27.2.1 第1课时 平行线分线段成比例
部审人教版九年级数学下册说课稿27.2.1 第1课时《平行线分线段成比例》
部审人教版九年级数学下册说课稿27.2.1 第1课时《平行线分线段成比例》一. 教材分析《平行线分线段成比例》是人教版九年级数学下册第27.2.1节的内容,本节课主要介绍了平行线分线段成比例的定理及其应用。
教材通过生活中的实例引入平行线分线段成比例的概念,让学生感受数学与生活的紧密联系。
紧接着,教材引导学生通过观察、思考、探索,发现平行线分线段成比例的规律,培养学生的逻辑思维能力和探究能力。
最后,教材提供了丰富的练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对平行线、线段等概念有一定的了解。
但是,对于平行线分线段成比例的定理及其应用,学生可能较为陌生。
因此,在教学过程中,教师需要注重引导学生建立知识间的联系,激发学生的学习兴趣,帮助学生理解和掌握平行线分线段成比例的定理。
三. 说教学目标1.知识与技能目标:使学生掌握平行线分线段成比例的定理,并能运用定理解决实际问题。
2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和探究能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,感受数学与生活的紧密联系,培养学生的团队协作精神。
四. 说教学重难点1.教学重点:平行线分线段成比例的定理及其应用。
2.教学难点:平行线分线段成比例定理的发现和证明。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、实物模型等辅助教学,帮助学生形象直观地理解平行线分线段成比例的定理。
六. 说教学过程1.导入新课:通过生活中的实例,引导学生关注平行线分线段成比例的现象,激发学生的学习兴趣。
2.探究新知:学生进行观察、思考、探索,引导学生发现平行线分线段成比例的规律,进而得出定理。
3.讲解与演示:对平行线分线段成比例的定理进行详细讲解,利用多媒体课件和实物模型进行演示,帮助学生理解定理。
新人教版初中数学九年级下册精品教案27.2.1 第1课时 平行线分线段成比例
27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.了解相似比的定义;(重点)2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求:(1)△OAC 和△OBD 的相似比;(2)BD 的长.解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与△OBD 的相似比为OA OB =42=21; (2)∵△OAC ∽△OBD ,∴AC BD =OA OB ,∴BD =AC ·OB OA =2×24=1. 方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法.探究点二:平行线分线段成比例定理【类型一】 平行线分线段成比例的基本事实如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.(1)求CB AB的值; (2)求AB 的长.解析:(1)根据l 1∥l 2∥l 3推出CB AB =EF DE ;(2)根据l 1∥l 2∥l 3,推出EF DF =BC AC =58,代入AC =24求出BC 即可求出AB . 解:(1)∵l 1∥l 2∥l 3,∴CB AB =EF DE .又∵DF ∶DF =5∶8,∴EF ∶DE =5∶3,∴CB AB =53; (2)∵l 1∥l 2∥l 3,EF ∶DF =5∶8,AC =24,∴EF DF =BC AC =58,∴BC =15,∴AB =AC -BC =24-15=9.方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置.【类型二】 平行线分线段成比例的基本事实的推论如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.解析:根据DE ∥BC 得到AD AB =AE AC,然后根据比例的性质可计算出AE 的长. 解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5,∴AE =107. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式.探究点三:相似三角形的引理【类型一】 利用相似三角形的引理判定三角形相似如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.【类型二】 利用相似三角形的引理求线段的长如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O .(1)如果CE =3,EB =9,DF =2,求AD 的长;(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD推知EF 与CD 之间的数量关系,从而求得CD =10.5.解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB.又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74EF =10.5,即CD 的长是10.5.方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.三、板书设计1.相似三角形的定义及有关概念;2.平行线分线段成比例定理及推论;3.相似三角形的引理.本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.。
27.2.1 第1课时 平行线分线段成比例
侵权必究
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
段平 成行 比线 例分
线
课堂小结
基本事实 两条直线被一组平行线所截,所得的对应 线段成比例
推论 平行于三角形一边的直线截其他两边(或 两边延长线),所得的对应线段成比例
判定三角形相似的定理 平行于三角形一边的直线与其他两边相交, 所构成的三角形与原三角形相似
3.如图,DE∥BC,DF∥AC,则图中相似三角 形一共有( C )
A.1对 B.2对 C.3对 D.4对
侵权必究
4.如图,在△ABC中,DE∥BC,以下结论正确的是( C )
A. AE AD AC BD
C. AE AD CE BD
B. AE BD AC AB
D. AC AD CE BD
E
B
C
侵权必究
想一想:
我们通过度量三角形的边长,知道△ADE∽
△ABC,但要用相似的定义去证明它,我们需要
证明什么?
由前面的结论,我们可以得 到什么?还需证明什么?
A
D
E
B
C
侵权必究
用相似的定义证明△ADE∽△ABC
A
证明:
D 在 △ADE与 △ABC中,∠A=∠A.
E
∵ DE∥BC,
∴ ∠ADE=∠B,∠AED=∠C.
问题1 △ADE与△ABC的三个内角分别相等吗?
问题2 分别度量△ADE与△ABC的边长,它们的边
长是否对应成比例?
A
D
E
侵权必究
B
C
问题3 你认为△ADE与△ABC之间有什么关系?平 行移动DE的位置,你的结论还成立吗?
通过度量,我们发现△ADE∽△ABC,
人教版初中数学九年级下册《27.2.1相似三角形的判定:平行线分线段成比例》
5. 如图,已知菱形 ABCD 内接于△AEF,AE=5cm, AF = 4 cm,求菱形的边长. 解:∵ 四边形 ABCD 为菱形, ∴CD∥AB, ∴ △CDF ∽ △EAF CD DF . ∴ AE AF 设菱形的边长为 x cm,则CD E = AD = x cm,DF = (4-x) cm, A B C
A1 B1 B2 a b
A2 A3
m
B3 c n
图①
A1
B1
a
A2
A3 m
B2
b
B3 c n
A1 A2 B1B2 , (1) 计算 ,你有什么发现? A2 A3 B2 B3
归纳: 一般地,我们有平行线分线段成比例的基本事实: 两条直线被一组平行线所截,所得的对应线段成比例. 几何语言: 若a∥b∥ c ,
A1 A2 B1B2 A2 A3 B2 B3 则 , , A2 A3 B2 B3 A1 A2 B1B2 A2 A3 B2 B3 A1 A2 B1B2 , … A1 A3 B1B3 A1 A3 B1B3
A1 A2 A3
B1 B2
a b B3 c
练一练 如图,已知l1∥l2∥l3,下列比例式中错误的是 (D)
3. 若 △ABC 的三条边长的比为3:5:6, 与其相似的另一个 △A′B′C′ 的最小边长为12 cm, 24 cm 那么 A′B′C′ 的最大边长是______.
当堂检测
当堂练习
1. 如图,△ABC∽△DEF,相似比为1:2,若 BC=1, 则 EF 的长为 ( B)
A. 1 B. 2 C. 3 D. 4 D A B C E
第二十七章 相似
27.2.1 相似三角形的判定
第1课时 平行线分线段成比例
27.2.1 第1课时 平行线分线段成比例
∠4 ,∠2+∠4=________ 180° . ______
第1课时
平行线分线段成比例
图27-2-1
第1课时
平行线分线段成比例
3.如图 27-2-2,如果△ABC 与△A′B′C′相似,那么∠A BC AB ∠A′ , ∠ B = ______ ∠B′ , ∠ C = ______ ∠C′ , B′C′ = = ______ = ________ A′B′ AC ________ A′C′ .
AB 3 如图 27-2-5,l1∥l2∥l3, = ,DE=6,求 DF 的长. BC 2
图27-2-5
第1课时
平行线分线段成比例
AB DE [解析] 由 l1∥l2∥l3 可得 = ,代入相关数据可求得 EF 的 BC EF 长.再根据 DF=DE+EF,求出 DF 的长.
第1课时
平行线分线段成比例
图形中找出这些基本图形,就可以找出图中的相似三角形.
图27-2-8
第1课时
平行线分线段成比例
2.在三角形中只要具备平行条件就可以直接得到对应线段成 比例. AD AE AD AE DE 如图 27-2-10①,如果 DE∥BC,那么 = , = = , DB EC AB AC BC DB EC AD DB AB = , = = . AB AC AE EC AC
图27-2-2
第1课时
平行线分线段成比例
活动2
教材导学
1.认识平行线分线段成比例的基本事实
如图27-2-3,三条平行线截两条直线会有什么结果?
图27-2-3
第1课时
平行线分线段成比例
2 AB 2 DE 猜想:若 = ,则 =________ ; 3 BC 3 EF 3 AB 3 DE 4 若 = ,则 =________ . BC 4 EF
27.2.1 第1课时 平行线分线段成比例 人教版数学九年级下册课件
解:∵
EF∥BC,∴
AE BE
AF FC
.
∴ 7 AF , 74
A
E
F
解得 AF = 4.
B
C
(2) 若 AB = 10,AE = 6,AF = 5,则 FC 的长是多少?
解:∵ EF∥BC,∴ AE AF .
AB AC
∴6 5,
10 AC
解得
AC =
25 3.
∴ FC = AC-AF = 25 5 10 .
△ABC 的边上,要想利用前面学到的结论来证明
三角形相似,可以怎样做呢?
可以将 DE 平移 到 BC 边上去
A
D
E
B
C
如图,DE∥BC,用相似的定义证明△ADE∽△ABC.
证明:在△ADE 与△ABC 中,∠A =∠A.
∵ DE∥BC,∴∠ADE =∠B,∠AED =∠C.
如图,过点 E 作 EF∥AB,交 BC 于点 F.
D 作 BC 的平行线 DE,交 AC 于点 E.
问题 1 △ADE 与△ABC 的三个内角分别相等吗?
问题 2 分别度量△ADE 与△ABC 的边长,
A
它们的边长是否对应成比例?
D
E
B
C
问题 3 你认为△ADE 与△ABC 之间有什么关系?平 行移动 DE 的位置,你的结论还成立吗?
通过度量,我们发现△ADE∽△ABC, 且只要 DE∥BC,这个结论恒成立.
第二十七章 相 似
27.2.1 相似三角形的判定 第1课时 平行线分线段成比例
复习引入
1. 相似多边形的对应角 相等 ,对应边 成比例 ,对 应边的比叫做 相似比 .
2. 如图,△ABC 和 △A′B′C′ 相似需要满足什么条件? 相似用符号“∽”表示,读作“相似于”.
27.2.1 第1课时 平行线分线段成比例
27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.了解相似比的定义;(重点)2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求:(1)△OAC 和△OBD 的相似比;(2)BD 的长.解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与△OBD 的相似比为OA OB =42=21; (2)∵△OAC ∽△OBD ,∴AC BD =OA OB ,∴BD =AC ·OB OA =2×24=1. 方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法. 变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:平行线分线段成比例定理【类型一】 平行线分线段成比例的基本事实如图,直线l1、l2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.(1)求CB AB的值;(2)求AB 的长.解析:(1)根据l 1∥l 2∥l 3推出CB AB =EF DE ;(2)根据l 1∥l 2∥l 3,推出EF DF =BC AC =58,代入AC =24求出BC 即可求出AB .解:(1)∵l 1∥l 2∥l 3,∴CB AB =EF DE .又∵DF ∶DF =5∶8,∴EF ∶DE =5∶3,∴CB AB =53; (2)∵l 1∥l 2∥l 3,EF ∶DF =5∶8,AC =24,∴EF DF =BC AC =58,∴BC =15,∴AB =AC -BC =24-15=9.方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】 平行线分线段成比例的基本事实的推论如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.解析:根据DE ∥BC 得到AD AB =AE AC,然后根据比例的性质可计算出AE 的长. 解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5,∴AE =107. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点三:相似三角形的引理【类型一】 利用相似三角形的引理判定三角形相似如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 利用相似三角形的引理求线段的长如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O .(1)如果CE =3,EB =9,DF =2,求AD 的长;(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD 推知EF 与CD 之间的数量关系,从而求得CD =10.5.解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB.又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74EF =10.5,即CD 的长是10.5.方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.变式训练:见《学练优》本课时练习“课堂达标训练”第6题三、板书设计1.相似三角形的定义及有关概念;2.平行线分线段成比例定理及推论;3.相似三角形的引理.本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.。