臭氧分解的各种办法

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

臭氧分解装置>各种分解方法

1.预臭氧化法

预臭氧化处理情况下,从接触室排出的气体再重新喷射到尚未臭氧处理过的水里。在采用臭氧化处理作为饮水处理最后一步的情况下,预臭氧化阶段的臭氧吸收率可再一次达到 90% 。问题依然存在,不过此刻尾气臭氧浓度又降低了 9/10 ,例如 2.08×10 -5 mol/L ( 0.1g/m 3 )取代 2.08×10 -4 mol/L ( 1g/m 3 )。

由于进行预臭氧化处理的原水含有快速反应的溶解物质和疏松物质,尾气里的臭氧能被大量分解。然而,大多数现有水处理厂均未设计有此种用法,因而原水取水口往往是远离臭氧化处理厂。此外,那些有原水流过便于进行臭氧接触的池子或工作区等场所,原来建造时往往没有预见到臭氧接触所需的要求。今后扩建计划时,新设计中原水的预臭氧处理应受到更多关注。

预臭氧化系统需要一台自吸设备,如环流涡轮混合器,或者一座装有适用的不锈钢水封空气压缩机的加压站。为运行此系统,能耗按以下次序排列:

喷射器: 200 (最大 800 )W·h/m 3

涡轮: 100 (最大 200 )W·h/m 3

压缩机: 80 (最大 150 )W·h/m 3

由于臭氧在预臭氧化阶段的利用,可以推断出这些部分的能耗:±40 W·h/m 3 再接触尾气。

当用富氧气体发生臭氧时,一般是实行尾气循环回到臭氧发生器,这项技术是以氧的经济回用为基础的。此法曾在巴黎市圣 . 莫儿水厂实验过。要成功应用,尾气必须或者被加压或者被吸引通过臭氧生产系统的空气处理装置,如图1 所示。

然而,循环气体内氨气和二氧化碳气含量的逐步富集是此法固有的问题,虽然只是使用空气时如此。所以,为防止臭氧产量下降,排放废气和补充新鲜气体是必要的。为避免微量有机物逐步积累在干燥塔内吸附剂上,它们的有效隔除也是必要的。在循环系统中的某些部位还需要无腐蚀材料或耐潮湿臭氧材料。

接触器尾气中的臭氧并不能使臭氧发生器出口的臭氧浓度有真正提高,这点符合臭氧发生器是在平衡状态下运行的化学反应器原理。

用此法处理尾气带来的额外能耗主要是它们的加压: 80~100 W·h/m 3 。用于气体制备及循环系统的特种防腐材料的附加费用依厂而定,可能在臭氧生产及接触装置费用的 5%~10% 之间变化。

2.稀释法

用通风系统内的新鲜空气稀释含臭氧的尾气往往是一项实用方法。不过,直接达到排放尾气

1.46×10 -9 mol/L 臭氧安全目标所需的稀释比可能是很高的,例如在 5000~10000 之间。所以此法只有在剩余臭氧进一步利用,例如通过预臭氧化,确保适当的大气稀释比如 8~10 ,配接排气烟筒之后才是切实可行的。用机械通风 100~120 的稀释比足够。吸气点压力降 10mmH 2 O ,运行能耗等于8~10W·h/m 3 尾气。

尽管运行成本极为有利,此项技术还是很少应用。主要问题是巨型离心通风机所产生的噪音超过60 分贝的容许极限,同时,不同生产条件下气体流量调节的可变性极小并可能干扰臭氧接触的进行。稀释法的实际设计应用是采用装在噪音吸收室内的空气喷射器从而抽出尾气(图2 )。采用这一技术,只需很少控制设备。

比利时诺托梅尔( Notmeir )水厂,在臭氧处理能力不大(最大 6kgO 3 /h )的情况下,臭氧化处理排出的尾气可同内燃机或水泵发动机的废气混合。在后一种情况下剩余臭氧同废气中的杂质起反应。从而,所需的稀释比可降低到 35 (最大),乃至于在极端情况下降到 10 。

3.洗涤法

在喷淋塔内用水来洗涤尾气,对于从尾气中去除臭氧来说不是一种有效的方法,即使接触塔装填有拉希格环。在比寻常浓度高一些的情况下,臭氧浓度能降低 50% 。现时尚未报道过有使用臭氧还原产物的研究。运行能耗实际上受其排气装置的限制,大约为 5 W·h/m 3 。

通过洗涤排气设备使用适当还原剂消除剩余臭氧,乍一看似乎有可能。如果这样必须在排气能耗(5~6 W·h/m 3 )上加上还原剂用的能耗,估计在20~50 W·h/m 3 ,依尾气中臭氧浓度而定。洗涤装置方面研究过的最主要的几种还原剂有硫酸亚铁溶液和(或)亚氯酸钠溶液。根据初步研究,此项技术似乎缺乏适应性,因为反应速度不足以将臭氧去除到适当水平。

4.热分解法

热分解法是当前用于消除臭氧处理厂尾气所含臭氧使用最广泛的技术。可采用的主要工艺有三种:

( 1 )单通道电阻加热;

( 2 )通过热交换加热;

( 3 )加热并过热燃烧。

以上三项工艺的相应投资费用比分别为 1 : 2.5 : 1.3 。

臭氧在空气中比在水中更稳定,室温下臭氧在气相的半衰期可由 4~12h 不等。

空气中臭氧的热分解早在30℃ 即已开始,在40~50℃ 时显著。在200℃ 下一分钟内臭氧分解大约是 70% ,230℃ 时 92%~95% 。在300℃ 或以上时, 1~2s 反应时间内达到 100% 分解(图3 )。

单通道电阻加热工艺是一种具有很大处理能力,易自动化的简单连续流动处理过程。水头损失范围 20~30mmH 2 O. 排出的气体达到250~300℃ 的高温,废气烟道需要用耐火材料建造,此外,排气管需要加大尺寸以能装在加热装置上。每小时要处理(300±100 ) m 3 流量的气体时,需要0.6m×0.6m 的断面。此系统的运行能耗为130~170 W·h/m 3 尾气。

在热交换器中加热尾气可以通过进气的预热器回收部分热能。此法整体构造比电阻加热所用的要大些,如图 4 所示。运行能耗可根据现有实际使用装置求锝为85 W·h/m 3 , 由于交换法排气最终温度在90~100℃, 因此管道可用常规材料制造。

热交换器系统内的水头损失可达到 1mH 2 O ,如此高的数值使系统自动化变化困难。此外,离心通风机难以抵抗湿臭氧化气所造成的腐蚀。所以,它们最好是装在破坏装置之后以便靠抽吸和吹风来排气。对热交换器及风机置于气流上游的情况来说,热交换器必须用抗腐蚀材料制造,如不锈钢 AISI316 或318 。在此种排列顺序中,风机还必须是水环式的,而且运行费过高。因此,抽气设备最好还是置于破坏

相关文档
最新文档