThe study of small wave impedance difference AVO reflection has significant implications for the exploration and production of oil and gas reservoirs. AVO, or amplitude versus offset, refers to the variation in seismic amplitudes with offset and is a key tool in seismic data analysis. By analyzing the small wave impedance difference AVO reflection, geophysicists can gain valuable insights into subsurface rock properties, fluid content, and potential hydrocarbon reserves.Small Wave Impedance DifferenceImpedance is the product of the velocity and density of a material and is a fundamental property that influences the reflection of seismic waves. In the context of small wave impedance difference AVO reflection, geophysicists are interested in the variation in impedance between different layers of rock. By analyzing the impedance contrast at small scales, researchers can derive information about the subsurface geology with high precision.AVO ReflectionAVO reflection refers to the changes in seismic amplitudes as a function of offset. In the context of small wave impedance difference AVO reflection, geophysicists are interested in the relationship between the amplitude of the reflected waves and the impedance differences between adjacent layers. The AVO response can be characterized by various attributes, such as the AVO gradient, intercept, and curvature, which provide valuable information about the subsurface properties.Applications in Oil and Gas ExplorationThe study of small wave impedance difference AVO reflection has numerous applications in oil and gas exploration. By analyzing the AVO response, geophysicists can identify potential hydrocarbon traps, estimate reservoir properties, and improve the accuracy of seismic imaging. The detection of small-scale impedance variations can also help in delineating subtle structural features and predicting lithology changes.Case Study: North SeaIn the North Sea region, the study of small wave impedance difference AVO reflection has played a crucial role in the exploration and development of oil and gas fields. By integrating AVO analysis with well data and seismic interpretation, geoscientists have been able to improve reservoircharacterization and reduce exploration risks. The identification of subtle stratigraphic traps and fault compartments has led to the discovery of significant reserves in the area.Future DirectionsAs technology advances, the study of small wave impedance difference AVO reflection is expected to become even more sophisticated. With the development of advanced seismic imaging techniques and machine learning algorithms, geophysicists will be able to extract valuable insights from the seismic data with greater accuracy and efficiency. The integration of multi-component seismic data and rock physics modeling will further enhance the understanding of subsurface properties and improve reservoir prediction.ConclusionIn conclusion, the study of small wave impedance difference AVO reflection is a valuable tool in oil and gas exploration. By analyzing the variation in impedance at small scales and correlating it with the AVO response, geophysicists can gain valuable insights into subsurface properties and improve reservoir characterization. With continued research and technological advancements, the field of small wave impedancedifference AVO reflection is poised to make significant contributions to the oil and gas industry in the years to come.。
地质英语
地质英语modeling n 造型postulate vt, vi 假定,推测erosion n 侵蚀eruption n 喷发,爆发inland basin 内陆盆地abyssal plain 深海平原continental rise 大陆基lithosphere n 岩石圈continental shelf 大陆架asthenophere n 软流圈relief n 地貌,地形起伏thermal conductivity 热传导率descend vi 下降temperature gradient 温度剃度trench n 海沟prevailing a 占优势的extrapolation n 外推法,推断viscous a 粘性的geostatic pressure 地压力elastic wave 弹性波isostatic balance 地壳均衡diffraction n 衍射atmosphere n 大气圈reflection n 反射nitrogen n 氮abruptly adv 突然地oxygen n 氧tropopause n 对流顶层argon n 氩stratopause n 平流顶层carbon dioxide 二氧化碳(CO2)mesopause n 中间层顶soot n 煤灰altitude n 高度spores n 孢子meteorological a 气象的pollen n 花粉stratosphere n 平流层,同温层bacteria n 细菌thermosphere n 热电离层condensation n 凝结perpendicular a 垂直的ingredient n 成分,配料reckon v 估计,计算amino acids 氨基酸reradiate v 再辐射protein n 蛋白质intake n 吸收量carbohydrate n 碳水化合物outgo n 消耗photosynthesis n 光合作用infrared n 红外线derive v 得到,出自collision n 碰撞ultraviolet a 紫外线的compensate v 补偿radiation n 辐射precipitation n 降水量split v 分开,分离humidity n 湿度ozone n 臭氧suspend v 悬浮wavelength n 波长aloft adv 在高处,在上lethal a 致命的coalesce v 接合,合并ionosphere n 电离层unique a 独特的bay n 海湾hydrosphere n 水圈biosphere n 生物圈asymmetric a 不均匀的habitat n 栖息地hemisphere n 半球horde n 游牧部落Atlantic n 大西洋hydrologic a 水文学的Arctic n 北极fetch n 风区Antarctic n 南极wave crest 波峰isolated a 孤立的,单独的wave trough 波谷Caribbean Sea 加勒比海schematic a 示意的Mediterranean Sea 地中海negligible a 可以忽略的gulf n 海湾Coriolis effect 科里奥利效应strait n 海峡whirlpool n 旋流,涡流gyre n 环流erosion n 侵蚀equatorial a 赤道的spit n 沙嘴countercurrent n 逆流barrier n 障碍物doldrums n 赤道无风带floe n 大浮冰propel v 推进biologic a 生物的trade wind 信风marsh n 沼泽poleward a 向极地的mangrove n 红树林drift n 偏流thicket n 灌木丛moderate v 缓和bioerosional a 生物侵蚀的exert v 施加evaporitic a 蒸发的spring tide 大潮flat n 坪neap tide 小潮trench n 沟bedrock n 基岩nontropical a 非热带的predominate v 占优势escarpmemt n 海底陡坡offshore a 海上的abyssal floor 深海床,深海底tropical reef 热带珊瑚礁morphology n 形态学zone of aeration 通气带,包气带porosity n 孔隙度vadose water 渗流水permeability n 渗透率capillary a 毛细的hydraulic gradient 水力梯度capillary fringe 毛细作用带discharge of groundwater 地下水排放zone of saturation 饱和带seepage n 渗流subsurface a 地下的draw v 汲取hydrostatic a 静水力学的,流体静力的drawdown n 水位降低water table 潜水面cone of depression 沉降漏斗juvenile water 原生水,岩浆源水aquifer n 蓄水层meteoric water 大气水nonconfined a 非承压的infiltrate v 渗透confined a 承压的drinkable a 可饮用的artesian well 自流井,喷水井formation water 地层水vesicle n 气泡framework n 框架irregularity n 不规则crystalline n 结晶质的adhesion n 附着力bond n (化学)键symmetry n 对称ionic a 离子的momentary a 瞬间的covalent a 共价的asymmetry n 不对称metallic a 金属的ferromagnesian a 铁镁质的ven der Waals 范德华键,分子键silicate n 硅酸盐lattice n 晶格carbonate n 碳酸盐alternate a 交替的tetrahedron n 四面体assembly n 组合,装配clarity n 清楚interaction n 相互作用cavity n 空穴cohesive a 粘着的tetrahedra n 四面体opacity n 不透明性olivine n 橄榄石inert-gas n 惰性气体augite n 普通辉石helium n 氦hornblende n 普通角闪石friction n 摩擦力sheet n 层,片viscosity n 粘性three-dimensional networks 架状的accessible a 易接近的,可达到的cylindrical a 圆柱状的borings n 钻孔laccolith n 岩盖igneous a 火成的dike n 岩脉sedimentary a 沉积的stocks n 岩株metamorphic a 变质的bathlith n 岩基molten a 熔化的lithification n 成岩作用,岩化magma n 岩浆detritus n 岩屑,碎石volcano n 火山bedrock n 基岩lava n 熔岩synonym n 同义词intrusion n 侵入体clastic a 碎屑状的solidify v 固结,凝固fragment n 碎片covering rock 盖层岩石retain v 保持,保留extrusive a 喷出的gravel n 砾,砾石rhyolite n 流纹岩conglomerate n 砾岩gabbro n 辉长岩sandstone n 砂岩basalt n 玄武岩silt n 粉沙pluton n 深成岩体siltstone n 粉砂岩country rock 围岩shale n 页岩massive a 块状的sorting n 分选engulf v 吞没,淹没absorption n 吸收xenolith n 捕虏体secretion n 分泌concordant a 整合的,一致的skeletal a 骸骨状的,骨骼的discordant a 不整合的,不一致的woody a 木本的,木质的tabular a 板状的tissue n (纤维)组织lenticular a 透镜状的tree trunk 树干twig n 树枝metamorphic facies 变质相leaves n 叶子,花瓣aspect n 面貌fatty a 脂肪的recurrent a 再发生的,循环的waxy a 蜡质的assemblage n 组合,集合aquatic a 水生的mineral assemblage 矿物组合algae n 藻类progressive a 前进的,进步的petroleum n 石油index-mineral 指相矿物eject v 喷射chlorite n 绿泥石debris n 碎片garnet n 石榴石laminae n 纹层almandine n 铁铝榴石chert n 燧石staurolite n 十字石denote v 表示,代表kyanite n 蓝晶石transformation n 转化,转换sillimanite n 矽线石recrystallization n 重结晶slate n 板岩impart v 给予schist n 片岩lattice n 晶格gneiss n 片麻岩equilibrium n 平衡migmatite n 混合岩superimpose v 叠加,添加,双重granulite n 麻粒岩,变粒岩solvent n 溶剂,溶媒marble n 大理岩expell v 排除,消除amphibolite n 角闪岩dehydration n 脱水eclogite n 榴辉岩thermal a 热的mylonite n 糜棱岩dislocation n 错位,断错hornfels n 角岩shearing n 剪切literally adv 字面上的denudation n 剥蚀swiftly adv 即刻,快速地decomposition n 分解alluvium n 冲积层mechanical weathering 机械风化gravel n 砾石disintegration n 瓦解alluvial fan 冲积扇abrasion n 磨损well-sorted 分选好的flake v 剥落turbulent a 紊流的,扰动的dislodge v 驱逐,移走cross-bedding 交错层blast v 吹风ripple n 波纹biological weathering 生物风化grind v 磨,碾weathering agents 风化营力cirque n 圆谷,冰斗erosion n 侵蚀virtue n 效力detritus n 岩屑,碎屑loess n 黄土scree n 碎石battering n 拍打pebble n 卵石stratigraphical a 地层学的tilt v 倾斜bedding plane 层面inclination n 倾斜dip v & n 倾斜,倾向quarry n 采石,采石场strike n 走向attitude n 产状unconformity n 不整合orientation n 方位,方向discordance n 不协调normal fault 正断层denude v 剥蚀reverse fault 逆断层buckle v 变弯曲strike-slip fault 平移断层limb n 翼部override v 超越,超过antiform n 背形distortion n 变形antcline n 背斜joint n 节理synform n 向形parting-plane 分离缝syncline n 向斜ubiquitous a 普遍存在的cross-section 横剖面discernible a 可辨别的curvature n 弯曲shearing stress 剪应力hinge n 枢纽ascribe vt 归因于bisect v 对切开shrinkage n 收缩locus n 轨迹subsidence n 下沉,沉降intersection n 交叉点hydrothermal lode deposit 热液矿脉axial trace 轴迹void n 空隙fault n 断层barren a 贫瘠的relief n 减除uniformitarianism n 均变论radioisotope n 放射性同位素fossil n 化石nuclide n 核素remains n 遗迹,遗体geochronology n 地质年代学progression n 进展,进化lump v 使成一体,混在一起accordingly adv 因此mammal n 哺乳类动物proton n 质子primate n 灵长类动物nuclei n nucleus的复数dinosaur n 恐龙neutron n 中子reptile n 爬行动物chlorine n (元素)氯amphibian n 两栖类动物isotope n 同位素shark n 鲨鱼helium n (元素)氦coral reef 珊瑚礁emit v 发射,放射vertebrate n 脊椎动物radioactive dating 放射性年龄测定algae n 海藻half-life 半衰期argon n (元素)氩controversy n 争论alongside adv 横靠magnetism n 磁性convention current 对流supercontinent n 超大陆buoyancy n 浮力counterpart n 对应部分accommodate v 调节fauna n 动物群transcurrent fault 横推断层peninsular a 半岛状的median rift 中央裂谷Caledonian n 加里东期envisage v 设想align v 对齐,连成一线validity n 有效性transcurrent fault 横推断层mosaic n 镶嵌,拼接disperse v (使)分散,散开rigid a 刚性的subduction n 消减作用,消亡作用San Andreas fault 圣安得列斯断裂divergent a 离散的,分歧的domal a 上穹状的disposal n 处置,处理mantle plume 地幔热柱dump v 倾倒cylindrical a 圆柱形的toxic n 有毒的convergent a 会聚的,收敛的stuff n 材料collide v 碰撞oblivion n 埋没。
金融数学简介
1973年R.Merton在<经济和管理 科学杂志>上发表了<理性期权定 价理论的文章>,对BlackSholes公式的假定条件做了进一步 削弱,在许多重要方面都对BlackSholes的研究做了推广. Merton对Black-Sholes原用的分析方法进行了 改进,以股价变动的跳跃过程而不是扩散过程为出发 点,也就是认为股价变动是不连续的,可以从一个价 格跳到另一个价格而不经历其间的价格.这样推导出 的公式更加现实.
W.Sharpe 的资本资产定价理论, 在较强的市场假设下,给出了 Markowitz 均值方差模型的 均衡版本,即资本资产定价模 型。(CAPM)[2] 其主要贡献是在有价证券理论方面对不确定条件 下金融决策的规范分析,以及资本市场理论方面关于 以不确定性为特征的金融市场的实证性均衡理论。马 克维茨的分析方法进一步发展为著名的"资本资产定 价模型",用来说明在金融市场上如何建立反映风险 和潜在收益有价证券价格。
对收益率的建模研究一直在计 量经济学中占据很重要的位置。显 然对于一阶矩的刻画是比较容易的, 所以人们将注意力都放在了对二阶 矩的建模上,也就是对收益率波动 的计量建模。为了寻求对股票市场 价格波动行为更为准确的描述和 分析方法,许多金融学家尝试了不同的模型。其中, Engle于1982年提出的ARCH模型,被认为是最集中 反映了方差变化特点而被广泛应用于金融数据时间序 列分析的模型。
min min w w
2 p T w
2 1
s.t .
2 p
( E ( X ) r1)T w r
2
最小方差资产组合的方差为
r c 2rb r a
在均方差-均值坐标系下,它是公共交点为(0,r) 的两条射线,其斜率为
不同腭部形态MSE放置不同位置对颅面复合体和扩弓效果的影响
上颌牙弓狭窄是一种常见横向骨性不调,常表现为牙弓狭窄呈“v”字型、牙列不齐、单侧或双侧后牙反 、腭盖高拱等,导致下颌发育不足、偏 、反 等错颌畸形[1]。
对于腭中缝未闭合的儿童或青少年,临床通常采用快速腭部扩弓装置(rapid maxillary expan-sion,RME)以改善上颌骨横向不调,但对于腭中缝接近闭合或已经闭合的青少年及成人患者RPE更多是牙性扩展,常导致牙齿颊向倾斜。
因此对于成人上颌骨严重狭窄,腭中缝骨性扩开具有重要意义。
外科手术辅助扩弓(surgically assisted rapid palatal expan-sion,SARPE)是成人腭中缝骨性扩开的传统方法,但外科手术由于创伤大以及手术费用高,较难被患者接受[2]。
Hartono等[3]研究微种植体辅助上颌扩弓(mini-implant assisted rapid palatal expander,MARPE)可使腭中缝骨性扩展,与RPE相比可以防止产生不良的副作用。
上颌骨性扩弓器(maxillary skeletal ex-pander,MSE)是一种新型扩弓装置,能够以上颌双侧第一磨牙作为固位牙与预成扩弓器支架相连,并促使四颗BMK微螺钉穿透腭穹窿和鼻底双层骨皮质作为绝对支抗,但国内对于不同腭部形态下MSE扩弓效果的影响鲜有研究。
三维有限元在正畸生物力学被广泛应用,有限元分析成为了解牙齿及周围组织在生物力学水平上对应力反应的重要方法[4]。
本实验通过建立不同腭部形态的MSE三维有限元模型,探究不同腭部形态下扩弓器植入不同位点,对颅颌面及牙齿位移和应力分布差异的影响,为临床治疗提供参考。
1材料与方法1.1材料来源选取一例20岁上颌发育不足的女性患者,患者对本研究知情同意,本研究通过郑州大学第一附属医院伦理委员会批准(2022-KY-1535-002),腭部形态正常,腭指数为36%,上颌牙弓狭窄,无颅面部发育异常,腭部形态正常,恒牙列,牙列完整,牙周健康,无颞下颌关节相关疾病,无正畸治疗史,无颌面部外伤及手术史。
运用薄层CT扫描评估四川汉族青年锁骨胸骨端骨骼年龄_赵欢
运用薄层CT 扫描评估四川汉族青年锁骨胸骨端骨骼年龄赵欢1,董晓爱1,郑涛1,青思含1,邓振华1,朱广友2(1.四川大学华西基础医学与法医学院法医病理教研室,四川成都610041;2.司法部司法鉴定科学技术研究所上海市法医学重点实验室,上海200063)摘要:目的运用薄层CT 扫描探索四川汉族青年锁骨胸骨端骨骺发育状况及其与生活年龄的关系。
方法结合Schmeling 等提出的骨发育分级法,并考虑本研究样本的年龄区间,将锁骨胸骨端骨骺发育分为4个等级。
依据上述骨骺发育等级阅读565例15~25周岁青年胸部薄层CT 片,并对锁骨胸骨端骨骺发育状况进行统计学描述性研究。
结果两性之间各级别骨龄的差异无统计学意义(P >0.05)。
同时,经验分布函数显示,评定为1级者100%小于18周岁,评定为2级者75%小于18周岁,评定为3级者超过94.5%大于18周岁,评定为4级者100%大于20周岁。
结论锁骨胸骨端骨骺发育在18周岁左右呈现一定规律。
据此,可应用薄层CT 扫描评估锁骨胸骨端骨骼年龄,为18周岁刑事责任年龄的判定提供依据。
关键词:法医人类学;体层摄影术,X 线计算机;年龄测定,骨龄;锁骨;骨骺;青年;汉族;四川中图分类号:DF795.1文献标志码:Adoi :10.3969/j.issn.1004-5619.2011.06.005文章编号:1004-5619(2011)06-0417-04Skeletal Age Estimation of Sternal End of Clavicle in Sichuan Han NationalityYouth Using Thin-section Computed TomographyZHAO Huan 1,DONG Xiao-ai 1,ZHENG Tao 1,QING Si-han 1,DENG Zhen-hua 1,ZHU Guang-you 2(1.Department of Forensic Pathology,West China School of Preclinical and Forensic Medicine,SichuanUniversity,Chengdu 610041,China;2.Shanghai Key Laboratory of Forensic Medicine,Institute of Forensic Science,Ministry of Justice,P.R.China,Shanghai 200063,China )Abstract :Objective To explore the growth status of epiphysis of sternal end of clavicle using thin-section computed tomography (CT )and to study the relationship between the status and the chronological age of Sichuan Han nationality youth.Methods According to the Schmeling ’s report and the age range of our samples,the ossification status of medial clavicle epiphysis was classified as four stages.CT films of 565patients between 15and 25years were studied based on the classification and analyzed statistically.Results There was no statistical difference between the sexes (P >0.05).The calculated empiric distribution function showed that 100%of stage 1patients were under 18years,75%of stage 2patients were under 18years,94.5%of stage 3patients were over 18years,and 100%of the stage 4patients were over 20years,respective -ly.Conclusion The ossification of medial epiphysis of the clavicle for those around 18years has certain regular.These characteristics can be used for forensic identification of the skeletal age,especially 18years,which is the criminal responsibility age.Key words :forensic anthropology;tomography,X-ray computed;age determination by skeleton;clavicle;epiphyses;youth;Han nationality;Sichuan 作者简介:赵欢(1986—),女,河北廊坊人,蒙古族,硕士研究生,主要从事法医临床学鉴定和研究;E-mail :390355979@ 通信作者:邓振华,男,教授,硕士研究生导师,主要从事法医临床学教学与研究;E-mail :fydzh63@通信作者:朱广友,男,研究员,硕士研究生导师,主要从事法医临床学与男子性功能障碍鉴定与研究;E-mail :zhugy@活体年龄鉴定是司法鉴定的难点之一。
专业英语
一·词汇英译汉or汉译英•Upstream sector 上游部分•midstream sector 中游部分•downstream sector 下游部分•petroleum industry 石油工业•contractor 承包商(乙方)•operator 拥有者(甲方)•exploitation 开发•exploration 勘探•natural gas liquid 凝析油•trap 圈闭•sandstone 砂岩•limestone 石灰岩•dolomite白云岩•seismic survey 地震勘探•rock layer 岩层•development well 开发井•producing well 生产井•wildcat 初探井(野猫井)•vertical well 垂直井•directional well 定向井•horizontal well 水平井•sedimentary rocks沉积岩•oil-bearing formation含油层•infill drilling加密钻井•waterflooding 水驱•primary recovery一次采油•secondary recovery二次采油•tertiary recovery三次采油•light oil轻油•heavy oil重油•miscible flooding混相驱•API美国石油协会•Recovery method开采方法•Identified crude oil reserves探明石油储量•British petroleum (BP)英国石油公司•OPEC石油输出国组织•Well drilling钻井•non-renewable resource不可再生资源•oil transport and storage石油储运•rock cuttings 岩石碎片•chips 钻屑•core 岩心•sedimentary basin 沉积盆地•compaction 压实作用•overlying rock layers 上覆岩层•source rock 生油岩层•permeable可渗透的•permeability渗透率•seep油苗•outcrop露头•hydrocarbon-bearing含油气的•cuttings钻屑,岩屑•drilling fluid 钻井液•porosity孔隙度•coring bit取芯钻头•core v.取(岩)芯&n.岩芯•gas cap气顶•oil leg油柱,油藏含油部分•water-saturated水饱和的•oil-saturated油饱和的•normal fault正断层•structural fault trap构造断层圈闭•salt dome盐丘•overlying rock layers上覆岩层•fold褶皱•anticlines背斜•synclinstratigraphic pinch-out地层尖灭•reef 生物礁•thrust fault 挤压断层/ 逆冲断层reservoir feature 油藏特性reservoir configuration 油藏形态、油藏结构sedimentary basin 沉积盆地depressed area 沉降区、凹陷区time scale 地质年代表tectonic plate 构造板块fossil fuel 矿物燃料terrestrial plant 陆生植物impermeable formation 不渗透地层drilling fluid 钻井液gas cap 气顶normal fault 正断层anticline 背斜pinch out 尖灭in term of 根据, 按照, 用...的话, 在...方面trace 痕迹, 踪迹, 微量, vt.描绘, 映描, 追踪, 回溯, vanadium 钒nickel镍molecular compound:分子化合物straightforward 正直的, 坦率的, 简单的source 生成环境geographical location 地理位置major group 主族subgroup 亚类,亚组,亚族saturated hydrocarbon 饱和烃general formula 通式normal temperature 常温viscous liquid 粘性液体atomic composition 原子组成molecular weight 分子量straight-chain 直链branched-chain 支链up to 达到,一直到,等于normal paraffin 正链烷烃boiling point 沸点equivalent weight 当量isoparaffin 异链烷烃reservoir rock:储集岩,储油岩层porous rock:多孔岩石natural quality:自然属性essential:adj.本质的,重要的,根本的,必需的porous media:多孔介质porous medium:多孔介质,孔隙介质cope with:v.与...竞争, 应付Conventionally:adv.按照惯例, 照常套, Symbolize:vt.象征, 用符号表现Morphological:地貌的,形态的,形态学的Catenary: 连通孔隙Cul-de-sac:死端孔隙Closed:封闭孔隙effective porosity:有效孔隙度sandstone reservoir:砂岩储层skeletal grain:骨骼颗粒carbonate reservoir:碳酸盐储层induced porosity:次生孔隙,次生孔隙度moldic porosity;印模孔隙度vuggy porosity:溶孔孔隙度fabric selective:选择性组构matrix:基质cross cut:横切[锯, 割]cavernous porosity:孔洞孔隙度drill string:钻杆柱,钻具组,钻柱crouch:vi.蜷缩, 蹲伏crouched :抱膝的mud log:泥浆录井Requirement:n.需求, 要求, 必要条件carry out:v.完成, 实现, 贯彻, 执行formulate:vt.用公式表示, v.阐明达西定律:Darcy equation,Darcy law,Darcy's law pressure drop:压降:压力降cross section area:横截面积cross section:横截面,截面,断面effective permeability:有效渗透率designate:任命, 指定, 指派,表示with respect to:关于, 至于mixed wettability:混合润湿性intermediate wettability:中性润湿性Plot up:打印irreducible water saturation:束缚水饱和度exceed:vt.超越, 胜过irrespective of:adj.不顾, 不考虑expel :v.驱逐,排出,挤出,消除,排除fluid invasion:流体侵入Uniformly:adv.一律地, 均一地water saturation:含水饱和度pressure drop:压降:压力降cross section area:横截面积inert gas :惰性气体Molecule mean free paths :分子平均自由程Vertical permeability :垂向渗透率Relative Permeability :相对渗透率effective Permeability :有效渗透率kelinkenberg effect :克林肯柏格效应mixed wettability:混合润湿性intermediate wettability:中性润湿性surface tension :表面张力capillary pressure :毛管压力displacement pressure:排替压力,驱替压力irreducible water saturation:束缚水饱和度达西定律:Darcy equation,Darcy law,Darcy's law as far as know:n.据我所知located:定位的,设置的,布置好rock bit:牙轮钻头vertical drilling:垂直钻进directional drilling:定向钻进,定向钻井horizontal drilling:水平钻井,水平钻探take into consideration:v.考虑到reserve pit:备用泥浆池,泥浆储备池cellar:钻机平台下的井口圆井或方井well site:井场drilling platform:钻井平台blowout preventer;防喷器make provision for:为...作好准备,为...预先采取措施water supply:给水工程,供水water well:水井spud in:开钻conductor casing:导管conductor hole:导管井孔cement job:固井作业stabilize:使稳定,使稳固(亦作:stabilise)attachment:附属装置,附着物,连接物making hole:钻进,钻井,建井deep well:深井Engine:发动机,引擎,机器,机车,机械prime mover:原动机diesel:柴油,柴油机turn:转动, 旋转six-sided:六边的so that:所以, 因要grip:vt.紧握, 紧夹rotary table:转盘circular:圆周的圆形的,环形的,循环的,圆的table:表格,表,桌,工作台,图表derrick floor:井架平台,钻台fit into:v.适合kelly bushing:方钻杆补心joint:单根make a connection:接单根kink:变折,曲折Screw:n.螺丝钉, vt.调节,.转动, 旋, 拧tricone bit:三牙轮钻头make a trip:起下钻pull out:v.拔出, 离开, 度过难关, 恢复健康stack:n.堆, 一堆, 堆栈v.堆叠,叠存pull out of hole:从井中起出put back:v.放回原处, 向后移, 推迟, 倒退rig time:设备运转时间,钻井时间pick off:v.摘掉,拣出,分级,精选,摘取blooey line:岩屑排出管路Subsurface pressure:地下压力,井内压力explosive mixture:爆裂混合物,可爆炸的混合物oil well:油井gas well:气井concentric tube:同心管string:管柱,套管柱,字符串conductor pipe:导管surface pipe:表层套管intermediate casing:中间套管,技术套管production casing:生产套管,油层套管freshwater formation:淡水建造loose sand:疏松砂岩,疏松砂层gravel:砾,砾石fall into:v.落入,进入setting depth:下入深度,坐封深度,完成深度troublesome zone:故障地带,易发生复杂情况的层带producing formation:含矿层,产油层,生产层case off:套管封隔,下管入井,下套管pay zone:产油带Liner:衬管,尾管all the way:adv.从远道, 自始至终, 一路上by means of:adv.依靠slip:卡瓦liner hanger:衬管悬挂器,尾管悬挂器run in:下入井中,下钻具,下套管production well:生产井,开采井,采油井flowing well:自喷井plug:vt.堵, 塞It 在此指代tubingpacker:封隔器keep away from:远离well fluid:井产流体,产液量,井液collapsing:压扁,压平,压坏,破裂,断裂crossflow:窜流,层间窜流interval:层段,井段oil-bearing:含油的barefoot completion:裸眼完井,裸眼终孔unrestricted:adj.无限制的, 自由的open wellbore:裸孔limestone reservoir:灰岩储层,灰岩储集层low pressure:低压as far as:adv.远到, 直到,到...为止。
地质构造专业词汇及英文对照
第2章地质构造地质构造Geological Structure 地质年代Geological time 相对年代Relative age 绝对年代Absolute age 地层层序Stratigraphic Sequence 岩性对比Lithology contrast 地层接触关系Stratigraphic contact relationship 岩层产状strata occurrences 走向线strike line 倾向Dip direction 倾角Dip angle 水平构造Horizontal structure 单斜构造Tilt structure 背斜anticline 向斜syncline 褶皱fold 对称symmetrical fold 直立褶皱vertical fold 非对称褶皱Asymmetrical fold 倾斜褶皱inclined fold 倒转褶皱Overturned fold 平卧褶皱recumbent fold 非倾伏褶皱non-plunging 水平褶皱: upright fold), 平轴褶皱/水平褶皱:倾伏褶皱:plunging fold 穹隆 dome 穹隆盆地 basin 盆地断裂构造:Fracture 断层:faults 节理、裂隙:joints/fissure 构造裂隙:tectonic joints/fissure: 非构造裂隙:non-tectonic joints/fissure: 剪裂隙:s h e a r f i s s u r e张裂隙:tension fissure正断层:normal faults 逆断层:reverse faults 走滑断层,平推断层:strike-slip fault 断层崖 Fault scarp 断层崖地层缺失或重复:Strata missing or repeated 擦痕、摩擦镜面:Slickensides 阶步:step 水文地质:hydrogeological 地层: strata 地层:岩性:lithology 平面图:plan 剖面图:profile 柱状图:histogram 整合接触:conformity 行不整合接触:parallel unconformity 角度不整合接触:Angle unconformity contact 。
文献翻译--陈建领
外文资料译文多晶体金属多层膜的变形机制图1引言在塑性方面金属多层膜代表了一种探索长度尺度的理想工具。
他们还提供了用控制界面和结构来生产接近理论强度的合成材料的机会。
一些作者依据Hall-Petch和Orowan强化机制探索了长度尺度的影响。
Embury和Fisher 早期绘制的珠光体机制图表明,Hall-Petch在单相金属晶粒细化加强模型也适用于有作为阻碍距离的界面间隔的双相材料。
更多最近的研究,例如Embury-Hirth,Anderson等,Chu和Barnett和Nix 表明在纳米级多层膜的力学行为可能受单个位错行为(Orowan的层间位错弯曲模型),而不是逆着界面的堆积位错。
Masumura等人的另一项最近的研究表明在单相纳米材料中晶粒尺寸低于临界晶粒尺寸,基础的扩散机制,如Coble蠕变可能会执行,并可能导致伴随晶粒细化的软化。
为简便起见,通常这些模型,无论是有单晶成份层的多层膜或多层膜的单相细晶材料都很发达。
了解多晶多层膜的力学性能构成由于两个层厚度和面晶粒的尺寸可能影响屈服强度的一个额外的复杂性。
虽然平面晶粒的大小可能改变层厚度,没有普遍的关系使我们在只知道层厚度时能够计算出晶粒尺寸,反之亦然。
这些参数之间的关系通常是通过详细的微观结构的特性来决定。
因此,对于给定的多晶金属多层膜,我们如何获取关于层厚度和晶粒大小值执行不同的组合,变形机制见解?在本次调查中,我们提出一个简单的分析,使我们在这些不同的机制运作时能够获得微观尺度的极限值。
我们提出的结论在层厚度和晶粒大小的二维图形的形式,包括不同的变形机制的运作。
这些图形的目的是用于解释尺寸强化或多层膜软化机制,相同的方法,像Ashby的变形温度和压力机制图一样,都是依赖金属变形行为。
Frost试图扩展Ashby的变形机制图,他的的铝薄膜变形机制图表明,由于薄膜层的更高的循环应力,预测应变率数量级比实测应变率高几个数量级。
因此,需要开展更多工作纳入薄膜和大块多晶体的变形行为的基本差别,机制图是压力,温度和微观尺度的一个函数。
车辆专业外文文献翻译基于有限元方法的陀螺仪的盘型
基于有限元方法的陀螺仪的盘型制动系统的尖叫分析作者:Jaeyoung Kang【摘要】本文对一辆车的制动系统中旋转阀瓣接触两个固定垫的动力失稳性进行了研究。
在现行的近似几何中,盘被有限元分析法以帽盘型结构为模型。
从参考坐标系和移动坐标系见的坐标变换,对盘和垫之间的接触运动学进行了阐述。
通过引入统一的二维网的方法来构造阀瓣相应的陀螺矩阵。
陀螺仪的非保守性制动系统的动力不稳定性是对系统参数的数值预测。
结果表明, 尖叫声倾向于转速,转速取决于参与尖叫声模式下的振动模式。
而且,它强调摩擦系数的负斜率对在盘的面内扭转模式下产生尖叫声起着至关重要的作用。
【关键词】陀螺仪;盘型制动;制动尖叫;耦合模式1.介绍盘式制动尖叫已经被许多学者研究了数十年。
通过对尖叫机械的研究积累了许多有价值的信息。
Kinkaid等[1]提供了关于各种盘型制动尖叫研究的概述。
Ouyang 等[2]发行了以汽车盘型制动尖叫的数值分析为集中研究的评论性文章。
他们显示一个主要研究制动尖叫的方法,是线性稳定分析。
从线性化的运动微分方程来看,真正的部分特征值被计算出来,用于决定均衡的稳定性。
在文献中,有两个关于线性尖叫分析的主要方向:静态平稳的复杂特征值分析——滑动平稳[3–8]和旋转制动系统的稳定性分析[9–12,14]。
固定盘和垫的静态的滑动稳定的稳定性分析提供尖叫原理作为频繁摩擦领域里的合并模式的特性。
Huang等[6]使用本征值摄动法发展必要的条件没有直接的本征结果。
Kang等[7]推导了盘对之间的合并模式的封闭解。
由于固定盘假设,有限元(FE)方法被容易地应用于上面提到的评论性文章[2]. 同样的,Cao 等[13]从一个有移动垫和固定盘的FE盘型制动模型模型研究了移动荷载效应,因此,陀螺仪的影响被忽视了。
Giannini等[15,16]验证其合并模式行为,通过使用实验尖叫频率作为尖叫开始。
另一方面,旋转盘型制动的稳定性已经调查了分析的方法。
资源勘查工程专业外语
专业外语复习题英译汉、汉译英:1) abnormal high formation pressure 异常高地层压力 2) reservoir drive 油藏驱动 3) hydrostatic pressure gradient 静水压力梯度 4) geothermal gradient 地温梯度 5) dolomitization 白云岩化作用 6) rollover anticline 滚动背斜 7) unconformity trap 不整合圈闭 8) faulting trap 断层圈闭 9) salt plug 盐丘 10) the use of well logging 测井应用 11) stratigraphic trap 地层圈闭 12) Permian sandstone reservoir 二叠系砂岩储层 13) the late petroleum generation hypothesis 晚期石油生成说 14) organic-rich shale 富含有机质页岩 15) buoyancy 浮力 16) clastic or detrial rock 碎屑岩 17) the strike contours 等值高线 18) transgressive sequence 水进层序 19) desgressive sequence 水退层序 20) sequence stratigraphy 层序地层学 21) well —sorted sands 分选好的砂 22) secondary growth of quartz 石英次生加大 23) the capacity of a fault 断层封闭 24) growth fault 同生(生长)断层 25) fluvial facies 河流相 26) Carboniferous limestone 石炭化石灰岩 27) Cretaceous dolomite 白垩纪白云岩 28) fan —delta 扇三角洲 29) insoluble organic matter 30) a potential source rock 潜在烃源岩 31) evolutionary stages of kerogen 干酪根的演化阶段 32) secondary pores 次生孔隙 33) petroleum migration 石油运移 34) hydrocarbon accumulation 烃类聚集 35) kerogen 干酪根 36) porosity 孔隙度37) permeability 渗透率 38) water —saturation 含水饱和度39) hydrodynamic condition 水动力条件40) oils and source rocks correlation 油源岩对比 41) effective porosity 有效孔隙度 42) types of reservoir drives 油藏驱动类型 43) lens of sandstones 砂岩透镜体 44) sedimentary facies 沉积相 45) minor structure 微幅构造 46) subsidence or depression belt 沉陷带47) nose structure 鼻状构造 48) reservoir heterogeneity 储集层非均质性 49) high point of structure 构造高点 50) oil-field water 油田水 51) original reservoir pressure 原始储层压力 52) salinity 盐度(矿化度) 53) anticline 背斜 54) syncline 向斜 55) normal fault 正断层 56) reverse fault 逆断层57) geological mapping 地质制图 58) organic matter 有机质 59) residual oil 剩余油 60) primary pore 原生孔隙 secondary pore 次生孔隙61) coarse —sandstone 粗砂岩 62) fine —sandstone 细砂岩 63) silt stone 粉砂岩 64) mature stage of hydrocarbon source rock 烃源岩成熟阶段 65) structural strike contours 构造等值线 66) absolute permeability 绝对渗透率 67) arkoses 长石砂岩 68) elaborate geological description of oil pools 油藏精细地质描述名词解释:1、Fossils: are the recognizable remains or traces of animals and plants that were preserved in sediments,rocks and other materials。
层理页岩脆性破裂模式力学机理研究
㊀㊀收稿日期:20211201;改回日期:20230221㊀㊀基金项目:中海油有限公司 七年行动计划 重大科技专项 中联公司上产60亿方关键技术研究 (CNOOC -KJ 135ZDXM 40)㊀㊀作者简介:李亮(1989 ),女,工程师,2012年毕业于西南石油大学石油工程专业,2015年毕业于该校石油与天然气工程专业,获硕士学位,现主要从事非常规天然气储层改造方面的研究工作㊂㊀㊀通讯作者:赵志红(1981 ),男,副教授,硕士生导师,2005年毕业于西南石油大学石油工程专业,2011年毕业于该校油气田开发工程专业,获博士学位,现主要从事油气藏储层改造及采油气理论与技术方面的研究工作㊂DOI :10.3969/j.issn.1006-6535.2023.03.015层理页岩脆性破裂模式力学机理研究李㊀亮1,赵志红2,杨㊀琦1,杨㊀帆1,王㊀鹏1,刘永兵2(1.中联煤层气有限责任公司,北京,100010;2.西南石油大学,四川㊀成都㊀610500)摘要:针对页岩受力脆性破坏的力学机理认识不清的问题,在分析层理页岩特征的基础上,应用岩石断裂力学理论,结合广义胡克定律,建立了纵向力学非均质性的层理页岩脆性破裂模型,分析了层理页岩破裂模式的主要影响因素㊂研究表明:层理页岩的脆性破裂模式主要分为剪切破坏和拉伸破坏,外界应力条件下硬岩岩层易发生拉伸破坏,软岩岩层易发生剪切破坏;岩层杨氏模量越大㊁泊松比越小,岩层越易发生拉伸破坏,反之易发生剪切破坏;最小水平主应力越大㊁水平主应力差越小,越倾向于发生剪切破坏;页岩层间力学性质的差异性是页岩发生脆性破裂的根本原因,页岩层间差异越大,岩石脆性特征越强,越有利于压裂㊂该研究可为页岩脆性评价和水力压裂方案制订提供理论指导㊂关键词:层理页岩;脆性破裂;岩石特征;破裂模型;破坏机理;缝网压裂;微观特征中图分类号:TE357.1㊀㊀文献标识码:A ㊀㊀文章编号:1006-6535(2023)03-0123-08Study on Mechanical Mechanism of Brittle Fracture Mode in Laminated ShaleLi Liang 1,Zhao Zhihong 2,Yang Qi 1,Yang Fan 1,Wang Peng 1,Liu Yongbing 2(1.China United Coalbed Methane Co.,Ltd.,Beijing 100010,China ;2.Southwest Petroleum University ,Chengdu ,Sichuan 610500,China )Abstract :To address the problem of poorly understood mechanical mechanism of stress -caused brittle failure inshale ,the brittle fracture model of laminated shale with longitudinal mechanical inhomogeneity was established by applying the theory of rock fracture mechanics and combining it with generalized Hookeᶄs law on the basis of analy-zing the characteristics of laminated shale ,and the main influencing factors of the fracture mode of laminated shale were analyzed.The study shows that the fracture modes of laminated shale are mainly divided into shear failure andtensile failure ,hard rock formations are prone to tensile failure ,while soft rock formations are prone to shear failure under external stress conditions ;the larger the Youngᶄs modulus of the rock formation and the smaller the Poisson's ratio ,the more prone the formation is to tensile failure and vice versa ;the larger the minimum horizontal principalstress and the smaller the horizontal principal stress difference ,the more prone the formation is to shear failure ;the variability of mechanical properties between shale layers is the fundamental reason for the brittle fracture of shale ;the greater the variability between shale layers ,the more brittle the rock is ,and the more favorable it is for fractu-ring.This study can provide theoretical guidance for shale brittleness evaluation and hydraulic fracturing scheme development.Key words :laminated shale ;brittle fracture ;rock characteristics ;fracture model ;failure mechanism ;networkfracturing ;microscopic characteristics㊀124㊀特种油气藏第30卷㊀0㊀引㊀言缝网压裂是实现页岩储层改造的关键技术[1],页岩储层通常层理非常发育,各向异性较强,正确认识层理页岩的破裂机理和影响因素,对预测页岩储层能否形成复杂缝网,实现页岩气的高效勘探开发具有重要意义㊂目前页岩破坏特征的研究方法主要包括室内实验研究㊁理论研究和数值模拟研究㊂室内实验是认识层理页岩破裂模式的基础,包括单轴压缩实验[2]㊁三轴循环加卸载实验[3]㊁三轴压缩实验[4]㊁电镜扫描实验[5]等,通过实验对层理页岩进行组构特征㊁裂缝特征㊁力学特征以及微观结构特征等方面的研究来建立层理页岩破坏的模式㊂理论研究主要是通过建立层理页岩本构模型[6]和选择不同的破坏准则与强度理念[7]来研究层理页岩的破裂模式㊂数值模拟研究方面,Liu 等[8]通过RFPA 数值模拟方法研究了层理页岩的破坏特征,认为其与层理倾角密切相关;卞康等[9]采用PFC 方法模拟了不同情况下层理页岩的破坏过程和破坏特征;谢云跃等[10]利用ABAQUS 软件对不同倾角软硬夹层和二维岩体进行单轴压缩和双轴压缩数值模拟,得到应力应变曲线并进行了分析㊂上述方法中,室内实验研究离散性较大,无法还原真正地层条件,数值模拟法的参数输入存在很大的主观因素,而理论研究法可以将岩石损伤理论与层理页岩结构相结合构建本构方程,从多方面因素分析层理页岩的破裂模式与力学机理㊂基于此,通过分析页岩储层岩石特征,推导了层理页岩各小层在压缩载荷下的应力,并结合广义胡克定律㊁Mohr -Coulomb 准则和Griffith 准则建立层理页岩的破裂模型,对页岩的破裂模式进行预测,并认识其破裂机理,分析影响因素,为页岩脆性评价奠定理论基础㊂1㊀层理页岩破裂模型建立1.1㊀物理模型页岩储层含有大量的石英㊁白云石等矿物组分,在成岩过程中,发育了大量层理,岩心观察可见大量的粉砂岩条带㊂由于不同岩性的岩层通常具有不同的岩石力学性质,页岩在宏观上常表现为具有软硬夹层的层状结构特征㊂根据页岩储层的纵向非均质性特征,可将页岩储层划分为由n 个岩层组成的层状系统,且各层段具有不同的力学参数和岩石力学性质,由此建立层理页岩的物理模型㊂1.2㊀概念模型对于2个未黏结的岩层界面,若一个岩层在法线和切线方向上的硬度均大于另一岩层,则硬岩层垂直于岩层方向上的收缩量和平行于岩层方向上的伸长量均小于软岩层㊂在该情况下,2个岩层在平行于岩层方向上所产生的伸长量差异通过界面滑移来调节,2个岩层产生不同的应变以确保岩层内的应力与所施加的外界应力相平衡,且不受岩石弹性的影响(图1a)㊂对于2个黏结的软硬岩层界面,二者不会发生自由滑动,其在平行于岩层方向上的应变是相同的,为保持应力平衡,软岩层受到额外的平行于岩层方向上的压应力,硬岩层获得平行于岩层方向上的拉伸应力(图1b)㊂岩层之间的平衡反映了各岩层的弹性性能及岩层对总厚度的相对贡献量[11-13]㊂由此可见,岩层系统在均匀远场压缩载荷条件下,部分岩层能够获得均匀的拉伸应力,使裂缝起裂并在岩层内广泛延伸,而无需内部流体压力或热应力作用㊂图1㊀岩层间系统应力变化Fig.1㊀The systematic stress variation between rock layers1.3㊀数学模型假设一个由n 层黏结均匀㊁各向同性的线弹性平面层构成的系统在x ㊁y ㊁z 轴方向上受到均匀远场应力作用(图2),每一层具有各自的弹性性能和厚度,各层之间胶结良好,受压变形过程中层间不会出现剪切滑移现象,各层变形量相同且水平方向无限大㊂1.3.1㊀破裂模型根据广义胡克定律,系统内各层的应变增量为:㊀第3期李㊀亮等:层理页岩脆性破裂模式力学机理研究125㊀㊀图2 层理页岩模型Fig.2㊀The laminated shale modelΔεxx =1E i Δσxx ,i -νi (Δσyy ,i +Δσzz ,i )[]Δεyy =1E i Δσyy ,i -νi (Δσxx ,i +Δσzz ,i )[]Δεxy =12G i Δτxy ,i ìîíïïïïïïïï(1)式中:Δεxx 为第i 层x 方向的应变增量;Δεyy 为第i 层y 方向的应变增量;Δεxy 为第i 层xy 方向的应变增量;Δσxx,i 为第i 层x 方向的正应力增量,MPa;Δσyy ,i 为第i 层y 方向的正应力增量,MPa;Δσzz ,i 为第i 层z 方向的正应力增量,MPa;Δτxy ,i 为第i 层xy 方向的切应力增量,MPa;E i 为第i 层岩石杨氏模量,MPa;νi 为第i 层岩石泊松比;G i 为第i层岩石剪切模量,MPa㊂层理页岩系统在均匀远场应力作用下存在以下平衡关系:σxx ðn i =1h i =ðni =1(σxx ,b +Δσxx ,i )h i σyy ðn i =1h i =ðni =1(σyy ,b+Δσyy ,i )hi σxy ðn i =1h i =ðni =1(σxy ,b +Δσxy ,i )h i ìîíïïïïïï(2)式中:σxx 为远场x 方向的正应力,MPa;σyy 为远场y 方向的正应力,MPa;σxy 为远场xy 方向正应力,MPa;σxx ,b ㊁σyy ,b ㊁σxy ,b 分别为x ㊁y ㊁xy 方向的初始应力,MPa;h i 为第i 层岩层厚度,m;n 为岩层总数㊂结合式(1)㊁(2)并变换得到:σxx =σxx ,b +m 1Δεxx +m 2Δεyy +m 4Δσzz σyy =σyy ,b +m 1Δεyy +m 2Δεxx +m 4Δσzz σxy =σxy ,b +m 3Δεxyìîíïïï(3)m 1,i =E i 1-v 2im 2,i=E i v i 1-v 2i m 3,i=2Gim 4,i =v i 1-v i ìîíïïïïïïïïïï(4)式中:Δσzz 为岩心z 方向的应力增量,MPa;m 1㊁m 2㊁m 3㊁m 4分别为m 1,i ㊁m 2,i ㊁m 3,i ㊁m 4,i 的加权平均值㊂岩层受到压力后,其各方向的远场正应力等于初始应力与正应力增量之和,第i 层远场正应力表达式为:σxx ,i =σxx ,b +Δσxx ,iσyy ,i=σyy ,b +Δσyy ,i σxy ,i=σxy ,b +Δσxy ,i ìîíïïïï(5)则层理页岩受压变形过程中单层内的应力表达式为:σxx ,i =σxx ,b +M 1Δσxx +M 2Δσyy -M 4Δσzzσyy ,i =σyy ,b +M 1Δσyy +M 2Δσxx -M 4Δσzz σxy ,i =σxy ,b +M 3Δσxyìîíïïïï(6)M 1=m 1m 1,i -m 2m 2,i m 21-m 22M 2=m 1m 2,i -m 2m 1,i m 21-m 22M 3=m 3,im 3M 4=m 4m 1,i +m 2,i m 1+m 2-m 4,i ìîíïïïïïïïïïïïï(7)由于岩层垂向应力σzz ,i 也必须与远场应力相平衡,因此:σzz ,i =σzz ,b +Δσzz(8)式中:σzz ,i 为岩层垂向应力,MPa;σzz ,b 为z 方向的初始应力,MPa㊂式(6)㊁(8)即为层理页岩在外界应力的共同作用下各个岩层所受应力的表达式㊂1.3.2㊀本构模型HJC 模型[12]能够表征高应变率下材料的损伤特征,标准化等效应力表达式为:σ∗=σf ᶄc(9)式中:σ为实际等效应力,MPa;f ᶄc 为准静态单轴抗压强度,MPa;σ∗为标准化等效应力㊂利用屈服准则描述的等效应力的表达式为:σ∗=A (1-D )+Bp∗N[](1-C ln ε∗)(10)式中:D 为损伤参数;p ∗为标准化压力;ε∗为应变率;A 为黏度常数;B 为压力强化系数;C 为应变速率系数;N 为压力硬化指数㊂㊀126㊀特种油气藏第30卷㊀1.3.3㊀破坏准则根据所建立模型,结合页岩破坏准则即可对页岩的破裂模式进行判断㊂由于页岩储层通常层理和天然裂缝较为发育,选用Griffith 强度理论对页岩的宏观拉伸破坏进行判断㊂假设σxx 方向为最小水平主应力方向,σyy 方向为最大水平主应力方向,σzz 方向为最大主应力方向,则有:σxx ,i ɤ-12C i(11)式中:C i 为第i 层岩石的内聚力,MPa㊂结合式(6)并消去σxx ,i 可得到层理页岩系统中单层发生拉伸破坏的条件为:σxx ɤ1M 1(M 1-1)σxx ,b -M 2Δσyy +M 4Δσzz -C i 2éëêêùûúú(12)㊀㊀对于岩石宏观上的剪切破坏一般采用Mohr -Coulomb 准则:τȡC i +μi σn(13)式中:μi 为第i 层岩石的内摩擦系数;τ为岩石作用面上的剪切力,MPa;σn 为岩石作用面上的正应力,MPa㊂按照岩石破坏的主应力平面方向,并结合式(6)㊁(8)改写式(12)为:σxx ɤ1M 1(M 1-1)σxx ,b -M 2Δσyy +M 4Δσzz +(σzz ,b +Δσzz )(1-sin ϕi )-2C i cos ϕi 1+sin ϕi éëêêùûúú(14)式中:ϕi 为第i 层岩石的孔隙度㊂同时,岩石发生剪切破坏还必须满足:σxx >1M 1(M 1-1)σxx ,b -M 2Δσyy +M 4Δσzz-C i 2éëêêùûúú(15)式(14)㊁(15)即为层理页岩系统中单层发生剪切破坏的条件㊂对于岩石压缩下的拉伸破坏一般采用Griffith 准则:2σt ɤσyy +σ2yy +τ2xy(16)式中:σt 为材料的抗拉强度,MPa;τxy 为材料剪切强度,MPa㊂2㊀层理页岩破裂模型验证为了解不同力学层位间的应力分布,Stephen [11]建立了力学分层介质中弹性应力状态的模型,该模型中交替设置了软岩层和硬岩层,层理页岩中软岩层发生拉伸破坏,硬岩层发生剪切破坏㊂此次研究以文献[11]中的数据为基础,对文中模型进行验证㊂层理页岩系统基本参数如表1所示,其中,岩石z 方向的应力为-45MPa,岩石x 方向应力为-15MPa,岩石y 方向应力为-15MPa㊂模型计算结果如表2所示㊂表1㊀层理页岩系统基本参数表2㊀模型计算结果㊀㊀由表2可知:杨氏模量较大㊁泊松比较小的硬岩层2㊁4小层在外界压应力条件下获得了拉应力,且都发生了拉伸破坏㊂该结果与文献[11]将岩石层间弹性性能的差异性作为岩石张性破坏机理的研究结果吻合性较好,进一步证明层理页岩破裂模型的准确性㊂3㊀页岩破裂模式影响因素分析选取龙马溪区块深度为2230~2562m 的页岩开展研究,其远场x 方向应力为40MPa,y 方向应力为45MPa,xy 方向应力为42MPa㊂选取5个页岩层位并取心,建立黏结岩层系统的层理页岩模型㊂令各层的初始应力值为0MPa,利用三轴岩石力学系统测试各个层位的岩石力学参数(表3)㊂㊀第3期李㊀亮等:层理页岩脆性破裂模式力学机理研究127㊀㊀表3㊀龙马溪区块层理页岩基本参数3.1㊀力学参数对破裂模式的影响3.1.1㊀杨氏模量保持各层位除杨氏模量之外的所有参数不变,逐一改变各单层杨氏模量,计算各层应力,并分析各层的破坏情况(图3)㊂图3中G准则为Griffith 准则,当岩石应力曲线超过G准则时,岩石发生剪切破坏;M-C准则为Mohr-Coulomb破坏准则,当岩石应力曲线超过M-C准则时,岩石发生拉伸破坏㊂以图3a为例,其表示只改变层1的杨氏模量,其余各层杨氏模量保持不变后各层应力的分布结果㊂层1在杨氏模量为15GPa时的应力介于G准则与M-C准则,由剪切破坏状态转变为未破坏状态;杨氏模量为55GPa时的应力低于M-C准则,由未破坏状态转变为拉伸破坏状态;层3㊁层5的杨氏模量为35GPa,随层1杨氏模量的变化,2个岩层的应力相应发生改变,由未破坏状态转变为剪切破坏状态㊂由图3可知:在外界应力条件下,单层杨氏模量越小,在整个岩层内所受到的压应力越大,越趋向于剪切破坏;单层杨氏模量越大,在整个岩层内所受到的拉应力越大,越趋向于拉伸破坏㊂同时,岩层杨氏模量的变化对相邻其他岩层的应力和破裂模式存在一定的影响,当某层杨氏模量增加时,该层由剪切破坏趋向于拉伸破坏,而其他岩层则由拉伸破坏趋向于剪切破坏㊂以层3为例分析层间性质差异对破裂模式的影响㊂当层3岩石的杨氏模量为35~40GPa时,该层与其邻层(层2㊁4)的杨氏模量差异最小;随着层3岩石杨氏模量远离35~40GPa,层间杨氏模量的差异不断增加,同时岩石的脆性不断增加,岩石更容易发生剪切或拉伸破坏㊂岩石层间杨氏模量差异越大,岩石脆性越强,越有利于压裂形成裂缝网络㊂3.1.2㊀泊松比保持各层位除泊松比之外的所有参数不变,逐一改变各单层泊松比,计算各层应力,并分析各层的破坏情况(图4)㊂由图4可知:在外界应力条件下,单层泊松比越小,在整个岩层内所受到的拉应力越大,越趋向于拉伸破坏;单层泊松比越大,在整个岩层内所受到的压应力越大,越趋向于剪切破坏,发生剪切破坏的泊松比为0.30~0.45㊂同时,泊松比的变化对相邻其他岩层的应力和破裂模式存在一定的影响,当某层泊松比增加时,该层由拉伸破坏趋向于剪切破坏,而其他岩层则由剪切破坏趋向于拉伸破坏㊂3.2㊀岩层厚度对破裂模式的影响保持各层位除厚度之外的所有参数不变,逐一改变各单层厚度,计算各小层应力,并分析各层的破坏情况(图5)㊂由图5可知:在外界应力作用下,随着硬岩层厚度增大,系统内各岩层的应力均会增大;随着软岩层厚度增大,系统内各岩层的应力均会减小㊂随着硬岩层厚度增大,岩层破裂模式更倾向于发生剪切破坏㊂3.3㊀地应力对破裂模式的影响3.3.1㊀最小水平主应力保持各层位最小水平主应力之外的所有参数不变,改变最小水平主应力,计算各层位应力,并分析各层的破坏情况(图6)㊂由图6可知:随着最小水平主应力增大,层理页岩系统内各层的应力均有较大幅度的增加,各层的破裂模式也发生了相应的变化,逐渐由拉伸破坏转变为剪切破坏;各层位发生剪切破坏时对应的水平最小主应力集中在15 MPa㊂3.3.2㊀水平主应力差改变水平主应力差并保持其他参数不变,各层应力分布及破裂模式如图7所示㊂由图7可知:随着水平主应力差增大,层理页岩系统内第2㊁4小层的拉应力逐渐增大,而第1㊁3㊁5层的压应力变化幅㊀128㊀特种油气藏第30卷㊀图3㊀单层杨氏模量变化时各层应力分布及破裂模式Fig.3㊀The stress distribution and fracture mode of each layer when the Youngᶄs modulus of a single layer varies 图4㊀单层泊松比变化时各层应力分布及破裂模式Fig.4㊀The stress distribution and fracture mode of each layer when the Poissonᶄs ratio of a single layer varies㊀第3期李㊀亮等:层理页岩脆性破裂模式力学机理研究129㊀㊀图5㊀单层厚度变化时各层应力分布及破裂模式Fig.5㊀The stress distribution and fracture mode of eachlayer when the thickness of a single layer varies图6㊀水平最小主应力变化时各层应力分布及破裂模式Fig.6㊀The stress distribution and fracture mode of each图7㊀水平主应力差变化时各层应力分布及破裂模式Fig.7㊀The stress distribution and fracture mode of each layer when the horizontal principal stress difference varies度较小;层理页岩的破裂模式逐渐由剪切破坏向拉伸破坏转变,在较高的水平主应力差条件下页岩更倾向于发生拉伸破坏㊂4㊀结㊀论(1)层理页岩的破坏模式主要分为剪切破坏和拉伸破坏,在外界应力条件下,硬岩层产生拉应力,易发生拉伸破坏,软岩层产生压应力,易发生剪切破坏㊂(2)影响页岩破裂模式的因素包括杨氏模量㊁泊松比㊁岩层厚度㊁水平最小主应力㊁水平主应力差等㊂岩层杨氏模量越大㊁泊松比越小,岩层越易发生拉伸破坏,岩层杨氏模量越小㊁泊松比越大,岩层越易发生剪切破坏,发生剪切破坏的泊松比为0.30~0.45;岩层厚度越大,岩层越易发生剪切破坏;最小水平主应力越大,页岩越倾向于发生剪切㊀130㊀特种油气藏第30卷㊀破坏;水平主应力差越小,页岩越倾向于发生剪切破坏㊂(3)单层岩石力学性质的变化对相邻其他岩层的应力和破裂模式存在一定的影响㊂当某层杨氏模量增加时,该层由剪切破坏趋向于拉伸破坏,其他层位则由拉伸破坏趋向于剪切破坏;当某层泊松比增加时,该层由拉伸破坏趋向于剪切破坏,其他层位则由剪切破坏趋向于拉伸破坏㊂(4)页岩自身层间力学性质的差异性是页岩形成复杂破裂模式的根本原因,页岩层间杨氏模量差异越大,岩石脆性特征越强,越有利于压裂㊂参考文献:[1]郭建春,赵志红,路千里,等.深层页岩缝网压裂关键力学理论研究进展[J].天然气工业,2021,41(1):102-117.GUO Jianchun,ZHAO Zhihong,LU Qianli,et al.Research pro-gress in key mechanical theories of deep shale network fracturing [J].Natural Gas Industry,2021,41(1):102-117.[2]侯振坤,杨春和,郭印同,等.单轴压缩下龙马溪组页岩各向异性特征研究[J].岩土力学,2015,36(9):2541-2550.HOU Zhenkun,YANG Chunhe,GUO Yintong,et al.Experimental study on anisotropic properties of Longmaxi Formation shale underuniaxial compression [J].Rock and Soil Mechanics,2015,36(9):2541-2550.[3]魏元龙,杨春和,郭印同,等.三轴循环荷载下页岩变形及破坏特征实验研究[J].岩土工程学报,2015,37(12):2262-2271.WEI Yuanlong,YANG Chunhe,GUO Yintong,et al.Experimentalresearch on deformation and fracture characteristics of shale under cyclic loading[J].Chinese Journal of Geotechnical Engineering,2015,37(12):2262-2271.[4]李庆辉,陈勉,金衍.含气页岩破坏模式及力学特性的实验研究[J].岩石力学与工程学报,2012,31(增刊2):3763-3771.LI Qinghui,CHEN Mian,JIN Yan.Experimental research on fail-ure modes and mechanical behaviors of gas -bearing shale[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(S2):3763-3771.[5]张萍,杨春和,汪虎,等.页岩单轴压缩应力-应变特征及能量各向异性[J].岩土力学,2018,39(6):2106-2114.ZHANG Ping,YANG Chunhe,WANG Hu,et al.Stress -strain characteristics and anisotropy energy of shale under uniaxial com-pression[J].Rock and Soil Mechanics,2018,39(6):2106-2114.[6]ZHENG Z,WANG W,CAO Y J,et al.A statistical damage consti-tutive model with damage threshold based on Mogi -Coulomb crite-rion[C]//FENG Xiating,HUDSON A John,TAN Fei.Rock Char-acterisation,Modelling and Engineering Design Methods.London:CRC Press,2013:339-344.[7]梁利喜,丁乙,刘向君,等.硬脆性泥页岩井壁稳定渗流-力化耦合研究[J].特种油气藏,2016,23(2):140-143,158.LIANG Lixi,DING Yi,LIU Xiangjun,et al.Seepage -mechano-chemistry coupling of wellbore stability in hard -brittle shale[J].Special Oil &Gas Reservoirs,2016,23(2):140-143,158.[8]LIU Y,MA T S,WU H,et al.Investigation on mechanical behav-iors of shale cap rock for geological energy storage by linking mac-roscopic to mesoscopic failures [J].Journal of Energy Storage,2020,29:1-15.[9]卞康,陈彦安,刘建,等.不同吸水时间下页岩卸荷破坏特征的颗粒离散元研究[J].岩土力学,2020,41(增刊1):355-367.BIAN Kang,CHEN Yanᶄan,LIU Jian,et al.The unloading failure characteristics of shale under different waterabsorption time usingthe PFC numerical method[J].Rock and Soil Mechanics,2020,41(S1):355-367.[10]谢云跃,肖洪天,闫强刚.裂隙岩体宏观力学参数的二维数值模拟[J].地质与勘探,2015,51(2):376-382.XIE Yunyue,XIAO Hongtian,YAN Qianggang.Two -dimensional numerical simulation of macro -mechanical parameters for frac-tured rock mass[J].Geology &Exploration,2015,51(2):376-382.[11]BOURNE S J.Contrast of elastic properties between rock layers asa mechanism for the initiation and orientation of tensile failure un-der uniform remote compression[J].Journal of Geophysical Re-search,2003,108(8):105-119.[12]梁成钢,罗群,张金风,等.致密砂岩储层层理缝与构造缝渗吸差异分析 以吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2020,27(4):104-110.LIANG Chenggang,LUO Qun,ZHANG Jinfeng,et al.Analysis ofimbibition difference between bedding fractures and structural fractures in tight sandstore reservoir:a case study in LucaogouFormation in Jimsar Depression[J].Petroleum Geology &Recov-ery Efficiency,2020,27(4):104-110.[13]陈立超,张典坤,吕帅锋,等.海/陆相页岩微观力学性质压痕测试研究[J].油气地质与采收率,2022,29(6):31-38.CHEN Lichao,ZHANG Diankun,LYU Shuaifeng,et al.Microme-chanical characteristics of marine /continental shale based on in-dentation test [J ].Petroleum Geology &Recovery Efficiency,2022,29(6):31-38.编辑㊀刘㊀巍。
录井英语词汇
石油单词Seep 渗、漏Fault 断层Anomaly 异常Geophysical 地球(质)物理Marsh 沼泽Exploration well 探井Development well 开发井Pore 小孔Ooze 【u:z】泥浆Inexorably 坚持不懈地Sediment 沉淀物Cataclysm (地壳)剧变,大变动、大动乱Inlet 水湾Impervious 不溶、不能渗透Lay cradled in 在……产生Source rock 生油岩Structural trap 构造圈闭Anticline 背斜圈闭Stratigraphic trap 地层圈闭Stratigraphy 地层学、地层成层情况Tilt (使……)倾斜Truncate 截去……的顶端或末端Pinch out 尖灭Arid a. (指土壤、气候)干旱的、干燥的、无趣的Prairie 大草原(尤指北美的)Seismology 地震学Drilling contractor 钻井承包商Lease 出租Shale 页岩Tertiary regressive sequence 第三系海退系列In broad term 一般来说Borehole logs 测井曲线Casing 套管Sonde (用以探测大气现象之)探空火箭、探测器Geological log 地质测井Spontaneous potential 自然电位Resistivity 电阻率Electrode 电极Brine-saturated 饱和盐水的Delineate 画出、描绘出、描绘Filtrate 经过滤的液体Velocity (物理学)速度Contour 轮廓、外形Sparse 稀少的,稀疏的Meager 瘦的、粗劣的、不足的Appraisal well 评价井Exploration geologist 勘探地质学家Development geologist 开发地质学家Salinity 矿化度Gas cap 气顶Recovery factor 开采率Structural contour map 构造直线图Bulk density 体积密度Hoisting system 提升系统Internal-combustion engine 内燃机Pulley 皮带轮Hydraulic coupling 液力耦合器Torque converter 力矩变换器Output shaft 输出轴Compound 并车Mud pump 泥浆泵Draw-works & rotary 绞车和转盘Alignment 排列、定线、校直Mast 桅杆式井架Derrick 井架、钻塔Crown block 天车Traveling block 游车Clutch 离合器Chain and gear drive for speed and direction change 链条齿轮驱动变速箱及换向器Main brake 主刹车Auxiliary hydraulic brake 水力辅助刹车Electric brake 电刹车Momentum 动力、冲力、势头Friction cathead 摩擦猫头Automatic (mechanical)cathead 自动(机械)猫头Air powered hoist 气动提升器(绞车)Make up / break out the drill string 上扣/卸扣Make-up / break-out cathead 上扣/卸扣猫头Driller 司钻Block sheave 滑轮槽Secure 缚住、系住Drill string 钻柱Vertical load 垂直负荷Girder 横梁Swivel 水龙头Rotary table 转盘Drill stem 钻柱Drill collar 钻铤Bail (水龙头)提环Hexagonal 六边形的Kelly bushing 方补心Slip 卡瓦Master bushing 主补心Tapered 楔形的A joint of pipe 钻杆单根Tool joints 工具接头Weld…into 把……接合起来(焊接)Bulge 凸起,鼓起Box & pin 母扣(接头)、公扣(接头)Tool pusher 钻井队长Streak 矿脉、条痕Stringer 脉道、夹层RPM (revolution per minute) 转每分Milled-tooth bit 铣齿钻头Carbide insert bit 镶齿钻头Chert 燧石Out-guess the formation 预测地层Abrasion 刮除、磨损Tungsten 钨tungsten carbide 碳化钨Offset 偏移Cone 牙轮Drag bit 刮刀钻头cone bit 牙轮钻头Shear or gouge the formation 剪切铲凿地层Compressive failure 挤压破碎Lateral force 侧向力Detrimental 有害的、不利的Roller bit 牙轮钻头Penetration rate 机械钻速Drilling fluid carry capacity 钻井液携屑能力Hydraulic parameter 水力参数Bit nozzle velocity 钻头水力功率Jet impact force 射流冲击力Competent formation 坚硬地层、致密地层Annulus 环空annular 环形的Nozzle velocity is directly proportional to the square root of the pressure drop across the bit 喷嘴流速正比于钻头压力降的平方根Flow rate 排量Property 特性、特质Keep…in check 控制住Contain 控制Slough 脱落Veneer 薄片v 加(镶)薄片Cementation 固井Counteract 对抗、抵消Corrosion inhibitor 防腐蚀剂Aerated mud 充气泥浆Emulsifier 乳化剂Oil-base mud 油基泥浆Water filtrate / aqueous filtrate 失水Continuous phase 连续相Mud discharge line 泥浆排放管pit 泥浆池Shale shaker 震动筛mud agitator 泥浆搅拌机Desilter 除泥器mud centrifuge 泥浆离心机Accessory equipment 附属设施centrifugal pump 离心泵Derrick man 井架工sand line reel 捞沙滚筒Hydraulic choke 水压节流器salvage 打捞(费)Entrained gas 夹带气体barge 驳船Funnul 漏斗(hopper)bulk-storage bin 散装箱Conductor pipe 导管pile driver 打桩机Gravel 砾石muck 腐殖泥土Mire 淤泥floater 移动式钻井平台(浮船)Dynamic positioning 动力定位propeller 推进器、螺旋桨Dope 润滑油、司扣油trip out 起钻Trip 解扣、起下管柱running surface casing 下表层套管Centralizer 扶正器guide shoe 套管鞋Ledge 井筒中的台肩float collar 浮箍Receptacle 容器slurry 稀泥浆Intermediate casing 技术套管production string of casing 油层套管Mud logger 泥浆录井员well logging 录井Perforate 打孔、打眼shaped charged 聚能射孔弹Packer 封隔器turbine blade 涡轮叶片Gyroscope 定向仪whipstock 造斜器、用造斜器侧钻Ramp 斜坡、斜道bottom-hole assembly 井底钻具总成Earthen dike 土堤manifold 管汇Choke manifold 节流管汇choke 节流箱Service well-head 修井井口装置sleeve type preventer 套筒式防喷器Double-ram type preventer 双闸板式防喷器NRV: none-return valve 单向阀Self-contained emergency NRV 自足式安全阀robust 有活力的、强健的Robust needle valve 耐用的针型阀orifice (身体等的)外孔、口Exert 用(技巧、方法等)、应用,尽力Slush pump 泥浆泵reinforced rubber ring 强化橡胶圈Pack off 封住Round the irregular profile 沿不规则剖面Capital construction 基本建设opening address 致辞Self-propelled 自力推进的、机动式的Live well 充气油井、压力大的井Hydropneumatic 液(压)气(动)的Accumulator 蓄能器pressure vessel 压力容器Diaphragm 横膈膜three-way valve 三通阀Anchor 固定管柱orifice 孔、口Remedial 补救的、救治的function 函数Tectonic analysis 构造分析、岩组分析Neutron 中子Pay evaluation 产油层评估interface 介面Earth’s mantle 地幔geothermal 地热TD: total depth windward 上风地带Cordial 兴奋剂(型饮料)Physiological saline 生理盐水erythromycin 红霉素Chloromycetin 氯霉素stud driller 大班司钻Vane 风向标refurbish 再供给、重新装备Customize 定制workover 修井Inception 起初matrix 基质(岩)Fracture-bulk volume 裂缝总体积void area 空穴区、空隙区Connate water saturation 共存水饱和度filtration 滤液Magnitude 大小、数量oil-wet 优先油湿Interstitial 空隙的、在裂缝间的Constituent 成分、构成部分capillary 毛状的、毛细的Heterogeneity (生)异质的、(化)不均匀性、多相性Advancing contact angle 前进接触角Receding contact angle 后退接触角Equilibrium 平均、平衡Homogeneous 由类似成分(部分)组成的,同种类(性质)的Affinity 亲和力residual 剩余的、残余的Viscosity 粘性dissolve 溶解、解散Underlie (underlain) 位于……之下,成为……的基础Water-wet consolidated porous media 水湿的固结的空隙介质Texture parameter 结构参数Tortuous 弯弯曲曲的Hydrodynamic laws 液体力学定律analog computer 模拟电子计算机Empirical 以实际经验为依据的Simulator 模拟器With the advent of 随着……的出现Micellar fluid 胶束液Oil-water transitional zone 油水过渡区Deplete 耗尽detriment 损害、损害物Indigenous 本土的dissent 不同意Rationing 配给Vertical sweep efficiency 垂向扫油系数Areal sweep efficiency 面积扫油系数Volume sweep efficiency 体积扫油系数Vacuum degasser 真空除气器desander 除砂器Centrifuge 离心机Auxiliary equipment in unbalance drilling 欠平衡钻井辅助设备Peripheral 外围的Solid control system 固控系统stack water tank 套装水罐Life tank 生活水罐mud test chamber 泥浆化验房Assembly tank 套装水罐pump room 泵房Pipeline pump 管道泵fire pump 消防泵Electro-thermal boiler 电热锅炉jet self-suction pump 射流式自吸泵Electric power distribution cabinet 配电柜Elevated oil tank 高架油罐shear pump 剪切泵Hydroclone 水力旋流器The principle of hydroclone centrifugal settling 水力旋流器离心沉淀原理With strong abrasive resistance 耐磨性强Elastomeric 弹性体的MCC (electrical system control center of well site) 井场电路系统控制中心Plug package and joint chamber 插接件室Cable drum chamber 电缆滚筒室Stand-by power cabinet 备用电源柜Power factor compensation cabinet 功率因数补偿柜Auto-decompression starting cabinet 自耦减压启动柜Ambient temperature 环境温度Qualified on-the-job training certificate 岗位人员培训合格证The assembling and repairing qualification for explosion proof electrical equipment 防爆电器安装修理资格证Electro thermal steam generator 电热蒸汽发生器Explosion suppression type multi-grouped control 防爆型多组合控制装置Explosion suppression type terminal box 防爆型接线箱Fouling 污垢defrost 解冻The high pressure water column 高压水柱Purgation 净化、洗涤dead weight 自重Evacuation cavity 排空腔‘dynamo 发电机Air-contented drilling fluid 含气钻井液gaseous drilling fluidChoke manifold 节流管汇depression tank 减压罐Baffle 挡板lamina 薄板、薄层Adjustable outrigger height 可调支腿高度Simple assembly 安装简便convenient maintenance 维修简便The pressure of hydrostatic column 静液柱压力hydrostatic 静水力学的,流体静力学的Well sloughing 井塌water-ring vacuum pump 水环式真空泵Isothermal 等温的、等温线Vacuum exhaustion 真空排气eddy current 涡流Air-cooled electromagnetic eddy current brake 风冷型电磁涡流刹车Rated resistance of each coil 每个线圈额定电阻Excitation power 励磁功率Cooling wind mount 冷却风量Shuffle valve 梭阀desiccant 干燥剂De-sludge 清楚泥渣silencer 消声器Blow-off noise 放空噪声metallurgy 冶金Horizontal spiral discharging settling centrifuge 卧式螺旋卸料沉降离心机Centrifugal settling 离心沉降Spiral propeller 螺旋推进器Differential gear 差速器mesh 网孔(眼)Skimming tank 撇油罐cyclone mixing hopper 漩流混合器Cyclone volute casing 漩流涡壳inlet pressure 进口压力Barite 重晶石bentonitic clay 膨润土Reciprocating pump 往复式柱塞泵Electrical submersible pump 潜油电泵pumping unit 抽油机Bushing roller chains 套筒滚子down-hole motor 螺杆钻具Stator 定子centralizer 扶正器Drive shaft unit assembly of down hole motor 螺杆钻具传动总成Sealing device in drive shaft of down hole motor 螺杆钻具传动轴密封装置Anti-drop device in …螺杆钻具传动轴防落装置Sealed ball-pivot universal shaft of down hole motor 螺杆钻具密封球铰接万向轴Sealed pin-hinge universal shaft of down-hole motor 螺杆钻具密封箱联接万向轴Overall inside drilling bit of natural diamond 天然金刚石全面钻进钻头Side tracking and deflective bit 侧钻造斜钻头Bi-center reamer bit 双心扩眼钻头Coring bit 取芯钻头Impregnated PDC bit 孕镶式单晶金刚石取芯钻头High pressure reciprocating plunger pump 告诉往复式柱塞泵Fuel transfer pump 输油泵Twin screw multi-phase pump 油气混输泵Rotary volumetric pump 旋转容积泵Conformability 适应性能(一致性)Pumping units 抽油机Conventional walking beam pumping unit 成规游梁式抽油机VFC control board 变频控制柜CP water supply capacitance self compensation board 恒压供水自动电容补偿柜Commissioning 试运转、试车Telescoping 可伸缩式(井架)Bootstrap 自展式(井架)barge 平底船,驳船Jackup 自升式平台box-on-box 箱叠式Substructure 底座swing lift substructure 吊运式底座Dog house 偏房snub 突然刹住,缓冲Umbilical 脐带、支应线、控制管缆Collection system 收集系统、集输系统TB (terminal board)接线板setback (钻台上)钻杆盒子Workover 修井drawworks 绞车Groundbreaking 奠基的,有创造力的Stroke 冲程Culminate (与in连用)达到顶点,达到顶峰Alloy 合金cylinder 圆筒、气缸Crankshaft 曲轴pinion 小齿轮Bearing 轴承crosshead 十字头Rod 抽油杆、标尺、测杆Overlay 镀、覆盖、表层、重叠Resilient 有弹性的liner 衬垫、尾管Down time 停机时间jib crane 挺杆起重机Racking capacity 排钻杆量power swivel 动力水龙头Service well-head 修井井口装置sleeve type 套筒式Double ram type 双闸式Kelly cock 方钻杆旋塞Kill the well 压井hydropneumatic 液压气动的Incompressibility 不可压缩性versatile 通用的、万能的Intermediate string 中间套管flow swing 翼形流量阀Tectonic 建筑的,构造的collimator 瞄准仪Amplitude 振幅tiltmeter 测斜仪Tilt 倾角、仰角pendulum 钟摆、摇锤Convex 表面弯曲如球的外侧、凸起的Calibre 口径LCM 堵漏剂Mitigate 减轻step-out well 探边井Ascertain 确定、探知optimum 最适宜的、最适合的Stoodite 司图迪特(耐磨堆焊)焊条合金Stellite 钨铬钴合金、硬合金borium insert 镶硼Sintered 烧结的,熔结的Chert 燧石quartzitic 石英岩的、Lithology 岩石学PDM (positive displacement motor ) 正容积马达Steering tool 导向工具Releasing overshot 可退式打捞筒bailer 捞沙筒Critical flow 临界流Boil down 1、浓缩、简化2、简单地总结为~~ to ~~Pressure drop 压力降Mass 质量momentum 动量Compart mentalized reservoir 断块油藏Draw down (抽油后)水位降低、水位量降低Whipstock 造斜器epoxy 环氧树脂、树脂Composite 合成地、复合地、合成物Hi-vis pill 高粘度颗粒材料Junk basket 打捞篮Ditch magnet 泥浆槽磁铁Suffice 足够、有能力、vt 使满足Hydraulic kick-out sub 液压造斜短节Remedial 补救的Disposable 可任意使用(处理)的Sleeve 装套Liner hanger 尾管悬挂器Surface casing splitter technology 表层套管分流技术Inventory 详细目录、存货、财产清册Port collar 带孔短节Troubleshoot 故障检修logistics 后勤Expedite v加速、派出a、畅通的、迅速的Pilot hole drilling 实验性钻井Pilot hole 导向孔、定位孔、装配孔Turnkey price 全承包价a turnkey agreement 总承包协议By rule of thumb 根据经验Consensus 一致同意、多数人的意见AFE:Authorization for Expenditure 批准费用TVD:total vertical depth 总垂直深度GOC:gas-oil contact 油气接触面、油气界面OWC:oil-water contactWiper trip 划眼起下钻MWD:measurement while drilling 随钻测量BHA Bottom-hole Assembly 井底钻具总成OEM:原始设备制造商Inverted 反向的、倒转的Outrigger 舷外支架、突出的粱、桁等Jack 起重机、千斤顶Boom 吊杆、悬臂Backlog 大木材、订货、存货积压Operating margin 经营毛利Jib 起重机的臂、铤杆Momentum 动力、要素Radius 半径、范围。
我想当一位考古学家英语作文
我想当一位考古学家英语作文My Aspiration to Unveil the Enigmas of the Past: A Journey into Archaeology.From the tender age when I marveled at the stories of ancient civilizations in history books, a profound fascination for archaeology ignited within me. The allureof excavating hidden treasures, deciphering forgotten languages, and reconstructing the tapestry of lost worlds captivated my imagination. Driven by this unwavering passion, I aspire to become an archaeologist, embarking ona journey to unravel the enigmatic chapters of our shared human narrative.Archaeology, the scientific study of past humansocieties through their material remains, offers a unique lens through which we can explore the complexities of civilizations that preceded us. It provides a tangible connection to the individuals, cultures, and events that have shaped the world we inhabit today. As an archaeologist,I would have the privilege of delving into the physical evidence of these bygone eras, extracting insights fromtheir artifacts, structures, and landscapes.The field of archaeology encompasses a vast array of disciplines, each offering its own specialized techniques and approaches. I am particularly drawn to excavation archaeology, where painstakingly unearthing buried remains allows us to glimpse the lives and environments of our ancestors. Through careful stratigraphic analysis, I would meticulously uncover layers of history, tracing theevolution of settlements, unraveling patterns of daily life, and shedding light on the social, economic, and cultural dynamics of past societies.Another aspect of archaeology that captivates me is the study of human remains. As a bioarchaeologist, I woulddelve into the physical characteristics of ancient populations, examining their health, nutrition, andlifestyle practices. By analyzing skeletal evidence, Icould contribute to our understanding of disease patterns, population genetics, and the adaptations humans have madethroughout history. Furthermore, the discovery of burials and funerary objects would provide invaluable insights into cultural beliefs, rituals, and the ways in which different societies have grappled with the inevitability of death.In addition to excavation and bioarchaeology, I am also eager to explore the realms of考古地貌学and考古学. Geoarchaeology combines archaeological methods with geological techniques to investigate the environmental context of past human settlements. By studying soil profiles, sediments, and landforms, I could reconstruct ancient landscapes, understand the impact of climate change on human populations, and uncover evidence of past environmental disasters. Archaeological science, on the other hand, utilizes cutting-edge technologies such as remote sensing, GIS mapping, and isotopic analysis to enhance our understanding of archaeological sites and artifacts. These advanced techniques allow us to non-invasively survey vast areas, identify hidden structures, and determine the age and origin of materials.The pursuit of archaeology is not without itschallenges. It requires a keen eye for detail, unwavering patience, and a willingness to endure the rigors of fieldwork. I am prepared to embrace these challenges with enthusiasm, knowing that the rewards of unearthing the secrets of the past will far outweigh any difficulties I may encounter. Moreover, I am committed to adhering to the highest ethical standards in my research, ensuring that archaeological sites and artifacts are preserved for future generations.As I embark on this extraordinary journey, I aminspired by the countless archaeologists who have dedicated their lives to unlocking the mysteries of the past. Their discoveries have transformed our understanding of human history, shedding light on the origins of civilization, the rise and fall of empires, and the remarkable achievements of our ancestors. I am honored to join this esteemed community of scholars, eager to contribute to the ever-expanding body of knowledge that defines our shared human heritage.In the years to come, I envision myself leadingarchaeological expeditions to remote corners of the globe, uncovering lost cities, deciphering ancient inscriptions, and piecing together the fragments of forgotten cultures. I am driven by an unyielding desire to bring the past to life, to make the voices of long-lost civilizations heard, and to inspire future generations to appreciate the richness and diversity of human history.The path ahead may be arduous, but I am confident that with determination, curiosity, and a profound respect for the past, I can make a meaningful contribution to the field of archaeology. I am eager to embrace the challenges and rewards that lie ahead, knowing that I am embarking on a lifelong journey of discovery and enlightenment.。
一种罕见的化石记录为题目英语作文
一种罕见的化石记录(A Rare Fossil Record)为题目英语作文A Rare Fossil RecordFossils are the remains, impressions, or traces of ancient organisms that are preserved in rocks. These enduring remnants offer a glimpse into the past, helping scientists to unravel the mysteriesof evolution and the history of life on Earth. While there are many different types of fossils, one particularly fascinating variation is known as a rare fossil record. This type of fossil provides an insight into the lives of organisms that lived during specific time periods or under certain environmental conditions, often offering clues about past ecosystems and events.One example of a rare fossil record can be found in the Burgess Shale. This is a stratigraphic formation located in the Canadian Rockies that is renowned for its exceptionally well-preservedfossils. The Burgess Shale dates from the middle Cambrian period, around 505 million years ago, and contains fossils from a range of bizarre creatures that lived in the ocean at that time. Among the many fossils found in the Burgess Shale are some that represent animals with soft bodies, like jellyfish and worms, which are particularly rare in the fossil record because they do not have any hard parts. These specimens offer important information about the evolution and diversity of ancient marine life that might otherwise have gone undiscovered.Another example of a rare fossil record can be seen in the La Brea Tar Pits, which are located in Los Angeles, California. These are natural seeps of asphalt that have been bubbling up from the ground for tens of thousands of years. The tar pits have trapped and preserved a variety of animal remains, including predators like saber-toothed cats anddire wolves, as well as herbivores like mammoths and mastodons. What makes the La Brea Tar Pits so rare is that they preserve not just bones, but also soft tissues like fur, skin, and even stomachcontents. This provides scientists with a unique opportunity to study the behavior, diet, and ecology of these animals from a much more complete perspective than would otherwise be possible.A third example of a rare fossil record is found in the Amherstburg Formation, which is located in Ontario, Canada. This formation dates from the Silurian period, around 435 million years ago, and contains fossils of a group of animals known as eurypterids, or sea scorpions. These were giant, predatory arthropods that could grow up to 8 feet long. The Amherstburg Formation is unusual in that it preserves not just the skeletal remains of these creatures, but also their tracks and burrows. This provides valuable insights into their behavior, including how they hunted, dug burrows, and interacted with other organisms in their ecosystem.In conclusion, rare fossil records offer valuable glimpses into the past that would otherwise remain hidden. They provide important information about the ecology, diversity, andbehavior of ancient organisms, shedding light on evolutionary processes and past changes to the environment. While each rare fossil record is unique and fascinating in its own right, they all have one thing in common: they offer a tantalizing glimpse into the hidden history of life on Earth.。
A scheme for nesting algorithmic skeletons
P0P0P1P2P3P4P5P6P7Before Dividing Original GroupAfter Dividing into two Sub-groupsSub-group 2Sub-group 1P1P2P3P3P2P1P0P0P1processranksin thecreatedgroup.process rank in the original groupThe created group consists of two processesprocess ranks in sub-groups.STOPSTOP STOP STOPSTOPSTARTGet rank in CommRank = 0 ?Rank = 0 ?NoYes NoCreate a new group consisting ofprocess ranks from 0 to Split - 1and call it Comm1.Rank = 0 ?Call FlatWorkerunder Comm Call Farmerunder CommNoYes list.Call map.Return empty NoYesSTOP Yesno sub-group Comm2.Call NestedWorker under Comm2Run farmer under Comm1.new sub-group Comm2.Parallel = T ?Nest = T ?Call Split and name theCall Split and name the newAndRank = 0 ?Nest = T ?Working =T ?Working = TSTOPNo YesYesmessage.Working2 =T ?Working2 = T NoYesRecv. synchronisationRecv. closure packetand build the new closure.Call Function Recv. synchronisationmessage.No Synchronisationmessage ?No Recv. data message Send synchronisation message to processes from rank 1 to size -1which are in Comm2Send the received packet to processes from rank 1 to size -1 inComm2 to build closure.Recv. abort message.Working = F Send abort messageto processes from rank 1to size -1 in Comm2.result = mapSend result to FarmerFunction STOP Check incomming messageYesParallel = T ?Nest = T ?No YesCall foldRank = 0 ?No STOP Create new sub-groupconsisting of process ranksfrom 0 to Split -1 andYes NoRank = 0 ?Rank = 0 ?STOPYes NoCall NestedWorker2Call NestedWorker3under Comm2Call split and name thenew sub-group Comm2.Call NestedMasterunder Comm1 and Comm2.STOPYes Call split and name the new sub-name it Comm1.NoYesCall FlatMasterReturn result.group Comm2. Get rank in Comm2.Return result.Call FlatWorker.under Comm2.return result. Get Rank.Front End 1 Front End 2Caml CodeBack EndC + MPITarget Machine Code Skeleton LibraryEKTRAN Source Code。
资勘专业英语段落翻译
Unit1 Cosmic Beginnings宇宙的起源1.Where and when does the history of the Earth begin? Only in the last few decades could this question be asked with any hope of a scientific answer. 地球的历史上是何时何地开始的?只有在过去的几十年里,这个问题才有了一个比较科学的回答来解释。
Certainly one good point at which to start is the time when the materials that were to become the Earth became separated in space from materials that were to become other members of the solar system. 当然存在一个较好的说法是地球的起源时间是当组成地球的物质在宇宙中开始与太空中组成太阳系其它成员的物质分离的时候.Although the story could well commence here, a great many important questions would remain unanswered.虽然故事很可能开始在这里,许多重要的问题仍悬而未决。
Something needs to be said about the materials that make up the Earth, and this pushes the question of origin to a more remote period. 一些有必要提及的物质构成了地球,这将推动更偏远的起源问题。
Earth's partners in space must also be considered. 地球在太空的合作伙伴也必须加以考虑。
梅耶斯资本结构之谜文献翻译及评述
文献支持财务行为的两个定性说明 其他因素相同时,风险性公司应借更少的钱; 持有具有活跃的二手市场的有形资产的公司比那些持有专门的无形资产或有
价值的增长机会的公司借的少。
静态权衡框架
借款的净 税收利得
法定 税率
有效 税率
负债和税收
修正的MM理论:任何付 税公司因借款而获利, 边际税率越大,利益越 大
总结
静态权衡理论 似乎是提供了一个内部最优负债比率,它使“适度
的”借款行为理性化。但实际表面想死的公司实际负债率却差别很大。 策略方法:➢ 引入调整成本 ➢ 从基于非对称信息的理论重新推广
修改后的啄序理论
➢ 避免必须通过发行普通股和风险债券来筹集不动产投资。 ➢ 指定目标股利支付率,以至正常股票投资率能通过内部资金满足。 ➢ 可以用新借款满足部分正常投资,但须保证负债的安全。 ➢ 由于目标股利支付率是粘性的,优先考虑风险小的证券。
资本结构之谜——梅耶斯
The Capital Structure Puzzle Stewart C. Myers
第三小组:程少辉、李文晶、梁烨、李敬尚、刘旭冉、 刘振宇、洪亚斌 指导老师:张洪辉
Stewart C. Myers
世界著名金融学家,公司融资“啄序理论” 的创立者,麻省理工斯隆管理学院财务金融学教 授。曾任美国金融协会、美国国民经济研究局研 究协会主席,主要研究财务决策、价值评估、资 本成本以及政府监管商业经营活动的金融财务问 题。
最大公 司价值
债务困境成本的现值 VL=VU+TCB=含公司税和 债务的MM公司价值
V=公司的实际价值 VU=公司的实际价值
0
债务额(B)
B* 最优债务额
静态权衡框架
高地应力下岩石的真三轴试验研究
第25卷 第8期岩石力学与工程学报 V ol.25 No.82006年8月 Chinese Journal of Rock Mechanics and Engineering Aug.,2006收稿日期:2005–04–25;修回日期:2005–09–02 基金项目:国家杰出青年基金资助项目(50325414)作者简介:陈景涛(1976–),男,1998年毕业于武汉工业大学工程结构与力学系结构工程专业,现为博士研究生、讲师,主要从事岩土工程、结构工程方面的教学与研究工作。
E-mail :jtchen2006@高地应力下岩石的真三轴试验研究陈景涛1,2,冯夏庭1(1. 中国科学院 武汉岩土力学研究所,湖北 武汉 430071;2. 武汉理工大学 理学院,湖北 武汉 430070)摘要:通过真三轴试验模拟高地应力条件下地下工程开挖引起的复杂的应力路径的演化。
在设定的加载方式下,针对拉西瓦新鲜花岗岩的试验结果表明:当卸载最小主应力时,岩石发生回弹变形,声发射计数率比卸载前显著增加,增加的幅度随中间主应力的增加而逐渐提高。
岩石的应力–应变关系为弹脆性,峰值强度随中间主应力的增加有所提高,峰值强度的提高值与中间主应力的比值随中间主应力的提高逐渐减小。
声发射计数率峰值与应力水平有关,峰值的次数与破坏后主裂缝的条数相对应。
最后,分析了岩石的破坏机制。
关键词:岩石力学;高地应力;真三轴试验;强度与变形特性;声发射;破坏机制中图分类号:TU 452 文献标识码:A 文章编号:1000–6915(2006)08–1537–07TRUE TRIAXIAL EXPERIMENTAL STUDY ON ROCK WITH HIGHGEOSTRESSCHEN Jingtao 1,2,FENG Xiating 1(1. Institute of Rock and Soil Mechanics ,Chinese Academy of Sciences ,Wuhan ,Hubei 430071,China ;2. School of Nature Sciences ,Wuhan University of Technology ,Wuhan ,Hubei 430070,China )Abstract :The complicated evolvement of stress load ,which is produced by excavating underground engineering under high stress conditions ,is simulated through true triaxial experiment. Under the given loading method ,the experimental results about new granite in Laxiwa show that the resilient deformation is found and acoustic emission counts rate is evidently enhanced when the minor principal stress is unloaded. The enhancing extent of acoustic emission counts rate increases with the intermediate principal stress. The constitutive relation is elasto-brittle. The peak value of strength increases with the intermediate principal stress ;and the ratio of increasing value of limit strength and the intermediate principal stress decrease with the intermediate principal stress. The peak value of acoustic emission counts rate depends on stress state ;and the amount of peak value is equal to that of major crack after failure. Finally ,the failure mechanism is discussed. Key words :rock mechanics ;high geostress ;true triaxial experiment ;characteristics of strength and deformation ;acoustic emission(AE);failure mechanism1 引 言随着我国西部大开发等相关战略的实施,一批重大基础设施建设,如西电东送、南水北调等,正以前所未有的速度在全国展开。