二次函数与一元二次方程2--初三数学《二次函数》新课标全章教案
二次函数的全章教案
26.1二次函数(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。
二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。
三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,写出y 与x 的关系。
问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有 的形式。
问题5:什么是二次函数?形如 。
问题6:函数y=ax²+bx+c ,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?(三)尝试应用:例1. 关于x 的函数 是二次函数, 求m 的值.mm 221)x (m y --=注意:二次函数的二次项系数必须是的数。
例2.已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。
求这个二次函数的解析式.(待定系数法)(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y=x-2+x.2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
人教版九年级数学上册22.2二次函数与一元二次方程(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.培养学生的合作意识和团队精神,通过小组讨论、合作完成抛物线与坐标轴围成图形面积等问题的探讨,增强学生之间的沟通与协作。
三、教学难点与重点
1.教学重点
(1)二次函数的定义及其图像性质:理解并掌握二次函数的基本形式,明确a、b、c的取值对二次函数图像的影响,特别是a的正负决定图像开口方向,顶点坐标的求法等。
举例:y=x²+2x+1与y=-2x²+3x+1的图像区别及顶点坐标的求解。
(2)一元二次方程的解法:熟练掌握因式分解法、配方法、求根公式法等解一元二次方程的方法,并能够根据方程特点选择合适解法。
举例:解方程x²-5x+6=0,通过因式分解法求解;解方程x²-4x+3=0,通过配方法求解。
(3)二次函数与一元二次方程的关系:理解二次函数图像与x轴交点坐标即为相应一元二次方程的解,并能应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如抛掷物体时的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与一元二次方程的奥秘。
九年级数学下册《二次函数与一元二次方程的关系》教案、教学设计
-例如:“已知二次函数y=ax^2+bx+c的图像开口向上,且顶点坐标为(-1,2),求该二次函数的解析式。”
4.小组合作探究题:这部分作业要求学生在小组内共同完成,培养学生的合作精神和探究能力。
(三)学生小组讨论
在讲授新知之后,我会组织学生进行小组讨论。我将设计一些具有探究性的问题,如:“二次函数的开口方向和顶点坐标是如何影响一元二次方程的解的?”、“在实际问题中,如何运用二次函数的性质求解一元二次方程?”等。学生通过小组合作,共同探讨这些问题,培养他们的合作精神和探究能力。
(四)课堂练习
-教师设计具有现实背景的实际问题,引导学生运用二次函数知识进行分析和解决。
-学生在解决问题的过程中,掌握数学建模、问题求解等数学方法。
3.通过对二次函数图像的观察与分析,培养学生的观察能力、逻辑思维能力和空间想象能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生主动参与学习的积极性。
五、作业布置
为了巩固学生对二次函数与一元二次方程关系的理解,提高学生的应用能力和解决问题的策略,我设计了以下几类作业:
1.基础知识巩固题:这部分作业主要针对课堂所学的基本概念和性质进行设计,包括填空题、选择题和简答题,旨在帮助学生巩固二次函数与一元二次方程的基本知识。
-填空题:如“二次函数y=ax^2+bx+c(a≠0)的图像开口向上,当a<0时,图像开口______。”
2.掌握一元二次方程的求解方法,了解一元二次方程与二次函数之间的关系,并能运用二次函数解决实际问题。
-学生能够运用直接开平方法、配方法、求根公式等求解一元二次方程。
九年级《二次函数》全章教案
教学目标:1.了解二次函数的概念及特点。
2.掌握二次函数的图像、顶点、轴对称、零点等基本性质。
3.学会利用函数图像解决实际问题。
教学重点:1.理解二次函数的相关概念。
2.掌握二次函数图像的绘制方法。
3.能够运用二次函数解决实际问题。
教学难点:1.掌握二次函数的顶点和轴对称的概念及求解方法。
2.学会利用函数图像解决实际问题。
教学准备:1.教材《二次函数》的教学课件及习题。
2.计算器、直尺、笔记本等教学工具。
3.多媒体设备及相关教学资源。
教学过程:一、导入(10分钟)1.通过展示一副二次函数的图像和实际应用问题,引起学生兴趣。
2.复习一次函数的相关内容,引出二次函数的定义及特点。
二、概念讲解与示例演示(25分钟)1.讲解二次函数的定义,即形如f(x)=ax²+bx+c(a≠0)的函数。
2.介绍二次函数图像的最简形式,即顶点形式f(x)=a(x-h)²+k。
3.示例演示:给出一个二次函数式,通过变换得到最简形式,并通过求顶点等方式解决具体问题。
三、绘制二次函数图像(40分钟)1.讲解如何绘制二次函数图像的步骤,包括求顶点、确定轴对称、绘制图像等。
2.分组活动:将学生分成小组,每组选择一道习题,并利用求顶点和绘图方法解答。
3.展示小组成果,让每个小组派学生来展示解题过程和图像结果。
四、实际应用问题(30分钟)1.引导学生思考如何利用二次函数图像解决实际问题。
2.提供一些实际应用问题,如物体抛射问题、面积最大问题等,让学生结合所学知识进行求解。
3.组织学生进行小组合作讨论,并将解题思路和结果展示给全班。
五、拓展与总结(15分钟)1.通过讨论、展示和总结,让学生理解二次函数的基本性质和应用方法。
2.布置课后作业,要求学生进一步巩固所学知识,并解决一些拓展问题,如不等式问题、复合函数问题等。
3.回顾本节课的主要内容和思路,澄清学生对二次函数的理解和掌握程度。
教学反思:通过本节课的教学,学生对二次函数的定义和特点有了更深入的了解。
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。
通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。
二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。
但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。
三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。
2.学会运用二次函数的性质解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。
2.如何运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。
2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。
3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。
4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的多媒体课件和教学素材。
2.准备一些实际问题,用于让学生运用二次函数解决。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。
例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。
2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。
九年级数学上册《二次函数与一元二次方程》教案、教学设计
(1)教师给出练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生的疑问。
(3)教师挑选部分学生的作业进行展示、讲解,总结解题方法。
(五)总结归纳
1.教学内容:总结二次函数与一元二次方程的知识点,梳理知识结构。
2.教学过程:
(1)教师引导学生回顾本节课所学内容,总结二次函数与一元二次方程的知识点。
(2)学生分享自己的学习心得,交流学习过程中遇到的困难和解决方法。
(3)教师总结归纳,强调重点,指出易错点,为课后复习提供指导。
五、作业布置
为了巩固学生对二次函数与一元二次方程知识点的掌握,提高学生的实际应用能力,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,加深对二次函数与一元二次方程概念的理解。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一次函数、一元一次方程等知识点有了深入的理解和掌握。在此基础上,学生对二次函数与一元二次方程的学习将更加顺利。然而,由于二次函数与一元二次方程的概念较为抽象,学生在理解上可能会遇到一定的困难。此外,学生在解决实际问题时,可能会对知识点的运用感到困惑。
2.从生活中的实际问题出发,选取一个案例,将其抽象为二次函数与一元二次方程模型,并求解。要求撰写解题过程,明确解题思路和方法。
3.小组合作,共同完成一道拓展题。题目如下:
拓展题:已知抛物线y = ax^2 + bx + c(a≠0)的图象,求该抛物线与x轴的交点坐标。
要求:各小组通过讨论、探究,给出至少两种解题方法,并在课堂上分享解题过程和心得。
4.培养学生面对困难、挑战的精神,鼓励学生勇于尝试、不断探索,树立克服困难的信心。
2022年初中数学《二次函数与一元二次不等式2》精品教案
21.3 二次函数与一元二次方程第1课时二次函数与一元二次方程教学目标【知识与技能】掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系,会用二次函数的图象求一元二次方程的近似解以及一元二次不等式的解集.【过程与方法】经历探究二次函数与一元二次方程、一元二次不等式关系的过程,体会函数、方程、不等式之间的联系.【情感、态度与价值观】进一步培养学生的综合解题能力,掌握解决问题的方法,培养探究精神.重点难点【重点】用函数图象求一元二次方程的近似解及一元二次不等式的解集.【难点】用数形结合的思想解方程及不等式.教学过程一、创设情境,导入新知师:任意一次函数的图象与x轴有几个交点?生甲:一个.生乙:不对,当直线与x轴平行时,没有交点.生丙:还有一种情况,当直线与x轴重合时,有无数个交点.师:同学们考虑得很周到!当一次函数的图象与x轴有1个交点时,你能求出它与x轴交点的坐标吗?比方一次函数y=2x-3,它的图象与x轴交点的坐标是多少?学生计算后答复.二、共同探究,获取新知师:你猜测一下,二次函数的图象与x轴可能会有几个交点?我们可以借助什么来研究?学生思考.生:借助二次函数的图象.师:对.教师多媒体课件出示:二次函数y=x2+3x+2的图象如以下图,根据图象答复以下问题:1.它与x轴有公共点吗?如果有,公共点的横坐标是多少?2.当x取公共点的横坐标时,函数的值是多少?3.由此你能求出方程x2+3x+2=0的根吗?4.方程x2+3x+2=0的解与交点的横坐标有什么关系?师:请同学们先画出函数图象,然后思考下面几个问题.学生作图,教师巡视指导.教师出示图象:学生观察图象后答复.生:这个函数的图象与x轴有公共点,公共点的横坐标分别是-2和-1.这时函数值都为0,所以方程x2+3x+2=0的根为-2和-1.方程x2+3x+2=0的解与交点的横坐标是一样的.师:同学们答复得很好!你能归纳出函数y=ax2+bx+c的图象与x轴交点个数的其他情况吗?交点的个数与方程ax2+bx+c=0的根的个数有何关系呢?学生思考,交流讨论.生:函数y=ax2+bx+c的图象与x轴交点的个数与方程ax2+bx+c=0根的个数一样,所以也有三种情况:令Δ=b2-4ac,当Δ>0时,函数图象与x轴有两个交点,方程有两个根;当Δ=0时,函数图象与x 轴有一个交点,方程有两个相等的根;当Δ<0时,函数图象与x轴没有交点,方程无解.师:同学们答复得很好!所以我们有了求一元二次方程根的另一种方法,画出二次函数的图象,然后怎么确定方程的解呢?生:二次函数的图象与x轴交点的横坐标就是一元二次方程的解.三、例题讲解【例】用图象法求一元二次方程x2+2x-1=0的近似解(精确到0.1).解:画出函数y=x2+2x-1的图象,如图.由图象可知,方程有两个实数根,一个在-3和-2之间,另一个在0和1之间.观察上表可以发现,当x分别取和时,对应的y由正变负,可见在与之间肯定有一个x使y=0,即有方程x2+2x-1=0的一个根.题目只要求精确到0.1,这时取或作为根都符合要求.但当时比y=0.25(x=-2.5)更接近0,应选x=-2.4.同理,可求出方程x2+2x-1=0在0和1之间精确到的另一个根.方程x2+2x-1=0的近似解还可以这样求:分别画出函数y=x2和y=-2x+1的图象,如图,它们的交点A、B的横坐标就是方程x2+2x-1=0的根.如有条件,可以在计算机上用《几何画板》处理.四、练习新知师:我这有几个习题,现在让我们一起来解决它们.1.抛物线y=ax2+bx+c的图象与x轴的交点坐标分别为(1,0)、(-5,0),那么关于x的一元二次方程ax2+bx+c=0的两个根分别是.【答案】x1=1,x2=-52.判断以下二次函数的图象与x轴有无交点.假设有,求出交点的坐标;假设没有,请说明理由.(1)y=2x2-5x+3;(2)y=x2+3x+5;(3)y=3x2-7x+8; (4)y=x2+x-12.【答案】(1)有交点,交点坐标为(1,0)、(,0);(2)无交点,Δ=b2-4ac=32-4×1×5=-11<0;(3)无交点,Δ=b2-4ac=(-7)2-4×3×8=-47<0;(4)有交点,交点坐标为(4,0)、(-6,0).3.二次函数y=kx2-3x-2的图象与x轴有两个交点,求k的取值范围.【答案】根据题意,得解得k>-且k≠0.五、继续探究,层层推进师:我们前面学习了一次函数与一元一次方程、一元一次不等式之间的关系,上面讨论了二次函数与一元二次方程的关系,下面我们讨论二次函数与一元二次不等式的关系.请同学们看课本第30页的图21~20.学生看图.师:我们可以清楚地看到二次函数y=x2+3x+2的图象被x轴分成三局部:一局部与x轴相交,一局部在x轴上方,一局部在x轴下方.在x轴上方或下方的意义是什么?生1:在x轴上方时,y>0,也就是x2+3x+2>0,所以图象在x轴上方的x的取值范围就是不等式x2+3x+2>0的解集.生2:在x轴下方时,y<0,也就是x2+3x+2<0,所以图象在x轴下方的x的取值范围就是不等式x2+3x+2<0的解集.师:同学们很聪明!你现在就根据这个来完成课本第33页练习的1、2.学生做题,教师巡视指导,完成后集体订正.六、课堂小结师:本节课你学习了什么内容?有什么收获? 学生答复.师:你还有什么不明白的地方吗? 学生提问,教师解答. 教学反思学习这节内容要充分运用两种思想方法:1.函数与方程的思想,用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法.2.数形结合思想,在中学数学里,我们不可能把“数〞和“形〞完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数〞和“形〞在一定条件下可以相互转化、相互渗透.在学生理解二次函数与一元二次方程的联系的根底上,能够运用二次函数及其图象、性南去解决现实生活中的一些问题,进一步培养学生综合解题的能力,在整个章节的学习过程中始终渗透数形结合的思想,更表达了学好数学的重要意义.3.乘、除混合运算1.能熟练地运用有理数的运算法那么进行有理数的加、减、乘、除混合运算;(重点) 2.能运用有理数的运算律简化运算;(难点)3.能利用有理数的加、减、乘、除混合运算解决简单的实际问题.(难点)一、情境导入1.在小学我们已经学习过加、减、乘、除四那么运算,其运算顺序是先算________,再算________,如果有括号,先算__________里面的.2.观察式子3×(2+1)÷⎝ ⎛⎭⎪⎫5-12,里面有哪几种运算,应该按什么运算顺序来计算? 二、合作探究探究点一:有理数乘、除混合运算计算:(1)-2.5÷58×⎝ ⎛⎭⎪⎫-14;(2)⎝ ⎛⎭⎪⎫-47÷⎝ ⎛⎭⎪⎫-314×⎝ ⎛⎭⎪⎫-112.解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法那么进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×⎝ ⎛⎭⎪⎫-14=52×85×14=1;(2)原式=⎝ ⎛⎭⎪⎫-47×⎝ ⎛⎭⎪⎫-143×⎝ ⎛⎭⎪⎫-32=-⎝ ⎛47×⎭⎪⎫143×32=-4. 方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算. 探究点二:有理数的加、减、乘、除混合运算及乘法的运算律 【类型一】 有理数加、减、乘、除混合运算计算:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝ ⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13; (2)⎝ ⎛⎭⎪⎫-316-113+114×(-12). 解析:(1)先计算括号内的,再按“先乘除,后加减〞的顺序进行;(2)可考虑利用乘法的分配律进行简便计算.解:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝ ⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13=53×(-6)-12÷43=(-10)-12×34=-10-38=-1038;(2)⎝ ⎛⎭⎪⎫-316-113+114×(-12)=⎝⎛-3-16⎭⎪⎫-1-13+1+14×(-12)=⎝⎛⎭⎪⎫-3-14×(-12)=-3×(-12)-14×12=3×12-14×12=36-3=33.方法总结:在进行有理数的混合运算时,应先观察算式的特点,假设能应用运算律进行简化运算,就先简化运算.【类型二】 有理数乘法的运算律计算:(1)⎝ ⎛⎭⎪⎫-56+38×(-24);(2)(-7)×⎝ ⎛⎭⎪⎫-43×514.解析:第(1)题括号外面的因数-24是括号内每个分数的倍数,相乘可以约去分母,使运算简便.利用乘法分配律进行简便运算.第(2)题-7可以与514的分母约分,因此可利用乘法的交换律把它们先结合运算.解:(1)⎝ ⎛⎭⎪⎫-56+38×(-24)=⎝ ⎛⎭⎪⎫-56×(-24)+38×(-24)=20+(-9)=11; (2)(-7)×⎝ ⎛⎭⎪⎫-43×514=(-7)×514×⎝ ⎛⎭⎪⎫-43=⎝ ⎛⎭⎪⎫-52×⎝ ⎛⎭⎪⎫-43=103.方法总结:当一道题按照常规运算顺序去运算较复杂,而利用运算律改变运算顺序却能使运算变得简单些,这时可用运算律进行简化运算.【类型三】 有理数混合运算的应用海拔高度每升高1000m ,气温下降6℃.某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m.解析:此类问题考查有理数的混合运算,解题时要正确理解题意,列出式子求解,由题意可得[8-(-1)]×(1000÷6)=1500(m),故填1500.方法总结:此题的考点是有理数的混合运算,熟练运用运算法那么是解题的关键. 三、板书设计1.有理数加减乘除混合运算的顺序:先算乘除,再算加减,有括号的先算括号里面的,同级运算从左到右依次进行. 2.利用运算律简化运算 3.有理数混合运算的应用这节课主要讲授了有理数的加减乘除混合运算.运算顺序“先乘除后加减〞学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点.在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.。
二次函数全章教案
第二十二章二次函数教案(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
(二)本章课时安排本章教学时间约需15课时,具体安排如下:22.1节二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。
②学会观察、归纳、概括函数图象的特点。
③经历二次函数图象平移的过程。
④了解y=ax2,y=a(x+m)2,y=a(x+m)2+n三类二次函数图象之间的关系。
⑤归纳数学平移变换的特征并加以总结。
⑥经历二次函数解析式恒等变形的过程。
⑦会根据二次函数的解析式,确定二次函数的开口方向,对称轴,顶点坐标。
二次函数全章教案(共13节)
教具准备坐标小黑板一块课型新授课教学过程初备统复备情境导入我们已经知道,一次函数12+=xy,反比例函数xy3=xy3=的图象分别是、,那么二次函数2xy=的图象是什么呢?(1)描点法画函数2xy=的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数2xy=的图象,你能得出什么结论?实践与探索1 例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22xy=(2)22xy-=共同点:都以y轴为对称轴,顶点都在坐标原点.不同点:22xy=的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22xy-=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.注意点:在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.实践与探索2例3.已知正方形周长为Ccm,面积为S cm2.(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1 cm2时,正方形的周长;(3)根据图象,求出C取何值时,S≥4 cm2.分析此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.解(1)由题意,得)0(1612>=CCS.列表:描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm时,S≥4 cm2.注意点:(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.(3)在自变量取值范围内,图象为抛物线的一部分.2 4 6 8 ……小结与作业课堂小结:通过本节课的学习你有哪些收获?课堂作业:课本P4 习题 1~4家庭作业:《数学同步导学九下》P4 随堂演练实践与探索1 例1.在同一直角坐标系中,画出函数22xy=与222+=xy的图象.解列表.描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22xy=与222-=xy的图象之间的关系吗?x …-3 -2 -1 0 1 2 3 …22xy=…18 8 2 0 2 8 18 …222+=xy…20 10 4 2 4 10 20 …实践与探索2例2.在同一直角坐标系中,画出函数12+-=xy与12--=xy的图象,并说明,通过怎样的平移,可以由抛物线12+-=xy得到抛物线12--=xy.回顾与反思抛物线12+-=xy和抛物线12--=xy分别是由抛物线2xy-=向上、向下平移一个单位得到的.探索如果要得到抛物线42+-=xy,应将抛物线12--=xy作怎样的平移?实践与探索1 例1.在同一直角坐标系中,画出下列函数的图象.221xy=,2)2(21+=xy,2)2(21-=xy,并指出它们的开口方向、对称轴和顶点坐标.解列表.描点、连线,画出这三个函数的图象,如图26.2.5所示.x …-3-2-1 0 1 2 3 …221xy=…2922121229…2)2(21+=xy…212122258225…2)2(21-=xy…22582922121…它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0).探索抛物线2)2(21+=xy和抛物线2)2(21-=xy分别是由抛物线221xy=向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=xy,应将抛物线221xy=作怎样的平移?教学难点识图能力的培养教具准备投影仪,胶片.课型新授课教学过程初备统复备情境导入由前面的知识,我们知道,函数22xy=的图象,向上平移2个单位,可以得到函数222+=xy的图象;函数22xy=的图象,向右平移3个单位,可以得到函数2)3(2-=xy的图象,那么函数22xy=的图象,如何平移,才能得到函数2)3(22+-=xy的图象呢?实践与探索1 例1.在同一直角坐标系中,画出下列函数的图象.221xy=,2)1(21-=xy,2)1(212--=xy,并指出它们的开口方向、对称轴和顶点坐标.解(1)列表:略(2)描点:(3)连线,画出这三个函数的图象,如图26.2.6所示.观察:它们的开口方向都向,对称轴分别为、、,顶点坐标分别为、、.请同学们完成填空,并观察三个图象之间的关系.实践与探索1 例1.通过配方,确定抛物线6422++-=xxy的开口方向、对称轴和顶点坐标,再描点画图.解6422++-=xxy[]8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=xxxxxx因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).由对称性列表:注意点:(1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到;(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索:对于二次函数cbxaxy++=2,你能用配方法求出它的对称轴和顶点坐标吗?实践与探索2例2.已知抛物线9)2(2++-=xaxy的顶点在坐标轴上,求a的值.分析顶点在坐标轴上有两种可能:(1)顶点在x轴上,则顶点的纵坐标等于0;(2)顶点在y 轴上,则顶点的横坐标等于0.实践与探索2例2.某产品每件成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间关系如下表:x(元)130 150y(件)70 50若日销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量.小结与作业回顾与反思最大值或最小值的求法,第一步确定a的符号,a>0有最小值,a<0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.课堂作业:如图26.2.8,在Rt⊿ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)用含y的代数式表示AE;(2)求y与x之间的函数关系式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值.家庭作业:《数学同步导学九下》P18 随堂演练教学后记实践与探索1 例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是)0(2<=aaxy.此时只需抛物线上的一个点就能求出抛物线的函数关系式由题意,得点B的坐标为(0.8,-2.4),又因为点B在抛物线上,将它的坐标代入)0(2<=aaxy,得28.04.2⨯=-a所以415-=a.因此,函数关系式是2415xy-=.实践与探索1 例1.如图26.3.1,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=xxy,问此运动员把铅球推出多远?解如图,铅球落在x轴上,则y=0,因此,035321212=++-xx.解方程,得2,1021-==xx(不合题意,舍去).所以,此运动员把铅球推出了10米.探索此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面35m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式.你能解决吗?试一试.实践与探索2例2.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m)分析这是一个运用抛物线的有关知识解决实际问题的应用题,首先必须将水流抛物线放在直角坐标系中,如图26.3.3,我们可以求出抛物线的函数关系式,再利用抛物线的性质即可解决问题.小结与作业回顾与反思确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:(1)一般式:)0(2≠++=acbxaxy,给出三点坐标可利用此式来求.(2)顶点式:)0()(2≠+-=akhxay,给出两点,且其中一点为顶点时可利用此式来求.课堂作业:在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2.5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米.设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中?家庭作业:《数学同步导学九下》P24 随堂演练情境导入给出三个二次函数:(1)232+-=xxy;(2)12+-=xxy;(3)122+-=xxy.它们的图象分别为观察图象与x轴的交点个数,分别是个、个、个.你知道图象与x轴的交点个数与什么有关吗?另外,能否利用二次函数cbxaxy++=2的图象寻找方程)0(02≠=++acbxax,不等式)0(02≠>++acbxax或)0(02≠<++acbxax的解?实践与探索1 例1.画出函数322--=xxy的图象,根据图象回答下列问题.(1)图象与x轴、y轴的交点坐标分别是什么?(2)当x取何值时,y=0?这里x的取值与方程322=--xx有什么关系?(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?解图象如图26.3.4,(1)图象与x轴的交点坐标为(-1,0)、(3,0),与y轴的交点坐标为(0,-3).(2)当x= -1或x=3时,y=0,x的取值与方程0322=--xx的解相同.(3)当x<-1或x>3时,y>0;当 -1<x<3时,y<0.例2.(1)已知抛物线324)1(22-+++=kkxxky,当k= 时,抛物线与x轴相交于两点.(2)已知二次函数232)1(2-++-=aaxxay的图象的最低点在x轴上,则a= .(3)已知抛物线23)1(2----=kxkxy与x轴交于两点A(α,0),B(β,0),且1722=+βα,则k的值是.分析(1)抛物线324)1(22-+++=kkxxky与x轴相交于两点,相当于方程324)1(22=-+++kkxxk有两个不相等的实数根,即根的判别式⊿>0.(2)二次函数232)1(2-++-=aaxxay的图象的最低点在x轴上,也就是说,方程232)1(2=-++-aaxxa的两个实数根相等,即⊿=0.(3)已知抛物线23)1(2----=kxkxy与x轴交于两点A(α,0),B(β,0),即α、β是方程023)1(2=----kxkx的两个根,又由于1722=+βα,以及αββαβα2)(222-+=+,利用根与系数的关系即可得到结果.实践与探索1例1.利用函数的图象,求下列方程的解:(1)0322=-+xx;(2)02522=+-xx.分析上面甲乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一条抛物线2xy=的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解.解(1)在同一直角坐标系中画出函数2xy=和32+-=xy的图象,如图26.3.5,得到它们的交点(-3,9)、(1,1),则方程0322=-+xx的解为–3,1.(2)解题略实践与探索2例2.利用函数的图象,求下列方程组的解:(1)⎪⎩⎪⎨⎧=+-=22321xyxy;(2)⎩⎨⎧+=+=xxyxy2632.分析(1)可以通过直接画出函数2321+-=xy和2xy=的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.当1≤x≤2。
初三数学经典教案——二次函数与一元二次方程(全套)
地面的高度h(m)与运动时间t(s)的关系如图所示,那么
h/
(1)h与t 的关系式是什么?
m
(2)小球经过多少秒后落地?
t/s
新知探究
解:(1)由图象知函数过点(0,0)与点(8,0) 代入关系式h=-5t2+v0t+h0得h0=0, 由已知可知v0=40, 得h=-5t2+40t.
(2)由图象可知小球经过8秒后落地.可以令h=0, 得t=0s(舍去)或t=8s.
(2)x1=x2=1. (3)没有实数根.
新知探究
我们已经知道,竖直上抛物体的高度 h (m) 与运动时间t (s)的关系可以近似
地用公式h=-5t2+v0t +h0 表示,其中h0 (m)是抛出点距地面的高度,v0 (m/s) 是抛出时的速度.一个小球从地面被以40 m/s的速度竖直向上抛起,小球距离
课堂小测
3.已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0), (-3m,0)(m≠0). (1)证明:4c=3b2. (2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.
新知探究
(3)由
y=2x+n, y=-x2-4x-2,
消去y得到x2+6x+n+2=0,
由题意Δ≥0,
∴36-4n-8≥0,∴n≤7,
∵n≥m,m=1,
∴1≤n≤7,
令y′=n2-4n=(n-2)2-4,
∴当n=2时,y′的值最小,最小值为-4,
当n=7时,y′的值最大,最大值为21,
∴n2-4n的最大值为21,最小值为-4.
(-2,0)
课堂小结
二次函数y=ax2+bx+c与方程ax2+bx+c=0之间的关系: 1.二次函数y=ax2+bx+c的图象与x轴的交点的横坐标就是 一元二次方程ax2+bx+c=0的根. 2.b2-4ac>0⇔抛物线与x轴有2个交点⇔方程有两个不相等的实数根. 3.b2-4ac=0⇔抛物线与x轴有1个交点⇔方程有两个相等的实数根. 4.b2-4ac<0⇔抛物线与x轴没有交点⇔方程没有实数根.
九年级数学上册《二次函数与一元二次方程的关系》教案、教学设计
-设计一些简单的一元二次方程求解题目,让学生独立完成。
2.提高练习:运用二次函数与一元二次方程的关系,解决实际问题。
-设计一些与实际生活相关的问题,让学生运用所学知识解决问题。
3.课堂反馈:针对学生的解答,给予及时评价和指导,帮助学生查漏补缺。
九年级数学上册《二次函数与一元二次方程的关系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解二次函数的一般形式,能够识别并写出二次函数的顶点式和交点式。
2.熟练掌握一元二次方程的求解方法,包括直接开平方法、配方法、公式法等,并能够根据具体问题选择合适的方法进行解答。
3.掌握二次函数与一元二次方程的关系,能够通过二次函数图像求解相应的一元二次方程,并解释其几何意义。
-作业评价要及时,对学生的作业进行认真批改,并及时给予反馈,帮助学生发现和改正错误。
4.创设丰富的教学情境,激发学生的兴趣,引导他们主动参与课堂讨论,培养合作意识和团队精神。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握二次函数的一般形式及其图像特征。
2.掌握一元二次方程的求解方法,并能够运用这些方法解决实际问题。
3.理解二次函数与一元二次方程之间的内在联系,能够通过二次函数图像分析一元二次方程的解。
1.基础巩固题:请学生完成教材课后练习题中与二次函数与一元二次方程相关的基础题目,以加强对核心知识点的掌握。
-重点在于让学生通过练习,熟练运用直接开平方法、配方法、公式法求解一元二次方程。
2.实践应用题:要求学生从生活中找一个应用二次函数的例子,建立数学模型,并求解相应的一元二次方程。
-通过此题,学生可以将数学知识应用于现实情境,提高数学素养和解决问题的能力。
二次函数与一元二次方程1--初三数学《二次函数》新课标全章教案
培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;
3、情感目标:
在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题。
教学重点难点
教学重点:
本节重点把握二次函数图象与x轴(或y=h)交点的个数与一元二次方程的根的关系.掌握此点,关键是理解二次函数y=ax2+bx+c图象与x轴交点,即y=0,即ax2+bx+c=0,从而转化为方程的根,再应用根的判别式,求根公式判断,求解即可,二次函数图象与x轴的交点是二次函数的一个重要内容,在其考查中也有重要的地位.
教师设置导学提纲,学生对照探索新知。
学生分组讨论,交流答案。
(二)引导归纳(3分)
(三)合作探究(11分)
)
分析:找到点的坐标,利用何种求表达式的方法。
利用图象或者解方程。
2.试着解上面的方程。
3.思考:
(1)根据图象判断和解方程,得到的结论是否相同?
(2)你能理解方程的根与函数之间的关系吗?
(二)引导归纳:
(1)求m的取值范围;
(2)判断点P(1,1)是否在抛物线上;
(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.
四、师生共同小结
针对本节课所学内容,请学生回答以下问题:
1.如何区别方程的解,
2如何判断抛物线与X轴的交点情况
五、课堂小测
学生做练习,同桌之间订正
学生独立完成小测。
灵活运用
巩固新知(8分)
师生共同小结(2分)
自我检测
提升能力(5分)
布置作业(1分)
有一个交点
有两个相等的实数根
初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计
在本章节的教学中,我们需要面对的是初三学生,他们在前两年的数学学习中,已经积累了一定的数学基础,掌握了函数、一元一次方程等基本知识。然而,二次函数与一元二次方程作为数学知识的一个难点,对学生而言,理解和运用上可能存在一定困难。
学生在学习过程中可能出现以下情况:对二次函数图像特征的理解不够深入,对一元二次方程求解方法的掌握不够熟练,以及在解决实际问题时不能灵活运用所学知识。因此,在教学过程中,我们要关注以下几点:
(3)鼓励学生进行合作学习,培养学生的团队协作能力和交流表达能力。
3.教学步骤:
(1)导入新课:通过生活中的实际问题,引出二次函数与一元二次方程的概念。
(2)探究新知:引导学生观察二次函数的图像,总结图像特征;教授一元二次方程的求解方法,并分析各种求解方法的适用条件。
(3)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(2)一元二次方程的求解方法有哪些?它们之间的优缺点是什么?
2.小组汇报
各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
(1)求解给定二次函数的顶点、开口方向和对称轴。
(2)利用一元二次方程求解实际问题的最优解。
2.教师巡回指导,解答学生在练习过程中遇到的问题。
3.鼓励学生分组讨论和合作学习,培养学生的团队协作能力和交流表达能力。
4.通过一元二次方程的求解过程,让学生体会数学的转化思想,培养学生解决问题的策略和方法。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生积极主动学习的态度。
2.引导学生体会数学在实际生活中的应用价值,增强学生的数学意识。
1.充分了解学生的知识储备,针对学生的薄弱环节进行有针对性的教学。
九年级数学教案:二次函数与一元二次方程(全2课时)
2.函数y=x2+2x与一元二次方程x2+2x=0有怎样的关系?(1).从关系式看二次函数y=x2+2x成为一元二次方程x2+2x=0的条件是什么?(2).反应在图像上:观察二次函数y=x2+2x的图像,你能确定一元二次方程x2+2x=0的根吗?方法探索二次函数y=x2-2x+2与一元二次方程x2-2x+1=0有怎样的关系?二次函数y=x2-2x+2与一元二次方程x2-2x+1=0有怎样的关系?一般地,如果二次函数y=ax2+bx+c的图像与x轴有两个公共点(x1,0)、(x2,0),那么一元二次方程ax2+bx+c=0有两个不相等的实数根x=x1、x=x2,反过来也成立.(1)观察二次函数图像与x轴的公共点的个数;(2)判断函数值为0时一元二次方程根的情况;(3)你能找到它们之间的联系吗?1.不画图像,你能判断函数的图像y=x2+6x-6与x轴是否有公共点吗?请说明理由.2.已知二次函数y=x2-4x+k+2与x轴有公共点,求k的取值范围.3.打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,球的飞行高度y(单位:米)与飞行距离x(单位:百米)之间具有关系:y=-5x2+20x,想一想:球的飞行高度能否达到40m?四.课堂小结1.一元二次方程的两个根即二次函数图像与x轴两个交点的横坐标,因此方程的根的情况决定着有无交点及交点的个数.2.“给定函数值求自变量问题”转化为“解方程的课外作业:布置作业板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期 教学课题5.4 二次函数与一元二次方程(2)教学目标1.能够利用二次函数的图像求一元二次方程的近似根,进一步发展估算能力;2.经历用图像法求一元二次方程的近似根的过程,进一步体会数形结合思想; 3.通过利用二次函数的图像估计一元二次方程的根,进一步掌握二次函数图像与x 轴的交点坐标和一元二次方程的根的关系,提高估算能力.教学重点 1.经历探索二次函数与一元二次方程的关系过程,体会方程与函数之间的联系; 2.能够利用二次函数的图像求一元二次方程的近似根. 教学难点 利用二次函数的图像求一元二次方程的近似根.教学方法教具准备教 学 过 程个案补充一.情景创设回忆:函数322--=x x y 的图 像如图1所示,你能看出方程0322=--x x 的解吗?创设:函数122--=x x y 的图 像如图2所示,你能看出方程0122=--x x 的解吗?二.探究交流从图像上来看,二次函数122--=x x y 的图像与x 轴交点的横坐标一个在-1与0之间,另一个在2与3之间,所以方程0122=--x x 的两个根一个在-1与0之间,另一个在2与3之间.这只是大概范围,究竟接近于哪一个数呢?请大家讨论解决.如右边表格所示,当我们算到-0.5时,还需要算吗?为什图2图1么?因为从图像的走势来看,继续往左取自变量的值,所得的函数值将越来越大,所以我们可以判定这个根一定在-0.4与-0.5之间,那会是多少呢?我们在取值时能不能较快地找到接近它的近似值呢?我们可以取它们中间的值,再看它们的正负情况,它们的根一定在函数值的正负交替之间,这样我们就能较快缩小它的范围了.比如:再进一步取值:则x≈-0.4以此类推,我们还可以进一步缩小这个根的取值范围.你能用同样的方法求方程的另一个根吗?试试看!再进一步取值:以此类推,我们还可以进一步缩小这个根的取值范围.。
初三数学教案二次函数与一元二次方程
初三数学教案二次函数与一元二次方程初三数学教案:二次函数与一元二次方程一、教学目标1. 理解二次函数的基本概念和性质。
2. 掌握二次函数的图像、顶点、对称轴等相关知识。
3. 熟练运用一元二次方程解题方法,包括配方法、求根公式等。
4. 培养学生运用数学知识解决实际问题的能力。
二、教学准备1. 教学工具:投影仪、黑板、白板、教学PPT等。
2. 教学素材:相关教材、试题、例题、习题。
三、教学过程1. 引入(可以在黑板上绘制二次函数的图像)本节课我们将学习二次函数与一元二次方程的知识。
二次函数在数学中有着重要的作用,它的图像形状是一条抛物线。
我们先来看一看二次函数的图像。
(通过PPT展示二次函数的图像,引导学生观察顶点、对称轴等)在图像中,我们可以观察到二次函数的图像是关于一条垂直线对称的,这条垂直线被称为对称轴。
图像的最高点或最低点叫做顶点。
2. 二次函数的基本概念和性质(在黑板上记录二次函数的基本定义和性质,并通过PPT进行讲解和说明)二次函数的基本定义:二次函数是一种具有公式f(x) = ax^2 + bx + c 的函数,其中a、b、c为常数且a≠0。
性质1:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
性质2:对称轴的方程为x = -b/(2a),顶点坐标为(-b/(2a),f(-b/(2a)))。
性质3:二次函数的图像关于对称轴对称。
通过讲解和示例,让学生掌握二次函数的基本概念和性质。
3. 二次函数的图像及其应用(以一些具体的图像和问题为例,让学生分析和讨论)请观察下列二次函数的图像,请描述它们的开口方向、顶点等特点,并讨论它们在实际中的应用。
例:f(x) = x^2例:f(x) = -2x^2 + 4x - 1通过分析和讨论,引导学生深入理解二次函数图像的特点和应用。
4. 一元二次方程的解法(通过例题和习题,让学生熟练掌握一元二次方程的解题方法)一元二次方程是指只有一个未知数的二次方程。
【初三学习指导】初三数学教案 二次函数与一元二次方程
【初三学习指导】初三数学教案二次函数与一元二次方程【初三学习指导】初三数学教案二次函数与一元二次方程初三数学教案二次函数与一元二次方程23.4二次函数和一元二次方程教学目标:掌握二次函数y=AX2+BX+C的图像与x轴之间的交点数与一元二次方程AX2+BX+C=0的解之间的关系。
重点、难点:二次函数y=AX2+BX+C的象与一元二次方程AX2+BX+C=0的根之间关系的探讨。
教学过程:一、情境创造一次函数y=x+2的图象与x轴的交点坐标问题1任何度函数的图像与x轴有多少交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、勘探活动活动一观察在直角坐标系中取三个任意点a、B和C,测量它们的坐标,分别记录为a、B和C,以a、B和C为系数绘制二次函数y=AX2+BX+C的图像,并观察其与X轴的交点数;任意改变a、B和C的值后,观察交叉口数量的变化。
活动二观察与探索如图1所示,观察二次函数y=x2x6的图像并回答以下问题:(1)图象与x轴的交点的坐标为a(,),b(,)(2)当x=时,函数值y=0。
(3)求方程x2x6=0的解。
(4)交点方程的解与X6=x0的坐标之间的关系是什么?活动三猜想和归纳(1)你能告诉我函数y=AX2+BX+C的图像和X轴之间的交点数吗?猜测方程AX2+BX+C=0的交点数和根数之间的关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?通过这种方式,我们可以将二次函数y=AX2+BX+C的图像与一元二次方程AX2+BX+C=0的x轴、实根和根的判别式的交点连接起来。
三、例题分析例1在不绘制图像的情况下,判断以下函数与x轴的交点。
(1)y=x210x+25(2) y=3x24x+2(3)y=2x2+3x1例2已知二次函数y=MX2+x1(1)当m为何值时,图象与x轴有两个交点(2)当m是什么值时,图像是否与X轴相交?(3)当m为何值时,图象与x轴无交点?四、拓展实践1.如图2,二次函数y=ax2+bx+c的图象与x轴交于a、b。
最新人教版九年级数学上册《二次函数与一元二次方程》优质教学教案
22.2 二次函数与一元二次方程(2)教学目标:1.知识与能力:复习巩固用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c =0的解.2.方法与过程:让学生体验函数y =x 2和y =bx +c 的交点的横坐标是方程x 2=bx +c 的解的探索过程,掌握用函数y =x 2和y =bx +c 图象交点的方法求方程ax 2=bx +c 的解.3.情感、态度与价值观:提高学生综合解题能力,渗透数形结合思想.教学重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点. 教学难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点.教学方法:学生学法教学过程:一、复习巩固1.如何运用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c 的解?2.完成以下两道题:(1)画出函数y =x 2+x -1的图象,求方程x 2+x -1=0的解.(精确到0.1)(2)画出函数y =2x 2-3x -2的图象,求方程2x 2-3x -2=0的解.二、探索问题已知抛物线y 1=2x 2-8x +k +8和直线y 2=mx +1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x 取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y 2=mx +1上,所以有4m =3m +1,解得m =1所以y 1=x +1,P(3,4). 因为点P(3,4)在抛物线y 1=2x 2-8x +k +8上,所以有4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10(2)依题意,得⎩⎪⎨⎪⎧y =x +1y =2x 2-8x +10 解这个方程组,得⎩⎪⎨⎪⎧x 1=3y 1=4 ,⎩⎪⎨⎪⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).五、小结: 如何用画函数图象的方法求方程的解?六、作业:学生励志寄语:同学们,通过这节课的学习,你们学到了哪些知识?要珍惜时间好好学习,要明白时间就像日历一样,撕掉一张就不会再回来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点:利用二次函数的图象求一元二次方程的近似根
教学程序设计
教材处理设计
师生活动设计
联系实际,复习巩固(5分钟)
(从现实情境和已有知识经验出发,加深对概念的理解.)
自主探究,探索新知(8分钟)
(让学生积极参与探索,多和同学交流,并虚心采纳别人合理的意见)
由于当x=2.3时,y的值最接近0,所以另一个根的近似值为x=2.3.
还有其他的方法吗?
有,可以把-5与-4之间的线段十等分再判断交点更接近于哪一个分点.如上题中的两个根可以这样求:
自主探究三
做一做
利用二次函数的图象求一元二次方程x2+2x-10=3的近似根.
我们可以根据上面的方法来求方程的近似根.但是还与上面的题型不太一样.上面的题是利用二次函数y=x2+2x-10的图象估计方程x2+2x-10=0的根,现在我们应该利用哪一个函数图象求方程x2+2x-10=3的根呢?
教师巡回指导
教师可点拨:
小组合作,其他同学补充,学生总结。
板书设计
二次函数与一元二次方程(二)
一、1.利用二次函数的图象估计一元二次方程x2+2x-10的根(投影片
2.做一做(利用二次函数的图象求一元二次方程x2+2x-10=3的近似根)
二、课堂练习
三、课时小结
四、课后作业
-
课后反思
3、情感目标:通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力.
教学方法设计
让学生积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中发现新知识.
教学重点、难点
重点:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标,发展估算能力.Байду номын сангаас
课后作业
一元二次方程x2-4x+2=-1的根与二次函数y=x2-4x+2的图象有何关系?请你把方程的根在图象上表示出来.
思维点击:根据表中提供的信息可知,求二次方程根只是近似值,
由学生根据探究3得出解决的办法
学生自己完成练习
二次函数与一元二次方程教案、学案一体化设计
课题
二次函数与一元二次方程
年级
初四上
课时
第二课时
课型
新授
编写
王霞
教学目标设计
1、知识目标:A.能够利用二次函数的图象求一元二次方程的近似根.
B.进一步发展估算能力.
2、能力目标:A.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.
B.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.
归纳总结,形成一定的方法(8分钟)
(体会由特殊到一般的数学思想在探索归纳中的应用)
自主探究1:
上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.
讨论解决.
有关估算问题我们在前面已学习过了,即是用试一试的方法进行的.既然一个根在
-5与-4之间,那这个根一定是负4点几,所以个位数就确定下来了,接着确定十分
位上的数,这时可以用试一试的方法,即分别把x=-4.1,-4.2,…,-4.9代入方程
进行计算,哪一个值能使等式成立(或哪一个值能使等式近似成立),则这个值就是
方程的根(或近似根).
由于计算比较烦琐,所以大家可以用计算器进行计算.
从图象上看,x的取值应大于-4.5,所以可以只代入-4.1,-4.2,-4.3,-4.4这四个
数进行计算,利用计算器计算。
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56
从上表可知,当x取-4.1,-4.2,-4.3,-4.4时,y的值都不等于0,所以x的取值还
(培养学生良好的反思习惯,
加深对知识的理解)
检测反馈,作业巩固(5分钟)
(及时掌握学生的情况,以查漏补缺)
因此,x=-4.3是方程的一个近似根
有了上面的分析和结果,求另一个近似根就不困难了,请大家继续.
另一个根在2与3之间,应是2点几,再用计算器进行探索.
x 2.1 2.2 2.3 2.4
y -1.39 -0.76 -0.11 0.56
分别画出函数y=x2+2x-10的图象和直线y=3,找它们交点的横坐标即可.由图可知两根分别为x=-4.7和x=2.7.
课时小结
本节课学习的内容:
1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系;
2.经历了用图象法求一元二次方程的近似根的过程,获得了用图象法求方程近似根的体验.
只取到十分位..;
学生复习为下面的探究打好基础。
探究2由学生自主探究后小组交流,对有困难的学生教师可适当点拨。
教学程序设计
教材处理设计
师生互动设计
知识拓展,体验应用(5分钟)
(仔细观察表格提供的信息,掌握求根的方法的方法.)
变式训练,培养能力(11分钟)
(巩固并解决问题)
总结回顾,梳理要点(3分钟)
利用函数y=x2+2x-13的图象求方程x2+2x-10=3的近似根.
[也可以在上题的基础上进行,利用函数y=x2+2x-10的图象与直线y=3的交点的横坐标求方程x2+2x-10=3的解.
究竟哪一种方法正确呢?我们下面就来验证一下.
函数y=x2+2x-13的图象如下图(投影片):
由图可知,图象与x轴的两个交点的横坐标中,一个在-5与-4之间,一个在2与3之间,因此两个根分别为负4点几和2点几,下面用计算器进行探索。
自主探究2:
利用二次函数的图象估计一元二次方程x2+2x-10=0的根
投影片是函数y=x2+2x-10的图象.
从图象上来看,二次函数y=x2+2x-10的图象与x轴交点的横坐标一个在-5
与-4之间,另一个在2与3之间,所以方程x2+2x-10=0的两个根一个在-5与
-4之间,另一个在2与3之间.这只是大概范围,究竟更接近于哪一个数呢?请大家
不准确,应继续估计百分位上的数,十分位上的数字应取y的值和零最接近的数
字.所以x应取负的4点3几.再按同样的方法求百分位上的数字.依次类推,即
求出比较准确的x的值.
大家的分析非常到位、确实应按这样的步骤进行,但我们的重点是求解方程的思
路,而不是求解的结果.因此本书规定用图象法求一元二次方程的近似根时,结果
x -4.5 -4.6 -4.7 -4.8 -4.9
y -1.75 -1.04 -0.31 0.44 1.21
因此x=-4.7是方程的一个近似根.
另一个根可以类似地求出。
x 2.5 2.6 2.7 2.8 2.9
y -1.75 -1.04 -0.31 0.44 1.21
因此x=2.7是方程的另一个近似根.