3.4简单线性规划的应用 学案(高中数学必修五北师大版)
3.4.2简单线性规划 教案(高中数学必修五北师大版)
4.2简单线性规划●三维目标1.知识与技能使学生了解二元一次不等式(组)表示平面区域、了解线性规划的意义以及约束条件、目标函数、可行域、最优解等概念,了解线性规划问题的图解法,并能应用解决实际问题.2.过程与方法经历从实际情境中抽象出简单的线性规划问题,提高数学建模能力.3.情感、态度与价值观培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高解决实际问题的能力.●重点难点重点:求解简单的线性规划问题.难点:准确求得线性规划问题的最优解.●教学建议教材通过求z=2x+y的最值来讲解了线性规划问题.在处理z=2x+y的最值时可以通过以下两种途径:(1)把直线2x+y=0向上或向下平移,观察对应z的量值随之增大或减小来确定最大、最小值.(2)把z=2x+y变形为y=-2x+z即化成直线的斜截式形式.这样变形的目的是赋予目标函数z以几何直观及几何含义,来观察截距z的最大值、最小值即可.●教学流程创设问题情境,提出问题⇒通过引导学生回答问题,了解目标函数、可行域等线性规划的概念⇒通过例1及互动探究,让学生掌握求线性目标函数的最值⇒通过例2及变式训练,使学生掌握求非线性目标函数的最值⇒通过例3及变式训练,使学生掌握含参数的线性规划问题⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第65页)图3-4-5已知不等式组⎩⎨⎧x -y +5≥0,x +y +1≥0,x ≤3表示的平面区域如图3-4-5所示.1.在平面区域中,点A 、B 、C 的坐标分别是什么?【提示】 由⎩⎨⎧x -y +5=0x +y +1=0得B (-3,2);由⎩⎨⎧x -y +5=0x =3得A (3,8); 由⎩⎨⎧x =3x +y +1=0得C (3,-4). 2.对于函数z =2x -y ,当直线2x -y -z =0经过A 、B 、C 三点时,z 的值分别为多少?【提示】 直线经过A (3,8)时,z 的值为2×3-8=-2;直线经过B (-3,2)时,z 的值为2×(-3)-2=-8;直线经过C (3,-4)时,z 的值为2×3-(-4)=10.3.当直线2x -y -z =0经过平面区域时,z 的取值范围是什么?变化规律把直线l 0:ax +by =0向上平移时,所对应的z 随之增大;把直线l 0:ax +by =0向下平移时,所对应的z 随之减小.(对应学生用书第65页)设z =2x +y ,式中变量x ,y 满足条件⎩⎨⎧3x +5y ≤25,x ≥1,求z 的最大值和最小值. 【思路探究】 画出可行域―→作出直线2x +y =0―→平行移动直线―→求最值【自主解答】 画出可行域如图所示.令z =0,作直线l 0:2x +y =0,把直线l 0向上平移时,所对应的z =2x +y 的函数值随之增大;把直线l 0向下平移时,所对应的z =2x +y 的函数值随之减小.解方程组⎩⎨⎧x -4y +3=0,3x +5y -25=0得A 点坐标为(5,2), 解方程组⎩⎨⎧x =1,x -4y +3=0得B 点坐标为(1,1), 所以z max =2×5+2=12,z min =2×1+1=3.1.将目标函数的直线平行移动,最先通过或最后通过的顶点便是最优解.2.当线性目标函数的直线与可行域的某条边平行时,最优解可能有无数个.在本例的线性约束条件下,求z =2x -3y 的最大值和最小值.【解】 作出可行域,如图由图可知,当直线经过可行域上点A 时,z 最大;当直线经过可行域上点C时,z 最小.解方程组⎩⎨⎧x =1,3x +5y -25=0,得C 点坐标为(1,225). 所以z max =2×5-3×2=4,z min =2×1-3×225=-565.。
高中数学 第三章 不等式 3.4.3 简单的线性规划的应用教案 北师大版必修5
3.4.3简单的线性规划的应用本节教材分析教材设计了两个实际问题,代表了线性规划研究的两大类问题:一类是一项任务确定后,如何统一安排,做到以最少的人力、物力安排任务;另一类是在一定量的人力、物力条件下,如何安排和使用,以获得最大效益.这两类问题的两个方面,即寻求整个问题的某种指标的最优解.三维目标1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
教学重点:利用图解法求得线性规划问题的最优解;教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
教学建议:教学中应注意:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键.可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找到目标函数.另外若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解,则应作适当调整,其方法应以与线性目标函数的直线的的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也是很有效的办法.教学上课适当采用多媒体和投影仪等辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率. 新课导入设计导入一[直接导入]上节课我们探究了用线性规划解决求函数最值问题,这节课我们进一步探究有关线性规划的有关问题,看看用线性规划能解决哪些实际问题.教师出示多媒体课件,提出问题,由此引入新课.导入二[复习导入]生产实际中有许多问题都可归结为线性规划问题,其中有两类重要实际问题:一是一类是一项任务确定后,如何统一安排,做到以最少的人力、物力安排任务;另一类是在一定量的人力、物力条件下,如何安排和使用,以获得最大效益.1。
高中数学必修5北师大版 简单线性规划的应用 学案
4.3简单线性规划的应用1.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(重点)2.培养学生应用线性规划的有关知识解决实际问题的意识.3.能够找出实际问题的约束条件和目标函数,利用图解法求得最优解.(难点)[基础·初探]教材整理简单线性规划的实际应用阅读教材P105~P107“练习”以上部分,完成下列问题.1.简单线性规划应用问题的求解步骤:(1)设:设出变量x、y,写出约束条件及目标函数.(2)作:作出可行域.(3)移:作一条直线l,平移l,找最优解.(4)解:联立方程组求最优解,并代入目标函数,求出最值.(5)答:写出答案.总之,求解线性规划问题的基本程序是作可行域,画平行线,解方程组,求最值.2.若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解时,应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点.可考虑以下方法:(1)平移找解法:先打网格,描整点,平移直线l,最先经过或最后经过的整点便是最优整点解,这种方法应充分利用非整点最优解的信息,结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.(2)调整最值法:先求非整点最优解及最值,再借助不定方程的知识调整最值,最后筛选出整点最优解.判断(正确的打“√”,错误的打“×”)(1)线性规划实际问题中的可行域可能是有界的,也可能是无界的.()(2)线性目标函数的最优整数解不唯一.()(3)线性目标函数的整点最优解是离非整点最优解最近的整点.()【解析】(1)若约束条件中的不等式中没有等于号可行域是无界的,若有等号则是有界的.(2)当目标函数与约束条件对应的直线平移时有无穷多个.(3)离非整点最近的点不一定在可行域中.【答案】(1)√(2)√(3)×[小组合作型]生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A种原料甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【解】 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧ 4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图①中的阴影部分.第16题图(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,它的图象是斜率为-23,随z 变化的一族平行直线,z 3为直线在y 轴上的截距,当z 3取最大值时,z 的值最大.根据x ,y 满足的约束条件,由图②可知,当直线z =2x +3y 经过可行域上的点M 时,截距z 3最大,即z 最大.。
【全国百强校】陕西师范大学附属中学北师大版高中数学必修5教案:3.4.3简单线性规划的应用
并耗时1 h ,每生产一件乙产品使用 4 个 B 配件
学生独立
体现新课
并耗时 2h ,该厂每天最多可从配件厂获得16 个 思考
程中突出数学
A 配件和12 个 B 配件,按每天工作 8h 计算, , 完 成 数 学 建 应 用 意 识 的 理
该厂所有可能的日生产安排是什么?若生产一 模。
念。
件甲产品获利 2 万元,生产一件乙产品获利 3 万
则 目 标 函 数 为 z 28x 21y , 且 x, y 满 足
0.105x 0.105y 0.075
0.07x 0.14 y 0.06 0.14x 0.07 y 0.06
,整理为:
x 0, y 0
7x 7 y 5
7x 14 y 14x 7 y
本课时授课内容源自《普通高中课程标准试验教科书˙数学必 修 5》(北师大版),第三章《不等式》中 3.4.3《简单线性规划的应 用》。其是以《简单线性规划》为认知基础,解决与线性规划有关的 应用性问题,深化对相关概念及方法的运用能力。
教学内容 分析
本节课的主体内容为实际应用性问题的数学建模及利用图解法 解决线性规划问题。
知识与技 教学目标
能
⑴能够将实际问题转化为数学问题,实现数学建模; ⑵借助图解法,即画——移——求——答完成数学模型的解决。
⑶体会及深化数形结合与数学建模的方法与思想。
过程与方 法
借助学生已有的知识基础(一元二次不等式(组)与平面区域、简 单线性规划)及能力基础(化归转化、数学建模与数形结合),引导学 生进行应用性问题的探究,总结规律方法。
例 2、营养学家指出,成人良好的日常饮食
(三)
仿例解 题规范 解答
北师大版高中数学必修5-3.4《简单线性规划》参考教案1
§4.2 简单线性规划(1)教学目标:1.了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;2.能根据条件建立线性目标函数;3.了解线性规划问题的图解法,并会用图解法求线性目标函数的最大值、最小值. 教学重、难点:线性规划问题的图解法;寻求线性规划问题的最优解. 教学过程:(一)复习练习:画出下列不等式表示的平面区域:(1)()(233)0x y x y -+-<; (2)|341|5x y +-<.(二)新课讲解:在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ (1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则y x z 32+=,这样,上述问题就转化为:当y x ,满足不等式(1)并且为非负整数时,z 的最大值是多少?把y x z 32+=变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z 的直线。
当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z 可以由平面内的一个点的坐标唯一确定。
北师大版高中数学必修五教案简单线性规划
[范例讲解]
例5营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?
指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.
例6 在上一节例3中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元。那么开设初中班和高中班各多少个,每年收取的学费总额最高多?
指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一
2、目标函数,线性目标函数,线性规划问题,可行解,可行域,最优解:
2.讲授新课
线性规划在实际中的应用:
线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务
5.评价设计
课本第105页习题3.3[A]组的第3题
教学反思
课题
§3.4.4简单的线性规划
第4课时课型新授课来自课时备课时间教学目标
知识与技能
掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;
过程与方法
经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;
情感态度与价值观
北师大版高中数学必修五简单的线性规划教案(1)
3.4.3简单的线性规划授课类型:新授课 【教学目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。
【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】1.课题导入[复习提问]1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。
2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ……………………………………………………………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。
高中数学 第三章 简单线性规划的应用教案 北师大版必修5
简单线性规划的应用教学目的:1.能应用线性规划的方法解决一些简单的实际问题2.增强学生的应用意识.培养学生理论联系实际的观点教学重点:求得最优解教学难点:求最优解是整数解教材分析:线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小 教学过程:一、复习引入:1.二元一次不等式0>++C By Ax 在平面直角坐标系中表示直线0=++C By Ax 某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解3.用图解法解决简单的线性规划问题的基本步骤:(1)根据线性约束条件画出可行域(即不等式组所表示的公共区域);(2)设0=z ,画出直线0l ;(3)观察、分析,平移直线0l ,从而找到最优解),(),,(1100y x B y x A ;(4)最后求得目标函数的最大值及最小值4.求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解5.判断可行区域的方法: 由于对在直线0=++C By Ax 同一侧的所有点(x ,y ),把它的坐标(x ,y )代入C By Ax ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断0>++C By Ax 表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)二、讲解新课:例1:医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每g 10含5单位蛋白质和10单位铁质,售价3元;乙种原料每g 10含7单位蛋白质和4单位铁质,售价2元。
高中数学3.4.3简单线性规划的应用北师大版必修5
30x+20y=300, 5x+10y=110
(x≥0,y≥0,x,y∈Z),
得xy==49,, ∴点 M 坐标为(4,9). 将 x=4,y=9 代入目标函数 z=6x+8y, 得 z=6×4+8×9=96(百元)为最大. 答:当月供应量为电子琴 4 架、洗衣机 9 台时, 该公司可获得最大利润为 9600 元.
解析:设该人每天服用甲种胶囊 x 粒,乙种胶囊 y 粒,得到维生素 Z z mg,由题意得
x+3y≤19, x+2y≤13, 4x+y≤24, 4x+3y≥12, x≥0, y≥0,
目标函数为 z=5x+2y.
作出不等式组表示的平面区域如图所示,
作出5x+2y=0. 把直线向右上方平移,直线经过可行域上的点M时,z =5x+2y取得最大值.
由35xx+ +63yy= =115500, , 解得yx==11570700, , 即点 P 坐标为(1570,1070). 故每天生产甲种产品1570吨、乙种产品1070吨时,才能 创造最大的经济效益.
[变式训练2] (图表信息题)北京华欣公司计划在今年 内同时出售“夜莺牌多功能”电子琴和“OK智能型”洗衣 机,由于这两种产品的市场需求量非常大,有多少就能销 售多少,因此该公司要根据实际情况(如资金、劳动力)确定 产品的月供应量,以使得总利润达到最大.已知对这两种 产品有直接限制的因素是资金和劳动力,通过调查,得到 关于这两种产品有关数据如下表:
(2)若从A市调x台到D市,从B市调y台到D市.当28台 机器全部调完毕后,用x、y表示总运费P,并求P的最大值 和最小值.
解析:第一步,列表、分析条件: 表1
供方
Байду номын сангаас
运费
A
B
高中数学第三章不等式4简单线性规划第2课时简单线性规划学案(含解析)北师大版必修5
第2课时简单线性规划Q情景引入ing jing yin ru某电视台要播放两套宣传片,其中宣传片甲播放时间为3分30秒,广告时间为30秒,收视观众为60万;宣传片乙播放时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟的广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多?X新知导学in zhi dao xue1.线性规划中的基本概念名称定义目标函数求最大值或最小值的函数z=ax+by+c叫作目标函数约束条件目标函数中的变量所要满足的不等式组最优解可行域内使目标函数取得最大值或最小值的解称为最优解线性规划问题在线性约束条件下,求线性目标函数的最大值或最小值问题,称为线性规划问题可行解满足约束条件的坐标,称为可行解可行域由所有可行解(x,y)组成的集合称为可行域(1)作出可行域.(2)作出直线l0:ax+by=0.(3)确定l0的平移方向,依可行域判断取得最优解的点.(4)解相关方程组,求出最优解,从而得出目标函数的最大值或最小值.Y预习自测u xi zi ce1.目标函数z=3x-y,将其看成直线方程时,z的意义是( C )A.该直线的截距B.该直线在y轴上的截距C.该直线在y轴上的截距的相反数D.该直线在x轴上的横截距[解析] 把目标函数变形为y=3x-z,由此可见,z是该直线在y轴上的截距的相反数.2.有5辆6吨的汽车,4辆4吨的汽车,需x 辆6吨的汽车和y 辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为( A )A .z =6x +4yB .z =5x +4yC .z =x +yD .z =4x +5y3.(2019·浙江卷,3)若实数 x ,y 满足约束条件⎩⎪⎨⎪⎧x -3y +4≥0,3x -y -4≤0,x +y ≥0,则 z =3x +2y 的最大值是( C )A .-1B .1C .10D .12[解析]如图,不等式组表示的平面区域是以A (-1,1),B (1,-1),C (2,2)为顶点的△ABC 区域(包含边界).作出直线y =-32x 并平移,知当直线y =-32x +z2经过C (2,2)时,z 取得最大值,且z max =3×2+2×2=10.故选C .4.(2018·全国卷Ⅰ理,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为_6.[解析] 作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max =3×2+2×0=6.5.若x ,y 满足约束条件⎩⎪⎨⎪⎧y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为7.[解析] 画出可行域及直线x +3y =0,平移直线x +3y =0,当其经过点A (1,2)时,直线的纵截距最大,所以z =x +3y 的最大值为z =1+3×2=7.H 互动探究解疑u dong tan jiu jie yi命题方向1 ⇨求线性目标函数的最值问题例题1 设z =2x +y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥1,求z 的最大值和最小值.[分析] 由于所给约束条件及目标函数均为关于x ,y 的一次式,所以此问题是简单线性规划问题,使用图解法求解.[解析] 作出不等式组表示的平面区域(即可行域),如图所示.把z =2x +y 变形为y =-2x +z ,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线.由图可看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1x -4y +3=0,得B 点坐标为(1,1),所以z max =2×5+2=12,z min =2×1+1=3.『规律总结』 在求目标函数z =ax +by +c 的最值时,根据y 的系数的正负,可分为以下两种情形求最值.1.求目标函数z =ax +by +c ,b >0的最值.在线性约束条件下,当b >0时,求目标函数z =ax +by +c 的最小值或最大值的求解程序为:(1)作出可行域.(2)作出直线l 0:ax +by =0.(3)确定l 0的平移方向,若把l 0向上平移,则对应的z 值随之增大;若把l 0向下平移,所对应的z 值随之减小,依可行域判定取得最优解的点.(4)解相关方程组,求出最优解,从而得出目标函数的最大值或最小值. 2.求目标函数z =ax +by +c ,b <0的最值.在线性约束条件下,当b <0时,求目标函数z =ax +by +c 的最小值或最大值的求解程序为:(1)作出可行域.(2)作出直线l 0:ax +by =0.(3)确定l 0的平移方向:若把l 0向上平移,所得相应z 值随之减小;若把l 0向下平移,所对应的z 值随之增大,依可行域判定取得最优解的点.(4)解相关方程组,求出最优解,从而得出目标函数的最大值或最小值. 〔跟踪练习1〕(1)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z =2x +y 的最大值等于( C )A .7B .8C .10D .11(2)(2018·全国卷Ⅲ理,14)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为9.[解析] (1)画出x ,y 约束条件限定的可行域如图阴影部分所示,作直线l :y =-2x ,平移直线l ,经过可行域上的点A (4,2)时,z 取最大值,即z max =2×4+2=10,故选C .(2)由不等式组画出可行域,如图(阴影部分).x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看作常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴ z max =5+4=9.命题方向2 ⇨求非线性目标函数的最值问题例题2 已知⎩⎪⎨⎪⎧x -y +2≥0x +y -4≥02x -y -5≤0,求:(1)z =x 2+y 2-10y +25的最小值; (2)z =2y +1x +1的范围.[分析] (1)其中z =x 2+y 2-10y +25=(x -0)2+(y -5)2的几何意义为平面区域内的点(x ,y )到(0,5)距离的平方;(2)z =2y +1x +1=2·y -⎝ ⎛⎭⎪⎫-12x --1的几何意义为平面区域内的点(x ,y )与⎝⎛⎭⎪⎫-1,-12连线斜率的2倍.关键将目标函数进行变形找到其几何意义,再利用数形结合知识求解.[解析] 作出可行域,如图.A (1,3),B (3,1),C (7,9).(1)z =x 2+(y -5)2表示可行域内任一点(x ,y )到点M (0,5) 的距离的平方,过M 作AC 的垂线,易知垂足在AC 上,故 |MN |=|0-5+2|1+-12=32=322. |MN |2=92,所以z =x 2+y 2-10y +25的最小值为92.(2)z =2·y -⎝ ⎛⎭⎪⎫-12x --1表示可行域内点(x ,y )与定点Q ⎝⎛⎭⎪⎫-1,-12连线斜率的2倍.∵k QA =74,k QB =38,故z 的范围是[34,72].『规律总结』 对于目标函数不是直线的形式,这类问题常考虑目标函数的几何意义. (1)形如y -bx -a的式子,表示动点M (x ,y )和定点N (a ,b )连线的斜率k . (2)形如x -a2+y -b2的式子,表示动点M (x ,y )到定点N (a ,b )的距离|MN |;而(x -a )2+(y -b )2表示动点M (x ,y )到定点N (a ,b )的距离的平方,即|MN |2.(3)形如|ax +by +c |a 2+b 2的式子,表示动点M (x ,y )到直线ax +by +c =0的距离d ;而|ax +by +c |表示a 2+b 2d .〔跟踪练习2〕(1)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为255.[解析] 本题考查不等式组表示平面区域,点到直线距离公式等. 区域D 如图所示:则(1,0)到区域D 的最小值即为(1,0)到直线y =2x 的距离:|2×1-0|5=255.(2)设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.①求u =x 2+y 2的最大值与最小值; ②求v =yx -5的最大值与最小值.[解析] 画出满足条件的可行域,如图阴影部分所示.①u =x 2+y 2表示可行域内的任一点与坐标原点距离的平方,由图可知,u max =|OC |2=73,u min =0.②v =yx -5表示可行域内的点(x ,y )到定点D (5,0)的斜率,由图可知,k BD 最大,k CD 最小,又C (3,8),B (3,-3),所以v max =-33-5=32,v min =83-5=-4.命题方向3 ⇨已知目标函数的最值求参数例题3 已知变量x 、y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z=ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为(1,+∞).[分析] 作出可行域,平移直线使其过(3,1)点时,在y 轴上的截距也取得最大值.[解析] 由约束条件画出可行域(如图所示).为矩形ABCD (包括边界).点C 的坐标为(3,1),z 最大时,即平移y =-ax 时使直线在y 轴上的截距最大, ∴-a <k CD ,即-a <-1,∴a >1.『规律总结』 这是一道线性规划的逆向思维问题,解答此类问题必须要明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想方法求解.〔跟踪练习3〕本例中,若使目标函数z =ax +y (a >0)取得最大值的点有无数个,则a 的范围又是什么? [解析] 若目标函数z =ax +y (a >0)取得最大值的点有无数个,则必有直线z =ax +y 与直线x +y =4重合,此时a =1.Y 易混易错警示i hun yi cuo jing shi例题4 设变量x ,y 满足条件⎩⎪⎨⎪⎧3x +2y ≤10x +4y ≤11x ∈Z ,y ∈Zx >0,y >0.求S =5x +4y 的最大值.[误解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A (95,2310)时,S =5x +4y 取最大值,S max =915.因为x 、y 为整数,而离点A 最近的整点是C (1,2),这时S =13,所要求的最大值为13.[辨析] 显然整点B (2,1)满足约束条件,且此时S =14,故上述解法不正确. 对于整点解问题,其最优解不一定是离边界点最近的整点.而要先对边界点作目标函数t =Ax +By 的图像, 则最优解是在可行域内离直线t =Ax +By 最近的整点.[正解] 依约束条件画出可行域如上述解法中的图示,作直线l: 5x +4y =0,平行移动直线l 经过可行域内的整点B (2,1)时,S max =14.B 本节思维导图ei jie si wei dao tu简单的线性规划问题⎩⎪⎨⎪⎧约束条件、目标函数、可行解、可行域、最优解线性目标函数最优解的确定整数线性规划问题的解法非线性目标函数的最值求解。
3.4.3简单线性规划的应用 教案(北师大版必修五)
设 A 类旅游线路开发 x 条, B 类旅游线路开发 y 条, 则y≥8, x+y≤20,
z=0.8x+0.5y,不等式组表示的可行域是以(12,8),(5,8),(5,15)为顶点的三 角形区域(含边界), 又 x,y∈N*,易知在点(12,8)处 z 取得最大值,所以 zmax=0.8×12+0.5×8 =13.6(万元). 【答案】 13.6 求最小值的实际应用 营养学家指出,成人良好的日常饮食应该至少提供 0.075 kg 的碳水化合 物, 0.06 kg 的蛋白质, 0.06 kg 的脂肪.1 kg 食物 A 含有 0.105 kg 碳水化合物, 0.07
4.3 简单线性规划的应用 ●三维目标 1.知识与技能 掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题. 2.过程与方法 通过实例的分析,体会利用线性规划的方法,解决问题的过程. 3.情感、态度与价值观 引发学生学习和使用数学知识的兴趣,发展创新精神,培养理论与实际相结 合的科学态度. ●重点难点 重点:利用线性规划解决实际问题. 难点:把实际问题转化为线性规划问题. ●教学建议 解决线性规划的应用问题时,分析题目的已知条件,找出约束条件和目标函 数是关键.可先将题目中的量分类,列出表格理清头绪,然后列出不等式(组)寻 求约束条件, 并就题目所述找到目标函数,另外若实际问题要求的最优解是整数 解,而利用图解法得到的为非整数解,则应适当调整,其方法应以与线性目标函 数的直线的距离为依据, 在直线的附近寻求与此直线距离最近的整点,不要在用 图解法所得的近似解附近寻找, 如果可行域中的整点数目很少,采用逐个试验法 也是很有效的办法. ●教学流程
1.解答本题关键是准确理解题意,明确有哪些限制条件,理清题中量与量 之间的关系. 2.解决实际问题中的线性规划问题,要先审清题意,然后通过设元,根据 实际问题列出不等式组,写出目标函数,再根据不等式组画出平面区域,求出目 标函数的最值. 2013 年,第 12 届全运会将在辽宁举行,届时旅游市场将会火爆.一家旅行 社计划开发 A、B 两类旅游线路,A 类每条旅游线路的利润是 0.8 万元,B 类每 条旅游线路的利润是 0.5 万元,且 A 类旅游线路不能少于 5 条,B 类旅游线路不 能少于 8 条,两类旅游线路的和不能超过 20 条,则该旅行社能从这两类旅游线 路中获取的最大利润是________万元. x≥5, 【解析】
高中数学 3.4.2《简单线性规划》学案 北师大版必修5
解线性规划应用问题的一般步骤:1)理清题意,列出表格:2)设好变元并列出不等式组和目标函数3)由二元一次不等式表示的平面区域做出可行域;4)在可行域内求目标函数的最优解5)还原成实际问题(准确作图,准确计算)
作业布置
课后反思
审核
备课组(教研组):教务处:
②某家具厂有方木材90m3,木工板600m3,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1m3、木工板2m3;生产每个书橱需要方木料0.2m3,木工板1m3,出售一张书桌可以获利80元,出售一张书橱可以获利120元(1)怎样安排生产可以获利最大?(2)若只生产书桌可以获利多少?(3)若只生产书橱可以获利多少?
3.在可行域内找整数解,一般采用平移找解法,即打网络、找整点、平移直线、找出整数最优解
3达标训练:
①咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g、咖啡4g、糖3g,乙种饮料每杯含奶粉4g、咖啡5g、糖10g.已知每天原料的使用限额为奶粉3600g,咖啡2000g糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?简单线性规划Fra bibliotek应用数学导学案设计
第三章第节
课题名称
授课时间
第周星期第节
课型
新授课
学习目标
从实际情境中抽象出简单线性规划问题并解决
重点难点
列出约束条件及写出目标函数
学习过程
与方法
1.自主学习:
若实数 满足 求 的最大值及最小值
2.精讲互动:
例1:某工厂生产甲、乙两种产品.已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1吨需消耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、消耗B种矿石不超过200t、消耗煤不超过360t.甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?
【高中教育】高中数学北师大版必修5简单线性规划的应用导学案.doc
第10课时简单线性规划的应用1.了解线性规划的实际意义,能把实际问题转化成线性规划问题.2.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题.上一课时我们共同学习了简单线性规划的基本概念,了解了图解法的步骤等,线性规划是一种重要的数学工具,是函数、不等式、解析几何等知识的综合交汇点,地位重要,这一讲我们将共同探究线性规划的综合应用.问题1:用的方法解决实际问题中的最值问题是线性规划的实际应用.问题2:线性规划常见的具体问题(1)物资调配问题;(2)产品安排问题;(3)下料问题;(4)利润问题;(5)饲料、营养等问题.问题3:解线性规划应用题的步骤:(1)列表转化为线性规划问题;(2)设出相关变量,列出线性约束条件对应的不等式(组),写出;(3)正确画出可行域,求出目标函数的最值及相应的变量值;(4)写出实际答案.问题4:线性规划的整数解问题:线性规划实际应用中常常碰到的实际问题是一些整数解问题,这要求在解题时取值应该找到符合条件的整数点,即,不是整点应该找出旁边的整点.1.某班计划用少于100元的钱购买单价分别为2元和1元的大小彩球装点联欢晚会的会场,根据需要,大球数不少于10个,小球数不少于20个,请你给出几种不同的购买方案?2.某厂拟生产甲、乙两种适销产品,每件销售收入分别为 3000 元、2000 元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工 1 件甲产品所需工时分别为1 h、2 h,加工 1 件乙产品所需工时分别为 2 h、1 h,A、B两种设备每月有效使用工时数分别为 400 h 和 500 h.如何安排生产可使收入最大?3.某企业生产A、B两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表:已知生产A产品每吨的利润是7万元,生产B产品每吨的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A、B两种产品各多少吨,才能获得最大利润?4.某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?下料问题某车间有一批长250 cm的坯料,现因产品需要,要将它截成长为130 cm和110 cm两种不同木料,生产任务规定:长130 cm木料100根,长110 cm木料150根,问如何开料,使总的耗坯数最少?物资调配问题某运输公司接受了向抗洪救灾地区每天送至少180 t支援物资的任务.该公司有8辆载重6 t的A型卡车与4辆载重为10 t的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次;每辆卡车每天往返的成本费为A型卡车320元,B型卡车504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?产品安排问题预算用2000元购买单价为50元的桌子和20元的椅子,并希望桌椅的总数尽可能多,但椅子数不能少于桌子数,且不多于桌子数的1.5倍.问:桌、椅各买多少才合适?要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?有粮食和石油两种物资,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果见表.现在要在一天内运输至少2000 t 粮食和1500 t 石油,需至少安排多少艘轮船和多少架飞机?投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可使获利最大?1.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用为400元,可装洗衣机20台;每辆乙型货车运输费用为300元,可装洗衣机10台.若每辆车至多运一次,则该厂所花的最少运输费用为().A.2000元B.2200元C.2400元D.2800元2.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A原料1千克、B 原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克,通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ).A.1800元B.2400元C.2800元D.3100元3.某实验室需购某处化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格是120元.在满足需要的条件下,最少需花费 元.4.要将甲、乙两种长短不同的钢管截成A 、B 、C 三种规格,两种钢管可同时截得三种规格的钢管的根数如下表所示:今需A 、B 、C 三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少?1.(2013年·山东卷)在平面直角坐标系xOy 中,M 为不等式组所表示的区域上一动点,则直线OM 斜率的最小值为( ).A .2B .1C .-D .-考题变式(我来改编):2.(2013年·广西卷)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是.考题变式(我来改编):第10课时前n项和S n的求法知识体系梳理问题1:(1)q=1或q≠1(2)①②n2③n(n+1)问题3:(1)-(2)(-)(3)(-)(4)(-)问题4:(-) (-)基础学习交流1.C 对n 赋值验证,只有C 正确.2.C ∵a n ==-,∴S n =1-==,解得n=2013.3.2n+1-n-2 由题意得a n =1+2+22+…+2n-1==2n -1,∴S n =(21-1)+(22-1)+(23-1)+…+(2n -1)=(21+22+…+2n )-n=-n=2n+1-n-2.4.解:(1)当n 为奇数时,S n =(a 1+a 3+a 5+…+a n )+(a 2+a 4+a 6+…+a n-1) =+=·2n+2+-.(2)当n 为偶数时,S n =(a 1+a 3+a 5+…+a n-1)+(a 2+a 4+a 6+…+a n )=+=·2n+1++-.重点难点探究探究一:【解析】S n =++++…++=(++…+)+(++…+)=+=(1-).【小结】若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.探究二:【解析】(1)设b n =,b 1==2.∴bn -bn-1=-=(an-2an-1+1)=(2n-1+1)=1.∴数列{}是首项为2,公差为1的等差数列.(2)由(1)知,=2+(n-1)×1,∴an-1=(n+1)·2n,∴Sn=2·21+3·22+…+n·2n-1+(n+1)·2n,①∴2Sn=2·22+3·23+…+n·2n+(n+1)·2n+1,②①-②,得-Sn=4+(22+23+…+2n)-(n+1)·2n+1,∴Sn=-4-4(2n-1-1)+(n+1)·2n+1,∴Sn=n·2n+1.【小结】根据题中条件,利用等差数列的定义来判断数列的属性并求出通项公式,这一方法必须掌握,错位相减法求和方法是数列求和的常用方法.探究三:【解析】(1)令n=1,得a1=2a1-1,由此得a1=1.因为S n=2a n-n,所以S n+1=2a n+1-(n+1),两式相减得S n+1-S n=2a n+1-(n+1)-2a n+n,即a n+1=2an+1,所以a n+1+1=2a n+1+1=2(a n+1),即=2,故数列{a n+1}是首项为a1+1=2,公比为2的等比数列,所以a n+1=2·2n-1=2n,故数列{a n}的通项公式是a n=2n-1.(2) 由(1)得,b n====-,所以T n=b1+b2+…+b n=(-)+(-)+…+(-)=1-.【小结】要掌握裂项相消法的本质:裂项是为了消去相同项.思维拓展应用应用一:(1)∵a n=1+2+3+…+n=n(n+1)=n2+n,∴Sn=(12+22+…+n2)+(1+2+…+n)=×n(n+1)(2n+1)+n(n+1)=n(n+1)(n+2).(2)先对通项求和an=1+++…+=2-,∴Sn=(2+2+…+2)-(1+++…+)=2n-(1+++…+)=2n-2+.应用二:(1)∵b n+1-b n=-=-=1,又b1=0,∴{b n}是首项为0,公差为1的等差数列,∴bn =n-1,∴an=(n-1)·3n+2n.(2)设T n=0·31+1·32+…+(n-1)·3n,则3T n=0·32+1·33+…+(n-1)·3n+1.∴-2Tn=32+…+3n-(n-1)·3n+1=-(n-1)·3n+1,∴Tn=+=,∴Sn =Tn+(2+22+…+2n)=.应用三:(1)=(-),∴Sn=(1-+-+-+……+-+-)=(1+--)=.(2)=(-)∴Sn=[(-)+(-)+(-)+…+(-)]=(-)=.基础智能检测1.A∵a n=(-1)n(3n-2),∴a1+a2+…+a10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.2.C a2=2a1=2,a3=a2+1=3,a4=2a3=6,a5=a4+1=7,a6=2a5=14,所以S6=1+2+3+6+7+14=33.3.2n+1-2∵a n+1-a n=2n,∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+22+2+2=+2=2n-2+2=2n,∴Sn==2n+1-2.4.解:∵a n===2(-),∴Sn=2[(1-)+(-)+…+(-)]=2(1-)=.全新视角拓展1.12-22+32-42+…+(-1)n+1n2=(-1)n+1设等式右边的数的绝对值构成数列{a n},∵a2-a1=2,a3-a2=3,a4-a3=4,…,a n-a n-1=n,以上所有等式相加可得a n-a1=2+3+4+…+n,即a n=1+2+3+…+n=,再观察各式的符号可知第n个等式为:12-22+32-42+…+(-1)n+1n2=(-1)n+1.2.解:(1)由-(2n-1)a n-2n=0,得(a n-2n)(a n+1)=0.由于{a n}是正项数列,所以a n=2n.(2)由a n=2n,b n=,则b n==(-),T=(1-+-+…+-+-)=(1-)=.n。
高中数学新北师大版精品教案《北师大版高中数学必修5 4.3简单线性规划的应用》
《简单的线性规划问题》(第2课时)—邹智会一、教学内容分析线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型。
简单的线性规划指的是目标函数含两个变量的线性规划,其最优解可以用数形结合方法求出。
涉及更多个变量的线性规划问题不能用初等方法解决。
二、学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例,巩固二元一次不等式(组)所表示的平面区域,使学生从实际优化问题中抽象出约束条件和目标函数,理解平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题。
从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难。
所以,通过这种从点与数对的对应,线与方程的对应,到平面区域与不等式组的对应的过渡和提升,使学生进一步理解数形结合思想方法的实质及其重要性。
三、设计思想本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以多媒体课件作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。
四、教学目标1使学生了解二元一次不等式表示平面区域;2了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;3了解线性规划问题的图解法,并能应用它解决一些简单的实际问题4培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力5结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新五、教学重难点教学重点:用图解法解决简单的线性规划问题教学难点:准确求得线性规划问题的最优解。
数学3.4.5简单的线性规划教案北师大必修5
3.4.5简单的线性规划授课类型:新授课【教学目标】1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
【教学过程】1.课题导入[复习引入]:1、二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:3、用图解法解决简单的线性规划问题的基本步骤:2.讲授新课1.线性规划在实际中的应用:例5 在上一节例4中,若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?2.课本第104页的“阅读与思考”——错在哪里?若实数x ,y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩ 求4x +2y 的取值范围. 错解:由①、②同向相加可求得:0≤2x ≤4 即 0≤4x ≤8 ③由②得 —1≤y —x ≤1将上式与①同向相加得0≤2y ≤4 ④③十④得 0≤4x 十2y ≤12以上解法正确吗?为什么?(1)[质疑]引导学生阅读、讨论、分析.(2)[辨析]通过讨论,上述解法中,确定的0≤4x ≤8及0≤2y ≤4是对的,但用x 的最大(小)值及y 的最大(小)值来确定4x 十2y 的最大(小)值却是不合理的.X 取得最大(小)值时,y 并不能同时取得最大(小)值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时简单线性规划的应用
知能目标解读
1.能从实际情境中抽象出一些简单的二元线性规划问题.
2.能利用简单线性规划知识解决实际问题.
重点难点点拨
重点:1.准确理解题意,由线性约束条件列出不等式,找出目标函数.
2.数形结合找出最优解的存在位置,特别是整数最优解问题.
难点:最优解存在位置的探求和整点最优解的找法.
学习方法指导
1.列线性规划问题中的线性约束条件不等式时,要准确理解题意,特别是“至多”、“至少”“不超过”等反映“不等关系”的词语.还要注意隐含的限制条件,如x、y是正数.x、y 是正整数等等.有时候把约束条件用图示法或列表表示,便于准确的写出不等式组.
2.线性规划的应用:线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列出这些限制条件,不能有遗漏的部分,如有时变量要求为正实数或自然数.其次是准确找到目标函数,如果数量关系多而杂,可以用列表等方法把关系理清.
应用线性规划的方法,一般须具备下列条件:
(1)一定要能够将目标表达为最大或最小化的问题;
(2)一定要有达到目标的不同方法,即必须要有不同选择的可能性存在;
(3)所求的目标函数是有约束(限制)条件的;
(4)必须将约束条件用数字表示为线性等式或线性不等式,并将目标函数表示为线性函数.
线性规划的理论和方法经常被应用于两类问题中:一是在人力、物力、资金等资源一定的条件下,如何使用其完成最多的任务;二是给定一项任务,如何合理安排和规划,能用最少的人力、物力、资金等资源来完成这项任务.
3.解线性规划应用题的步骤:
(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.
(2)求解——解这个纯数学的线性规划问题.
求解过程:
①作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l.
②平移——将l平行移动,以确定最优解所对应的点的位置.
③求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.
(3)作答——就应用题提出的问题作出回答.
4.可行域内最优解为整点的问题的处理
用图解法解线性规划题时,求整数最优解是个难点,对作图精确度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准.那么如何解决这一实际问题呢?
确定最优整数解常按以下思路进行:
(1)若可行域的“顶点”处恰好为整点,那么它就是最优解(在包括边界的情况下);
(2)若可行域的“顶点”不是整点或不包括边界时,一般采用网格法,即先在可行域内打网格、描整点、平移直线l、最先经过或最后经过的整点坐标是整数最优解.这种方法依赖作图,所以作图应尽可能精确,图上操作尽可能规范.
(3)采用优值调整法,此法的一般步骤为:
①先求出非整点最优解及其相应的最优值;
②调整最优值,代入约束条件,解不等式组;
③根据不等式组的解筛选出整点最优解.
知能自主梳理
线性规划解决的常见问题有问题、问题、问题、问题、问题等.
[答案]物资调配产品安排合理下料产品配方方案设计
思路方法技巧
命题方向求实际应用问题中的最大值
[例1]某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.已知甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
[分析]设出未知数,列出约束条件,作出可行域,确定最优解.
[解析]设公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟,总收益为z元.由题意得
x+y≤300
500x+200y≤90000,目标函数为z=3000x+2000y.
x≥0,y≥0
x+y≤300
二元一次不等式组等价于5x+2y≤900 ,
x≥0,y≥0
作出可行域(如图所示),
如上图,作直线l:3000x+2000y=0,
当直线z=3000x+2000y过点M时,z最大.
x+y=300
由,得M(100,200).
5x+2y=900
∴z max=3000×100×+2000×200=700 000(元).
因此该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大值为70万元.
[说明]解答线性规划应用题应注意以下几点:
(1)在线性规划问题的应用中,常常是题中的条件较多,因此认真审题非常重要;
(2)线性约束条件中有无等号要依据条件加以判断;
(3)结合实际问题,分析未知数x、y等是否有限制,如x、y为正整数、非负数等;
(4)分清线性约束条件和线性目标函数,线性约束条件一般是不等式,而线性目标函数却是一个等式;
(5)图对解决线性规划问题至关重要,关键步骤基本上都是在图上完成的,所以作图应尽可能地准确,图上操作尽可能规范.但作图中必然会有误差,假如图上的最优点不容易看出时,需将几个有可能是最优点的坐标都求出来,然后逐一检查,以确定最优解.
变式应用1某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
资金单位产品所需资金(百元)月资金供应量
空调机洗衣机
(百元)成本30 20 300
劳动力(工资) 5 10 110
单位利润 6 8
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
[解析]设生产空调机x台,洗衣机y台,则
30x+20y≤30000,5x+10y≤11000x,y∈N,
3x+2y≤3000
即x+2y≤2200,利润z=6x+8y.
x,y∈N
3x+2y=3000 x=400
由,得.
x+2y=2200 y=900
画图可知当直线6x+8y=z经过可行域内点A(400,900)时,z取最大值,z max=6×400+8×900=9600(百元).
答:当生产空调机400台,洗衣机900台时,可获最大利润96万元.
命题方向求实际应用问题中的最小值
[例2]某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物6个单位的蛋白质和6个单位的维生素C.一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
[分析]可以先设出未知数,列出约束条件和目标函数,再在可行域内找出最优解.
[解析]设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意得:z=2.5x+4y,且x,y满足。