数学模型课堂教学大纲.doc

合集下载

《数学建模(一)》课程教学大纲

《数学建模(一)》课程教学大纲

《数学建模(一)》课程教学大纲课程名称:数学模型Mathematical Modeling课程编码:07241506 课程类型:专业必修课或选修课课程性质:数学应用课适用范围:适合于修过高等数学的任何专业学时数:36 先修课程:高等数学考核方式:考查或考试制定单位:数学与信息科学学院制定日期:2008年4月执笔者:冯永平一、教学大纲说明(一)课程的地位、作用和任务随着科学技术和计算机的迅速发展,数学向各个领域的广泛渗透已日趋明显,数学不仅在传统的物理学、电子学和工程技术领域继续发挥着重要的作用,而且在经济、人文、体育等社会科学领域也成为必不可少的解决问题的工具。

因此,设立数学建模课程是课程的主要目的是:提高学生的数学素质和应用数学知识解决实际问题的能力,大力培养应用型人才。

本课程是沟通实际问题与数学工具之间联系的必不可少的桥梁。

将数学方法应用到任何实际问题中去,主要是通过机理分析,根据客观事物的性质分析因果关系,在适当的假设条件下,利用合适的数学工具得到描述其特征的数学模型。

学习本课程的大部分内容只需要大学的微积分、线性代数、概率论等基本数学知识。

教材选用的是高教出版社出版,姜启源主编的《数学模型》等教材。

(二)教学目的及要求逐步培养学生利用数学工具解决实际问题的能力。

能够将实际问题“翻译”为数学语言,并予以求解,然后再解释实际现象,甚至应用于实际。

培养学生的综合能力,包括创造、数学、计算机应用、应变、写作、自学、领导等能力以及团队精神和献身精神等。

最终提高学生的数学素质和应用数学知识解决实际问题的能力。

掌握:应用数学解决实际问题。

理解:各种模型适用范围、条件和运用。

了解:数学建模的综合能力。

(三)课程教学方法与手段本课程的教学采用讲授、讨论、多媒体和实验等方法。

教师讲授约占75%,10%为讨论课,15%为实验课。

讲授时可用多媒体或黑板,讨论课内容由教师提出,实验课主要是数学软件的上机实践。

(四)课程教学与其它课程的联系数学模型涉及到微积分、线性代数、微分方程、概率统计和运筹学等,因此在高等数学教学时应注意包含这些内容,否则要在讲授本课程时补上。

数学模型课程教学大纲

数学模型课程教学大纲

收集精品文档============================= =========================================================================================================专业收集精品文档《数学模型》课程教学大纲Mathematics Modeling课程编号: 课程性质:专业基础理论课/ 选修 适用专业:信息安全、统计 开课学期:4 学时数:56 学分数:3.5编写年月:2006年6月 修订年月:2007年1月执笔者:陈学松一、课程的性质、目的及任务随着科学技术和计算机的迅速发展,数学向各个领域的广泛渗透已日趋明显,数学不仅在传统的物理学、电子学和工程技术领域继续发挥着重要的作用,而且在经济、人文、体育等社会科学领域也成为必不可少的解决问题工具。

“数学建模”课是培养学生在实际问题中的数学应用意识、训练学生把科技、社会等领域中的实际问题按照既定的目标归结为数学形式,以便于用数学方法求解得出更深刻的规律和属性,提高学生数学建模素质的一门数学应用类课程。

因此,设立数学建模课程的意义在于:提高学生的数学素质和应用数学知识解决实际问题的能力,大力培养应用型人才。

本课程是沟通实际问题与数学工具之间联系的必不可少的桥梁。

是一门充分应用其它各数学分支的应用类课程,其主要任务不是“学数学”,而是学着“用数学”,是为培养善于运用数学知识建立实际问题的数学模型,从而善于解决实际问题的应用型数学人材服务的。

通过本课程的学习,使学生较为系统的获得利用数学工具建立数学模型的基本知识、基本技能与常用技巧,培养学生的抽象概括问题的能力,用数学方法和思想进行综合应用与分析问题的能力,并着力导引实践—理论—实践的认识过程,培养学生辩证唯物主义收集精品文档============================================================== ==========================================的世界观。

数学建模教学大纲

数学建模教学大纲

数学建模教学大纲(32学时)一、课程内容简介数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、离散模型、线性规划模型、概率模型等模型的基本建模方法及求解方法。

二、教学目的及任务数学建模是计算机类高职生继高等数学、线性代数之后进一步提高运用数学知识解决实际问题、基本技能,培育和训练综合能力所开设的一门新学科。

通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。

学会进行科学研究的一般过程,并能进入一个实际操作的状态。

通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

三、本课程与其它课程的关系在学习本课程前需要基本掌握下列课程内容:高等数学、线性代数、概率论与数理统计。

由于本课程的学习,只要是使学生掌握数学知识,解决实际问题能力,这种能力提高有助其它专业课的学习。

四、本课程基本内容要求以建立不同的数学模型作为教学项目载体,每个项目分解为若干个学习任务(学习情境),每个学习任务按照资讯、决策、计划、实施、检查、评估、拓展步骤进行教学组织和内容设计。

教学内容按照教学做一体化的思路设计,实现实践教学与理论教学的相互渗透。

教学内容教学项目一:建立数学模型学习学时:2学习目标:(1)了解数学建模的历史和现状;开展数学建模的意义,熟悉数学模型的基本概念;数学模型的特点和分类;(2)掌握数学建模的方法及基本步骤的知识,并能用于指导全部课程的学习。

(3)使学生正确地了解数学描写和数学建模的不同在于数学理论的思维特征。

、教学内容:(1)数学建模的历史和现状(2)高职院校开设数学建模课的现实意义(3)数学模型的基本概念(4)数学模型的特点和分类(5)数学建模的方法及基本步骤。

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。

通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。

通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。

并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。

【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。

第二节数学建模的重要意义基本要求:了解数学建模的重要性。

第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。

第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。

第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。

第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。

第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。

第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。

难点:建立模型的过程。

第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。

第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。

第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。

数学建模教学大纲

数学建模教学大纲

课程名称:数学建模课程编号:授课教师:任煜东职称:讲师授课对象:全校二、三年级在校大学生授课时数:32学时授课方式:多媒体授课,上机实验(开放实验)先修课程:高等数学、线性代数、概率论与数理统计一、课程的教学目的与要求《数学建模》课程是面向全校非数学类专业开设的数学素质、建模技能和数学实验、数学软件应用及计算机编程等高度融合的一门通选课程。

通过本课程的学习,使学生了解完整的建模过程,了解应用问题的各部分是怎样结合在一起的。

掌握各种常见的数学建模问题、解决问题的数学方法或途径、建立数学模型的过程、可用于模型求解的数学理论、算法、数学软件及计算机编程等。

同时,为了配合课程的学习,做到即时学习,同步实践,一般每周向所有参加课程学习的学生设2个学时的开放实验时间,以便熟练使用各类数学软件,结合数学软件及计算机编程,通过实验来观察、理解数学和实现各类数学模型的求解,从而为提高学生对实际科学、管理、工程等实际问题的建模能力和计算机综合实验技能。

二、基本学时内容和课时分配第一章对变化进行建模2~4学时1 用差分方程对变化进行建模2 用差分方程近似描述变化3 动力系统的解法4 差分方程组5 matlab入门第二章建模过程、比例性和几何相似性2~4学时1 数学模型2 利用比例性建模3 利用几何相似性建模4 体重和身高、力量和灵活性5 matlab画图第三章模型拟合2~4学时1 用图形为数据拟合模型2 模型拟合的解析方法3 应用最小二乘准则4 如何选择一个好模型5 matlab拟合第四章实验建模2~4学时1 chesapeake海湾的收成和其他单项模型2 高阶多项式模型3 光滑化:低阶多项式模型4 三阶样条模型5 matlab差值第五章模拟方法建模2~4学时1 确定行为的模拟:曲线下的面积2 随机数的生成3 随机行为的模拟4 存储模型:汽油与消费需求5 排队模型6 matlab实现模拟第六章离散概率模型2~4学时1 离散系统的概率模型2 部件和系统可靠性建模3 线性回归4 matlab多元回归第七章离散模型优化2~4学时1 优化建模概述2 线性规划一:几何解法3 线性规划二:代数解法4 线性规划三:单纯型法5 线性规划四:敏感性分析6 数值搜索解法7 lingo软件介绍第八章图论建模2~4学时1 图的描述2 图模型3 利用图模型解问题4 与数学规划的联系第九章量纲分析和相似性2~4学时1 表示为乘积形式的量纲2 量纲分析的步骤3 解释量纲分析的几个例子4 相似性第十章函数图表构成模型2~4学时1 军备竞赛2 对分阶段军备竞赛建立模型3 税收对能源危机的影响第十一章用微分方程建模2~4学时1 人口增长2 对药剂量开处方3 再论刹车距离4 对自治微分方程的图形解5 数值近似方法6 分离变量法7 线性方程第十二章用微分方程组建模2~4学时1 一阶自治微分方程组的图形解2 竞争捕猎模型3 捕食者——食饵模型4 两个军事方面的例子5 微分方程组的欧拉方法第十三章连续模型优化2~4学时1 库存问题:送货费用和储存费用最小化2 制造问题:竞争性产品生产中的利润最大化3 约束连续优化4 可再生资源的管理:渔业三、基本要求第一章对变化进行建模1 掌握用简单的有限差分方程对变化进行建模的而思想2 了解简单差分方程(组)的解法及差分方程解的长期趋势3 掌握matlab的基本应用第二章建模过程、比例性和几何相似性1 了解各种不同性质的数学模型2 理解、掌握数学建模的基本过程3 了解比例性和几何相似性概念,并应用比例性和几何相似性建模4 学会用matlab做二维和三维图形第三章模型拟合1 了解曲线拟合的三个准则,了解不同准则之间的联系2 应用最小二乘准则拟合模型,会把切比雪夫准则转化成规划问题5 会用matlab做最小二乘拟合第四章实验建模1 会用幂次阶梯表建立简单的单项模型2 了解高阶多项式的优缺点,了解拉格朗日多项式3 会用matlab做低阶多项式拟合和三阶样条插值第五章模拟方法建模1 了解蒙特卡洛方法,了解随机数的生成方法2 学会用模拟方法建模3 matlab实现模拟第六章离散概率模型1 学会用马尔科夫过程建立简单随机模型2 了解线性回归,学会建立线性回归模型3会用matlab做多元线性回归第七章离散模型优化1 了解优化模型2 建立简单的规划模型,了解规划模型的解法,理解敏感性分析3 了解简单的数值搜索解法4 lingo软件求解规划问题和用matlab解决简单的数值搜索解法第八章图论建模1 了解图的概念2学会利用图论建立模型和解决问题3 了解图论与数学规划之间联系第九章量纲分析和相似性了解量纲分析的概念和步骤第十章函数图表构成模型学会建立、分析图表模型第十一章用微分方程建模了解通过微元法建立常微分方程的基本方法和建模过程,掌握常微分方程(组)的数值求解方法,及Matlab求解方法。

数学模型教学大纲

数学模型教学大纲

数学模型教学大纲top课程编号:I1006144英文译名:Mathemaitical Modeling课程性质:必修适用专业:理工科2-4年级开课系及教研组:数学系应用数学教研室学分数:2-3学分总学时数:32-48学时要求先修课程:高等数学、线性代数教材:《数学模型》,谭永基、俞文鱼此编著,复旦大学出版社,1997 参考书:《数学模型》(第三版),姜启源、谢金星、叶俊编,清华大学出版社,2003一、本课程的地位、作用和任务top数学模型是一门数学技术课,旨在培养学生的数学建模能力,培养和提高学生的创新意识和创新能力。

课程的目标定位于“如何用数学”的人才培养理念。

通过本课程的学习,要使学生基本具备运用适当的数学工具去分析和解决实际问题,以期培养“学数学用数学”的应用数学工作者本课程通过各种类型的实例介绍,分析因果关系,在适当的简化假设下运用合适的数学工具得到描述其特征的数学模型,对原问题作出定量分析,以便更深刻地认识所研究的对象。

二、教学的基本内容与要求:top(一)、初等模型top通过实例说明如何作出合理,简化的假设,用数学语言切实地表述实际问题,并对模型的结果进行分析。

流水线设计、驾驶问题、房屋隔热模型、席位分配、军备竞赛、汽车刹车距离、动物的身长和体重、实验数据分解问题。

(二)、代数模型top对于一个现实对象,为了一个特定目的,根据实例内在规律,运用线性代数,得到的一个数学结构投入产出综合平衡模型、量纲分析与无量纲化(三)、优化模型top确定所关心的优化指标的数量描述,构造包括这个指标和采取的策略以及各种限制条件的模型。

通过模型求解给出达到最优指标的所谓最优策略。

发射卫星为什么用三级运载火箭、投资效益、加工次序及其它、森林救火、存储模型》、《投资决策问题》、《最优价格》。

(三)、离散模型top将半定性、半定量的问题转化为定量计算,把复杂的决策系统层次化,为分析决策提供定量的依据。

以及比较简单的图的方法和逻辑方法建立模型。

《数学建模》教学大纲

《数学建模》教学大纲

《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。

它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。

通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。

学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。

要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。

不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。

2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。

课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。

除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。

上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。

数学模型课程教学大纲

数学模型课程教学大纲

《数学模型》课程教学大纲课程编码:ZB0240121课程类别:专业核心必修适用专业及层次:信息与计算科学(本科)学分:4理论学时:48实践学时:32先修课程:数学分析,高等代数,数学实验,概率论等。

一、课程的性质、目的和任务本课程是信息与计算科学专业(本科)的一门专业核心必修课.也是学生参加数学建模竞赛的基础课程.数学模型是一门重要的数学技术课,目标在于培养学生利用数学知识及相关专业知识建立数学模型分析、解决实际问题的能力,并从中培养和提高学生的创新意识、创新能力及综合应用能力.设置该课程的目的是要向学生介绍数学模型的数学理论和方法,使学生了解并初步掌握应用所学的数学知识建立数学模型的基本方法和基本过程,从而培养学生应用数学的思维、知识、方法解决实际问题的意识和能力.二、课程教学的基本要求通过本课程的学习(课堂讲授、上机实习和作业),应达到目的和要求如下:1、培养学生运用数学工具解决现实生活中实际问题的能力。

2、用数学方法解决问题的能力以及用自己的研究结果解释、指导实际问题的能力,从无到有的创新能力以及写作能力。

3、通过本课程的学习,使学生了解数学建模是利用数学知识构造刻画客观事物原型的数学模型,利用计算机解决实际问题的一种科学方法。

掌握数学建模的基本步骤,即从实际问题出发,遵循“实践一一认识一一实践”的辩证唯物主义认识规律,紧紧围绕建模的目的,运用观察力、想象力和逻辑思维,对实际问题进行抽象、简化、反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。

会利用数学知识和计算机解决问题,并能够撰写符合要求的数学建模论文。

三、课程教学内容第一章线性规划【授课学时】2【教学内容】第一节线性规划问题第二节投资的收益和风险【教学要求】通过本章学习,掌握求解线性规划问题的方法和一般步骤、投资的收益和风险.【教学重难点】建立数学规划的步骤,常见处理约束条件的方法技巧。

第二章整数规划【授课学时】2【教学内容】第一节概论第二节0-1型整数规划第三节蒙特卡洛法【教学要求】通过本章学习,掌握整形规划和线性规划的区别和联系、整形规划问题的类型和常用的求解方法.【教学重难点】常见处理约束条件的方法技巧,整形规划问题的计算机求解。

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模》课程教学大纲课程编号:适用专业:数学专业学时数:64 学分数:4 开课学期:第4学期先修课程:《数学分析》,《高等代数》,《概率与数理统计》执笔者:徐全智编写日期:2013年1月审核人(教学副院长):一、课程性质和目标授课对象:数学专业二年级课程类别:学科基础课教学目标:在现有数学基础上拓展加深学生的数学理论、提高数学素养. 为培养学生初步具备与其他学科领域沟通,并将数学理论成功地运用于各个学科领域的素质和能力奠定基础. 初步掌握运用数学理论分析及研究方法,初具进行数学建模、科学计算、数据处理、使用数学软件、查阅科技文献、撰写科技论文等科研能力. 培养学生的创新思维、创新意识与创新能力.二、课程内容安排和要求(一)教学内容、要求及教学方法教学方法:课堂讲授与上机实践结合, 采用开放式的问题驱动式授课形式. 加强学生的课上课下实践环节.课堂讲授56学时, 上机实践10学时第一章建模概念及建模方法论(20学时)理解数学科学的重要性; 理解数学模型定义(E.A.Bendar); 理解数学模型的可转移性与普适性;掌握从现实对象到数学模型的抽象过程;了解数学建模过程的不唯一性,建模方法的多样性;掌握数学建模应遵循的一般原则.了解数学建模的各主要阶段性工作: 问题前期分析、条件假设、数学模型建立、模型参数估计、模型求解、模型解的分析和检验等.了解几种数学创造性思维方法:发散性思维、类比思维、猜测思维、归纳思维等;掌握启发思维的提问题法和关键词联想法; 掌握小组群体思维方法,整体把握问题的问题分解法;掌握分析问题的基本步骤:明确问题、条件及数据分析、建立问题的整体框架;了解数据对模型建立的作用; 了解常见收集数据方法,掌握数据的初步分析与整理方法;了解建立数学模型的几类方法: 机理分析法、测试分析法、模拟仿真法;掌握建立微分方程的微元法、平衡与增长式、机理分析法等.掌握建立数学模型的技巧:模型的整体设计、利用假设简化或明确问题、用数学语言和数学表达式表述数学模型;掌握求解数学模型的基本技巧和原则;了解模型以及模型解的分析和检验思想及方法.第二章数值计算方法(6学时)理解插值基本概念,掌握线性插值,理解拉格朗日插值,理解三次样条插值,了解插值应用案例.理解曲线拟合的最小二乘法原理,掌握求解曲线拟合的最小二乘解法,了解拟合应用实例.理解数值求积思想,掌握梯形公式,理解牛顿-柯特斯求积公式,了解拉格朗日型数值积分的误差,掌握高斯求积公式,了解高斯点及系数的计算.第三章最优化模型(6学时)理解线性规划概念,了解求解线性规划模型的Matlab函数,了解线性规划问题建模实例;非线非线性规划概念,了解求解非线性规划模型的Matlab函数,理解蒙特卡罗法在求解非线性规划问题中的应用过程,了解非线性规划问题建模实例;了解最优化问题综合建模案例,掌握最优化模型的建模步骤.第四章随机数据建模(10学时)了解离散数据的归类: 随机数据与非随机数据,了解随机数据的归类:动态数据与静态数据;了解针对不同数据的建模方法的差异.掌握经验模型建立的思想和关键步骤; 掌握基于静态数据的回归分析建模思想以及多元线性回归模型的关键步骤; 了解一元多项式回归模型线性化处理方法.掌握基于动态数据的时间序列分析建模思想; 了解三类线性时间序列模型AR(p)、MA(q)和ARMA(p, q);了解非平稳时间序列分解预处理方法.了解统计模型的检验与评价的必要性;掌握多元线性回归模型检验:回归方程的显著性检验、回归系数的显著性检验、“最优”回归方程的选择.掌握探索性数据分析的图表描述方法及常见统计指标,并能通过软件实现;了解聚类分析和方差分析的基本原理,并能通过软件实现.第五章微分与差分方程(8学时)了解量纲齐次原则和Buckinggham Pi定理,掌握量纲分析法对模型进行检验。

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模》课程教学大纲
课程编号:122117 学分:2 总学时:34
大纲执笔人:项家梁大纲审核人:陈雄达
一、课程性质与目的
本课程是面对非数学系学生的选修课程,是理科学生在学习高等数学、线性代数后深入学习数学,利用数学工具解决问题的一门重要基础性课程。

二、课程基本要求
通过本课程的学习,要求学生能够掌握利用所学的数学工具、计算机工具来解决实际问题,学会对数据的科学处理以及用数据分析来揭示数据的内在规律,建立相应的数学模型并应用于实际问题。

三、课程基本内容
内容主要包括:初等数学模型、最优化模型、线性规划模型、概率模型、离散模型、微分方程模型。

四、实验或上机内容
Lingo Lindo与MatLab实验
五、能力培养与人格养成目标
该课程重点培养学生分析问题和解决问题的能力。

数学建模课程是一门应用型课程,涉及的知识面广,因此需要学生在解决问题的过程中,不断开拓自己的知识,真正做到学以致用,把自己成为一个复合型人才。

六、前修课程要求
高等数学,线性代数。

七、评价与考核
通过对学生的作业、论文进行考核。

目标,通过对本课程的学习,能解决一些中等程度的数学建模问题。

平时成绩由平时作业,上课考勤和讨论情况组成
总评成绩=期末考试成绩×70%+平时成绩×30%
八、学时分配
九、教材与主要参考书
《数学建模基础》,薛毅编,北京工业大学大学出版社
《数学建模》,姜启源编高等教育出版社
《数学建模讲义》,梁进、陈雄达、张华隆、项家梁编著,上海科学技术出版社,2014年。

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模》课程教学大纲第一部分大纲说明一、课程的作用与任务《数学建模》课程是中央广播电视大学数学与应用数学专业的一门限选课,它是应用数学专业的一门基础课程。

通过教学,使学生了解数学建模的基本知识,且具有用数学方法解决实际问题的初步能力,为后继的数学课程学习和进一步培养数学应用能力提供基础。

数学建模课程的主要内容数学建模方法论、初等数学模型、微分方程模型、运筹学模型、概率统计模型等。

二、课程的目的与教学要求根据整个教学计划的内容安排,以及学生主要是成人、在职、业余学习的特点,本课程将主要介绍初等数学模型,运筹学模型,微分方程模型和概率统计模型这四类常见数学模型中的较基本、较简单的部分,使学生对数学建模的基本想法与做法有一个较全面的初步的了解,为应用所学数学知识解决实际问题奠定一个较好的基础。

1 对相关课程内容的基本要求由于本课程的特点,对学生的基本数学基础有下列要求:熟练掌握常微分方程的基本内容,概率论与统计分析基础,运筹学中的线性规划、目标规划的初步知识,图论基础知识、决策论、存贮论与排队论初步知识。

2通过本课程的学习,应达到下列基本目标:(1)深化学生对所学数学理论的理解和掌握;(2)使学生了解数学科学的重要性和应用的广泛性,进一步激发学生学习数学的兴趣;(3)熟悉并掌握建立数学模型的基本步骤、基本方法和技巧;(4)培养学生应用数学理论和数学思想方法,利用计算机技术等辅助手段,分析、解决实际问题的综合能力;(5)培养学生的数学应用意识,同时进一步拓宽学生的知识面,培养学生的科学研究能力。

三、课程的教学要求层次教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。

第二部分学时、教材与教学安排一、学时分配本课程共4学分,讲授54学时(包括习题课)学时分配如下:项目内容学时电视学时 IP课学时第一章数学建模方法论 13第二章初等数学模型 9第三章微分方程模型 9第四章运筹学模型 13第五章概率统计模型 10合计 54 10 12 二、教学安排数学建模课程安排在第6学期,一个学期完成全部教学任务。

《数学建模》教学大纲

《数学建模》教学大纲

《数学建模》教学大纲课程编码:1511101303课程名称:数学建模学时/学分:54/3先修课程:《数学分析》、《高等代数》、《数学软件与实验》、《概率论与数理统计》、《常微分方程》适用专业:数学与应用数学开课教研室:应用数学教研室一、课程性质与任务1.课程性质:本课程是数学与应用数学专业的专业基础课。

2.课程任务:本课程是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

通过数学建模有关的概念、特征的学习和数学建模实例的介绍,使学生较为系统地掌握利用数学工具建立数学模型的基本步骤、基本技能与常见方法,培养学生双向翻译能力,数学推导计算和简化分析能力和用数学方法和思想分析、解决实际问题的初步能力。

二、课程教学基本要求《数学建模》是一门应用性较强的新兴课程,主要培养学生应用数学理论和数学思想方法,利用计算机技术等辅助手段,分析、解决实际问题的综合能力。

由于该课程的性质、特点、内容不同于其它课程,教学形式应该是讲授与个人作业相结合,教学方法则是以启发式教学为主,学生动手实践为辅的双向教学模式。

本课程开设在第5学期,共54学时,其中课堂讲授36学时,课内实践18学时。

成绩考核形式:末考成绩(开卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。

成绩评定采用百分制,60分为及格。

三、课程教学内容第一章 数学建模概论1.教学基本要求让学生了解数学建模相关基本概念,了解课程特点,为后继学习奠定基础。

2.要求学生掌握的基本概念、理论、技能通过本章教学使学生了解数学模型、数学建模的概念,了解数学模型的特点和分类,初步掌握数学建模的基本方法和步骤,培养学生把实际问题翻译成数学问题的能力。

3.教学重点和难点教学重点是数学建模的基本步骤。

教学难点是如何把实际问题翻译成数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学模型》教学大纲
课程名称: 数学模型(Mathematical Model)
适用专业:应用数学、信息与计算科学
课程学时: 48学时理论+32学时实验
课程学分: 4
先修课程:微积分、线性代数、概率论
考核方式:期末论文
理论课教学大纲
一、课程的性质与任务
随着其它学科和计算机的迅速发展,数学已经向各个领域广泛渗透,数学已经由原来的高度抽象、严格推理和严密证明的理论课过渡成为解决许多边缘学科和交叉学科的关键技术。

而数学一开始就是为了解决实际问题的需要而产生,数学模型或建立数学模型课程的开设就是一个朴素的回归。

设立数学建模课程的主要目的是培养学生应用所学的数学基础知识(微积分、线性代数、概率统计)解决实际问题的能力,培养新型的应用型动手能力强的人才。

本课程通过一系列典型案例的分析、学习和应用,使学生掌握解决实际问题的一般步骤和原理;通过一些必要的辅助计算软件(lingo优化软件、matlab科学计算软件等)的培训,培养学生新型的数学观:数学中很多的复杂而重复的计算,应该完全交给计算机去做,人就回到思考、分析、设计、评估等更重要的工作中去。

由于实际问题的复杂性和广泛性,本课程在讲授不同类型的模型时,可以参考不同的教材和选取不同的计算软件,所以在教材的选取上本着灵活性和多样性,因而不同章节有不同的参考书。

二、课程的内容
第1章.数学建模概论
1.1 什么是数学模型
1.2 几个简单的建模案例
1.3 建立数学模型的基本方法和步骤
1.4 数学模型的特点和分类
1.5 数学建模能力的培养
参考教材:《数学模型》.高教出版社.姜启源
《数学建模与数学实验》.高教出版社.赵静
《数学建模方法及其应用》高教出版社.韩中庚
第2章. 初等数学模型
2.1 公平的席位分配问题
2.2 动物的身长和体重
2.3 空间点热源的扩散问题
参考教材:《数学模型》.高教出版社.姜启源
《数学建模与数学实验》.高教出版社.赵静
第3章. 数学规划模型
3.1 线性和非线性规划模型相关概念
3.2 几种线性规划问题
指派为问题运输问题材料切割问题配方问题排序问题
多阶段生产计划问题生产流程问题
参考教材:《数学模型》.高教出版社.姜启源
《运筹学》.清华大学出版社.胡运权
《管理运筹学》.高教出版社.韩伯棠
《lingo优化软件》.清华大学出版社.谢金星
第4章与图有关的优化问题
4.1 最短路径问题
4.2 流量问题
4.3 最优连线问题(最小树问题)
4.4 最优回路问题(哈密尔顿回路)
4.5 最小覆盖与最小配对问题
参考教材:《运筹学》.清华大学出版社.胡运权
《管理运筹学》.高教出版社.韩伯棠
《lingo优化软件》.清华大学出版社.谢金星第5章 . 微分方程与差分方程模型
5.1 人口增长模型
5.2 传染病模型
5.3 药物在体内的分布与排出
5.4 烟雾的扩散与消失
5.5 差分形式的阻滞增长模型
5.6 按年龄分组的种群增长
参考教材:《数学模型》.高教出版社.姜启源
《数学建模与数学实验》.高教出版社.赵静
《数学模型》.复旦大学出版社.谭永基
《数学模型方法及其应用》.高等教育出版社.韩中庚第6章离散模型
6.1层次分析模型
6.2循环比赛模型
6.3 选优排序问题
6.4 合理分配住房问题
参考教材:《数学模型》.高教出版社.姜启源
《数学模型》.复旦大学出版社.谭永基
《数学模型方法及其应用》.高等教育出版社.韩中庚第7章. 概率模型
7.1传送系统的效率、报童的诀窍
7.2随机存贮策略、轧钢中的浪费
7.3 彩票模型
7.4 概率分布在各种保险中的计算问题
参考教材:《数学模型》.高教出版社.姜启源
《数学建模与数学实验》.高教出版社.赵静
《数学模型方法及其应用》.高等教育出版社.韩中庚第8章. 统计模型
8.1 常用统计量和期望、方差、相关系数的复习
8.2 假设检验和区间估计
8.3 方差分析
8.5软件开发人员的薪金
参考教材:《数学模型》.高教出版社.姜启源
《数学建模与数学实验》.高教出版社.赵静
《数学模型方法及其应用》.高等教育出版社.韩中庚
《matlab统计分析与案例40》北京航空航天大学出版社.谢中华第9章多目标模型
9.1 目标规划模型
9.2 多目标的处理
参考教材:《数学模型》.高教出版社.姜启源
《数学模型方法及其应用》.高等教育出版社.韩中庚
第10章拟合与模拟
10.1拟合与插值
10.2随机模拟的应用
第11章历届建模竞赛题选讲
参考教材:《数学模型》.高教出版社.姜启源
《数学建模与数学实验》.高教出版社.赵静
《数学模型方法及其应用》.高等教育出版社.韩中庚
四、教学方法与教学手段说明
1. 循序渐进的介绍数学建模的思想,由简入难的介绍各类数学模型;强化数学与计算机等其他工具的结合。

采用教师讲解、指定学生报告教师评论等教学方法。

课时分配大致为两次理论课一次实验课(包括完成作业熟悉matlab软件等),实验项目见本课程的实验教学大纲。

2. 数学建模课程实际上就是给学生提供一些建模案例,因此,学生报告也可以不按教材内容讲解,可以讲解他阅读的其它建模例子。

五、考核方式和要求
期末考试将采用每人完成一篇数学建模论文。

实验课教学大纲
一、教学目的和方法
为了解决数学建模的所有的重复“计算”问题,必须掌握数学建模常用的科学计算软件、统计软件和优化软件,结合本课程的理论教学,要求学生必须学会matlab科学计算软件和lingo优化软件。

学习方式可以采用学生根据每堂课老师布置的任务,依照参考书完成给定的计算要求。

二、教学内容安排
第1章 matlab入门与基本函数
1.1 matlab入门与运行方式
1.2 matlab的变量与函数
1.3 与微积分有关的函数命令的练习:求极限、求导数、求积分
第2章数组与矩阵
2.1 数组的输入与运算方式
2.2 矩阵的输入与操作方式
2.3 关于矩阵的数字计算(求逆、行列式、化行最简形等)
第3章利用matlag作函数的图像
3.1 绘制一元函数的曲线
3.2 绘制三维曲面
3.3 关于绘图的操作
第4章 matlab的微分方程求解
第5章 matlab的统计工具箱的应用
5.1 常用统计量的命令
5.2 检验与区间估计
5.3 方差分析
5.4 回归分析
第6章 matlab的程序设计
6.1 for循环结构
6.2 while 循环结构
6.3 if-else结构
第7章 matlab在一些经典的建模问题中的应用
7.1 matlab和外部文件的数据传输
第8章 lingo的介绍与入门
8.1 lingo的安装与简介
8.2 简单优化程序的输入与计算
8.3 lingo命令的介绍
8.4 lingo优化模型的集合式输入法的介绍
8.5 lingo和外部文件的数据传输
三、教学方法和手段
实验课在机房进行,以老师讲解为辅,学生自学为主,相互讨论的方式进行学习,同时,每次实验课应该有明确的实验要求和结果,以作为考核实验课的教学效果。

参考教材
《数学建模与数学实验》高教出版社.赵静
《matlab工具箱应用指南》电子工业出版社.李涛
《matlab与遗传算法工具箱及其应用》西安电子科技大学出版社.雷英杰《神经网络理论与matlab7应用》电子工业出版社.飞思科技产品研发中心《matlab统计分析与应用40个案例分析》北京航空航天大学出版社.谢中华《优化建模与lingdo/lingo软件》清华大学出版社.谢金星
执笔人:舒兴明
审核人:王志刚
精品文档
精品文档。

相关文档
最新文档