用zemax设计光学显微镜光学系统设计实验报告

合集下载

ZEMAX光学设计报告

ZEMAX光学设计报告

光学设计报ZEMA一、设计目通过对设计一个双胶合望远物镜,学zema软件的基本应用和操作二、设计要的双胶合望远物镜,且相对孔径1:1设计一个全视场角1.56°,焦距1000m=13.6m要求相高三、设计过1双胶合望远物镜系统初始结构的选1.选由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差位置色差。

又因为其相对孔径较小,所以选用双胶合即可满足设计要求。

本系统采用紧型双胶合透镜组,且孔径光阑与物镜框相重合1.确定基本像差参根据设计要求,假设像差的初级像差值为零,即球;正弦;位置色s由此可得基本像差参量。

那么按初级像差公式可F1.冕牌玻璃在前0.0.80.0.8火石玻璃在前0.008因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计1.选定玻璃组鉴玻璃的性价比较好,所以选作为其中一块玻璃。

查表发现0.000.030.008Z组合,此时对应最接近的组合。

此系统选Z组合的折射的折射0.038311.6721.516Z1.74.284070.06092.009402.4求形状系1.考虑到任何实际的透镜组总是有一定的厚度,因此需要把薄透镜组转换成后透镜组100m1/110m。

选用压圈方式根据设计要,则通光口3.m,由此可求得透镜组定透镜组,该方式所需余量由《光学仪器设计手册》查得103.m外径对于凸透镜而言;假分别为球面矢高为折射球面曲率半径为透镜外径如图所示,由上式可求。

将所求的的结果代入下式中可求得凸透镜最小2.62.1缘厚103.4.88.m11利用下式可求得凸透镜的最小中心厚m10.01.02.611.6对于凹透镜而言:先求,再代入下式中可求得凹透镜最小边缘厚1.0.02.6103.11.6m11利用下式可求得凹透镜的最小中心厚不变的条件下进行薄透镜变换成后透镜时,应保四、设计结果)1.1、入瞳直径的设定(图11.1图)2.12、视场角的设定(图2.1图)3.13、工作波长的设定(图3.1图)4.24.1、4、评价函数的选择(图4.1图4.2图)55.1、系统的透镜参数表(5.1图)6.1、优化工具窗口(图66.1图)7.17、系统的结构轮廓图(7.1图)8.1(图MTF、系统的8FFT8.1图)9.1(图PSF FFT、系统的9.9.1图)10.1图(图CURV/DIST10、系统的FIELD)10.1(图)11.1(图图DISTORION GRID、系统的11.11.1图)12.1(图12、系统的SPOT DIAGRAM图12.1图)13.1图(图COLOR TERALLA、系统的13.13.1图)14.1(图FAN14、系统的RAY图14.1图图FAN OPD、系统的15)15.1(图15.1图)16.1(图图、系统的WA VEFRRONT MAP1616.1图)17.1(图图energy encircled diffraction、系统的17.17.1图(数据如下)data system18、系统的DataSystem/PrescriptionFiles\ZEMAX\SAMPLES\LENS.ZMXC:\Program:File Title:2014OCT29Date:WEDTA:DA LENS GENERAL5Surfaces:1Stop:100Aperture=Pupil Entrance Diameter:SystemGB903-87中国Catalogs:SCHOTTGlass OffRay Aiming:0.00000E+000=Uniform,factorApodization:2.00000E+001(C):Temperature 1.00000E+000:TM)Pressure(A Off:Environment To Data Index Adjust pressure)andtemperaturesystematLengthFocalEffective:air(in999.6842space):LengthFocalEffective(in999.6842image989.2692LengthFocalBack:1013.029Track Total:9.996842SpaceImage:F/#9.996842:F/#Working Paraxial9.996906:F/#Working0.04995335:Image Space NA5e-009:Object Space NA50:Stop Radius13.61011:Image HeightParaxial 0:Paraxial Magnification100:Pupil DiameterEntrance0:Pupil Position Entrance100.4728Pupil Diameter:Exit-1004.411Pupil Position:Exitdegreesin AngleField Type:0.78Field:Maximum Radial祄0.5875618:Primary Wavelength MillimetersUnits:Lens0.9952938Magnification:Angular5Fields:degrees Angle inField Type:Weight#Y-V alueX-Value 1.00000010.0000000.000000 1.00000020.2340000.0000001.00000030.3900000.000000 1.0000000.00000040.551000 1.0000000.00000050.780000 FactorsVignettingAN#VCXVDXVVDYVCY0.0000000.0000000.00000010.0000000.0000000.0000000.00000020.0000000.0000000.0000000.0000000.0000000.0000000.00000030.0000000.0000000.00000040.0000000.0000000.0000000.0000000.0000000.00000050.0000000.0000003:Wavelengths祄Units:Weight#Value 1.00000010.486133 1.00000020.587562 1.0000000.6562733.。

ZEMAX实验报告

ZEMAX实验报告

ZEMAX实验报告一、引言ZEMAX是一款常用于光学系统设计和优化的软件工具。

本实验旨在通过使用ZEMAX软件,设计并验证一个简单的光学系统,以加深对光学器件的理解,并掌握ZEMAX软件的使用方法。

本实验采用的光学系统为凸透镜成像系统。

二、实验目的1. 了解并熟悉ZEMAX软件的界面和基础操作方法。

2. 设计一个简单的凸透镜成像系统。

3. 验证设计成像系统的成像质量,并进行优化。

三、实验步骤1. 打开ZEMAX软件,进入新建系统的界面。

2. 选择光源,设置波长、光强等参数。

4. 添加目标平面和接收面,调整其位置和大小。

5. 进行光线追迹和模拟,分析成像效果。

6. 优化系统,调整凸透镜参数,如位置、厚度,以改善成像质量。

7. 记录和分析实验结果。

四、实验结果根据实验步骤,设计并模拟了一个凸透镜成像系统。

经过优化调整后,系统的成像质量得到了明显的提高。

在最终模拟结果中,目标物体能够清晰地成像在接收面上,成像质量较高。

五、讨论分析本实验通过使用ZEMAX软件设计和优化了一个简单的凸透镜成像系统。

通过实验结果可以发现,ZEMAX软件具有较高的计算精度和可视化效果,能够有效地进行光学系统的设计和分析。

通过不断调整凸透镜参数,我们成功改善了系统的成像质量,证明了ZEMAX软件在光学系统优化中的实用性。

六、结论通过本次实验,我们了解并掌握了ZEMAX软件的基础操作方法,并成功设计和优化了一个凸透镜成像系统。

实验结果表明,ZEMAX软件能够较好地模拟和分析光学系统,为光学器件的设计和优化提供了有力的工具。

1. ZEMAX软件使用手册。

2. 光学设计与光子技术教材。

八、致谢感谢指导老师对本实验的支持和指导,也感谢实验室的同学们在实验过程中的合作和协助。

光学设计实验报告范文(3篇)

光学设计实验报告范文(3篇)

第1篇一、实验目的1. 理解光学系统设计的基本原理和方法。

2. 掌握光学设计软件的使用,如ZEMAX。

3. 学会光学系统参数的优化方法。

4. 通过实验,加深对光学系统设计理论和实践的理解。

二、实验器材1. ZEMAX软件2. 相关实验指导书3. 物镜镜头文件4. 目镜镜头文件5. 光学系统镜头文件三、实验原理光学系统设计是光学领域的一个重要分支,主要研究如何根据实际需求设计出满足特定要求的成像系统。

在实验中,我们将使用ZEMAX软件进行光学系统设计,包括物镜、目镜和光学系统的设计。

四、实验步骤1. 设计物镜(1)打开ZEMAX软件,创建一个新的光学设计项目。

(2)选择物镜类型,如球面镜、抛物面镜等。

(3)设置物镜的几何参数,如半径、厚度等。

(4)优化物镜参数,以满足成像要求。

2. 设计目镜(1)在ZEMAX软件中,创建一个新的光学设计项目。

(2)选择目镜类型,如球面镜、复合透镜等。

(3)设置目镜的几何参数,如半径、厚度等。

(4)优化目镜参数,以满足成像要求。

3. 设计光学系统(1)将物镜和目镜的镜头文件导入ZEMAX软件。

(2)设置光学系统的其他参数,如视场大小、放大率等。

(3)优化光学系统参数,以满足成像要求。

五、实验结果与分析1. 物镜设计结果通过优化,物镜的焦距为100mm,半视场角为10°,成像质量达到衍射极限。

2. 目镜设计结果通过优化,目镜的焦距为50mm,半视场角为10°,成像质量达到衍射极限。

3. 光学系统设计结果通过优化,光学系统的焦距为150mm,半视场角为20°,成像质量达到衍射极限。

六、实验总结1. 通过本次实验,我们掌握了光学系统设计的基本原理和方法。

2. 学会了使用ZEMAX软件进行光学系统设计。

3. 加深了对光学系统设计理论和实践的理解。

4. 提高了我们的动手能力和团队协作能力。

5. 为今后从事光学系统设计工作打下了基础。

注:本实验报告仅为示例,具体实验内容和结果可能因实际情况而有所不同。

ZEMAX实验报告

ZEMAX实验报告

基于基本透镜组的照相物镜设计Zemax设计报告徐昕10272055设计目的通过对设计一个以基本透镜组为基础的照相物镜,学会Zemax软件的基本应用及操作。

设计要求设计一个照相物镜,系统焦距f’=9mm,相对孔径1:4设计过程1.系统建模1.1选取初始结构从《光学设计手册》(李士贤,郑乐年编,北京理工大学出版社,1990)中选取了一个三片式照相物镜作为初始结构,如表1-1表面序号半径/mm 厚度/mm 玻璃1 28.25 3.7 ZK52 -781.44 6.623 -42.885 1.48 F64 28.5 4.05 光阑 4.176 100.972 4.38 ZK117 -32.795表1-11.2系统特性参数输入在General系统通用数据对话框中设置孔径和玻璃库,如图1-1,图1-2。

打开视场设定对话框设置5个视场,如图1-3。

打开波长设定对话框点击“Select>>F,d,C(visible)”自动加入三个波长,如图1-4。

图1- 1图1- 2 图1- 3图1- 41.3初始结构输入对照表1-1,在Lens Data Editor中输入初始结构,如图1-5。

利用Zemax中的“solve”功能,求解透镜组最后一面的厚度。

选取需要设计的单元格,在“Solve”中选取“Thickness”,弹出“Thickness Solve on surface 7”求解对话框。

在对话框“Solve type”中选择“Marginal ray height”,将“Height”值输入为“0”,表示将像面设置在边缘光线聚焦的像方焦平面上,如图1-6,图1-7。

图1-5图1-6图1-71.4调整系统焦距打开“System Data”系统数据报告窗口,查看系统现有焦距,为65.65414mm,如图1-8,与设计要求不符,需要通过缩放功能进行调整。

选择“Tools>>Scale Lens”,缩放因子为9/65.65414=0.137082,在Scale By Factor缩放因子后填入0.137082,如图1-9。

ZEMAX光学设计报告

ZEMAX光学设计报告

ZEMAX光学设计报告一、引言ZEMAX是一种广泛应用于光学设计和仿真的软件工具,它提供了一系列功能强大的工具和算法,可以帮助光学工程师进行光学系统的设计、优化和分析。

本报告将介绍使用ZEMAX进行的光学设计,并详细阐述设计的目的、方法和结果。

二、设计目的本次光学设计的目的是设计一种能够产生高质量成像的透镜系统。

通过使用ZEMAX软件进行光学设计和优化,我们希望能够在保持高分辨率和低畸变的同时,尽可能减小像差和光能损失,实现最佳成像效果。

三、设计方法1.初始设计:根据设计要求和限制条件,我们首先进行了初步的系统设计。

选取了适当的光学元件,如凸透镜、凹透镜、平面镜等,通过摆放和调整位置来搭建初始的光学系统。

2. Ray Tracing:使用ZEMAX的Ray Tracing功能,我们可以模拟光线在光学系统中的传播和反射。

通过调整折射率、半径和曲率等参数,我们可以对光线进行控制和优化,实现所需的成像效果。

3. Aberration Analysis:使用ZEMAX的Aberration Analysis功能,我们可以对系统的像差进行分析。

通过查看球差、色差、像散、畸变等参数,我们可以对光学系统进行调整和优化,以提高成像的质量和准确性。

4. Optimization:在初步设计和光线追迹分析的基础上,我们使用ZEMAX的优化功能来调整光学系统的各个参数,以达到最佳的成像效果。

通过设置目标函数和约束条件,优化算法可以在设计空间中最优解,帮助我们找到最佳的设计方案。

5. Iterative Refinements:根据优化结果,我们进行了反复的调整和优化,以进一步改善光学系统的成像效果。

通过多次迭代,我们逐渐接近最优解,达到了设计要求。

四、设计结果通过使用ZEMAX进行光学设计和优化,我们成功地设计出了一种可以产生高质量成像的透镜系统。

经过多次优化和迭代,我们达到了如下设计目标:1.高分辨率:经过系统优化,我们成功降低了球差和色差等像差,提高了光学系统的分辨率。

光学设计实验实验报告

光学设计实验实验报告

实验名称:光学系统设计实验日期:2023年4月10日实验地点:光学实验室实验人员:张三、李四、王五一、实验目的1. 熟悉光学系统设计的基本原理和方法。

2. 学会使用光学设计软件进行光学系统的设计。

3. 通过实验,提高对光学系统性能参数的评估能力。

二、实验原理光学系统设计是根据光学系统的性能要求,运用光学原理和设计方法,选择合适的元件,确定光学系统的结构参数和光学元件的尺寸。

本实验采用ZEMAX软件进行光学系统设计。

三、实验内容1. 设计一个具有特定性能要求的光学系统。

2. 使用ZEMAX软件进行光学系统设计。

3. 优化光学系统,提高其性能。

4. 分析光学系统的性能参数。

四、实验步骤1. 设计光学系统根据实验要求,设计一个成像系统,要求物距为100mm,像距为150mm,放大倍数为1.5倍,系统分辨率为0.1角秒。

2. 使用ZEMAX软件进行光学系统设计(1)创建新的光学设计项目,设置系统参数。

(2)选择合适的透镜材料,创建透镜元件。

(3)根据设计要求,设置透镜的尺寸和位置。

(4)创建光阑,设置光阑的位置和尺寸。

(5)创建探测器,设置探测器的尺寸和位置。

3. 优化光学系统(1)调整透镜的形状和位置,优化系统性能。

(2)调整光阑的位置和尺寸,提高系统分辨率。

(3)调整探测器的位置和尺寸,提高系统成像质量。

4. 分析光学系统的性能参数(1)计算系统的MTF(调制传递函数)和ROI(光圈直径)。

(2)分析系统的像差,包括球差、彗差、场曲、畸变等。

(3)计算系统的入射光束和出射光束的传播方向和光强分布。

五、实验结果与分析1. 光学系统设计结果根据实验要求,设计了一个成像系统,其物距为100mm,像距为150mm,放大倍数为1.5倍,系统分辨率为0.1角秒。

使用ZEMAX软件进行设计,最终得到一个满足要求的光学系统。

2. 光学系统性能分析(1)MTF分析:根据ZEMAX软件的计算结果,该系统的MTF在0.1角秒处达到0.25,满足设计要求。

光学设计实验报告

光学设计实验报告

1. 了解光学系统设计的基本原理和方法。

2. 熟悉光学设计软件(如ZEMAX)的操作,掌握基本的光学设计流程。

3. 学会应用光学设计软件进行光学系统设计,并优化系统性能。

4. 分析实验结果,总结光学系统设计经验。

二、实验器材1. 光学设计软件(如ZEMAX)2. 实验指导书3. 相关光学元件(如透镜、棱镜、分划板等)三、实验内容1. 设计一个显微镜光学系统,包括物镜、目镜和光学系统镜头文件。

2. 根据实验要求,设置以下参数:(1)目镜放大率:10倍(2)目镜最后一面到物面沿光轴的几何距离:280毫米(3)对工件实边缘的对准精度:2.2微米(4)视场大小:自定,尽可能大,一般达到商用仪器的一半(5)是否加棱镜:可加棱镜,折转角大小自定,棱镜可按等效玻璃板处理(6)是否加CCD:可加CCD3. 设计系统结构框图,并绘制系统结构图。

4. 设计物镜系统,采用物方远心光路,即孔径光阑位于物镜像方焦面上。

5. 设计目镜系统,根据目镜放大率和物镜成像位置,确定目镜的焦距和成像位置。

6. 对物镜和目镜进行整体优化或独立优化。

7. 分析实验结果,总结光学系统设计经验。

1. 打开光学设计软件(如ZEMAX),创建新的光学系统项目。

2. 添加光学元件,包括物镜、目镜和光学系统镜头文件。

3. 设置光学元件的参数,如焦距、半径、折射率等。

4. 设计系统结构,根据实验要求,调整光学元件的位置和距离。

5. 运行优化算法,对光学系统进行优化。

6. 分析实验结果,如成像质量、视场大小、对准精度等。

7. 根据实验结果,调整光学元件参数和系统结构,进一步优化光学系统。

8. 完成实验报告,总结实验结果和经验。

五、实验结果与分析1. 成像质量:通过优化算法,使成像质量达到最佳状态,如对比度、分辨率等。

2. 视场大小:根据实验要求,设置视场大小,确保观察范围足够。

3. 对准精度:通过优化光学系统,提高对准精度,满足实验要求。

4. 优化经验:在实验过程中,总结以下优化经验:(1)合理设置光学元件参数,如焦距、半径、折射率等。

ZEMAX实验报告

ZEMAX实验报告

ZEMAX实验——双胶合镜头(a doublet)摘要一个双胶合镜头是由两片玻璃组成,通常粘在一起,所以他们有相同的曲率。

利用不同玻璃的色散性质,一阶色差可以被矫正。

也就是说,需要得到抛物线形的多色光焦点漂移图,而不是直线的,这反过来会产生较好的像质。

在保持100mm焦距和在轴上的设计要下,将会加入视场角。

同时定义边缘厚度解,使产生图层和视场曲率图,并分析双胶合镜头的出光效果。

关键词:ZEMAX光学设计;双胶合镜头;成像分析目录1 引言 (II)2 实验目的.................................. 错误!未定义书签。

3 实验原理分析 (2)4 实验步骤 (3)5 实验结果.................................. 错误!未定义书签。

1 引言ZEMAX是美国Focus Software Inc.所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是一套可以运算sequential及Non-Sequential的软件。

ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。

ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其它软件不同的是ZEMAX的CAD转文件程序都是双向的,如IGES、STEP、SAT 等格式都可转入及转出。

而且 ZEMAX可仿真 Sequential 和 Non-Sequential 的成像系统和非成像系统。

ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。

包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。

Zemax光学设计:一个显微镜照明系统的设计实例

Zemax光学设计:一个显微镜照明系统的设计实例

Zemax光学设计:一个显微镜照明系统的设计实例技术指标:设计一个中等倍率显微镜的照明系统。

显微镜的技术规格如下所述:放大倍率:10NA:0.2(CCD对角的1/2)无限远校正系统(infinity corrected ): 12mm成像镜头焦点距离:200mm工作距离:45mm使用的光源:2mm NA=0.25设计仿真:1.显微物镜的设计首先输入系统特性参数,如下:在系统通用对话框中设置孔径。

在孔径类型中选择“Entrance Pupil Diameter”,并按设计要求输入“8.0”:在视场设定对话框中设置3个视场,要选择“Angle”,如下图:在波长设定对话框中,输入F.d.C三个波长,如下图:LDE的结构参数,如下图:查看2D Layout:查看点列图:然后利用Hammer优化进行玻璃替代来决定玻璃材质。

Hammer优化后的LDE:此时,点列图为:查看波前差,可以看到在全视场内都在衍射极限之内。

2.目镜的设计首先输入系统特性参数,如下:在系统通用对话框中设置孔径。

在孔径类型中选择“Entrance Pupil Diameter”,并按设计要求输入“8.0”:3.在视场设定对话框中设置3个视场,要选择“Angle”,如下图:在波长设定对话框中,输入F.d.C三个波长,如下图:LDE的结构参数,如下图:查看2D Layout:查看点列图:3.显微物镜与目镜的续接先物镜进行翻转,可以使用“Reverse Element”工具来进行翻转。

首先,将孔径类型修改为“Float ByStop Size”。

然后,即使原本的系统没有光瞳像差,翻转后的新系统也可能有光瞳像差。

所以,我们需要打开近轴光线瞄准。

我们可以在光线瞄准 (Ray Aiming) 中选择近轴 (Paraxial) 实现这一步操作。

第三,为了防止翻转后系统尺寸发生改变,我们把每个面的半径值锁定住。

第四,根据原系统点列图上的数值来更改视场类型与数值。

毕业论文(设计)基于zemax的光学系统设计报告—内调焦望远物镜的设计

毕业论文(设计)基于zemax的光学系统设计报告—内调焦望远物镜的设计

目录一、前言 (1)二、设计技术参数 (1)三、外形尺寸计算 (2)四、初始结构的选型和计算 (6)五、利用zemax优化及评价 (8)六、设计心得体会 (12)七、参考文献 (13)内调焦望远物镜的设计一、前言内调焦望远镜是一种具有多种用途、使用方便的光学检调仪器,它可以作为自准直仪和可调焦望远镜使用。

因此它广泛地应用于光学实验室、光学加工车间和光学装校车间作为检验和调校工具。

例如,作为内调焦望远镜使用时:可以用来检验导轨、平面或直尺的“直线性”,基面之间的“垂直性”,平面之间的“平行性”以及不同直径孔径之间的“同轴性”;作为自准直仪使用时:可检测平面间的角度,光学平行平板两表面的楔角以及观测星点等等。

内调焦是针对外调焦而言的,外调焦是指通过直接移动目镜或者物镜进行调焦,内调焦是指移动镜头组之间的一组镜片来调焦.内调焦广泛运用在某类结构的防水产品上,优点是密封性好一些,但是若设计不当视野会相对窄。

二、设计技术参数技术条件如下:相对孔径D/f’=1/6.58合成焦距f’=250mm物镜筒长L=165mm(薄透镜筒长)物方半视场角w=-2°三、外形尺寸计算根据上图进行光路计算2'(101)12012/'l f d d L f Q ϕϕϕϕϕϕ=-=+-=式中,L ,f ’已知,当假设d0后便可由上述三式求得φ1、φ2、和l2’。

相应地,φ1、φ2可按下述二式求得11/1'1/0/0'1/'21/2'(')/0(0)f d L d f f f f L d d L ϕϕ==-+==--计算结果如表所示 d0/mm 25 50 75 82.5 100 125 150 165 f1’/mm56.81892.595117.18123.13135.14148.81159.57165f2’/mm-41.17-67.65-79.41-80.10-76.47-58.82-26.47由上表知,当Q 给定后,f1’随d0的增加而增加,-f2’开始随d 的增加而增加,到L/2时随d0的增大而减小。

基于Zemax的光学显微镜设计

基于Zemax的光学显微镜设计
4.优缺点及改进措施
设计总体上是符合用户要求的,转折60o角使整个系统有效筒长变短,便于携带,而且转折光路可以让人做着观察。
本次设计是第一次进行光学设计,对于ZEMAX软件掌握的程度也不够,是在设计过程中不断学习如何运用软件的,在很多方面都会有一定的局限性。
对于生物显微镜,应该配置一照明系统,但是我没有设计照明系统。没有进行测量的工具,只能进行定性的观察和分析。若以后还有机会,上述几个问题应仔细考虑,以求设计出更加完善的显微镜观察系统。
1.2设计思路
用户提了三个方面的要求:光轴的转折角为60°,出瞳到物面的几何距离(沿光轴)为240mm,视觉放大率为12倍。
根据用户所提出的要求,我做了如下的考虑:由于用户所要求的12X的显微镜属于低倍光学显微镜,故其主要用途是用于观察生物细胞,细菌,植物的表皮结构等。首先我考虑了转折角度的问题,转折角为60°,可以选择用等腰棱镜,使光线转折60°。因此我选择了等腰棱镜。其次我考虑了分辨率。人眼的最小分辨角为1´,但一般为了让人眼看的舒服一点,可以将角度放大到2-4´。12倍的放大率理论上是可以分辨6um的物体,但那样人眼会长时间处于疲劳状态。
3.2.2棱镜的设计
直角棱镜如图3.4所示,其通光口径D与其展开成平行平板的厚度D1不相等,即D=1.732*D1,
我把棱镜与物镜组合到一起进行了优化。在分析棱镜的时候棱镜相当于一个等效的空气层,对于整个系统主要起象移的作用,当然对象质也会有影响,于是在ZEMAX软件中我将其等成一个长与宽相等的平行平板,棱镜的通光口径我没有精确的计算,是在ZEMAX软件上分析得到的,原则是让所有的光线通过,所以我选择了稍大的口径,使光线完全通过并有一定的余地。
4.优缺点及改进措施…………………………………………………………12

显微系统设计实验报告

显微系统设计实验报告

一、实验目的本次实验旨在让学生了解显微系统设计的基本原理和流程,掌握光学系统设计软件的使用方法,并能运用所学知识对显微系统进行优化设计。

通过实验,培养学生独立设计显微系统的能力,提高其在光学设计领域的实践操作水平。

二、实验器材1. 光学系统设计软件:ZEMAX2. 相关实验指导书3. 显微镜系统设计实验报告模板三、实验原理显微系统主要由物镜、目镜、载物台、照明系统等组成。

物镜负责将物体放大成像,目镜负责进一步放大物镜所成的实像,从而形成观察者可以清晰观察的虚像。

实验中,我们主要关注物镜和目镜的设计,通过调整其参数,实现显微系统的高分辨率、高对比度、大视场等性能。

四、实验内容1. 显微系统设计要求(1)物镜放大率:10倍(2)目镜放大率:10倍(3)视场大小:自定,尽可能大(4)焦距:自定(5)对工件实边缘的对准精度:2.2微米(6)其他参数:根据实验要求自定2. 显微系统设计步骤(1)建立显微系统模型:在ZEMAX软件中建立显微系统模型,包括物镜、目镜、载物台等组件。

(2)设置光学材料:为各组件设置光学材料,如玻璃、空气等。

(3)设置几何参数:根据设计要求设置各组件的几何参数,如焦距、视场等。

(4)优化设计:通过调整系统参数,优化显微系统的性能,如分辨率、对比度、视场等。

(5)生成设计报告:根据实验结果,生成显微系统设计报告。

3. 显微系统性能评价(1)分辨率:通过观察显微系统所成的图像,评估其分辨率是否满足设计要求。

(2)对比度:通过观察显微系统所成的图像,评估其对比度是否满足设计要求。

(3)视场:通过观察显微系统所成的图像,评估其视场是否满足设计要求。

五、实验结果与分析1. 实验结果通过ZEMAX软件进行设计,最终得到以下结果:(1)物镜放大率:10倍(2)目镜放大率:10倍(3)视场大小:2.5mm(4)焦距:100mm(5)分辨率:0.2微米(6)对比度:1.52. 实验分析(1)分辨率:实验所设计的显微系统具有较高的分辨率,满足设计要求。

ZEMAX实验报告

ZEMAX实验报告

ZEMAX实验报告一、实验目的本实验旨在通过使用ZEMAX光学设计软件,了解和掌握光学系统的设计与分析方法,并通过实际操作掌握ZEMAX软件的使用技巧。

二、实验原理三、实验内容1.安装和熟悉ZEMAX软件。

首先进行软件的安装和启动,并浏览和熟悉软件的界面和功能按钮。

2.构建简单光学系统。

根据实验要求,通过添加光学元件和定义其参数,构建一个简单的光学系统。

3.分析光学系统的性能。

使用ZEMAX软件对光学系统的像差、光斑大小等性能进行分析。

4.优化光学系统的设计。

根据分析结果,对光学系统进行调整和优化,以使其性能达到要求。

四、实验步骤1.打开ZEMAX软件,并新建一个光学系统文件。

2. 添加光学元件。

点击“Add Surface”按钮,在光学系统中添加透镜、曲面、衍射光栅等光学元件。

3.定义光学元件的参数。

根据实际需求,输入光学元件的曲率、厚度、折射率等参数。

4. 设置光学系统的光源。

点击“Source”按钮,并设置光源位置和光束发散角度等参数。

5. 进行光线追迹。

点击“Ray Trace”按钮,在光学系统中发射光线并追踪光线的传播路径。

6.分析光学系统性能。

根据光线追踪结果,使用ZEMAX软件对光学系统的像差、光斑大小等性能进行分析。

7.优化光学系统设计。

根据分析结果,适当调整光学系统中的光学元件参数,使光学系统性能达到要求。

8.导出分析结果。

最后可以将优化后的光学系统性能结果导出为报告或图表。

五、实验结果和分析通过使用ZEMAX软件进行光学系统设计和分析的实验,我们可以得到光学系统的像差、光斑大小等性能指标。

通过分析结果,可以发现光学系统的设计是否满足了要求,并根据需求对光学系统进行调整和优化。

在优化光学系统设计的过程中,我们可以通过改变曲率、厚度和折射率等参数来调整光学元件的性能。

通过不断迭代优化,可以使光学系统的准确度和性能得到改善。

六、实验总结通过本次实验,我们了解和掌握了ZEMAX光学设计软件的使用方法,并通过实际操作进行了光学系统的设计和分析。

zemax课程设计实验报告

zemax课程设计实验报告

zemax课程设计实验报告一、教学目标本课程旨在通过学习Zemax课程设计实验报告,让学生掌握光学设计的基本原理和方法,培养学生运用Zemax软件进行光学系统设计和分析的能力。

1.掌握光学基本概念和原理,如透镜、镜片、光路等。

2.熟悉Zemax软件的操作界面和功能。

3.了解光学系统设计的基本步骤和方法。

4.能运用Zemax软件进行简单光学系统的设计和分析。

5.能根据设计要求,优化光学系统性能。

6.能撰写简单的Zemax课程设计实验报告。

情感态度价值观目标:1.培养学生对光学学科的兴趣和好奇心。

2.培养学生团队合作精神和自主学习能力。

3.培养学生关注实际问题,运用所学知识解决实际问题的意识。

二、教学内容本课程的教学内容主要包括光学基本概念、Zemax软件操作、光学系统设计方法和实验报告撰写。

1.光学基本概念:包括透镜、镜片、光路等基本知识。

2.Zemax软件操作:学习Zemax软件的操作界面、功能和基本操作。

3.光学系统设计方法:学习光学系统设计的基本步骤和方法,如系统需求分析、光学元件选型、光学设计等。

4.实验报告撰写:学习如何撰写Zemax课程设计实验报告,包括实验目的、原理、过程、结果和结论等。

三、教学方法本课程采用讲授法、讨论法、案例分析法和实验法等多种教学方法,以激发学生的学习兴趣和主动性。

1.讲授法:用于讲解光学基本概念、原理和Zemax软件操作方法。

2.讨论法:用于探讨光学系统设计方法和实验报告撰写技巧。

3.案例分析法:分析实际案例,让学生了解光学系统设计的应用和实际意义。

4.实验法:让学生动手实践,培养实际操作能力和解决实际问题的能力。

四、教学资源本课程所需教学资源包括教材、参考书、多媒体资料和实验设备。

1.教材:选用《Zemax课程设计实验报告》教材,用于指导学生学习光学基本概念和Zemax软件操作。

2.参考书:提供相关光学设计和Zemax软件使用的参考书籍,丰富学生的知识储备。

用zemax设计光学显微镜 光学系统设计实验报告

用zemax设计光学显微镜 光学系统设计实验报告

课 程 设 计光学显微镜设计设计题目学 号专业班级指导教师学生姓名 测量显微镜根据学号得到自己设计内容的数据要求:1.目镜放大率10(即焦距25)2.目镜最后一面到物面距离1103.对准精度1.2微米按照实验步骤,先计算好外形尺寸。

然后根据数据要求选取目镜与物镜。

我先做物镜。

因为这个镜片比较少。

按物镜放大率选好物镜后,将参数输入。

简单优化,得到比较接近自己要求的物镜。

然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。

将曲率半径设为可变量,调入默认的优化函数进行优化。

发现“优化不了”,所有参数均没有变化。

而且发现把光源放在“焦点”位置,目镜出射的不是平行光。

我百思不得其解。

开始认为镜头库的参数可能有问题。

最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。

这个目镜是有一定厚度的,不能简单等效成薄透镜。

焦点到节点的距离才是焦距。

经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。

但这个寻找是很费力气的,事倍功半。

老师建议我把目镜的参数倒着顺序输入参数。

然后用平行光入射,然后可以轻松找到焦点。

但是,按照这个方法,倒着输入参数,把光源放在无限远的地方(平行光入射),发现光线是发散的。

不解。

还是按照原来的方法。

把光源放在目镜焦点上,尽量使之出射平行光。

然后把它与优化好的物镜拼接起来。

后来,加入理想透镜(会聚平行光线),加以优化。

还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。

这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。

物镜参数及优化函数物镜(未缩放)物镜ray 物镜点列图物镜参数物镜各窗口目镜镜片参数目镜2D光路(未缩放)物镜各参数物镜加理想透镜优化物镜加理想透镜优化(ray)物镜加理想透镜优化(spt)显微镜显微镜光路及总体长度显微镜各参数显微镜加理想透镜,光线会聚(layout)显微镜加理想透镜(ray)显微镜加理想透镜(spt)显微镜加理想透镜(参数情况)总的来说这次实验,还是还是比较成功的。

ZEMAX光学设计软件应用训练实验报告

ZEMAX光学设计软件应用训练实验报告

东莞理工学院
ZEMAX光学设计软件应用训练实验报告
选择“analysis”,“miscellaneous”,“field curv/dist”场曲线如图所示。

牛顿式反射望远镜结构示意图
.输入数据:第一面,光阑面的曲率半径列输入-2000.0,负号表示为凹面,
列输入“MIRROR”。

选择“System”,“General”,然后在“通用数据对话框(
Box)”中输入一个200的孔径值,并单击“OK”。

ZEMAX使用的缺省值是波长
现在打开一个图层窗口,光线显示了从第一面到像平面的轨迹,此时像平面在镜面的左边。

如下图:
2.构造转折面:第一面的厚度改为-800mm。

像平面,按Insert在主面与像平面之间插入一个虚构
思考题与实践题:
1、牛顿反射式望远镜属于我们《应用光学》书本上所介绍的那种望远镜系统?
注意我们已将主反射面的距离减小到-18,第四面的半径已经被加入了一个变量标记。

新图层,检查一切是否正常。

如下图:
注意大约有4个波长的像差仍然有待改正。

现在单击第一面(光阑面)的“
设置第一面的半径为变量,再次优化(Tools,Optimization,Automatic
从主菜单,选SYSTEM,FIELDS,并将视场角的个数设置为3,输入y-
在评价函数编辑时,选Tools,Default Merit Function,并将RINGS
在遮挡器和辅助镜面之间的小缝隙纯粹是很小的一点。

这里是为了更容易让大家看到。

MTF现在已被主要是辅助镜面产生的遮挡所改变。

更新MTF窗口,看一下新的MTF,如下图:。

显微镜系统设计实验报告

显微镜系统设计实验报告

光学系统设计实验报告设计题目:测量显微镜光学系统专业班级:光信息08-1班学生姓名:学号:指导老师:一实验目的1.了解光学系统设计的基本步骤,学会基本外形尺寸的计算。

2.熟悉ZEMAX软件的操作,了解操作要领,学会应用基本的相差评价函数并进行优化。

二、实验器材ZEMAX软件、相关实验指导书三、设计要求1)设计说明书和镜头文件。

镜头文件包括物镜镜头文件、目镜镜头文件和光学系统镜头文件。

2)部分技术参数选择:①目镜放大率10②沿光轴,目镜最后一面到物面沿光轴的几何距离280毫米③对工件实边缘的对准精度为2.2微米④其它参数自定3)其他要求①视场大小自定,尽可能大些,一般达到商用仪器的一半。

②可以不加棱镜。

如加棱镜,折转角大小自定。

棱镜可以按照等效玻璃板处理。

③可以对物镜和目镜进行整体优化或独立优化。

④可以加上CCD。

四、具体设计1.系统结构设计思路1)系统结构框图物体经物镜所成的放大的实像与分划板重合,两者一同经目镜成一放大的虚像。

棱镜的型式为斯米特屋脊棱镜,它能使系统成正像,并且使光路转折45°角,以便于观察和瞄准(此处可以不加设计)。

为避免景深影响瞄准精度,物镜系统采用物方远心光路,即孔径光阑位于物镜像方焦面上。

(图1 显微镜系统结构图)2)等效光路原理图(图2 显微镜无光轴偏转的等效光路图)2.外形尺寸计算1)首先绘出光学系统的等效光路原理图。

如图所示,首先将棱镜作为等效空气平板处理。

2)求实际放大率。

系统的有效放大率由系统的瞄准精度决定。

用米字形虚线瞄准被测件轮廓,得系统有效放大率 由于工具显微镜一般要求有较大的工作距和物方线视场,又要求共轭距不能太长,因而工具显微镜的实际放大率和物镜的放大率均不宜过大。

取实际放大率为 3)求数值孔径 4)求物镜和目镜的放大率 目镜的放大率 物镜的放大率 5)求目镜的焦距⨯-=Γ30102.02.21.500055.061.061.0 nsinU ≈⨯⨯===δλk NA 3-=ΓΓ=e β⨯=Γ10e mm f ee 25250=Γ='⨯≥⨯=≥Γ222.21.55.725.72δk6)求视场光阑(分划板)的直径D ,考虑到像质及物方线视场的大小,取视场光阑的直径 7)求物方线视场的大小 8)求共轭距(存在等效空气平板)且有 9)求物镜的焦距 由高斯公式10)求物镜的通光口径D 物和孔径光阑直径D 孔 11)求斯米特屋脊棱镜的各尺寸(此次不设计) 3.光学部件的结构形式 1)显微镜物镜的光学性能参数主要性能参数是:数值孔径,垂轴放大率,视场。

ZEMAX光学设计报告

ZEMAX光学设计报告

ZEMAX光学设计报告一、引言光学设计是光学工程师进行光学系统设计的重要工作。

在光学设计中使用的软件工具众多,其中一种常用的软件是ZEMAX。

本报告将介绍使用ZEMAX进行光学设计的方法,并通过一个实例来展示其应用。

二、ZEMAX光学设计1.建模在使用ZEMAX进行光学设计之前,首先需要进行系统的物理建模。

在ZEMAX中,通过定义光学元件(如透镜、镜面等)的物理属性和位置来建立光学系统模型。

可以通过输入几何参数、折射率、表面形态等信息来定义各个光学元件,并通过图形界面进行可视化设置。

2.优化光学系统的优化是光学设计的核心任务之一、在ZEMAX中,可以通过调整光学元件的位置、物理参数等来优化系统的性能。

可以设置优化目标,比如最小化像差、最大化能量聚焦等,然后通过ZEMAX的优化算法进行自动求解,得到最优解。

3.分析ZEMAX还提供了各种分析工具,可以对光学系统进行性能评估。

例如,可以通过光线追迹分析来研究几何光学传输过程,可以通过波前分析来评估系统的像差,可以通过MTF(调制传递函数)分析来评估系统的分辨力等。

这些分析工具有助于工程师对设计系统的性能进行评估和改进。

三、实例展示为了更好地展示ZEMAX的应用,我们以光学显微镜的设计为例进行介绍。

1.建模首先,在ZEMAX中建立光学系统模型。

我们可以通过输入光学元件的参数,比如透镜的曲率半径、厚度等来定义系统的物理属性。

然后,使用图形界面将这些光学元件拖拽到适当的位置,形成光学系统的结构。

2.优化接下来,我们可以通过优化光学系统的性能来改进设计。

比如,可以通过调整透镜的位置、厚度等参数来最小化系统的像差、最大化系统的分辨率等。

在ZEMAX中,可以设置优化目标并选择适当的优化算法,然后让软件自动进行求解。

在求解过程中,可以通过ZEMAX提供的分析工具对系统进行实时评估。

3.分析最后,我们可以使用ZEMAX提供的分析工具对设计好的系统进行性能评估。

比如,可以通过光线追迹分析来确定光学系统的传输特性,可以通过MTF分析来评估系统的分辨能力等。

光学设计实验报告范例

光学设计实验报告范例

实验报告题目:光学显微镜系统设计实验一、实验目的1. 理解光学系统设计的基本步骤和原理。

2. 学会运用光学设计软件进行光学系统设计。

3. 熟悉光学元件的选用和光学系统的优化方法。

4. 掌握光学系统性能参数的评估和调整技巧。

二、实验器材1. 光学设计软件:ZEMAX2. 相关实验指导书3. 光学元件:物镜、目镜、分划板、斯米特屋脊棱镜等4. 光具座:二维滑块支架、一维滑块支架5. 待测物体三、实验原理光学显微镜系统主要由物镜、目镜、分划板、斯米特屋脊棱镜等光学元件组成。

实验中,我们通过ZEMAX软件进行光学系统设计,实现物镜对物体的放大成像,并通过目镜观察放大后的图像。

四、实验步骤1. 设计说明书和镜头文件:根据实验要求,设计说明书和镜头文件应包括物镜镜头文件、目镜镜头文件和光学系统镜头文件。

2. 部分技术参数选择:目镜放大率为10倍,目镜最后一面到物面沿光轴的几何距离为280毫米,对工件实边缘的对准精度为2.2微米。

其他参数根据实验要求自定。

3. 系统结构设计思路:a. 系统结构框图:物体经物镜所成的放大的实像与分划板重合,两者一同经目镜成一放大的虚像。

b. 棱镜选择:采用斯米特屋脊棱镜,使系统成正像,并且使光路转折45角,以便于观察和瞄准。

c. 物镜系统设计:采用物方远心光路,即孔径光阑位于物镜像方焦面上,避免景深影响瞄准精度。

4. 光学元件选用和优化:a. 物镜:选择焦距适中、成像质量高的物镜。

b. 目镜:选择放大倍数合适、视场较大的目镜。

c. 斯米特屋脊棱镜:选择折射率适中、夹角较小的斯米特屋脊棱镜。

d. 光学系统优化:通过ZEMAX软件对光学系统进行优化,使系统性能达到最佳。

5. 性能参数评估和调整:a. 评估系统性能参数,如放大率、视场、分辨力等。

b. 根据评估结果,对光学元件进行适当调整,提高系统性能。

五、实验结果与分析1. 设计的显微镜系统放大倍数为100倍,视场为5毫米,分辨力为0.2微米。

ZEMAX实验报告

ZEMAX实验报告

基于基本透镜组的照相物镜设计Zemax设计报告徐昕10272055设计目的通过对设计一个以基本透镜组为基础的照相物镜,学会Zemax软件的基本应用及操作。

设计要求设计一个照相物镜,系统焦距f’=9mm,相对孔径1:4设计过程1.系统建模1.1选取初始结构从《光学设计手册》(李士贤,郑乐年编,北京理工大学出版社,1990)中选取了一个三片式照相物镜作为初始结构,如表1-1表面序号半径/mm 厚度/mm 玻璃1 28.25 3.7 ZK52 -781.44 6.623 -42.885 1.48 F64 28.5 4.05 光阑 4.176 100.972 4.38 ZK117 -32.795表1-11.2系统特性参数输入在General系统通用数据对话框中设置孔径和玻璃库,如图1-1,图1-2。

打开视场设定对话框设置5个视场,如图1-3。

打开波长设定对话框点击“Select>>F,d,C(visible)”自动加入三个波长,如图1-4。

图1- 1图1- 2 图1- 3图1- 41.3初始结构输入对照表1-1,在Lens Data Editor中输入初始结构,如图1-5。

利用Zemax中的“solve”功能,求解透镜组最后一面的厚度。

选取需要设计的单元格,在“Solve”中选取“Thickness”,弹出“Thickness Solve on surface 7”求解对话框。

在对话框“Solve type”中选择“Marginal ray height”,将“Height”值输入为“0”,表示将像面设置在边缘光线聚焦的像方焦平面上,如图1-6,图1-7。

图1-5图1-6图1-71.4调整系统焦距打开“System Data”系统数据报告窗口,查看系统现有焦距,为65.65414mm,如图1-8,与设计要求不符,需要通过缩放功能进行调整。

选择“Tools>>Scale Lens”,缩放因子为9/65.65414=0.137082,在Scale By Factor缩放因子后填入0.137082,如图1-9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 程 设 计
光学显微镜设计 设计题目
学 号
专业班级
指导教师
学生姓名 测量显微镜
根据学号得到自己设计内容的数据要求:
1.目镜放大率10(即焦距25)
2.目镜最后一面到物面距离110
3.对准精度1.2微米
按照实验步骤,先计算好外形尺寸。

然后根据数据要求选取目镜与物镜。

我先做物镜。

因为这个镜片比较少。

按物镜放大率选好物镜后,将参数输入。

简单优化,得到比较接近自己要求的物镜。

然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。

将曲率半径设为可变量,调入默认的优化函数进行优化。

发现“优化不了”,所有参数均没有变化。

而且发现把光源放在“焦点”位置,目镜出射的不是平行光。

我百思不得其解。

开始认为镜头库的参数可能有问题。

最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。

这个目镜是有一定厚度的,不能简单等效成薄透镜。

焦点到节点的距离才是焦距。

经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。

但这个寻找是很费力气的,事倍功半。

老师建议我把目镜的参数倒着顺序输入参数。

然后用平行光入射,然后可以轻松找到焦点。

但是,按照这个方法,倒着输入参数,把光源放在无限
远的地方(平行光入射),发现光线是发散的。

不解。

还是按照原来的方法。

把光源放在目镜焦点上,尽量使之出射平行光。

然后把它与优化好的物镜拼接起来。

后来,加入理想透镜(会聚平行光线),加以优化。

还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。

这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。

物镜参数及优化函数
物镜(未缩放)
物镜ray
物镜点列图
物镜参数
物镜各窗口
目镜镜片参数
目镜2D光路(未缩放)
物镜各参数
物镜加理想透镜优化
物镜加理想透镜优化(ray)
物镜加理想透镜优化(spt)
显微镜
显微镜光路及总体长度
显微镜各参数
显微镜加理想透镜,光线会聚(layout)
显微镜加理想透镜(ray)
显微镜加理想透镜(spt)
显微镜加理想透镜(参数情况)
总的来说这次实验,还是还是比较成功的。

最主要的问题是对ZEMAX这个软件不太熟悉,还有对光学的一些内容不够熟悉。

通过本次试验,熟悉了ZEMAX的一些基本操作,对光学系统设计内容也有了初步的了解。

光信息08—3班张静20080302
2011年6月25。

相关文档
最新文档