Separation of variables for a lattice integrable system and the inverse problem
建筑工程常用术语大全
国际工程常用英汉词汇汇编一、基础词汇access 交通agreement 同意、协议allocation 分配、配置approval 同意、批准arbitration 仲裁Asia Development Bank 亚洲开发银行assistant 助理、助手authorize(delegate)授权、委托Bill of Quantities(BOQ) 工程量表civil works 土建工程claim 索赔comment 评论、意见commercial manager 商务经理conditions of contract 合同条件general conditions 通用条件conditions of particular application 专用条件special conditions of contract 特别条件Conditions of contract for Works of Civil Engineering Construction 土木工程施工合同条件construction management 施工管理consultant 顾问contract agreement 合同协议Contractor 承包商cooperation 合作coordination 协作cost 费用cost control 成本控制counterclaim 反索赔demobilization 退场department 部门Designer 设计者drawing 图纸shop drawing 车间图design drawing 设计图as-built drawing 竣工图blue drawing 蓝图transparent drawing 透明图construction drawing 施工图electric works 电气工程Employer(Client/Owner) 业主Engineer 工程师Engineer's representative 工程师代表engineering project 工程项目international project 国际工程overseas project 海外工程domestic project 国工程equipment 设备expatriate 外籍职员expert 专家export 出口Federation of Civil Engineering Contractor 土木工程承包商联合会formal 正式的hydromechanical works 金结工程import 进口in charge of 负责、主管informal 非正式的Institution of CivilEngineers(ICE) 土木工程师协会instrument 仪器、器械insurance 保险labour 劳务layout 布置leading company(sponsor)牵头公司、责任公司liability(responsibility/obligation) 责任、义务lump sump 总包machinery 机械manpower(human resource) 人力资源Manufacturer 制造商material 材料measure 办法、措施take effective measures 采取有效措施measurement 测量、计量memorandum 备忘录mobilization 进场objection 反对payment 支付plant 设备point of view(opinion) 观点、意见prequalification 资格预审procurement 采购profit 利润progress control 进度控制project manager 项目经理quality control 质量控制request(application) 申请、请求review 审查risk 风险river closure 截流river diversion 导流safety 安全第1/39页signature 签名site 工地、现场site engineer 现场工程师specification 规格、规staff 职员Subcontractor 分包商submission 提交supervise 监督、监视Supplier 供货商the International Chamber of Commerce国际商会unit price 单价variation(change) 变更World Bank 世界银行二、工程施工类(一)工程施工-土建类◆开挖与支护(Excavation and Support) 明挖(Open Excavation ) bench excavation 台阶开挖concrete excavation 砼开挖fault excavation 断层开挖foundation excavation 基础开挖local excavation 局部开挖mass(bulk) excavation 大面积开挖protective layer excavation 保护层开挖rock excavation 岩开挖slope excavation 边坡开挖soft ground excavation 软基开挖soil excavation 土开挖structural excavation 结构开挖tooth excavation 齿槽开挖unclassified material excavation 不分类料开挖coefficient of nonuniformity 开挖不均匀系数cutoff trench 截水槽dewatering(drainage) 排水excavation pit 开挖基坑intensity of excavation 开挖强度overexcavate ( overbreak ) 超挖pump sump 水泵坑Underexcavate ( underbreak ) 欠挖underbreak treatment 欠挖处理洞挖及地下开挖(Tunnel and Underground Excavation)a round of excavation 一个开挖循环adit 支洞advance 进尺advances depth 进尺深度breaking hole 崩落cushion hole 缓冲drift 掏槽bottom drift 底部掏槽center drift 中心掏槽side drift 边部掏槽top drift 顶部掏槽drilling 钻driving(progress) rate 进尺率easer 掏槽erecting supports for the roof and side wall 对顶拱及边墙进行支护full face excavation 全断面开挖heading and bench excavation 导流与台阶开挖loading and hauling muck(mucking ) 装拉渣loading (charging) 装药perimeter hole 边pilot tunnel 导洞removing dust 除尘removing ground water 清除地面积水shooting the explosive (blasting) 放炮top heading excavation 上导洞开挖ventilation 通风钻爆破(Drilling and Blasting) abandoned hole 废average hole depth 平均深average quantity used in unit volume blasted 平均单耗blasting result 爆破结果blockness 块度controlled perimeter blasting 边控制爆破data of explosive filled 装药参数data of holes drilled 钻参数delayed blasting 延时爆破exploratory hole 探explosive quantity 药量explosive quantity in a sound 单响药量handling misfire 处理哑炮light charge 少量装药loosening blasting 松动爆破pattern 布式distance between holes 距distance between rows 排距post shearing blasting 微差爆破prespliting blasting 预裂爆破第2/39页quantity of holes 数smooth blasting 光面爆破延时支护(rock support) expansion shell rock bolt 胀壳式拉锚杆feature rock anchor 随机锚索feature rock bolt 随机拉锚杆feature rock dowel 随机砂浆锚杆feature rock reinforcement 随机加固lattice girder 钢桁架、格构大梁pattern cement grouted rock dowel 系统水泥浆锚杆pattern resin grouted rock dowel 系统树脂浆锚杆pattern rock dowel 系统砂浆锚杆pattern rock reinforcement 系统加固permanent rock support 永久支护post-tensioned cement grouted tendon rock anchor 后拉水泥浆锚索rebound material 回弹料return rock bolt 回头拉锚杆return rock reinforcement 回头加固shotcrete anchorage 喷锚shotcrete with wire mesh 挂网喷砼steel fabric shotcrete 钢纤维喷砼steel rib 钢拱架temporary rock support 临时支护tensioned resin grouted rock bolt 树脂拉锚杆◆土料的填筑及碾压施工工序(Working Sequence)backfill 回填blend 混合compact 碾压controlled sprinkling 控制洒水cut the slope 削坡dump 卸料exploit 开采level 整平load 装料moisture condition 水分调节place and spread 摊铺remove 清除replace 重新回填retreat (do the work again) 返工scarify 翻松、刨毛screen and wash 筛分和冲洗take a sample 取样test 测试transport 运输treat 处理trim 修整缺陷(Defects)calcium particlescontaminated material 受污染料declination of the boundary 料界偏差dry 干燥lack of compaction 漏压lump sump 结块muddy 泥泞oversize material 超粒径材料pocket 囊穴seepage 渗流separation 分离shear area 剪力区lens 透镜体其它(Others)bonding surface 结合面byproduct 副产品controlling parameter 控制参数fill placement record 填筑记录frog area 蛙夯区required embankment 必要填subzone 分区◆混凝土(Concrete )air-entrained concrete(aerated concrete) 加气砼asphalt concrete 沥青砼blinding concrete 垫层砼cast-in situ(site/place)concrete 现浇砼plastic concrete 塑料砼fibrous concrete 纤维砼first stage concrete 一期砼foamed concrete 泡沫砼high-performance concrete 高性能砼high-strength concrete 高强砼intrusion concrete 压浆砼lean concrete (poor concrete) 贫砼lightweight aggregate concrete 轻骨料砼mass concrete 大体积砼non-fines concrete 无砂砼non-plastic concrete 干硬性砼non-shrinkage concrete 无收缩砼normal concrete 常态砼plain concrete 素砼第3/39页porous concrete 多砼prestressed concrete 预应力砼pump concrete 泵送砼reinforced concrete 钢筋砼roller compacted concrete( rollcrete) 碾压砼second stage concrete 二期砼作业(Activity)clearance(clearing) 清理concretepouring(placement/casting) 砼浇筑curing 养护Membrance curing 薄膜养护moist curing 湿润养护normal curing 标准养护steam curing 蒸汽养护repairing 修理Scabbling (chiping/roughening) 凿毛greencutting 冲毛surface finishing 收面vibrating 振捣缺陷(Defects)bug hole(pitted surface) 麻面cavity 狗洞cold joint 冷缝crack 裂缝deformation 变形depression 坑洼fire-damaged concrete 火损砼formwork shifting(moving) 跑模grout leakage 漏浆(挂帘)honeycomb 蜂窝incomplete vibration 不完全振捣、漏振irregularity 不规则segregation(bleeding) 离析stair(staggered joint) 错台tie rod hole 拉杆water leakage 漏水water seepage 渗水外加剂(Admixture)accelerator 速凝剂air-entraining agent 引气剂bloating(bulking /expansion) agent 膨胀剂coring admixture 着色剂early-strength admixture 早强剂gas-forming admixture 发气剂(起泡剂)fluidizer 塑化剂retarding agent 缓凝剂set-controlling admixture 调凝剂super-plasticizer 增塑剂、高效减水剂surface-active agent 表面活性剂water-reducing agent 减水剂accelerating water reducer 速凝型减水剂retarding water reducer 缓凝型减水剂waterproof agent 防水剂指标(Indexes)compressive strength 抗压强度compressive stress 压应力concrete class 砼等级final strength 终凝强度graduation 级配graduation curve 级配曲线impermeability 抗渗性initial setting strength 初凝强度mix design 配比设计resistance to freezing and thawing 抗冻融性shear strength 抗剪强度slump 坍落度specific weight/gravity 比重stability against sliding 抗滑稳定性strain 应变surface finish 表面平整度tensile strength 抗拉强度tensile stress 拉应力thermal stress 温度应力water-cement ratio 水灰比working stress 工作应力其他(Others)acceptance 验收age 龄期aggregate 骨料fine aggregate 细骨料coarse aggregate 粗骨料air pocket 气囊airtightness 气密性alternative 替代物、替换法apply 应用、施加bending moment 弯矩block 仓号binding strength 黏结强度calibration 标定cement anchor 锚固卷concrete plug 砼塞concrete precast element 砼预制件concrete release sheet 发料单第4/39页上面已看!construction joint 施工缝contamination /pollution 污染conversion(reconstruction) 改建coverage 覆盖围curing agent 养护剂delivery sheet 运料单direct discharge 直接入仓elevation 高程、正视图epoxy mortar application 还氧砂浆抹面existing 现有(存)的expansion joint 伸缩缝facilitate 使容易(便利)gabion 纤丝笼humidity 湿度identity 识别、标记ingredient 成分、配料inspection 检查、验收preliminary inspection 初验final inspection 终验appearance inspection 外观检查intact 完整的、未被触动的inter-tower joint 塔间缝introduce into 将……穿入isolate 隔离laitance 浮浆皮layer(lift)height 层高meet design requirement 满足设计要求moment of inertia 惯性距Pocket (box out/preset hole) 预留post-cooling 后冷却post tensioning 后拉pre-cooling 预冷却pre-stressing 预应力pre-tensioning 先拉pull-off test 扒拉试验reinforcement cover 钢筋保护层remark 备注section area 截面面积shearkey 抗剪键key groove 键槽shotcrete dry-mix process 干喷砼生产shotcrete wet-mix process 湿喷砼生产simplify 简化simultaneously 同时地spacer 水泥垫块spacing 间距stress concentration 应力集中symmetry 对称technical data 技术参数temperature control 温度控制temperature difference 温差temperature rise(gain) 温度升高theoretical elongation 理论延长量unloading 卸载water stop 止水PVC water stop PVC止水rubber water stop 橡皮止水copper water stop 铜止水watertightness 闭水性winter protection 冬季保温◆模板(Formwok/Shutteringform) erecting(setting up/fixing) formwork 立模Stripping (removing/dismantling) formwork 拆模bond breaker 脱模剂climbing cone 爬升锥dam bracket 大坝支架distance piece 横支撑double-curvature formwork 双曲模板flat formwork 平面模板formwork oil 模板油pigtail anchor 猪尾筋retractable formwork 进退式模板shearkey box 键槽盒sliding formwork 滑模steel form carrier 钢模台车steel formwork 钢模steel waling 钢围令、钢支撑stopend 堵头、封堵模板temporary formwork 临时模板tie rod(form tie) 拉杆tiltable formwork 倾斜式模板vault and invert formwork 顶拱及底拱模板wood formwork 木模◆钢筋(Reinforcement Rebar)distribution bar 分布筋dowel 插筋horizontal bar 水平筋lap length 搭接长度main stress bar 主应力筋overlap 搭接shear bar 剪力筋splice welding 绑条焊接starter bar 起始筋、苗子锦stirrup 箍筋support bar 架立筋vertical bar 竖直筋◆灌浆(Grouting)backfill grouting 回填灌浆consolidation grouting 固结灌浆contact grouting 接触灌浆curtain grouting 帷幕灌浆gap grouting 接缝灌浆gravity grouting 自重灌浆jet grouting 旋喷灌浆multi-stage grouting 多次灌浆pressure grouting 压力灌浆ring grouting 环行灌浆single-stage grouting 一次灌浆工艺过程(Activity)air test 通风试验backfilling of hole 封flushing test 通水试验joint washing 洗缝seal 密封soak 浸泡water pressure test 压水试验管路及组件(Circuit and Elements)air supply 风包arising pipe 升降管circuit 回路clamp 卡子cock 旋塞coil 蛇形管cylinder 缸套double nipple 对丝连接套expansion coupling 伸缩节female-quick coupling 丝快接头fixed clamp 死卡flow rate meter 测量计galvanized elbow 镀锌弯头grout cap 灌浆帽grout cell 出浆盒grout stop plate 止浆片grout valve 灌浆阀inlet pipe 进浆管large radius elbow 大弧弯头main pipe 总管male-quick coupling 外丝快接头outlet pipe 出浆管packer 灌浆塞piston 活塞plug 堵头reducer socket 变径管套return pipe 回浆管tee piece 三通管reduce tee piece 变径三通管swivel-clamp 转卡U-bend U弯头union 活接头ventilation pipe 排气管water supply 水包参数及指标(Parameter and Indexes)consistency 稠度fineness 细度grout take 吃浆量high take 吃浆量大grouting pressure 灌浆压力leakage rate 漏水率Lugeon 容mix proportion 浆比pumping rate 泵浆率refusal criteria 排浆标准refusal time 抽浆时间water aborptin 吸水率仪器设备(Plant and Instrument)agitator 搅拌站automatic recorder 自动记录仪chiller plant(cooling plant) 制冷站displancement point 位移点electronic grout flow meter 电子流量计extensometer 变位计flow transmitter 流量传感器foundation displacement indicator 基础位移指示器grout pump 灌浆泵hydrometer 比重计joint meter 测缝计mixing plant 制浆站monitor 监测器osmometer 渗压计pendulum 钟摆portable instrument 便携式仪器pressure gauge 压力表pressure sensor 压力传感器第6/39页reinforcement meter 钢筋计steel basin 搅拌槽strain meter 应变计temperature sensor 温度传感器terminal station 集线站reference point 参考点second order triangulation 二等三角测量set out 放线、放样stake-line 测桩线state plane coordinate system 平面坐标其他(Others)check hole 检查compartment 灌区dense mix 浓浆foundation uplift 基础隆起grout hole 灌浆instrument hole 仪器primary/secondary and tertiary grout holes 一序、二序、三序灌浆spilt spacing 加密灌浆距waste mix 弃浆◆测量(Survey)测量法及术语(Methods and Terms)adjust 校正、调整adjustment 平差allowance 容误差backsight point 后视点basic point 基础点bench mark 水准点compass 罗盘chainage(station number) 桩号chain of triangulation 三角锁check 校核、对照control point 控制点coordinate point 坐标点datum 基础面datum point 基准点deviation 偏差easily identifiable point 容易识别点error 误差first order triangulation 一等三角测量geodetic 大地测量学的geodetic surveying 大地测量joint survey 联合测量known point 已知点level surface 水准面local triangulation networks 局部三角网national coordination system 坐标网observe 观测、监视point to be located 待定点position 定位、位置reconnaissance 选点、踏勘系survey point 测点theoretical point 理论点traverse(polygon) 导线(测量)、横断error of traverse 导线闭合差lattice traverse 网格状导线long side traverse 长导线open traverse 非闭合导线short side traverse短导线traverse closure 导线闭合traverse station 导线点traverse survey 导线测量triangulation 三角测量triangulation network 三角网triangulation of high order 高等级三角网triangulation point 三角点trilateration 三边测量vertical-control net 高程控制网wood pile 木桩角度测量(Angular Measure)azimuth 位角bearing 位、象限角buddle 气泡、水准器circle 度盘、圆盘circular bubble 圆水准器collimation axis 视准轴cross-line(cross-hair) 十字丝depression angle 俯角elevation angle 仰角eyepiece(ocular) 目镜field pole(staff) 标杆foot-screw 脚螺栓horizontal angle 水平角mark 标志(明)objective lens 物镜plumb(plummet) 铅垂、垂线sight 瞄准、观测target 目标、瞄准theodolite 经纬仪tranverse axis 横轴tripod 三脚架vertical angle 竖直角第7/39页vertical axis 竖轴望远镜(Telescope)centering 对中face left 盘左face right 盘右focus 集中、焦点focusing 调焦index error 指标误差inverted position of telescope(reverse telescope)倒镜、盘右normal position of telescope(direct telescope)正镜、盘右optical plummet 光学垂准器round 测回set 套、组station 测站距离测量(Distance Measure)barometer 气压计base line(basic line/datum line) 基线battery 电池EDM(electromagnetic distance measurement) 电磁波测距filter 滤光片、滤波器laser alignment system 激光准直系统laser beam 激光束prism 棱镜range 测程、距离long range 远程medium range 中程short range 短程range finder 测距仪signal 信号spring balance 弹簧称tape 卷尺invar tape 铟瓦钢卷尺高程测量(Height Measurement)altitude/elevation 高程、海拔approximate leveling 近似置平、粗平automatic level 自动定平水准仪difference in altitude(difference of elevation ,height difference) 高差error of closure in leveling 水准闭合差exact leveling 精平、确置平level 水准仪(测点)level circuit 水准闭合环level shoe 水准尺垫line of level 水准线路national geodetic vertical datum 大地高程基准面reduced level 归化高差run back 返测run out 往测three-wire leveling 三丝法水准测量地形测量(T opographic Survey)boundary 边界、界线construction stake 施工标桩contour 等高线contour interval 等高距contouring 绘等高线contour-length method 等高线延长法contour line 等高线control network 控制网detail 细部、详图draw 绘图field 外业fix 固定、确定form line 地形图grid 格网information 注记、资料、情报marginal information 轮廓注记large-scale 大比例尺的latitude 纬度、围latitude circle 纬圈latitude line 纬线legend 图例location 定线、定位longitude 经度longitude line 经线map 地图、制图mapping 制图、测图、地质素描match line 拼接线monument 标、柱object 地物、目标plan 平面图、略图plot 绘图profile 断面(图)、纵剖图record 记录、资料setup 定置仪器site location 定位stake out 放样、定线、立桩symbol 符号、记号topographic detail 地形细部topographic map 地形图◆原形观测观测仪器和设施{Instrumentation第8/39页and Facilities)附件及配件(Acessories and Spare Parts)air-entraining meter 掺气剂Carlson-type piezometer 卡尔逊式渗压计concrete strain meter 砼应变计convergent point 收敛测点direct plumb line 正垂线earth pressure cell 土压力盒embankment piezometer 坝体渗压计embankment strain meter 堤应变计extended wire 引线foundation piezometer 基础渗压计horizontal inclinometer 水平测斜仪hydraulicinstrument 水力学仪器hydrophone 水听器inclinometer casing 测斜管interface joint meter 界面变位计inverted plumb line 倒垂线micro piezometer 微压计multiple position extensometer 多点位移计observation point 观测标点observation well 观测井optical alignment line 视准线plate strain meter 钢板计pneumatic piezometer 气压式渗压计pressure fluctuation meter 脉动压力计prestressed tendon anchorage dynamometer 预应力锚索测力计rock bolt extensometer 锚杆测力计single point extensometer 单点位移计spiral sensor 测扭仪standpipe 测压管strong-motion seismogragh 强震仪surface monument 表面标点temperature sensor 温度传感器terminal house 终端房terminal station 终端站tilt meter 倾角计time average pressure cell 时均压力计total pressure cell 总压力盒velometer 流速计vertical inclinometer 垂直测斜仪vibrating wire piezometer 震旋式渗压计vibrating wire settlement sensor 振旋式沉降仪weir with micro piezometer 带微压计的量水堰working base point 工作基点zero stress-strain meter 砼无应力计coil 盘绕component 零部件coordinator 坐标仪damping box 阻尼角differential resistance 差动电阻double layer rubber sleeve 双层保护forced centering plate 强制对中盘instrument lead 仪器电缆invar wire 铟瓦丝metal ring 金属环plumb coordinate meter 垂线坐标仪pulley 滑轮regulator 调节器riser 立管sensor 传感器spool 绕轴steel socket 钢底座tablet 药片tensioning weight 拉重锤thermistor 热敏电阻tip 测头安装过程(Procession of Installation)assemble 组装couple 连接embed 埋设install 安装insulate 绝缘maintenance 维护monitor 监测protection of instrumentation 仪器保护reduce 归纳seal 密封splice 拼接supply 提供test 测试资料(Information)assemble schematic 装配简图certificate 合格证书description 使用说明书maintenace guideline 维护指南manual 说明书operating principle 工作原理operating restraint 操作围procedure 程序trouble shooting procedure 鼓掌分析程序其他(Others)第9/39页annular space 环行空间data acquisition 数据采集data recording 数据记录leasdrilling hole 引线permanent record 永久记录material)age 龄期cement mark(strength of cement /cement grade) 水泥标号consumptive use of water normal consistance readout device 读数设备saturated 饱和的seepage isolation dike 截渗堤trapezoidal 梯形◆水工常规试验砼原材料试验(Test of Raw and Processed Material of Concrete)骨料(Aggregate)abrasion volume by Los Angeles rattler 洛杉机磨耗量accumulated retained percentage 累计筛余百分率acicular and flaky grain in aggregate 针状与片状颗粒含量alkali-aggregate reaction 碱骨料反应apparent density 视密度bulk density (unity weight) 容重clay lumps and friable particles in aggregate 黏土块及易碎颗粒含量coefficient of softening 软化系数crush index 压碎指标dry state 干燥状态exceeding and inferior grain in aggregate 超逊径颗粒含量fineness modulus 细度模数gaping place rate 空隙率grader retained percentage 分计筛余百分率grain composition 颗粒级配grain size 粒径lightweight matter in aggregate 轻物质含量mica content 云母含量moisture content(water rate) 含水率mud content 含泥量organic content 有机质含量potential reactivity of aggregate 骨料潜在活性saturation 饱和的sieving curve 筛分曲线soft grain in aggregate 软弱骨料含量soundness 坚固性surface moisture content 表面含水率water-soluble sulphide 水溶性硫化物水硬性胶凝材料(Hydraulicity cementitious标准稠度用水量degree of mobilization 流动性dissolution heat ( solution heat ) 溶解热final set 终凝flexural strength 抗弯强度flyash 粉煤灰hydration heat 水化热initial set 初凝loss on ignition(ignition loss) 烧矢量setting time 凝结时间silica fume 硅粉soundness 水泥的安定性specific surface area 比表面积specific heat 比热water demand ratio 吸水量比外加剂(Admixture)bubble stability 泡沫稳定性bubbling ability 起泡能力chloride content 氯化物含量compressive strength rate 抗压强度比contract with dry rate 干缩率dispersing coefficient 分散系数dispersing ability of water-reducing agent 减水剂分散能力loss of slump 塌落度损失sulphate content 硫酸盐含量solid content 固体含量surface tension 表面力water-reducing rate 减水率水(Water)alkalinity 碱度calcion 钙离子carbonic acid 钙酸chlorion 氯离子equivalent concentration 当量浓度oxygen consumption 耗氧量normal solution(standard solution) 标准溶液PH value PH值water analysis 水值分析砼(Concrete)砼拌和物(Mixture)assurance strength of concrete 砼保证强度bleeding rate 泌水率cement-sand ration 灰砂比design strength of concrete 砼设计标号flowability of concrete 砼的流动性mix proportion (proportion of mixture) 砼配合比mixture uniformity 拌和物的均匀性penetration-obstruction method 贯入阻力法probability of ensuring strength of concrete 砼强度保证率sand rate 砂率unit consumption of water 单位用水量water retention (water retentiveness) 保水性water-cement ratio 水灰比硬化砼(Hardened concrete)axial tensile strength 轴向抗拉强度coefficient of thermal conductivity 导热系数cooling rate 冷却率core of concrete 砼芯样creep deformation (time deformation ) 变变形form coefficient(form factor) 形状系数freezing -melting circulation 冻融循环frost-resistance mark 抗冻标号heat property of concrete 砼热学性能height-diameter ration 高径比linear expansion coefficient 线膨胀系数loss of weight 重量损失natural frequency 自振频率permeate 渗透permeated height 渗透高度permeated-resisting mark 抗渗标号relative coefficient of permeability 相对渗透系数resonance frequency 共振频率sample 试件self-grown volume deformation(砼)自生体积变形splitting tensile strength 劈裂抗拉强度static compressive modulus of elasticity 静力抗压弹数temperature conductivity 导温系数tensile modulus of elasticity 抗拉弹性模量thermal insulation warming 绝热温升ultimate tensile strain 极限拉应变ultimate tensile strength 极限抗拉强度wear rate 磨损率wear-resisting strength 抗冲磨强度砂浆(Cement)cement lime mortar 水泥灰砂浆cement mortar 水泥砂浆cement-clay mortar 水泥黏土砂浆epoxy mortar 环氧砂浆lime mortar 灰砂浆plastering mortar 抹面砂浆pointing joint mortar 勾缝砂浆土(Soil)accumulation curve (cumulative curve) 累计曲线activity index 活性指标angle of friction 摩擦角Atterberg limits(water content as limit) 阿太堡界限(界限含水量)California bearing ratio 载重比coarse-grained soil 粗粒土coefficient of compressibility 压缩系数coefficient of cubicalcompressibility 体积压缩系数coefficient of curvature 曲率系数compression 压缩compression index 压缩指数compression modulus 压缩模数consolidated-undrained (quick) shear test 固结不排水剪(固结快剪)试验consolidated-drained (slow) shear test 固结不排水剪(慢剪)试验consolidation 固结consolidation coefficient 固结系数consolidation settlement 固结沉降consolidation stress 固结应力continuous grading/gradation 连接级配contraction test(shrinkage test) 收缩试验core cutter method 环刀法creep curve 蠕变曲线critical slope 逸出坡降(临界坡降)Darcy's law 达西定律degree of consolidation 固结度degree of free swelling 自由膨胀率direct shear test 直接剪切试验direct shear test of reiteration 反复直剪强度试验distribution curve 分布曲线drift soil (shifting soil/mass flow) 流土第11/39页effective angle of inner friction 有效摩擦角effective strength envelope 有效强度包线强度unconsolidated undrained test 不固结不排水expansion force 膨胀力expansion ration(specific expansion) 膨胀率filtering flow(seepage flow) 渗流fine-grained soil 细粒土flow net(drift net) 流网hydraulic slope 水力坡降hydrometer method 比重计法hydrostatic head method 常水头法limit equilibrium state 极限平衡状态liquefaction 液化liquid limit 液限liquidity index 液化指标maximum dry density 最大干密度method of sieving 筛分法Mohr's stress circle 莫力应力圆Mohr-coulomb failure criteria 莫尔-库伦破坏准则normal stress 法向应力(正应力)oedometer curve 压缩曲线optimum moisture content 最优含水量piping 管涌plastic limit 塑限plasticity index 塑性指标pore water pressure 空隙水压力porosity 空隙率principal stress 主应力Proctor compaction test 普氏击实试验relative density 相对密度sand replacement method 灌砂法saturability (saturation degree/percent saturation) 饱和度saturated unit weight 饱和容重seepage deformation 渗透变形seepage force(seepage pressure) 渗透力seepage line 渗透线seepage speed 渗透速度shear stress 切向应力(剪应力)shrinkage limit 缩限skip(gap/jump) grading 间断级配specific gravity of soil particle 土粒比重steady seepage field 稳定渗流场stress path 应力路径total strength envelope 总强度包线triaxial compression test 三轴压缩试验unconfined compression strength 无侧限抗压剪(快剪)试验variable head method 变水头法void(pore) ratio 隙比water replacement method 灌水法wet density 湿密度其它建筑材料钢筋(steel )bending and unbending 反复弯曲cold bending test 冷弯试验elongation test 拉伸试验nominal diameter 公称直径ratio of elongation 伸长率relaxation test 松弛试验steel strand 钢绞线tensile yield strength 拉伸屈服强度ultimate tensile strength 极限抗拉强度木材(Wood)curshing strength paralled to the grain 顺纹抗压强度tensile strength paralled to the grain 顺纹抗拉强度crushing strength across th e grain 横纹抗压强度tensile strength across to the grain 横纹抗拉强度沥青(Asphalt)brittle temperature test 脆化点试验expansion test 延伸度试验penetration test 针入式试验softening point test 软化点试验test of aging 老化试验viscosity test 粘滞性试验质量管理(Quality Management)average 平均值deviation standard(error of mean squares) 均差deviation coefficient(dispersion coefficient) 离差系数index of correlation 相关系数management limit 管理界限mathematic statistics 数理统计maximum 最大值minimum 最小值normal distribution 正态分布quality assurance 质量保证第12/39页quality examination 质量检测regression curve 回归曲线relative dampness 相对湿度sample capacity 样本容量sampling frequency 取样频率specimen 样品statistical analysis 统计分析technical specification 技术规technical standard 技术标准testing circumstance 试验环境testing error 试验误差testing regulation 试验规程variance analysis 差分析◆地质(Geology)地质年代(Geochronology of Geologic Ages)Archaeozoic era (erathem) 太古代(界)Proterozoic era (erathem) 元古代(界)Palaeozoic era (erathem) 古生代(界)Mesozoic era (erathem) 中生代(界)Cenozoic era (erathem) 新生代(界)Sinian period (system) 震旦纪(系)Cambrian period (system) 寒武纪(系)Ordovician period (system) 奥纪(系)Silurian period (system) 志留纪(系)Devonian period (system) 泥盘纪(系)Carboniferous period (system) 碳纪(系)Permian period (system) 二叠纪(系)Triassic period (system) 三叠纪(系)Jurassic period (system) 侏罗纪(系)Cretaceous period (system) 白垩纪(系)Tertiary period (system) 第三纪(系)Quaternary period (system) 第四纪(系)地质构造(Geologic Structural)fault 断层normal fault 正断层reversed fault 逆断层parallel fault 平移断层gouge 断层泥stria 擦痕joint 节理primary joint 原生节理secondary joint 次生节理tension joint 节理unloading joint 卸荷节理schistosity 片理bedding 层理foliation 板理(叶理)ripple mark 波痕mud crack 泥痕rain print 雨痕orientation of bedrock 岩层产状strike 走向dip 倾向angle of dip (dip angle ) 倾角fold 褶皱anticline 背斜syncline 向斜Monocline (homocline) 单斜dome 穹隆soft stratum 软弱岩层zone of fracture(broken zone ) 破碎带affected zone 影响带platy structure 板状构造cleavage 解理fracture(rupture) 断裂fissure(crack/fracture) 裂隙岩类型(Rock type)petrology 岩学igneous rock 火成岩magmatic rock 岩浆岩lava(vocanic rock) 火山岩intrusive (invade) rock 侵入岩effusive rock 深成岩pypabussal rock 浅成岩acid rock 酸性岩inter-mediate rock 中性岩basic rock 基性岩ultrabasic rock 超基性岩granite 花岗岩porphyry 斑岩rhyolite 玢岩syenite 流纹岩trachyte 粗面岩diorite 闪长岩andesite 安山岩gabbro 辉长岩basalt 玄武岩aplite 细晶岩pegmatite 伟晶岩lamprophyre 煌斑岩diabase 辉绿岩dunite 橄榄岩pumice 浮岩第13/39页sedimentary rock 沉积岩clastic rock 碎屑岩clay rock 黏土岩chemical rock 化学岩biolith 生物岩conglomerate 砾岩siltstone 粉砂岩mudstone 泥岩shale 页岩saline rock 盐岩limestone 灰岩dolomite 白云岩marl 泥灰岩volcanic breccia 火山角砾岩volcanic agglomerate 火山块集岩tuff 凝灰岩metamorphic rock 变质岩slate 板岩phyllite 千枚岩schist 片岩gneiss 片麻岩quartzite 英岩marble 岩mylonite 糜棱岩migmatite 混合岩cataclasite 碎裂岩sediment(deposit) 沉积物(层)boulder 漂、顽cobble 卵gravel 砾sand 砂siltstone 粉土clay 黏土sandy clay 砂质黏土clayey sand 粘质砂土sandy loam 壤土、亚黏土regolith ( topsoil ) 浮土、表土loess 黄土laterite 红土peat 泥炭ooze 软泥、海泥造岩矿物(Rock-forming Minerals)talc 滑gypsum 膏calcite 解fluorite 萤apatite 磷灰feldspar 长quartz 英topaz 黄玉corundum 刚玉diamand 金刚orthoclase 正长plagloclase 斜长biotite 黑云母muscovite 白云母amphibole 角闪phroxene 辉olivine 橄榄dolomite 白云kaolinite 高岭montmorillonite 蒙脱bentonite 斑脱、膨润土illite 伊力garnet 榴子chlorite 绿泥serpentine 蛇纹pyrite 黄铁矿hematite 赤铁矿magnetite 磁铁矿limonite 褐铁矿工程地质(Engineering Geology)Geotechnics ( geotechnique) 土工学(土工技术、岩工程)rock mechanics 岩力学soil mechanics 土力学geomechanics 地质力学、岩力学engineering geological conditons 工程地质条件engineering geological problem 工程地质问题rock mass structure 岩体结构geographic and geomorphic conditions 地形地貌条件geophysical phenomenon 物理地质现象hydrogeological conditions 水文地质条件natural materials 天然材料reservoir 水库settlement 沉降displacement 位移deformation 变形tectonic stress 构造应力residual stress 残余应力angle of internal friction 摩擦角第14/39页cohesion 聚力(粘聚力、凝聚力)pressure tunnel 压力隧洞underground cavern/cavity 地下洞室overburden 覆盖物bed rock(base rock/foundation rock) 基岩firm/sound rock 坚硬岩weak/soft rock 软弱岩interbed 夹层zone of fracture (broken zones ) 破碎带homogeneity 均质性nonhomogeneity/heterogeneity 非均质性vein dyke 岩脉sediment(deposit) 沉积物(层)alluvium 冲积物(层)proluvium(diluvium) 洪积物(层)deluvium 坡积物(层)eluvium 残积物(层)eolian deposit 风积物(层)lake deposit 湖积物(层)marine deposit 海积物(层)glacial (drift) deposit 冰川沉积物(层)colluvial deposit (colluvium) 崩积物(层)isotropy 各向同性anisotropy 各向异性矿物质的物理性质(Physical Character of Minerals)hardness 硬度luster 光泽color 颜色transparencey/pellucidity 透明度streak 条痕rent/fracture 断口crystal form 晶形岩学(Petrology) classification 分类structure 构造应力texture 结构fabric 组构mineral composition 矿物组成crystalline 结晶质amorphous substance 非晶质fossil 化degree of rounding 磨圆度degree of grains 粒度地层地貌(Stratum andPhysiognomy) basin 盆地river valley 河谷river bed 河床topography 地形terrain 地势attitude 产状rock base ( batholite) 岩基rock stock 岩株rock flow 岩流rock loccolith 岩盖rock lopolith 岩盆rock dike 岩墙rock sill 岩床cross-bedding 交错层geologic structure 地质构造geotectonics 大地构造学graben 地堑horst 地垒cordance(conformity) 整合discordance(unconformity) 非整合deceptive cordance /conformity 假整合地质作用(Physical Geology Action) weathering 风化erosion 侵蚀transportation 搬运deposition/sediment 沉积denudation 剥蚀corrasion 磨蚀corrosion 腐蚀dissolution 溶蚀landslide 滑坡collapse(rock fall) 崩塌mud flow 泥流earthquake 地震intensity 烈度magnitude 震级◆水文(Hydrology)ground water(subsurface water) 地下水surface water 地表水atmospheric water 大气水runoff 径流fresh /plain /sweet water 淡水river flow/discharge 河水流量peak flood flow 洪峰流量flood out flow 洪水下泄流量dry season 枯水季wet season 丰水季flood (raining) season 汛期non-flood season 非汛期。
中山大学计算机学院离散数学基础教学大纲(2019)
中山大学本科教学大纲Undergraduate Course Syllabus学院(系):数据科学与计算机学院School (Department):School of Data and Computer Science课程名称:离散数学基础Course Title:Discrete Mathematics二〇二〇年离散数学教学大纲Course Syllabus: Discreate Mathematics(编写日期:2020 年12 月)(Date: 19/12/2020)一、课程基本说明I. Basic Information二、课程基本内容 II. Course Content(一)课程内容i. Course Content1、逻辑与证明(22学时) Logic and Proofs (22 hours)1.1 命题逻辑的语法和语义(4学时) Propositional Logic (4 hours)命题的概念、命题逻辑联结词和复合命题,命题的真值表和命题运算的优先级,自然语言命题的符号化Propositional Logic, logic operators (negation, conjunction, disjunction, implication, bicondition), compound propositions, truth table, translating sentences into logic expressions1.2 命题公式等值演算(2学时) Logical Equivalences (2 hours)命题之间的关系、逻辑等值和逻辑蕴含,基本等值式,等值演算Logical equivalence, basic laws of logical equivalences, constructing new logical equivalences1.3 命题逻辑的推理理论(2学时)论断模式,论断的有效性及其证明,推理规则,命题逻辑中的基本推理规则(假言推理、假言易位、假言三段论、析取三段论、附加律、化简律、合取律),构造推理有效性的形式证明方法Argument forms, validity of arguments, inference rules, formal proofs1.4 谓词逻辑的语法和语义 (4学时) Predicates and Quantifiers (4 hours)命题逻辑的局限,个体与谓词、量词、全程量词与存在量词,自由变量与约束变量,谓词公式的真值,带量词的自然语言命题的符号化Limitations of propositional logic, individuals and predicates, quantifiers, the universal quantification and conjunction, the existential quantification and disjunction, free variables and bound variables, logic equivalences involving quantifiers, translating sentences into quantified expressions.1.4 谓词公式等值演算(2学时) Nested Quantifiers (2 hours)谓词公式之间的逻辑蕴含与逻辑等值,带嵌套量词的自然语言命题的符号化,嵌套量词与逻辑等值Understanding statements involving nested quantifiers, the order of quantifiers, translating sentences into logical expressions involving nested quantifiers, logical equivalences involving nested quantifiers.1.5谓词逻辑的推理规则和有效推理(4学时) Rules of Inference (4 hours)证明的基本含和证明的形式结构,带量词公式的推理规则(全程量词实例化、全程量词一般化、存在量词实例化、存在量词一般化),证明的构造Arguments, argument forms, validity of arguments, rules of inference for propositional logic (modus ponens, modus tollens, hypothetical syllogism, disjunctive syllogism, addition, simplication, conjunction), using rules of inference to build arguments, rules of inference for quantified statements (universal instantiation, universal generalization, existential instantiation, existential generalization)1.6 数学证明简介(2学时) Introduction to Proofs (2 hours)数学证明的相关术语、直接证明、通过逆反命题证明、反证法、证明中常见的错误Terminology of proofs, direct proofs, proof by contraposition, proof by contradiction, mistakes in proofs1.7 数学证明方法与策略初步(2学时) Proof Methods and Strategy (2 hours)穷举法、分情况证明、存在命题的证明、证明策略(前向与后向推理)Exhaustive proof, proof by cases, existence proofs, proof strategies (forward and backward reasoning)2、集合、函数和关系(18学时)Sets, Functions and Relations(18 hours)2.1 集合及其运算(3学时) Sets (3 hours)集合与元素、集合的表示、集合相等、文氏图、子集、幂集、笛卡尔积Set and its elements, set representations, set identities, Venn diagrams, subsets, power sets, Cartesian products.集合基本运算(并、交、补)、广义并与广义交、集合基本恒等式Unions, intersections, differences, complements, generalized unions and intersections, basic laws for set identities.2.2函数(3学时) Functions (3 hours)函数的定义、域和共域、像和原像、函数相等、单函数与满函数、函数逆与函数复合、函数图像Functions, domains and codomains, images and pre-images, function identity, one-to-one and onto functions, inverse functions and compositions of functions.2.3. 集合的基数(1学时)集合等势、有穷集、无穷集、可数集和不可数集Set equinumerous, finite set, infinite set, countable set, uncountable set.2.4 集合的归纳定义、归纳法和递归(3学时)Inductive sets, inductions and recursions (3 hours)自然数的归纳定义,自然数上的归纳法和递归函数;数学归纳法(第一数学归纳法)及应用举例、强归纳法(第二数学归纳法)及应用举例;集合一般归纳定义模式、结构归纳法和递归函数。
高等数学英语词汇
高等数学英语词汇高等数学英语词汇引导语:高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的'一部分。
以下是店铺分享给大家的高等数学英语词汇,欢迎阅读!Aabelian group:阿贝尔群; absolute geometry:绝对几何; absolute value:绝对值; abstract algebra:抽象代数; addition:加法; algebra:代数; algebraicclosure:代数闭包; algebraic geometry:代数几何;algebraic geometry and analytic geometry:代数几何和解析几何; algebraic numbers:代数数; algorithm:算法; almost all:绝大多数; analytic function:解析函数; analytic geometry:解析几何; and:且;angle:角度; anticommutative:反交换律; antisymmetric relation:反对称关系; antisymmetry:反对称性; approximately equal:约等于; Archimedean field:阿基米德域; Archimedean group:阿基米德群; area:面积; arithmetic:算术; associative algebra:结合代数; associativity:结合律; axiom:公理; axiom of constructibility:可构造公理; axiom of empty set:空集公理;axiom of extensionality:外延公理; axiom of foundation:正则公理; axiom of pairing:对集公理; axiom of regularity:正则公理; axiom of replacement:代换公理; axiom of union:并集公理; axiom schema of separation:分离公理; axiom schema of specification:分离公理;axiomatic set theory:公理集合论; axiomatic system:公理系统;BBaire space:贝利空间; basis:基; Bézout's identity:贝祖恒等式; Bernoulli's inequality:伯努利不等式 ; Big O notation:大O符号; bilinear operator:双线性算子; binary operation:二元运算; binary predicate:二元谓词; binary relation:二元关系; Booleanalgebra:布尔代数;Boolean logic:布尔逻辑; Boolean ring:布尔环; boundary:边界; boundary point:边界点;bounded lattice:有界格;Ccalculus:微积分学; Cantor's diagonal argument:康托尔对角线方法; cardinal number:基数;cardinality:势; cardinality of the continuum:连续统的势; Cartesian coordinate system:直角坐标系; Cartesian product:笛卡尔积; category:范畴; Cauchy sequence:柯西序列; Cauchy-Schwarz inequality:柯西不等式; Ceva's Theorem:塞瓦定理; characteristic:特征;characteristic polynomial:特征多项式; circle:圆; class:类; closed:闭集; closure:封闭性或闭包; closure algebra:闭包代数; combinatorial identities:组合恒等式; commutativegroup:交换群; commutative ring:交换环; commutativity::交换律; compact:紧致的;compact set:紧致集合; compact space:紧致空间; complement:补集或补运算; completelattice:完备格; complete metric space:完备的度量空间; complete space:完备空间; complexmanifold:复流形; complex plane:复平面; congruence:同余; congruent:全等; connectedspace:连通空间; constructible universe:可构造全集; constructions of the real numbers:实数的构造; continued fraction:连分数; continuous:连续; continuum hypothesis:连续统假设;contractible space:可缩空间; convergence space:收敛空间; cosine:余弦; countable:可数;countable set:可数集; cross product:叉积; cycle space:圈空间; cyclic group:循环群;Dde Morgan's laws:德·摩根律; Dedekind completion:戴德金完备性; Dedekind cut:戴德金分割;del:微分算子; dense:稠密; densely ordered:稠密排列; derivative:导数; determinant:行列式; diffeomorphism:可微同构; difference:差; differentiablemanifold:可微流形;differential calculus:微分学; dimension:维数; directed graph:有向图; discrete space:离散空间; discriminant:判别式; distance:距离; distributivity:分配律; dividend:被除数;dividing:除; divisibility:整除; division:除法; divisor:除数; dot product:点积;Eeigenvalue:特征值; eigenvector:特征向量; element:元素; elementary algebra:初等代数;empty function:空函数; empty set:空集; empty product:空积; equal:等于; equality:等式或等于; equation:方程; equivalence relation:等价关系; Euclidean geometry:欧几里德几何;Euclidean metric:欧几里德度量; Euclidean space:欧几里德空间; Euler's identity:欧拉恒等式;even number:偶数; event:事件; existential quantifier:存在量词; exponential function:指数函数; exponential identities:指数恒等式; expression:表达式; extended real number line:扩展的实数轴;Ffalse:假; field:域; finite:有限; finite field:有限域; finite set:有限集合; first-countablespace:第一可数空间; first order logic:一阶逻辑; foundations of mathematics:数学基础;function:函数; functional analysis:泛函分析; functional predicate:函数谓词;fundamental theorem of algebra:代数基本定理; fraction:分数;Ggauge space:规格空间; general linear group:一般线性群; geometry:几何学; gradient:梯度;graph:图; graph of a relation:关系图; graph theory:图论; greatest element:最大元;group:群; group homomorphism:群同态;HHausdorff space:豪斯多夫空间; hereditarily finite set:遗传有限集合; Heron's formula:海伦公式; Hilbert space:希尔伯特空间;Hilbert's axioms:希尔伯特公理系统; Hodge decomposition:霍奇分解; Hodge Laplacian:霍奇拉普拉斯算子; homeomorphism:同胚; horizontal:水平;hyperbolic function identities:双曲线函数恒等式; hypergeometric function identities:超几何函数恒等式; hyperreal number:超实数;Iidentical:同一的; identity:恒等式; identity element:单位元; identity matrix:单位矩阵;idempotent:幂等; if:若; if and only if:当且仅当; iff:当且仅当; imaginary number:虚数;inclusion:包含; index set:索引集合; indiscrete space:非离散空间; inequality:不等式或不等; inequality of arithmetic and geometric means:平均数不等式; infimum:下确界; infiniteseries:无穷级数; infinite:无穷大; infinitesimal:无穷小; infinity:无穷大; initial object:初始对象; inner angle:内角; inner product:内积; inner product space:内积空间; integer:整数; integer sequence:整数列; integral:积分; integral domain:整数环; interior:内部;interior algebra:内部代数; interior point:内点; intersection:交集; inverse element:逆元;invertible matrix:可逆矩阵; interval:区间; involution:回旋; irrational number:无理数;isolated point:孤点; isomorphism:同构;JJacobi identity:雅可比恒等式; join:并运算;K格式: Kuratowski closure axioms:Kuratowski 闭包公理;Lleast element:最小元; Lebesgue measure:勒贝格测度; Leibniz's law:莱布尼茨律; Liealgebra:李代数; Lie group:李群; limit:极限; limit point:极限点; line:线; line segment:线段; linear:线性; linear algebra:线性代数; linear operator:线性算子; linear space:线性空间; linear transformation:线性变换; linearity:线性性; list of inequalities:不等式列表; list oflinear algebra topics:线性代数相关条目; locally compact space:局部紧致空间; logarithmicidentities:对数恒等式; logic:逻辑学; logical positivism:逻辑实证主义; law of cosines:余弦定理; L??wenheim-Skolem theorem:L??wenheim-Skolem 定理; lower limit topology:下限拓扑;Mmagnitude:量; manifold:流形; map:映射; mathematical symbols:数学符号; mathematicalanalysis:数学分析; mathematical proof:数学证明; mathematics:数学; matrix:矩阵;matrix multiplication:矩阵乘法; meaning:语义; measure:测度; meet:交运算; member:元素; metamathematics:元数学; metric:度量; metric space:度量空间; model:模型; modeltheory:模型论; modular arithmetic:模运算; module:模; monotonic function:单调函数;multilinear algebra:多重线性代数; multiplication:乘法; multiset:多样集;Nnaive set theory:朴素集合论; natural logarithm:自然对数; natural number:自然数; naturalscience:自然科学; negative number:负数; neighbourhood:邻域; New Foundations:新基础理论; nine point circle:九点圆; non-Euclidean geometry:非欧几里德几何; nonlinearity:非线性; non-singular matrix:非奇异矩阵; nonstandard model:非标准模型; nonstandardanalysis:非标准分析; norm:范数; normed vector space:赋范向量空间; n-tuple:n 元组或多元组; nullary:空; nullary intersection:空交集; number:数; number line:数轴;Oobject:对象; octonion:八元数; one-to-one correspondence:一一对应; open:开集; openball:开球; operation:运算; operator:算子; or:或; order topology:序拓扑; ordered field:有序域;ordered pair:有序对; ordered set:偏序集; ordinal number:序数; ordinarymathematics:一般数学; origin:原点; orthogonal matrix:正交矩阵;Pp-adic number:p进数; paracompact space:仿紧致空间; parallel postulate:平行公理;parallelepiped:平行六面体; parallelogram:平行四边形; partial order:偏序关系; partition:分割; Peano arithmetic:皮亚诺公理; Pedoe's inequality:佩多不等式; perpendicular:垂直;philosopher:哲学家; philosophy:哲学; philosophy journals:哲学类杂志; plane:平面; pluralquantification:复数量化; point:点; Point-Line-Plane postulate:点线面假设; polarcoordinates:极坐标系; polynomial:多项式; polynomial sequence:多项式列; positive-definitematrix:正定矩阵; positive-semidefinite matrix:半正定矩阵; power set:幂集; predicate:谓词; predicate logic:谓词逻辑; preorder:预序关系; prime number:素数; product:积;proof:证明; proper class:纯类; proper subset:真子集; property:性质; proposition:命题; pseudovector:伪向量; Pythagorean theorem:勾股定理;QQ.E.D.:Q.E.D.; quaternion:四元数; quaternions and spatial rotation:四元数与空间旋转;question:疑问句; quotient field:商域; quotient set:商集;Rradius:半径; ratio:比; rational number:有理数; real analysis:实分析; real closed field:实闭域; real line:实数轴; real number:实数; real number line:实数线; reflexive relation:自反关系; reflexivity:自反性; reification:具体化; relation:关系; relative complement:相对补集;relatively complemented lattice:相对补格; right angle:直角; right-handed rule:右手定则;ring:环;Sscalar:标量; second-countable space:第二可数空间; self-adjoint operator:自伴随算子;sentence:判断; separable space:可分空间; sequence:数列或序列; sequence space:序列空间; series:级数; sesquilinear function:半双线性函数; set:集合; set-theoretic definitionof natural numbers:自然数的集合论定义; set theory:集合论; several complex variables:一些复变量; shape:几何形状; sign function:符号函数; singleton:单元素集合; social science:社会科学; solid geometry:立体几何; space:空间; spherical coordinates:球坐标系; squarematrix:方块矩阵; square root:平方根; strict:严格; structural recursion:结构递归;subset:子集; subsequence:子序列; subspace:子空间; subspace topology:子空间拓扑;subtraction:减法; sum:和; summation:求和; supremum:上确界; surreal number:超实数; symmetric difference:对称差; symmetric relation:对称关系; system of linearequations:线性方程组;Ttensor:张量; terminal object:终结对象; the algebra of sets:集合代数; theorem:定理; topelement:最大元; topological field:拓扑域; topological manifold:拓扑流形; topological space:拓扑空间; topology:拓扑或拓扑学; total order:全序关系; totally disconnected:完全不连贯;totally ordered set:全序集; transcendental number:超越数; transfinite recursion:超限归纳法; transitivity:传递性; transitive relation:传递关系; transpose:转置; triangleinequality:三角不等式; trigonometric identities:三角恒等式; triple product:三重积; trivialtopology:密着拓扑; true:真; truth value:真值;Uunary operation:一元运算; uncountable:不可数; uniform space:一致空间; union:并集;unique:唯一; unit interval:单位区间; unit step function:单位阶跃函数; unit vector:单位向量;universal quantification:全称量词; universal set:全集; upper bound:上界;Vvacuously true:??; Vandermonde's identity:Vandermonde 恒等式; variable:变量;vector:向量; vector calculus:向量分析; vector space:向量空间; Venn diagram:文氏图;volume:体积; von Neumann ordinal:冯·诺伊曼序数; von Neumann universe:冯·诺伊曼全集;vulgar fraction:分数;ZZermelo set theory:策梅罗集合论; Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论; ZF settheory:ZF 系统; zero:零; zero object:零对象;下载全文。
结构化学专业英语
The Wave Behavior of Electrons 电子的波动性Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型Line Spectra 线光谱quantum numbers 量子数electron spin 电子自旋atomic orbital 原子轨道s (p/d/ f) Orbital s(p/d/f)轨道single-electron atom 单电子原子many-electron atom 多电子原子energy of orbital 轨道能量the Pauli exclusion principle 泡利不相容原理electron configuration 电子组态the periodic table 周期表row 行group 族periodic properties of the elements 元素周期律radius of atoms 原子半径ionization energy 电离能electronegativity 电负性effective nuclear charge 有效核电荷electron affinities 亲电性metals 金属nonmetals 非金属covalence bond 共价键orbital overlap 轨道重叠multiple bonds 重键量子力学quantum mechanics量子化学quantum chemistry粒子particle微观粒子microscopic particle实物粒子physical particles黑体辐射black-body radiation量子化quantization光子photon电子electron光电效应photoelectric effect波粒二象性wave-particle duality不确定关系uncertainty relation/uncertainty principle波函数wave functions算符operator动量算符momentum operator本征态eigenstate能量本征态energy eigenstate本征值eigenvalue薛定谔方程schroidinger equation态叠加原理 superposition principle of state泡利原理Pauli principle正交orthogonality归一normalizing单电子原子single-electron atom简并态degenerate state变数分离法 separation of variables量子数quantum number主量子数principal quantum number角量子数angular quantum number磁量子数magnetic quantum number自旋量子数spin quantum number自旋磁量子数spin magnetic quantum number电子云electron cloud径向分布radial distribution原子轨道atomic orbital多电子原子multi-electron atom/multiple electron atom 原子轨道能atomic orbital energy电子结合能electron binding energy基态ground state激发态excited state原子光谱atomic spectrum光谱项spectral term能态 energy state化学键chemical bond共价键covalent bond极性共价键polar covalent bond非极性共价键non-polar covalent bond分子轨道理论molecular orbital theory双原子分子diatomic molecule异核双原子分子heteronuclear diatomic molecules同核双原子分子homonuclear diatomic molecules价键理论valence bond theory分子光谱molecular spectrum拉曼光谱Raman spectrum电子能谱electron spectrum光电子能谱学photoelectron spectroscopy对称性symmetry对称操作symmetry operation对称元素symmetry elements主操作(全同操作)identity operation旋转操作rotation旋转轴rotation axis/symmetry axis反演操作inversion对称中心center of symmetry反映操作reflection镜面mirror plane/symmetry plane反轴rotoinversion axis映轴rotoreflection axis非真旋转improper rotation平移对称操作translation symmetry operator群group点群point group偶极矩dipole moment极化率polarizability手性chirality旋光性optical activity矩阵matrix特征标character多原子分子polyatomic moleculechiral molecule 手性分子enantiomorph 对映体dextro- 右旋levo- 左旋stereochemistry 立体化学stereo isomer 立体异构体covalent bond 共价键conjugated diene 共轭二烯烃conjugated system 共轭体系hybridization 杂化hybrid orbital 杂化轨道Huckel rule 休克尔规则aromatic character 芳香性infrared spectrum 红外光谱allyl cation 烯丙基正离子optical activity 旋光性carbocation 碳正离子carbanion 碳负离子hybrid orbital theory 杂化轨道理论valence shell electron pair repulsion theory 价层电子对互斥理论(VSEPR)molecular geometries 分子空间构型atomic orbital 原子轨道molecular orbital 分子轨道delocalized molecular orbital 离域分子轨道Huickel molecular orbital method 休克尔分子轨道法ethylene 乙烯butadiene 丁二烯conjugated diene 共轭二烯烃conjugated system 共轭体系allyl cation 烯丙基正离子hyperconjugation effect 超共轭效应highest occupied molecular orbital 最高占据轨道(HOMO)lowest unoccupied molecular orbital 最低空轨道(LOMO)frontier orbital theory 前线轨道理论principle of the conservation of molecular orbital symmetry 分子轨道对称守恒原理Borane 硼烷bond length 键长bond order 键级bond angle 键角bond energy 键能bond polarity 键矩dipole moment 偶极矩polarity molecule 极性分子electron configurations in octahedral complexes 八面体构型配合物的电子分布general characteristics 共性s(p/d/f)-block Elements s(p/d/f)区元素alkali metals 碱金属alkaline earth metals 碱土金属radioactivity 放射性coordination compound 配位化合物complex ion 配离子center ion 中心离子ligand 配位体coordination number 配位数coordination atom 配位原子cumulative stability constant 累积/逐级稳定常数overall stability constant 总稳定常数ethylenediamine tetraacetic acid 乙二胺四乙酸(EDTA)chelate compound 螯合物lone pair electron 孤对电子bathochromic shift 红移valence bond theory 价键理论(VB)crystal field theory 晶体场理论crystal field splitting energy 晶体场分裂能(CFSE)crystal field stabilization energy 晶体场稳定化能(CFSE)electron pairing energy 电子成对能transition metal 过渡金属octahedral complex 八面体配合物tetrahedral complex 四面体配合物square-planar complex 平面四边形配合物high-spin complex 高自旋配合物low-spin complex 低自旋配合物Jahn-Teller effect 姜-泰勒效应distortion 畸变hydration energy 水化能(水合能)hydration energy of metallic ions 金属离子水化能lattice energy 点阵能(晶格能)molecular orbital theory 分子轨道理论ligand field theory 配位场理论ligand field stabilization energy 配位场稳定化能(LFSE)empirical rule 经验规则spectrochemical series 光谱化学序列enthalpy change 焓变entropy change 熵变entropy production/increase 熵增property 性质magnetism 磁性magnetic 磁的paramagnetic 顺磁的diamagnetic 反磁的ferromagnetic 铁磁的ferrimagnetic 亚铁磁的antiferromagnetic 反铁磁的magnetic moment 磁矩nuclear magnetic moment 核磁矩permanent magnetic moment 永久磁矩anomalous magnetic moment 异常磁矩magnetic susceptibility 磁化率molar susceptibility 摩尔磁化率paramagnetic susceptibility 顺磁磁化率diamagnetic susceptibility 抗磁磁化率paramagnetic resonance 顺磁共振electron paramagnetic resonance 电子顺磁共振(EPR)electron spin resonance 电子自旋共振(ESR)electronic 电子的electric 电的nuclear magnetic resonance spectra 核磁共振谱(NMR谱)chemical shift 化学位移shielding effect 屏蔽效应crystal 晶体non-crystal 非晶体crystal structure 晶体结构metallic crystals 金属晶体ionic crystals 离子晶体covalent-network crystals 原子晶体molecular crystals 分子晶体molecular forces 分子间力intermolecular forces 分子间作用力hydrogen bonding 氢键。
半导体物理与器件第四版课后习题答案3
Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V xt x m ,,2222ψ⋅+∂ψ∂- ()tt x j ∂ψ∂=, Assume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m exp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j exp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu exp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u kSetting ()()x u x u 1= for region I, the equation becomes:()()()()021221212=--+x u k dx x du jk dxx u d α where222mE=α Q.E.D.In Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu exp This equation can be written as:()()()2222x x u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV OSetting ()()x u x u 2= for region II, this equation becomes()()dx x du jk dxx u d 22222+ ()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O α where again222mE=α Q.E.D._______________________________________3.3We have()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp The first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexp and the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212 ()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k ()[]0exp =+-⨯x k j B α We find that00= Q.E.D. For the differential equation in ()x u 2 and the proposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexp for 0<<-x b .The first boundary condition is ()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx dudx du which yields()()()C k B k A k --+--βαα()0=++D k β The third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp()()[]b k j D -+-+βexp and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp()[]0exp =+-b k j D β The fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp ()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as ()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a_______________________________________3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a_______________________________________ 3.7ka a aaP cos cos sin =+'αααLet y ka =, x a =α Theny x x xP cos cos sin =+'Consider dy dof this function.()[]{}y x x x P dy d sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydxx sin sin -=- Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-'For πn ka y ==, ...,2,1,0=n 0sin =⇒y So that, in general,()()dk d ka d a d dy dxαα===0 And 22 mE=α Sodk dEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221 α This implies thatdk dE dk d ==0α for an k π= _______________________________________ 3.8(a) πα=a 1π=⋅a E m o 212()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J 34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________3.9(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o ()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πoE19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka . From Problem 3.5, πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV_______________________________________3.10(a) πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV (b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯= 1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV_____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα727.0=a oπ727.022=⋅a E m o o()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=Jo E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6,πα515.12=aπ515.1222=⋅a E m o()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J23E E E -=∆191810830.7103646.1--⨯-⨯= 1910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________3.12For 100=T K, ()()⇒+⨯-=-1006361001073.4170.124gE164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV_______________________________________3.13The effective mass is given by1222*1-⎪⎪⎭⎫⎝⎛⋅=dk E d mWe have()()B curve dkE d A curve dk E d 2222> so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dk dEvelocity in -x directionPoints C,D: ⇒>0dk dEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dkEd positive effective mass _______________________________________3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or ()()2119108106.105.0--⨯=⨯=E J So ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4o m m 488.0=* For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C 3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m 321044.4-⨯=kg or o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_______________________________________ 3.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C 3921025.6-⨯=⇒C()()39234221025.6210054.12--*⨯⨯-=-=C m31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C 382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm_______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k . _______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE ---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dk E d -=ααcos 2122Then221222*11 αE dk Ed m o k k =⋅== or212*αE m =_______________________________________ 3.21(a) ()[]3/123/24lt dn m m m =*()()[]3/123/264.1082.04oom m =o dn m m 56.0=*(b)o o l t cnm m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cn m m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*()()[]3/22/32/3082.045.0o om m +=[]o m ⋅+=3/202348.030187.0o dp m m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=*()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cp m m 34.0=*_______________________________________ 3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψ Use separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ mEz Z Z y Y Y x X XLet01222222=+∂∂⇒-=∂∂⋅X k x X k x X X xx The solution is of the form: ()x k B x k A x X x x cos sin +=Since ()0,,=z y x ψ at 0=x , then ()00=X so that 0=B .Also, ()0,,=z y x ψ at a x =, so that ()0=a X . Then πx x n a k = where ...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k = where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---mE k k k z y xThe energy can be written as()222222⎪⎭⎫ ⎝⎛++==a n n n m E E z y x n n n z y x π _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222 mEk =We can then writemEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121 Substituting these expressions into the density of states function, we have()dE E mmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233 ππ Noting thatπ2h=this density of states function can be simplified and written as()()dE E m h a dE E g T ⋅⋅=2/33324π Dividing by 3a will yield the density of states so that()()E h m E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k a n E m n ==*π Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n *⋅=21dE Em dk n⋅⋅⋅=*2211 Then()dE Em a dE E g n T ⋅⋅⋅=*2212 π Divide by the "volume" a , so ()Em E g n *⋅=21πSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o n m m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT hm n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV()()19106.10259.0-⨯= 2110144.4-⨯=J Then ()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3- or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯= 21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3- or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=(i) At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m 3- or 171027.9⨯=c g cm 3-(ii) At 400=T K, 21105253.5-⨯=kT J ()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3-181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E h mg E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E hm 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT hmp-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m3-or 191012.4⨯=υg cm 3- (ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV; 4610134.2⨯=m 3-J 1-3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1- (b) ()E E h m g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4 For υE E =; 0=υg1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV; 4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV; 4610127.1⨯=m 3-J 1-_______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66=(ii) ()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f()269.0=E f (b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f(c) kT E E F 10=-, ()()⇒+=10exp 11E f ()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫ ⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f(c) kT E E F 10=-, ()51054.41-⨯=-E f_______________________________________3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kTE -υ; ()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1 ()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp ()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap c F E E E E =+=2υ_______________________________________ 3.3622222ma n E n π =For 6=n , Filled state()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eV For 7=n , Empty state()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eV Therefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well()222222⎪⎭⎫ ⎝⎛++=a n n n mE z y x π For 5 electrons, the 5th electron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x π()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eV For the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state 3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111or()⎪⎭⎫ ⎝⎛∆+=-kT E E f exp 11122so ()()22111E f E f -= Q.E.D. _______________________________________3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F F or()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=, ()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kT which yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫ ⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for all temperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =, 82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV,72.01=-F E E eVAt 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E fAt 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.012.1expor()191066.11-⨯=-E f (b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kT E kTE E E f g F2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E f GaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108or ()810ln 60.0+=kT()032572.010ln 60.08==kT eV ()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT ()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kT E E f F F exp 1105.019105.01exp =-=⎪⎪⎭⎫ ⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eVThen ()2034.010168.02==∆E eV _______________________________________。
偏微分方程式(Partial
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung
Separation of Variables : Use of Fourier Series
2u T 2u c2 2u
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung
Elliptic (Diffusion, Equilibrium Problems)
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung
G(t) 0 F(0) F(L) 0
F'' (x) kF(x) 0
For k = 0
F ax b 0x 0 0
X
For positive k = μ2 F Aex Be x 0ex 0ex 0 X
For negative k = -p2 F A cospx Bsin px
Hyperbolic (propagation)
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung
Parabolic (Time- or space- marching) 時間或空間步推
derivatives:
结构化学专业英语
The Wave Behavior of Electrons 电子的波动性Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型Line Spectra 线光谱quantum numbers 量子数electron spin 电子自旋atomic orbital 原子轨道s (p/d/ f) Orbital s(p/d/f)轨道single-electron atom 单电子原子many-electron atom 多电子原子energy of orbital 轨道能量the Pauli exclusion principle 泡利不相容原理electron configuration 电子组态the periodic table 周期表row 行group 族periodic properties of the elements 元素周期律radius of atoms 原子半径ionization energy 电离能electronegativity 电负性effective nuclear charge 有效核电荷electron affinities 亲电性metals 金属nonmetals 非金属covalence bond 共价键orbital overlap 轨道重叠multiple bonds 重键量子力学quantum mechanics量子化学quantum chemistry粒子particle微观粒子microscopic particle实物粒子physical particles黑体辐射black-body radiation量子化quantization光子photon电子electron光电效应photoelectric effect波粒二象性wave-particle duality不确定关系uncertainty relation/uncertainty principle波函数wave functions算符operator动量算符momentum operator本征态eigenstate能量本征态energy eigenstate本征值eigenvalue薛定谔方程schroidinger equation态叠加原理 superposition principle of state泡利原理Pauli principle正交orthogonality归一normalizing单电子原子single-electron atom简并态degenerate state变数分离法 separation of variables量子数quantum number主量子数principal quantum number角量子数angular quantum number磁量子数magnetic quantum number自旋量子数spin quantum number自旋磁量子数spin magnetic quantum number电子云electron cloud径向分布radial distribution原子轨道atomic orbital多电子原子multi-electron atom/multiple electron atom 原子轨道能atomic orbital energy电子结合能electron binding energy基态ground state激发态excited state原子光谱atomic spectrum光谱项spectral term能态 energy state化学键chemical bond共价键covalent bond极性共价键polar covalent bond非极性共价键non-polar covalent bond分子轨道理论molecular orbital theory双原子分子diatomic molecule异核双原子分子heteronuclear diatomic molecules同核双原子分子homonuclear diatomic molecules价键理论valence bond theory分子光谱molecular spectrum拉曼光谱Raman spectrum电子能谱electron spectrum光电子能谱学photoelectron spectroscopy对称性symmetry对称操作symmetry operation对称元素symmetry elements主操作(全同操作)identity operation旋转操作rotation旋转轴rotation axis/symmetry axis反演操作inversion对称中心center of symmetry反映操作reflection镜面mirror plane/symmetry plane反轴rotoinversion axis映轴rotoreflection axis非真旋转improper rotation平移对称操作translation symmetry operator群group点群point group偶极矩dipole moment极化率polarizability手性chirality旋光性optical activity矩阵matrix特征标character多原子分子polyatomic moleculechiral molecule 手性分子enantiomorph 对映体dextro- 右旋levo- 左旋stereochemistry 立体化学stereo isomer 立体异构体covalent bond 共价键conjugated diene 共轭二烯烃conjugated system 共轭体系hybridization 杂化hybrid orbital 杂化轨道Huckel rule 休克尔规则aromatic character 芳香性infrared spectrum 红外光谱allyl cation 烯丙基正离子optical activity 旋光性carbocation 碳正离子carbanion 碳负离子hybrid orbital theory 杂化轨道理论valence shell electron pair repulsion theory 价层电子对互斥理论(VSEPR)molecular geometries 分子空间构型atomic orbital 原子轨道molecular orbital 分子轨道delocalized molecular orbital 离域分子轨道Huickel molecular orbital method 休克尔分子轨道法ethylene 乙烯butadiene 丁二烯conjugated diene 共轭二烯烃conjugated system 共轭体系allyl cation 烯丙基正离子hyperconjugation effect 超共轭效应highest occupied molecular orbital 最高占据轨道(HOMO)lowest unoccupied molecular orbital 最低空轨道(LOMO)frontier orbital theory 前线轨道理论principle of the conservation of molecular orbital symmetry 分子轨道对称守恒原理Borane 硼烷bond length 键长bond order 键级bond angle 键角bond energy 键能bond polarity 键矩dipole moment 偶极矩polarity molecule 极性分子electron configurations in octahedral complexes 八面体构型配合物的电子分布general characteristics 共性s(p/d/f)-block Elements s(p/d/f)区元素alkali metals 碱金属alkaline earth metals 碱土金属radioactivity 放射性coordination compound 配位化合物complex ion 配离子center ion 中心离子ligand 配位体coordination number 配位数coordination atom 配位原子cumulative stability constant 累积/逐级稳定常数overall stability constant 总稳定常数ethylenediamine tetraacetic acid 乙二胺四乙酸(EDTA)chelate compound 螯合物lone pair electron 孤对电子bathochromic shift 红移valence bond theory 价键理论(VB)crystal field theory 晶体场理论crystal field splitting energy 晶体场分裂能(CFSE)crystal field stabilization energy 晶体场稳定化能(CFSE)electron pairing energy 电子成对能transition metal 过渡金属octahedral complex 八面体配合物tetrahedral complex 四面体配合物square-planar complex 平面四边形配合物high-spin complex 高自旋配合物low-spin complex 低自旋配合物Jahn-Teller effect 姜-泰勒效应distortion 畸变hydration energy 水化能(水合能)hydration energy of metallic ions 金属离子水化能lattice energy 点阵能(晶格能)molecular orbital theory 分子轨道理论ligand field theory 配位场理论ligand field stabilization energy 配位场稳定化能(LFSE)empirical rule 经验规则spectrochemical series 光谱化学序列enthalpy change 焓变entropy change 熵变entropy production/increase 熵增property 性质magnetism 磁性magnetic 磁的paramagnetic 顺磁的diamagnetic 反磁的ferromagnetic 铁磁的ferrimagnetic 亚铁磁的antiferromagnetic 反铁磁的magnetic moment 磁矩nuclear magnetic moment 核磁矩permanent magnetic moment 永久磁矩anomalous magnetic moment 异常磁矩magnetic susceptibility 磁化率molar susceptibility 摩尔磁化率paramagnetic susceptibility 顺磁磁化率diamagnetic susceptibility 抗磁磁化率paramagnetic resonance 顺磁共振electron paramagnetic resonance 电子顺磁共振(EPR)electron spin resonance 电子自旋共振(ESR)electronic 电子的electric 电的nuclear magnetic resonance spectra 核磁共振谱(NMR谱)chemical shift 化学位移shielding effect 屏蔽效应crystal 晶体non-crystal 非晶体crystal structure 晶体结构metallic crystals 金属晶体ionic crystals 离子晶体covalent-network crystals 原子晶体molecular crystals 分子晶体molecular forces 分子间力intermolecular forces 分子间作用力hydrogen bonding 氢键。
量子力学英文课件格里菲斯Chapter2
Curiously, the boundary condition at x = a does not determine the constant A, but rather the constant k, and hence the possible values of E can be obtained from Eq.[2.17] and [2.22]:
Once we have found the separable solutions, then, we can immediately construct a much more general solution, of the form
It so happens that every solution to the (time dependent) Schrö dinger equation can be written in this form — it is simply a matter of finding the right constants (c1, c2, c3, c4, …)so as to fit the initial conditions for the problem at hand.
Equation [2.17] is the (classical) simple harmonic oscillator equation; the general solution is
Typically, these constants are fixed by the boundary conditions of the problem. What are the appropriate boundary conditions for (x)?
hamilton-jacobi 方程
Hamilton–Jacobi equationFrom Wikipedia, the free encyclopediaIn mathematics, the Hamilton–Jacobi equation is a necessary condition describing extremalgeometry in generalizations of calculus-of-variations problems. In physics, the Hamilton–Jacobi equation (HJE)is a reformulation of classical mechanics and, thus, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.The HJE is also the only formulation of mechanics in which the motion of a particle can be represented as a wave. In this sense, the HJE fulfilled a long-held goal of theoretical physics (dating at least to Johann Bernoulli in the 18th century) of finding an analogy between the propagation of light and the motion of a particle. The wave equation followed by mechanical systems is similar to, but not identical with, Schrödinger's equation, as described below; for this reason, the HJE is considered the "closest approach" of classical mechanics to quantum mechanics.[1][2]Mathematical formulationThe Hamilton–Jacobi equation is a first-order, non-linear partial differential equation for a function called Hamilton's principal functionAs described below, this equation may be derived from Hamiltonian mechanics bytreating S as the generating function for a canonical transformation of the classical Hamiltonian.The conjugate momenta correspond to the first derivatives of S with respect to the generalized coordinatesPrincipal function as solved from the equation from contains N+1 undeterminedconstants, the last being one from integrating , and the first N denoted as. The relationship then between p and q describes the orbit in phase space in terms of these constants of motion, andare also constants of motion and can be inverted to solve q.Comparison with other formulations of mechanicsThe HJE is a single, first-order partial differential equation for the function S of the N generalized coordinates and the time t. The generalized momenta do not appear, except as derivatives of S. Remarkably, the function S is equal to the classical action.For comparison, in the equivalent Euler–Lagrange equations of motion of Lagrangian mechanics, the conjugate momenta also do not appear; however, those equations are a system of N, generally second-order equations for the time evolution of thegeneralized coordinates. Similarly, Hamilton's equations of motion are another system of 2N first-order equations for the time evolution of the generalized coordinates and their conjugate momenta .Since the HJE is an equivalent expression of an integral minimization problem such as Hamilton's principle, the HJE can be useful in other problems of the calculus of variations and, more generally, in other branches of mathematics and physics, such as dynamical systems, symplectic geometry and quantum chaos. For example, the Hamilton–Jacobi equations can be used to determine the geodesics on a Riemannian manifold, an important variational problem in Riemannian geometry.NotationFor brevity, we use boldface variables such as to represent the list of N generalized coordinatesthat need not transform like a vector under rotation. The dot product is defined here as the sum of the products of corresponding components, i.e.,DerivationAny canonical transformation involving a type-2 generating functionleads to the relations(See the canonical transformation article for more details.)To derive the HJE, we choose a generating function that makes the new Hamiltonian K identically zero. Hence, all its derivatives are also zero, and Hamilton's equations become triviali.e., the new generalized coordinates and momenta are constants of motion. The new generalized momenta are usually denoted , i.e., P m= αm. The equation for the transformed Hamiltonian KLetwhere A is a arbitrary constant, then S satisfies HJEsince .The new generalized coordinates are also constants, typically denoted as. Once we have solved for, these also give useful equationsor written in components for clarityIdeally, these N equations can be inverted to find the original generalized coordinatesas a function of the constants and , thus solving the original problem. ActionBoth Hamilton principal function S and characteristic function are closely related to action.The time derivative of S isthereforeso S is actually classical action plus an undetermined constant.When H does not explicitly depend on time,in this case W is the same as abbreviated action.Separation of variablesThe HJE is most useful when it can be solved via additive separation of variables, which directly identifies constants of motion. For example, the time t can be separated if the Hamiltonian does not depend on time explicitly. In that case, thetime derivative in the HJE must be a constant (usually denoted − E), giving the separated solutionwhere the time-independent function issometimes called Hamilton's characteristic function. The reduced Hamilton–Jacobi equation can then be writtenTo illustrate separability for other variables, we assume that a certain generalizedcoordinate q k and its derivative appear together in the Hamiltonian as a singlefunctionIn that case, the function S can be partitioned into two functions, one that depends only on q k and another that depends only on the remaining generalized coordinatesSubstitution of these formulae into the Hamilton–Jacobi equation shows that the function ψ must be a constant (denoted here as Γk), yielding a first-order ordinary differential equation for S k(q k)In fortunate cases, the function S can be separated completely into N functions S m(q m)In such a case, the problem devolves to N ordinary differential equations.The separability of S depends both on the Hamiltonian and on the choice of generalized coordinates. For orthogonal coordinates and Hamiltonians that have notime dependence and are quadratic in the generalized momenta, S will be completely separable if the potential energy is additively separable in each coordinate, where the potential energy term for each coordinate is multiplied by the coordinate-dependent factor in the corresponding momentum term of the Hamiltonian (the Staeckel conditions). For illustration, several examples in orthogonal coordinates are worked in the next sections.Example of spherical coordinatesThe Hamiltonian in spherical coordinates can be writtenThe Hamilton–Jacobi equation is completely separable in these coordinates provided that U has an analogous formwhere U r(r), Uθ(θ) and Uφ(φ) are arbitrary functions. Substitution of the completely separated solution S = S r(r) + Sθ(θ) + Sφ(φ) − Et into the HJE yieldsThis equation may be solved by successive integrations of ordinary differential equations, beginning with the φequationwhereΓφis a constant of the motion that eliminates the φ depe ndence from the Hamilton–Jacobi equationThe next ordinary differential equation involves the θ generalized coordinatewhereΓθis again a constant of the motion that elimin ates the θ dependence and reduces the HJE to the final ordinary differential equationwhose integration completes the solution for S.Example of elliptic cylindrical coordinatesThe Hamiltonian in elliptic cylindrical coordinates can be writtenwhere the foci of the ellipses are located at on the x-axis. The Hamilton–Jacobi equation is completely separable in these coordinates provided that U has an analogous formwhere Uμ(μ), Uν(ν)and U z(z) are arbitrary functions. Substitution of the completely separated solution S = Sμ(μ) + Sν(ν) + S z(z) − Et into the HJE yieldsSeparating the first ordinary differential equationyields the reduced Hamilton–Jacobi equation (after re-arrangement and multiplication of both sides by the denominator)which itself may be separated into two independent ordinary differential equationsthat, when solved, provide a complete solution for S.Example of parabolic cylindrical coordinatesThe Hamiltonian in parabolic cylindrical coordinates can be writtenThe Hamilton–Jacobi equation is completely separable in these coordinates provided that U has an analogous formwhere Uσ(σ), Uτ(τ)and U z(z) are arbitrary functions. Substitution of the completely separated solution S = Sσ(σ) + Sτ(τ) + S z(z) − Et into the HJE yieldsSeparating the first ordinary differential equationyields the reduced Hamilton–Jacobi equation (after re-arrangement and multiplication of both sides by the denominator)which itself may be separated into two independent ordinary differential equationsthat, when solved, provide a complete solution for S.Eikonal approximation and relationship to the Schrödinger equationThe isosurfaces of the function can be determined at any time t. The motion of an S-isosurface as a function of time is defined by the motions of the particles beginning at the points on the isosurface. The motion of such an isosurface can be thought of as a wave moving through space, although it does not obey the wave equation exactly. To show this, let S represent the phase of a wavewhere is a constant introduced to make the exponential argument unitless; changes in the amplitude of the wave can be represented by having S be a complex number. We may then rewrite the Hamilton–Jacobi equation aswhich is a nonlinear variant of the Schrödinger equation.11 / 11 Conversely, starting with the Schrödinger equation and our Ansatz for ψ, we arrive at[3]The classical limit () of the Schrödinger equation above becomes identical to the following variant of the Hamilton–Jacobi equation,The Hamilton–Jacobi equation in the gravitational fieldwhere g ik are the contravariant coordinates of the metric tensor, m is the rest mass of the particle and c is the speed of light.。
计算电磁学目录
Numerical Techniques in ElectromagneticsSecond EditionMatthew N. O. Sadiku, Ph.D.Numerical Techniques inElectromagnetics Second EditionBoca Raton London New York Washington, D.C.CRC PressThis book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.International Standard Book Number 0-8493-1395-3Library of Congress Card Number 00-026823Printed in the United States of America 1 2 3 4 5 6 7 8 9 0Printed on acid-free paperPrefaceThe art of computation of electromagnetic(EM)problems has grown exponentially for three decades due to the availability of powerful computer resources.In spite of this,the EM community has suffered without a suitable text on computational techniques commonly used in solving EM-related problems.Although there have been monographs on one particular technique or the other,the monographs are written for the experts rather than students.Only a few texts cover the major techniques and do that in a manner suitable for classroom use.It seems experts in this area are familiar with one or few techniques and not many experts seem to be familiar with all the common techniques.This text attempts tofill the gap.The text is intended for seniors or graduate students and may be used for a one-semester or two-semester course.The main requirements for students taking a course based on this text are introductory EM courses and a knowledge of a high-level computer language,preferably FORTRAN or C.Software packages such as Matlab and Mathcad may be helpful tools.Although familiarity with linear algebra and numerical analysis is useful,it is not required.In writing this book,three major objectives were borne in mind.First,the book is intended to teach students how to pose,numerically analyze,and solve EM problems. Second,it is designed to give them the ability to expand their problem solving skills using a variety of available numerical methods.Third,it is meant to prepare graduate students for research in EM.The aim throughout has been simplicity of presentation so that the text can be useful for both teaching and self-study.In striving after simplicity,however,the reader is referred to the references for more information. Toward the end of each chapter,the techniques covered in the chapter are applied to real life problems.Since the application of the technique is as vast as EM and author’s experience is limited,the choice of application is selective.Chapter1covers some fundamental concepts in EM.Chapter2is intended to put numerical methods in a proper perspective.Analytical methods such as separation of variables and series expansion are covered.Chapter3discusses thefinite differ-ence methods and begins with the derivation of difference equation from a partial differential equation(PDE)using forward,backward,and central differences.The finite-difference time-domain(FDTD)technique involving Yee’s algorithm is pre-vsented and applied to scattering problems.Numerical integration is covered using trapezoidal,Simpson’s,Newton-Cotes rules,and Gaussian quadratures.Chapter4on variational methods serves as a preparatory ground for the next two major topics:moment methods andfinite element methods.Basic concepts such as inner product,self-adjoint operator,functionals,and Euler equation are covered. Chapter5on moment methods focuses on the solution of integral equations.Chap-ter6onfinite element method covers the basic steps involved in using thefinite element method.Solutions of Laplace’s,Poisson’s,and wave equations using the finite element method are covered.Chapter7is devoted to transmission-line matrix or modeling(TLM).The method is applied to diffusion and scattering problems.Chapter8is on Monte Carlo methods, while Chapter9is on the method of lines.Since the publication of thefirst edition,there has been an increased awareness and utilization of numerical techniques.Many graduate curricula now include courses in numerical analysis of EM problems.However,not much has changed in compu-tational electromagnetics.A major noticeable change is in the FDTD method.The method seems to have attracted much attention and many improvements are being made to the standard algorithm.This edition adds the noticeable change in incorpo-rating absorbing boundary conditions in FDTD,FEM,and TLM.Chapter9is a new chapter on the method of lines.AcknowledgementsI am greatly indebted to Temple University for granting me a sabbatical in Fall1998 during which I was able to do most of the revision.I specifically would like to thank my dean,Dr.Keya Sadeghipour,and my chairman,Dr.John Helferty,for their support. Special thanks are due to Raymond Garcia of Georgia Tech for writing Appendices C and D in C++.I am deeply grateful to Dr.Arthur D.Snider of the University of South Florida and Mohammad R.Zunoubi of Mississippi State University for taking the time to send me the list of errors in thefirst edition.I thank Dr.Reinhold Pregla for helping in clarifying concepts in Chapter9on the method of lines.I express my deepest gratitude to my wife,Chris,and our daughters,Ann and Joyce,for their patience,sacrifices,and prayers.A Note to StudentsBefore you embark on writing your own computer program or using the ones in this text,you should try to understand all relevant theoretical backgrounds.A computeris no more than a tool used in the analysis of a program.For this reason,you should be as clear as possible what the machine is really being asked to do before setting it off on several hours of expensive computations.It has been well said by A.C.Doyle that“It is a capital mistake to theorize before you have all the evidence.It biases the judgment.”Therefore,you should never trust the results of a numerical computation unless they are validated,at least in part.You validate the results by comparing them with those obtained by previous investigators or with similar results obtained using a different approach which may be analytical or numerical.For this reason,it is advisable that you become familiar with as many numerical techniques as possible.The references provided at the end of each chapter are by no means exhaustive but are meant to serve as the starting point for further reading.Contents1 Fundamental Concepts1.1 Introduction1.2 Review of Electromagnetic Theory1.2.1 Electrostatic Fields1.2.2 Magnetostatic Fields1.2.3 Time-varying Fields1.2.4 Boundary Conditions1.2.5 Wave Equations1.2.6 Time-varying Potentials1.2.7 Time-harmonic Fields1.3 Classification of EM Problems1.3.1 Classification of Solution Regions1.3.2 Classification of Differential Equations1.4 Some Important Theorems1.4.1 Superposition Principle1.4.2 Uniqueness TheoremReferencesProblems2 Analytical Methods2.1 Introduction2.2 Separation of Variables2.3 Separation of Variables in Rectangular Coordinates2.3.1 Laplace’s Equations2.3.2 Wave Equation2.4 Separation of Variables in Cylindrical Coordinates2.4.1 Laplace’s Equation2.4.2 Wave Equation2.5 Separation of Variables in Spherical Coordinates2.5.1 Laplace’s Equation2.5.2 Wave Equation2.6 Some Useful Orthogonal Functions2.7 Series Expansion2.7.1 Poisson’s Equation in a Cube2.7.2 Poisson’s Equation in a Cylinder2.7.3 Strip Transmission Line2.8 Practical Applications2.8.1 Scattering by Dielectric Sphere2.8.2 Scattering Cross Sections2.9 Attenuation Due to Raindrops2.10 Concluding RemarksReferencesProblems3 Finite Difference Methods3.1 Introduction3.2 Finite Difference Schemes3.3 Finite Differencing of Parabolic PDEs3.4 Finite Differencing of Hyperbolic PDEs3.5 Finite Differencing of Elliptic PDEs3.5.1 Band Matrix Method3.5.2 Iterative Methods3.6 Accuracy and Stability of FD Solutions3.7 Practical Applications I — Guided Structures3.7.1 Transmission Lines3.7.2 Waveguides3.8 Practical Applications II — Wave Scattering (FDTD)3.8.1 Yee’s Finite Difference Algorithm3.8.2 Accuracy and Stability3.8.3 Lattice Truncation Conditions3.8.4 Initial Fields3.8.5 Programming Aspects3.9 Absorbing Boundary Conditions for FDTD3.10 Finite Differencing for Nonrectangular Systems3.10.1 Cylindrical Coordinates3.10.2 Spherical Coordinates3.11 Numerical Integration3.11.1 Euler’s Rule3.11.2 Trapezoidal Rule3.11.3 Simpson’s Rule3.11.4 Newton-Cotes Rules3.11.5 Gaussian Rules3.11.6 Multiple Integration3.12 Concluding RemarksReferencesProblems4 Variational Methods4.1 Introduction4.2 Operators in Linear Spaces4.3 Calculus of Variations4.4 Construction of Functionals from PDEs4.5 Rayleigh-Ritz Method4.6 Weighted Residual Method4.6.1 Collocation Method4.6.2 Subdomain Method4.6.3 Galerkin Method4.6.4 Least Squares Method4.7 Eigenvalue Problems4.8 Practical Applications4.9 Concluding RemarksReferencesProblems5 Moment Methods5.1 Introduction5.2 Integral Equations5.2.1 Classification of Integral Equations5.2.2 Connection Between Differential and Integral Equations5.3 Green’s Functions5.3.1 For Free Space5.3.2 For Domain with Conducting Boundaries5.4 Applications I — Quasi-Static Problems5.5 Applications II — Scattering Problems5.5.1 Scattering by Conducting Cylinder5.5.2 Scattering by an Arbitrary Array of Parallel Wires5.6 Applications III — Radiation Problems5.6.1 Hallen’s Integral Equation5.6.2 Pocklington’s Integral Equation5.6.3 Expansion and Weighting Functions5.7 Applications IV — EM Absorption in the Human Body5.7.1 Derivation of Integral Equations5.7.2 Transformation to Matrix Equation (Discretization)5.7.3 Evaluation of Matrix Elements5.7.4 Solution of the Matrix Equation5.8 Concluding RemarksReferencesProblems6 Finite Element Method6.1 Introduction6.2 Solution of Laplace’s Equation6.2.1 Finite Element Discretization6.2.2 Element Governing Equations6.2.3 Assembling of All Elements6.2.4 Solving the Resulting Equations6.3 Solution of Poisson’s Equation6.3.1 Deriving Element-governing Equations6.3.2 Solving the Resulting Equations6.4 Solution of the Wave Equation6.5 Automatic Mesh Generation I — Rectangular Domains6.6 Automatic Mesh Generation II — Arbitrary Domains6.6.1 Definition of Blocks6.6.2 Subdivision of Each Block6.6.3 Connection of Individual Blocks6.7 Bandwidth Reduction6.8 Higher Order Elements6.8.1 Pascal Triangle6.8.2 Local Coordinates6.8.3 Shape Functions6.8.4 Fundamental Matrices6.9 Three-Dimensional Elements6.10 Finite Element Methods for Exterior Problems6.10.1 Infinite Element Method6.10.2 Boundary Element Method6.10.3 Absorbing Boundary Conditions6.11 Concluding RemarksReferencesProblems7 Transmission-line-matrix Method7.1 Introduction7.2 Transmission-line Equations7.3 Solution of Diffusion Equation7.4 Solution of Wave Equations7.4.1 Equivalence Between Network and Field Parameters7.4.2 Dispersion Relation of Propagation Velocity7.4.3 Scattering Matrix7.4.4 Boundary Representation7.4.5 Computation of Fields and Frequency Response7.4.6 Output Response and Accuracy of Results7.5 Inhomogeneous and Lossy Media in TLM7.5.1 General Two-Dimensional Shunt Node7.5.2 Scattering Matrix7.5.3 Representation of Lossy Boundaries7.6 Three-Dimensional TLM Mesh7.6.1 Series Nodes7.6.2 Three-Dimensional Node7.6.3 Boundary Conditions7.7 Error Sources and Correction7.7.1 Truncation Error7.7.2 Coarseness Error7.7.3 Velocity Error7.7.4 Misalignment Error7.8 Absorbing Boundary Conditions7.9 Concluding RemarksReferencesProblems8 Monte Carlo Methods8.1 Introduction8.2 Generation of Random Numbers and Variables8.3 Evaluation of Error8.4 Numerical Integration8.4.1 Crude Monte Carlo Integration8.4.2 Monte Carlo Integration with Antithetic Variates8.4.3 Improper Integrals8.5 Solution of Potential Problems8.5.1 Fixed Random Walk8.5.2 Floating Random Walk8.5.3 Exodus Method8.6 Regional Monte Carlo Methods8.7 Concluding RemarksReferencesProblems9 Method of Lines9.1 Introduction9.2 Solution of Laplace’s Equation9.2.1 Rectangular Coordinates9.2.2 Cylindrical Coordinates9.3 Solution of Wave Equation9.3.1 Planar Microstrip Structures9.3.2 Cylindrical Microstrip Structures9.4 Time-Domain Solution9.5 Concluding RemarksReferencesProblemsA Vector RelationsA.1 Vector IdentitiesA.2 Vector TheoremsA.3 Orthogonal CoordinatesB Solving Electromagnetic Problems Using C++B.1 IntroductionB.2 A Brief Description of C++B.3 Object-OrientationB.4 C++ Object-Oriented Language FeaturesB.5 A Final NoteReferencesC Numerical Techniques in C++D Solution of Simultaneous EquationsD.1 Elimination MethodsD.1.1 Gauss’s MethodD.1.2 Cholesky’s MethodD.2 Iterative MethodsD.2.1 Jacobi’s MethodD.2.2 Gauss-Seidel MethodD.2.3 Relaxation MethodD.2.4 Gradient Methods ....D.3 Matrix InversionD.4 Eigenvalue ProblemsD.4.1 Iteration (or Power) MethodD.4.2 Jacobi’s MethodE Answers to Odd-Numbered ProblemsTo my teacherCarl A.Ventriceandmy par entsAyisat andSolomon Sad iku。
化学专业英语电子版
Chapter 1 Matter and MeasurementChemistry is the science of matter and the changes it undergoes. Chemists study the composition, structure, and properties of matter. They observe the changes that matter undergoes and measure the energy that is produced or consumed during these changes. Chemistry provides an understanding of many natural events and has led to the synthesis of new forms of matter that have greatly affected the way we live.Disciplines within chemistry are traditionally grouped by the type of matter being studied or the kind of study. These include inorganic chemistry, organic chemistry, physical chemistry, analytical chemistry, polymer chemistry, biochemistry, and many more specialized disciplines, e.g. radiochemistry, theoretical chemistry.Chemistry is often called "the central science" because it connects the other natural sciences such as astronomy, physics, material science, biology and geology.1.1. Classification of MatterMatter is usually defined as anything that has mass and occupies space. Mass is the amount of matter in an object. The mass of an object does not change. The volume of an object is how much space the object takes up.All the different forms of matter in our world fall into two principal categories: (1) pure substances and (2) mixtures. A pure substance can also be defined as a form of matter that has both definite composition and distinct properties. Pure substances are subdivided into two groups: elements and compounds. An element is the simplest kind of material with unique physical and chemical properties; it can not be broken down into anything simpler by either physical or chemical means. A compound is a pure substance that consists of two or more elements linked together in characteristic and definite proportions; it can be decomposed by a chemical change into simpler substances with a fixedmass ratio. Mixtures contain two or more chemical substances in variable proportions in which the pure substances retain their chemical identities. In principle, they can be separated into the component substances by physical means, involving physical changes. A sample is homogeneous if it always has the same composition, no matter what part of the sample is examined. Pure elements and pure chemical compounds are homogeneous. Mixtures can be homogeneous, too; in a homogeneous mixture the constituents are distributed uniformly and the composition and appearance of the mixture are uniform throughout. A solutions is a special type of homogeneous mixture. A heterogeneous mixture has physically distinct parts with different properties. The classification of matter is summarized in the diagram below:Matter can also be categorized into four distinct phases: solid, liquid, gas, and plasma. The solid phase of matter has the atoms packed closely together. An object that is solid has a definite shape and volume that cannot be changed easily. The liquid phase of matter has the atoms packed closely together, but they flow freely around each other. Matter that is liquid has a definite volume but changes shape quite easily. Solids and liquids are termed condensed phases because of their well-defined volumes. The gas phase of matter has the atoms loosely arranged so they can travel in and out easily. A gas has neither specific shape nor constant volume. The plasma phase of matter has the atoms existing in an excited state.1.2. Properties of MatterAll substances have properties, the characteristics that give each substance its unique identity. We learn about matter by observing its properties. To identify a substance, chemists observe two distinct types of properties, physical and chemical, which are closely related to two types of change that matter undergoes.Physical properties are those that a substance shows by itself, without changing into or interacting with another substance. Some physical properties are color, smell, temperature, boiling point, electrical conductivity, and density. A physical change is a change that does not alter the chemical identity of the matter. A physical change results in different physical properties. For example, when ice melts, several physical properties have changed, such as hardness, density, and ability to flow. But the sample has not changed its composition: it is still water.Chemical properties are those that do change the chemical nature of matter. A chemical change, also called a chemical reaction, is a change that does alter the chemical identity of the substance. It occurs when a substance (or substances) is converted into a different substance (or substances). For example, when hydrogen burns in air, it undergoes a chemical change because it combines with oxygen to form water.Separation of MixturesThe separation of mixtures into its constituents in a pure state is an important process in chemistry. The constituents of any mixture can be separated on the basis of their differences in their physical and chemical properties, e.g., particle size, solubility, effect of heat, acidity or basicity etc.Some of the methods for separation of mixtures are:(1)Sedimentation or decantation. To separatethe mixture of coarse particles of a solidfrom a liquid e.g., muddy river water.(2)Filtration. To separate the insoluble solidcomponent of a mixture from the liquidcompletely i.e. separating the precipitate(solid phase) from any solution.(3)Evaporation. To separate a non-volatilesoluble salt from a liquid or recover thesoluble solid solute from the solution.(4)Crystallization. To separate a solidcompound in pure and geometrical form.(5)Sublimation. To separate volatile solids,from a non-volatile solid.(6)Distillation. To separate the constituents of aliquid mixture, which differ in their boilingpoints.(7)Solvent extraction method. Organiccompounds, which are easily soluble inorganic solvents but insoluble or immisciblewith water forming two separate layers canbe easily separated.1.3 Atoms, Molecules and CompoundsThe fundamental unit of a chemical substance is called an atom. The word is derived from the Greek atomos, meaning “undivisible”or “uncuttable”.An atom is the smallest possible particle of a substance.Molecule is the smallest particle of a substance that retains the chemical and physical properties of the substance and is composed of two or more atoms;a group of like or different atoms held together by chemical forces. A molecule may consist of atoms of a single chemical element, as with oxygen (O2), or of different elements, as with water (H2O).A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. The term is also used to refer to a pure chemical substance composed of atoms with the same number of protons. Until March 2010, 118 elements have been observed. 94 elements occur naturally on earth, either as the pure element or more commonly as a component in compounds. 80 elements have stable isotopes, namely all elements with atomic numbers 1 to 82, except elements 43 and 61 (technetium and promethium). Elements with atomic numbers 83 or higher (bismuth and above) are inherently unstable, and undergo radioactive decay. The elements from atomic number 83 to 94 have no stable nuclei, but are nevertheless found in nature, either surviving as remnants of the primordial stellar nucleosynthesisthat produced the elements in the solar system, or else produced as short-lived daughter-isotopes through the natural decay of uranium and thorium. The remaining 24 elements so are artificial, or synthetic, elements, which are products of man-induced processes. These synthetic elements are all characteristically unstable. Although they have not been found in nature, it is conceivable that in the early history of the earth, these and possibly other unknown elements may have been present. Their unstable nature could have resulted in their disappearance from the natural components of the earth, however.The naturally occurring elements were not all discovered at the same time. Some, such as gold, silver, iron, lead, and copper, have been known since the days of earliest civilizations. Others, such as helium, radium, aluminium, and bromine, were discovered in the nineteenth century. The most abundant elements found in the earth’s crust, in order of decreasing percentage, are oxygen, silicon, aluminium, and iron. Others present in amounts of 1% or more are calcium, sodium, potassium, and magnesium. Together, these represent about 98.5% of the earth’s crust.The nomenclature and their origins of all known elements will be described in Chapter 2.A chemical compound is a pure chemical substance consisting of two or more different chemical elements that can be separated into simpler substances by chemical reactions. Chemical compounds have a unique and defined chemical structure; they consist of a fixed ratio of atoms that are held together in a defined spatial arrangement by chemical bonds. Compounds that exist as molecules are called molecular compounds. An ionic compound is a chemical compound in which ions are held together in a lattice structure by ionic bonds. Usually, the positively charged portion consists of metal cations and the negatively charged portion is an anion or polyatomic ion.The relative amounts of the elements in a particular compound do not change: Every molecule of a particular chemical substance contains acharacteristic number of atoms of its constituent elements. For example, every water molecule contains two hydrogen atoms and one oxygen atom. To describe this atomic composition, chemists write the chemical formula for water as H2O.The chemical formula for water shows how formulas are constructed. The formula lists the symbols of all elements found in the compound, in this case H (hydrogen) and O (oxygen). A subscript number after an element's symbol denotes how many atoms of that element are present in the molecule. The subscript 2 in the formula for water indicates that each molecule contains two hydrogen atoms. No subscript is used when only one atom is present, as is the case for the oxygen atom in a water molecule. Atoms are indivisible, so molecules always contain whole numbers of atoms. Consequently, the subscripts in chemical formulas of molecular substances are always integers. We explore chemical formulas in greater detail in Chapter 2.The simple formula that gives the simplest whole number ratio between the atoms of the various elements present in the compound is called its empirical formula. The simplest formula that gives the actual number of atoms of the various elements present in a molecule of any compound is called its molecular formula. Elemental analysis is an experiment that determines the amount (typically a weight percent) of an element in a compound. The elemental analysis permits determination of the empirical formula, and the molecular weight and elemental analysis permit determination of the molecular formula.1.4. Numbers in Physical Quantities1.4.1. Measurement1.Physical QuantitiesPhysical properties such as height, volume, and temperature that can be measured are called physical quantity. A number and a unit of defined size are required to describe physical quantity, for example, 10 meters, 9 kilograms.2.Exact NumbersExact Numbers are numbers known withcertainty. They have unlimited number of significant figures. They arise by directly counting numbers, for example, the number of sides on a square, or by definition:1 m = 100 cm, 1 kg = 1000 g1 L = 1000 mL, 1 minute = 60seconds3.Uncertainty in MeasurementNumbers that result from measurements are never exact. Every experimental measurement, no matter how precise, has a degree of uncertainty to it because there is a limit to the number of digits that can be determined. There is always some degree of uncertainty due to experimental errors: limitations of the measuring instrument, variations in how each individual makes measurements, or other conditions of the experiment.Precision and AccuracyIn the fields of engineering, industry and statistics, the accuracy of a measurement system is the degree of closeness of measurements results to its actual (true) value. The precision of a measurement system, also called reproducibility or repeatability, is the degree to which repeated measurements under unchanged conditions show the same results. Although the two words can be synonymous in colloquial use, they are deliberately contrasted in the context of the scientific method.A measurement system can be accurate but not precise, precise but not accurate, neither, or both. A measurement system is called valid if it is both accurate and precise. Related terms are bias (non-random or directed effects caused by a factor or factors unrelated by the independent variable) and error(random variability), respectively. Random errors result from uncontrolled variables in an experiment and affect precision; systematic errors can be assigned to definite causes and affect accuracy. For example, if an experiment contains a systematic error, then increasing the sample size generally increases precision but does not improve accuracy. Eliminating the systematic error improves accuracy but does not change precision.1.4.2 Significant FiguresThe number of digits reported in a measurement reflects the accuracy of the measurement and the precision of the measuring device. Significant figures in a number include all of the digits that are known with certainty, plus the first digit to the right that has an uncertain value. For example, the uncertainty in the mass of a powder sample, i.e., 3.1267g as read from an “analytical balance” is 0.0001g.In any calculation, the results are reported to the fewest significant figures (for multiplication and division) or fewest decimal places (addition and subtraction).1.Rules for deciding the number of significantfigures in a measured quantity:The number of significant figures is found by counting from left to right, beginning with the first nonzero digit and ending with the digit that has the uncertain value, e.g.,459 (3) 0.206 (3) 2.17(3) 0.00693 (3) 25.6 (3) 7390 (3) 7390. (4)(1)All nonzero digits are significant, e.g., 1.234g has 4 significant figures, 1.2 g has 2significant figures.(2)Zeroes between nonzero digits aresignificant: e.g., 1002 kg has 4 significantfigures, 3.07 mL has 3 significant figures.(3)Leading zeros to the left of the first nonzerodigits are not significant; such zeroes merelyindicate the position of the decimal point:e.g., 0.001 m has only 1 significant figure,0.012 g has 2 significant figures.(4)Trailing zeroes that are also to the right of adecimal point in a number are significant:e.g., 0.0230 mL has 3 significant figures,0.20 g has 2 significant figures.(5)When a number ends in zeroes that are notto the right of a decimal point, the zeroes arenot necessarily significant: e.g., 190 milesmay be 2 or 3 significant figures, 50,600calories may be 3, 4, or 5 significant figures.The potential ambiguity in the last rule can be avoided by the use of standard exponential, or "scientific" notation. For example, depending onwhether the number of significant figures is 3, 4, or 5, we would write 50,600 calories as:5.06 × 104 calories (3 significant figures)5.060 ×104calories (4 significant figures), or5.0600 × 104 calories (5 significant figures).2.Rules for rounding off numbers(1)If the digit to be dropped is greater than 5,the last retained digit is increased by one.For example, 12.6 is rounded to 13.(2)If the digit to be dropped is less than 5, thelast remaining digit is left as it is. Forexample, 12.4 is rounded to 12.(3)If the digit to be dropped is 5, and if anydigit following it is not zero, the lastremaining digit is increased by one. Forexample, 12.51 is rounded to 13.(4)If the digit to be dropped is 5 and isfollowed only by zeroes, the last remainingdigit is increased by one if it is odd, but leftas it is if even. For example, 11.5 is roundedto 12, 12.5 is rounded to 12.This rule means that if the digit to be dropped is 5 followed only by zeroes, the result is always rounded to the even digit. The rationale is to avoid bias in rounding: half of the time we round up, half the time we round down.3.Arithmetic using significant figuresIn carrying out calculations, the general rule is that the accuracy of a calculated result is limited by the least accurate measurement involved in the calculation.(1) In addition and subtraction, the result is rounded off to the last common digit occurring furthest to the right in all components. Another way to state this rules, is that, in addition and subtraction, the result is rounded off so that it has the same number of decimal places as the measurement having the fewest decimal places. For example,100 (assume 3 significant figures) + 23.643 (5 significant figures) = 123.643,which should be rounded to 124 (3 significant figures).(2) In multiplication and division, the resultshould be rounded off so as to have the same number of significant figures as in the component with the least number of significant figures. For example,3.0 (2 significant figures ) ×12.60 (4 significant figures) = 37.8000which should be rounded off to 38 (2 significant figures).1.4.3 Scientific NotationScientific notation, also known as standard form or as exponential notation, is a way of writing numbers that accommodates values too large or small to be conveniently written in standard decimal notation.In scientific notation all numbers are written like this:a × 10b("a times ten to the power of b"), where the exponent b is an integer, and the coefficient a is any real number, called the significant or mantissa (though the term "mantissa" may cause confusion as it can also refer to the fractional part of the common logarithm). If the number is negative then a minus sign precedes a (as in ordinary decimal notation).In standard scientific notation the significant figures of a number are retained in a factor between 1 and 10 and the location of the decimal point is indicated by a power of 10. For example:An electron's mass is about 0.00000000000000000000000000000091093822 kg. In scientific notation, this is written 9.1093822×10−31 kg.The Earth's mass is about 5973600000000000000000000 kg. In scientific notation, this is written 5.9736×1024 kg.1.5 Units of Measurement1.5.1 Systems of Measurement1.United States Customary System (USCS)The United States customary system (also called American system) is the most commonly used system of measurement in the United States. It is similar but not identical to the British Imperial units. The U.S. is the only industrialized nation that does not mainly use the metric system in its commercial and standards activities. Base units are defined butseem arbitrary (e.g. there are 12 inches in 1 foot)2.MetricThe metric system is an international decimalized system of measurement, first adopted by France in 1791, that is the common system of measuring units used by most of the world. It exists in several variations, with different choices of fundamental units, though the choice of base units does not affect its day-to-day use. Over the last two centuries, different variants have been considered the metric system. Metric units are universally used in scientific work, and widely used around the world for personal and commercial purposes. A standard set of prefixes in powers of ten may be used to derive larger and smaller units from the base units.3.SISI system (for Système International) was adopted by the International Bureau of Weights and Measures in 1960, it is a revision and extension of the metric system. Scientists and engineers throughout the world in all disciplines are now being urged to use only the SI system of units.1.5.2 SI base unitsThe SI is founded on seven SI base units for seven base quantities assumed to be mutually independent, as given in Table 1.1.Table 1.1 SI Base Physical Quantities and UnitsU n i tN a m e UnitSymbolBaseQuantityQuantitySymbolDimensionSymbolm m l l Le t e r e n g t hk i lo g r a m kgmassm Ms ec o nd stimet Ta mp e r e AelectriccurrentI Ik el v i n KthermodynTΘm i ct e m p e r a t u r em o l e molamountofsubstancen Nc an d e l a cdluminousIvJntensity1.5.3 SI derived unitsOther quantities, called derived quantities, aredefined in terms of the seven base quantities via asystem of quantity equations. The SI derived unitsfor these derived quantities are obtained from theseequations and the seven SI base units. Examples ofsuch SI derived units are given in Table 1.2, where itshould be noted that the symbol 1 for quantities ofdimension 1 such as mass fraction is generallyomitted.Table 1.2 SI Derived Physical Quantities and(symbol) Unit(symbol)UArea (A) squaremeterm V olume (V) cubicmeterm Density (ρ) kilogramper cubicmeterkVelocity (u) meterpersecondmPressure (p) pascal(Pa)kEnergy (E) joule (J) (k Frequency (ν) hertz(Hz)1Quantity of electricity (Q) coulomb(C)AElectromotive force (E) volt (V) (kmsForce (F) newton(N)kFor ease of understanding and convenience, 22SI derived units have been given special names andsymbols, as shown in Table 1.3.Table 1.3 SI Derived Units with special names andsymbolsD e r i v e dq u a n t i t y SpecialnameSpecialSymbolExpressionintermsofotherSIunitsSIbaseunitsp r r ml a n ea n g l e adianad·m-1=1s o l i da n g l e steradiansrm2·m-2=1f r e q u e n c y hertzHzs-1f o r c e newtonN m·kg·s-2p p P N mr e s s u r e ,s t r e s s ascala/m21·kg·s-2e n e r g y ,w o r k ,q u a n t i t yo fh e a jouleJ N·mm2·kg·s-2p o w e r ,r a d i a n tf l u x wattW J/sm2·kg·s-3e l e c t r i cc h a r g e q u a n t i t y coulombC s·Afe l e c t r i c i t ye l e c t r i cp o t e n t i a l ,p o t e n t i a l voltV W/Am2·kg·s-3·A-1i f f e r e n c e ,e l e c t r o m o t i v ef o r c ec a p a c i t a n c e faradF C/Vm-2·kg-1·s 4·A 2e l e c t r i cr e s i s t a n c e ohmΩV/Am2·kg·s-3·A-2e l e c t r i cc o nd u c t a n c siemensS A/Vm-2·kg-1·s2·Aem a g n e t i cf l u x weberWbV·sm2·kg·s-2·A-1m a g n e t i cf l u xd e n s i t y teslaT Wb/m2kg·s-2·A-1i n d henH Wb/m2u c t a n c e ryA ·kg·s-2·A-2C e l s i u st e m p e r a t u r e degreeCelsius°CKl u m i n o u s lumenlmcd·srcd·srl u xi l l u m i n a n c e luxlxlm/m2m-2·cd·sra c t i v i t y( o far a d i o n u c l i d e becquerelBqs-1a b s o r b e dd o se ,s p e c i f i ce n e r g y( i m p a r t e d ) ,grayGyJ/kgm2·s-2e r m ad o s ee q u i v a l e n t ,e ta l .sievertSvJ/kgm2·s-2c a t a l y t i ca c t i v i katalkats-1·molyCertain units that are not part of the SI are essential and used so widely that they are accepted by the CIPM (Commission Internationale des Poids Et Mesures) for use with the SI. Some commonly used units are given in Table 1.4.Table 1.4 Non-SI units accepted for use with theSIN a m e SymbolQuantityEquivalentSIunitmi n u t e mintime1min=6sho u r htime1h6min=36s da y dtime1d=24h=144min=864sdegreeo fa r c °planeangle1°=(π/18)radm i n u t eo fa r c ′planeangle1′=(1/6)°=(π/18radsecondo fa r c ″planeangle1″=(1/6)′=(1/36)°=(π/648)rdhect a r e haarea1ha=1a=1m²l i t r e lorLvolume1l=1dm3=.1m3ton n e tmass1t=13kg=1MgThe 20 SI prefixes used to form decimal multiples and submultiples of SI units are given in Table 1.5.Table 1.5 SI PrefixesF a c t o r NameSymbolFactorNameSymbol1 0 24yottaY 1-1decid1 0 21zettZ 1-2centc。
单摆运动微分方程求解
单摆运动微分方程求解## English Response:The equation of motion for a simple pendulum is a second-order nonlinear differential equation. It is given by:$$m l \frac{d^2 \theta}{dt^2} = -m g \sin \theta$$。
where:$m$ is the mass of the pendulum.$l$ is the length of the pendulum.$g$ is the acceleration due to gravity.$\theta$ is the angle of the pendulum from the vertical.This equation can be solved using a variety of methods,including:Analytical methods: These methods involve finding an exact solution to the equation of motion. One common analytical method is to use the separation of variables method.Numerical methods: These methods involve using a computer to approximate the solution to the equation of motion. One common numerical method is to use the Runge-Kutta method.In this example, we will use the separation ofvariables method to find the analytical solution to the equation of motion. The first step is to separate the variables in the equation of motion:$$m l \frac{d^2 \theta}{dt^2} = -m g \sin \theta$$。
二分图因子分解的部分重复码构造
二分图因子分解的部分重复码构造余春雷1,2,华春1,2,王萃清1,赵金阳1(1.四川文理学院智能制造学院,四川达州635000;2.政务数据安全达州市重点实验室,四川达州635002)摘要:为了提高分布式存储系统的可靠性和修复效率,提出一种基于二分图的部分重复码构造算法。
实验结果表明,与里所码以及简单再生码相比,基于二分图的部分重复码具有灵活选择参数的特性以及显著的降低了分布式存储的修复局部性、修复带宽开销。
关键词:二分图;分布式存储;数据修复;部分重复码中图分类号:TP393文献标识码:A文章编号:2096-9759(2023)07-0068-03Construction of fractional repetition codes based on bipartite graphsYU Chunlei1,2,HUA Chun1,2,WANG Cuiqing1,ZHAO Jinyang1(1.The Institute of Intelligent Manufacturing,Sichuan University of Arts and Science,Dazhou635000,China;2.Intelligent Manufacturing Industry Technology Research Institute,Dazhou635000,China;3.Key Laboratory of Government Data Security in Dazhou City,635002,China)Abstract:In order to improve the reliability and repair efficiency of distributed storage systems,an algorithm for constructing fractional repetition based on bipartite graphs is proposed.The results of the study show that,compared with reed-solomon cod-es and simple regeneration codes,FRGF codes have the characteristics of flexible parameter selection and significantly reduce repair locality,repair bandwidth overhead and repair time.Key words:Network coding;distributed storage;data repair;fractional repetition code当今社会是一个互联网高速发展的时代[1],如何保证数据的可靠性和稳定性出现在存储厂商的面前[2-3]。
quasi-normalmode...
v(x)
0.5 Real
0.4 Imaginary
0.3 Essential Numerical
0.2
0.1
0
−0.1
−0.2 0
0.1
0.2
0.3
x
Regular
0.4
0.5
Schematic plot of v(x) = J2(x)/J2(x) against x.
The essential singularity at x = 0
• We assume an ansatz of the form, representing a small perturbation of the Schwarzschild geometry,
W = −2M + (w0(r)eiνu)Y m. and similarly for other metric components.
+
2z
−
10)dJ2(z) dz
−(2z2iν + 4z + 16)J2(z) = 0,
(2)
where we have normalized the scaling of z by setting M = 1.
Then the solutions can be written as
J2j (z )
Linearized Einstein equations in null coordinates
• The Bondi-Sachs formalism uses coordinates xi = (u, r, xA) based upon a family of outgoing null hypersurfaces. We label the hypersurfaces by u =constant, null rays by xA (A = 2, 3), and the surface area coordinate by r. The metric is
分离规律自由组合规律
分离规律自由组合规律英文回答:Separating patterns and free combination patterns are two common types of patterns that can be observed invarious aspects of life. These patterns can be seen in language, mathematics, art, and even daily routines. Let's explore these two types of patterns and provide examples to illustrate their characteristics.Separating patterns refer to the patterns that involve breaking down a whole into smaller parts. These parts canbe categorized based on certain criteria or characteristics. For instance, in language, we can separate words into different parts of speech such as nouns, verbs, adjectives, and adverbs. Each part of speech has its own unique characteristics and functions.In mathematics, separating patterns can be observed in algebraic equations. For example, the equation 2x + 3y = 10can be separated into two equations: 2x = 10 3y and 3y = 10 2x. By separating the equation, we can analyze the relationship between x and y separately.In daily routines, separating patterns can be seen in meal planning. For instance, when preparing a balanced meal, we can separate the food items into different categories such as protein, carbohydrates, and vegetables. By separating the food items, we can ensure that we have awell-rounded and nutritious meal.On the other hand, free combination patterns involve combining different elements or parts together in various ways. These patterns allow for creativity and flexibility.In language, free combination patterns can be seen inidioms and collocations. For example, the phrase "kick the bucket" is an idiom that means to die. The words "kick" and "bucket" do not have a literal meaning when combined, but they create a figurative meaning when used together.In art, free combination patterns can be observed in abstract paintings. Artists often combine different colors,shapes, and textures in unique and unconventional ways to create their artwork. Each combination can evoke different emotions and interpretations.In daily life, free combination patterns can be seen in fashion. People often combine different clothing items, accessories, and colors to create their own personal style. Each combination reflects the individual's personality and taste.In conclusion, separating patterns and free combination patterns are two common types of patterns that can be observed in various aspects of life. Separating patterns involve breaking down a whole into smaller parts, while free combination patterns involve combining different elements together in creative ways. Both types of patterns contribute to the richness and diversity of our daily experiences.中文回答:分离规律和自由组合规律是生活中常见的两种模式。
03=Separating Variables
即
exp( L) exp( L) 0
上式在 0 条件下成立,但在现在的 0情况 下不成立,这意味着:方程组(12)只有零解
A B 0 X ( x) 0
求解边值问题:
3. 0 ,方程(9)的通解为
X ( x) X ( x) 0 X (0) X ( L) 0
将边界条件(2)代入形式解(4):
X (0)T (t ) 0, X ( L)T (t ) 0,
由于 T (t ) 0,否则 u( x, t ) 0 (平庸解,无实际意义),故
X (0) X ( L) 0
X ( x) X ( x) 0 X (0) X ( L) 0
Cn 2 L n ( x) sin xdx 0 L L 2 L n Dn ( x) sin xdx na 0 L
一般解能表示任意初始条件
可以再次看出, 利用分离变量 法的条件是: 泛定方程必须是 线性的。这样才能利用叠加原 理,构成一般解,满足任意初 始条件。
弦振动定解问题: 结论
有界弦自由振动的 定解问题的解由级 数给出:
u ( x, t ) u n ( x, t )
n 1
na na Cn cos t Dn sin L L n 1
n t sin x L
它满足齐次边界条 件和任意初始条件:
展开系数 Cn 和 Dn 被 积分确定:
X ( x) T (t ) 2 X ( x) a T (t )
d X ( x) d T (t ) 两边对x求导数:dx X ( x) dx a 2T (t ) 0
(5) (6)
南京大学《量子化学》 (4)
F F
V x, y, dV r r
dr r
z i
r ( :a r
V x
j
V y
unit vector in
k
V z
the radial direction)
For a single particle subject to a central force, the Hamiltonian operator is
M
E EM E
(1)
pˆ M2 2M
M
M M
(a free particle, M 0 )
(2)
pˆ 2
2
V
x,
y,
z
x,
y,
z
x,
y,
z
For the hydrogen atom,
M me mp
memp
me mp
17
4.4 The two-particle rigid rotor
x1, y1, z1; x2, y2, z2 to x, y, z; X , Y , Z
13
4.3.2 The Hamiltonian of the two-particle system
The kinetic energy of the two particles:
T
1 2
m1
r1
2
1 2
m2
r2
5
Therefore for the central-force problem, we can have a set of
simultaneous eigenfunctions of Hˆ , Lˆ2 , Lˆz , i.e.,
数学专业英语词汇(S)
数学专业英语词汇(S)s admissible s容许的s matrix s矩阵saddle point 鞍点saddle point method 鞍点法 salient angle 凸角salient point 折点saltusfunction 跳跃函数 sample 样本sample correlation coefficient 样本相关系数sample correlation matrix 样本相关阵sample covariance 样本协方差 sample covariance matrix 样本协方差阵sample dispersion 样本方差 sample function 样本函数 sample mean 样本均值sample median 样本中位数 sample moment 样本矩sample point 样本点sample quartile 样本四分位数 sample size 样本的大小 sample space 样本空间sample survey 样本甸sample unit 抽样单位sample variable 样本变量 sample variance 样本方差 sampling 抽样sampling distribution 样本分布 sampling error 抽样误差 sampling fraction 抽样比 sampling inspection 抽样检查 sampling method 抽样法sampling moment 样本矩 sampling ratio 抽样比sampling survey 样本甸 sampling unit 抽样单位 sarrus rule 萨律法satisfiable 可满足的satisfy 满足saturated set 浸润集saturated subset 浸润子集saturated vertex 饱和顶点 saturation curve 饱和曲线 scalar 纯量scalar curvature 纯量曲率 scalar density 纯量密度scalar field 纯量场scalar flow of vector field 向量场的纯量流scalar matrix 纯量阵scalar multiplication 纯量乘法 scalar product 纯量积scalar quantity 纯量scalar triple product 纯量三重积 scalar valued function 纯量值函数scalar valued map 纯量值映射 scale 图度scale factor 标度因子scale mark 分核度scale parameter 尺度参数scale transformation 标度变换法 scalene triangle 不规则三角形scalenohedron 偏三角面体scalenous triangle 不规则三角形 scatter 散布scatter diagram 散布图scattered set 无核集scattergram 点状图scattering theory 散射理论 schauder theorem 肖德不动点定理scheduling and production planning 生产计划理论scheduling problem 日程计划问题 schematic diagram 简图scheme 模式schlicht 单叶的schlicht domain 单叶域schlicht function 单叶函数 schlicht mapping 单叶映射 schlicht surface 单叶曲面 schmidt orthogonalization 施密特正交化法schwartz space 施瓦尔兹空间 schwarz formula 施瓦尔兹公式 schwarz inequality 施瓦尔兹不等式 scope 辖域screw 螺旋体search process 搜她程secant 正割secant curve 正割曲线second axiom of countability 第二可数公理 second boundary condition 诺伊曼边界条件 second boundary value problem 诺伊曼问题 second comparison test 第二比较检验 second component 第二分量second countability axiom 第二可数公理 second derivative 二次导数second factor 第二因子second fundamental form 第二基本形式 second limit theorem 第二极限定理 second variation 第二变分secondary diagonal 次对角线secondary extremal 配连极值secondary obstruction 第二障碍section 截口section functor 截面函子section graph 部分等距算子sectional area 截面积sectional curvature 截面曲率sector 扇形sectorial harmonic 扇低函数secular equation 长期方程sedenion 十六元数segment 线段segment of a circle 弓形segment of a curve 弧段segmentation 分割selection 选择self adjoint boundary value problem 自伴边值问题self adjoint differential equation 自伴微分方程self adjoint eigenvalue problem 自伴特盏问题 self adjoint element 自伴元self adjoint linear mapping 自伴线性映射 self adjointness 自伴性self checking code 自校验代吗self complementary graph 自补图 self conjugate 自共轭的self conjugate partition 自共轭分拆 self dual 自对偶的self dual category 自对偶范畴self dual group 自对偶群self intersection number 自交数self loop 自身环self orthogonal submodule 自成正交子模 self polar curve 自配极曲线self polar tetrahedron 自配极四面形 self polar triangle 自配极三角形self tangency 自切self weighting sample 自加权样本 selfadjoint linear subspace 自伴线性子空间 selfadjoint operator 自伴算子selfconjugate latin square 自共轭拉丁方 selfosculating point of curve 曲线的自密切点 semantic equivalence 语义等价semantical decision problem 语义判定问题 semantical paradox 语义悖论semantics 语义学semi exact 半正合的semi interquartile 半内四分位数间距 semi invariant 半不变式semi invariant exterior derivative 半不变外微分 semi logarithmic representation 半对数表示 semiadditive category 半加性范畴 semianalytic set 半解析集合semiangle 半角semiaxis 半轴semibounded 半有界的semibounded operator 半有界算子semicircle 半圆semicircular 半圆的semicircular domain 半圆域semicircular protractor 量角器分度规 semicontinuity 半连续性semicontinuous 半连续的semicontinuous function 半连续函数 semicontinuum 半连续统semiconvergent series 半收敛级数 semicubical parabola 半三次抛物线semidefinite eigenvalue problem 半定特盏问题 semidefinite kernel 半定核semidefinite operator 半定算子semidefinite quadratic form 半定二次形式 semidefinite variational problem 半定变分问题 semidiameter 半径semidirect product 半直积semidiscretization 半离散化semifinite 半有限的semifinite trace 半有限迹 semigroup 半群semigroup algebra 半群代数 semigroup of operators 算子半群semihereditary ring 半遗传环 semilinear 半线性的semilinear mapping 半线性映射 semilinear substitution 半线性代换semilinear transformation 半线性变换 semilocal ring 半局部环semilogarithmic diagram 半对数图 semilogarithmic paper 半对数坐标纸semimagic square 半幻方semimajor axis 半长轴semimajorant 半强函数semimartingale 半semimean axis 半中轴semimetric 半度量semiminor axis 半短轴semiminorant 半弱函数semimodular lattice 半模格 semimodularity 半模性seminorm 半范数semiorder 半有序semiordered banach space 半有序巴拿赫空间semiordered set 半有序集 semipath 半通路semiperiod 半周期semipolar set 半极集semiprimary ring 半准素环 semiprime ideal 半素理想 semiprimitive ring 半本原环 semiquaternion 半四元数semireductive 半可简约的 semireflexive 半自反的semireflexive space 半自反空间 semireflexivity 半自反性 semiregular point 半正则点 semiregular space 半正则空间 semiregular topology 半正则拓扑 semiscalar product 半纯量积 semisimple algebra 半单代数 semisimple group 半单群semisimple module 半单模semisimple representation 半单表示 semisimple ring 半单环semisimplicial complex 半单纯复形 semisimplicial map 半单纯映射semisphere 半球semispherical 半球的semitangent 半切线semitransverse axis 半贯轴 semiuniform space 半一致空间 sense of rotation 旋转指向 senseclass 指向类sensepreserving mapping 保向映射 sensitivity analysis 灵敏度分析sentence 命题sentential calculus 命题演算 sentential connective 命题联结词sentential function 谓词separability 可分离性separable closure 可分闭包 separable degree 分离度separable element 可分元separable extension 可分扩张 separable field 可分域separable game 可分对策separable graph 可分图separable polynomial 可分多项式 separable sets 可分集separable space 可分空间separable stochastic process 可分随机过程separable topological space 可分拓扑空间separable transcendental extension 可分超越扩张separate 分离separated equation 分离变数方程 separated sets 隔离集separated space 分离空间separating edge 分离棱separating plane 分离平面separating transcendence basis 可分超越基separation 分离separation axiom 分离公理separation of the zeros 零点分离 separation of variables 分离变量separation principle 分离原理separation relation 分离关系 separation theorem 分离定理separator 分隔符sequence 序列sequence convergent almost everywhere 几乎处处收敛列sequence of arcs 弧序列sequence of complex numbers 复数序列 sequence of differences 差分序列 sequence of distinct points 一一序列 sequence of functions 函数序列sequence of iterations 迭代序列 sequence of numbers 数列sequence of partial sums 部分和列 sequence of points 点序列sequence of sets 集序列sequence of signs 符号序列sequence space 序列空间sequencing 排序sequencing problem 日程计划问题 sequent 串联的sequential analysis 序贯分析 sequential compactness 列紧性sequential control 顺序控制sequential estimation 序列估计 sequential likelihood ratio test 序贯似然比值检验sequential programming 顺序规划 sequential sampling 序贯抽样sequential sampling plan 序列抽样法 sequential switching circuit 依次转接电路 sequential test 序贯检定sequential word function 序贯字函数 sequentially compact set 列紧集sequentially complete space 序列完备空间 serial correlation 自相关serial correlation coefficient 序列相关系数series 级数series development 级数展开series expansion 级数展开series of functions 函数级数 series solution 级数解serpentine 蛇形线service model 服务模型sesquilinear form 半双线性形式 set 集set algebra 集代数set function 集函数set of condensation points 凝聚点集 set of continuum power 连续统势的集 set of limit 极限集合set of lower bounds 下界集 set of measure zero 零测度集 set of numbers 数集set of points 点集set of sets 集的集set of strategies 策略集set of ternary numbers 三进制数集 set of upper bounds 上界集 set theoretic addition 集论的加法 set theoretic image 集合论的象 set theoretic intersection 集论的交 set theoretic operation 集论的运算 set theoretic proof 集论的证 set theoretic union 集论的并集 set theoretical 集论的set theory 集论set topology 集论拓扑set valued functor 集值函子 set valued mapping 集值映射 sexadecimal digit 十六进制数字 sexadecimal notation 十六进记法 sexadecimal number system 十六进制数系 sexagesimal arithmetic 六十进算术 sexagesimal system 六十进制 sextant 六分仪sextic 六次曲线sextic equation 六次方程shadow 影shadow price 影子价格shape 形状shape theory 形状理论sheaf 层sheaf homomorphism 层同态sheaf of germs of continuous functions 连续函数的芽层sheaf of planes 平面束sheaf theoretic 层理论的shear 剪切shearing modulus 刚性模量shearing strain 切应变shearing stress 切应力sheet 叶sheets of rieman surface 黎曼曲面的叶 shell 壳层shift 移动shift operator 位移算子shift register 移位寄存器shilov boundary 希洛夫边界short division 短除法shorten 缩短shortening 缩短shortest 最短线shortest confidence interval 最短置信区间 shortest distance 最短距离shortest path 最短道路shortest path problem 最短道路问题 shortest route 最短道路shortest route problem 最短道路问题 side 边side condition 边条件side elevation 侧视图sieve 筛sieve method 筛法sieve of eratosthenes 厄拉多塞筛 sigma additivity 可列可加性 sigma algebra 代数sigma compact space 紧空间sigma compactness 紧性sigma complete filter 完备滤子 sigma complete lattice 完全铬 sigma complete lower semilattice 完备下半格sigma complete semilattice 完备半格 sigma discrete family of subsets 子集的离散族sigma finite measure 有限测度 sigma function 函数sigma locally finite family of subsets 子集的局部有限族sigma monogenic function 单演函数 sigma space 空间sigmacompleteness 完备性sigmafield of sets 集的域sigmalattice 格sigmoid s形曲线sign 符号sign digit 符号数字sign of equality 等号sign of inclusion 包含记号 sign of inequality 不等号 sign of intersection 相交记号 sign of multiplication 乘号 sign of permutation 置换的符号 sign of subtraction 减法 sign of summation 连加号 sign of the membership relation 从属关系记号sign of union 并号signal 信号signature of permutation 置换的符号 signed numbers 带符号数signed rank test 符号秩检验 signed tree 指定符号的树 significance level 显著性水平 significance of a deviation 偏差的显著性significance test 显著性检定 significant 有效的significant digit 有效数字 significant figure 有效数字 signum 正负号函数similar figures 相似形similar function 相似函数 similar matrix 相似矩阵similar ordered set 相似有序集 similar region 相似域similar test 相似检验similar triangles 相似三角形 similarity 相似similarity principle 相似性原理 similarity theorem 相似性定理similarity transformation 相似变换 similitude 相似similitude transformation 相似变换 simple 单的simple abelian variety 单阿贝耳簇 simple algebra 单代数simple arc 简单弧simple branch point 单分枝点 simple broken line 单折曲线 simple chain 简单链simple character 简单特贞 simple circuit 简单围道simple closed curve 简单闭曲线 simple component 单分量simple compression 单压缩 simple connectedness 单连通性 simple connectivity 单连通性 simple continued fraction 正则连分数 simple continued fraction expansion 简单连分数展开simple convergence 点态收敛 simple correlation coefficient 单相关系数simple cycle 简单循环simple domain 单叶域simple eigenvalue 简单特盏 simple elongation 单伸长simple event 简单事件simple extension 单扩张simple extension field 单扩张域 simple fixed point 单纯不动点 simple fraction 普通分数simple function 单叶函数simple graph 简单图simple group 单群simple harmonic motion 简谐运动 simple hypothesis 简单假设 simple integral 单积分simple intersection point 单纯交点 simple iterative method 单迭代法simple lattice 单格simple lie algebra 单李代数 simple module 单模simple object 简单对象simple path 简单道路simple pendulum 单摆simple point 单点simple polygon 简单多边形 simple polyhedron 简单多面体 simple product 简单积simple proper value 简单特盏 simple quadrilateral 简单四边形 simple random sampling 简单随机样本 simple regression 简单回归 simple regression coefficient 单回归系数simple ring 单环simple root 单根simple sample 简单样本simple sampling 简单抽样simple series 简单级数simple set 单集simple spectrum 单谱simple surface 简单曲面simple tangent 单切线simple theory of types 简单类型论 simple transcendental extension 单超越扩张 simplex 单形simplex method 单形法simplex multiplier 单形乘数simplex tableau 单形表simplex theorem 单形定理simplicial approximation 单纯逼近 simplicial cell 单纯胞腔simplicial chainmapping 单纯链映射 simplicial cochain complex 单纯上链复形 simplicial cohomology group 单纯上同岛 simplicial complex 单纯复形simplicial homology 单纯同调simplicial map 单形映射simplicial mapping cylinder 单形映射柱 simplicial pair 单形对simplicialapproximation theorem 单纯逼近定理 simplification 简化simplified fraction 简化分数simplified newton method 简化牛顿法 simply connected group 单连通群simply connected region 单连通区域 simply connected spatial domain 单连通空间域 simply convergent filter 单收敛滤子 simply ordered group 全有序群simply periodic function 单周期函数 simplyconnected domain 单连通域simpson rule 辛卜生法则simulation 模拟simultaneity 同时性simultaneous confidence intervals 联合置信区间 simultaneous diagonalization 同时对角化 simultaneous differential equation 联立微分方程 simultaneous differential equations 联立微分方程simultaneous equations 方程组simultaneous estimation 联立估计 simultaneous invariant 联立不变式simultaneous substitution 同时代入 sine 正弦函数sine curve 正弦曲线sine function 正弦函数sine integral 正弦积分sine integral function 正弦积分函数 sine law 正弦定律sine spiral 正弦螺线sine theorem 正弦定理sine wave 正弦波single 单的single address 单地址的single address code 一地址代码 single address instruction 单地址指令single address system 单地址系统 single factor method 单因子法 single step method 单步法single step process 单步法single valued 单值的single valued analytic function 单值解析函数single valued correspondence 单值对应 single valued function 单值函数 single valued operation 单值运算 single valued relation 单值关系single valuedness 单值性singlevalued mapping 单值映射 singly periodic function 单周期函数singular 奇异的singular automorphism 奇异自同构 singular bivariate normal distribution 奇异二元正态分布singular boundary 奇异边界singular boundary point 奇异边界点 singular chain 奇异链singular chain complex 奇异链复形 singular cohomology group 奇异上同岛 singular complex 奇异复形singular conic 奇二次曲线singular correspondence 奇对应 singular cycle 连续循环singular distribution 退化分布 singular element 奇元素singular elliptic function 奇异椭圆函数 singular function 奇异函数singular function of bounded variation 有界变差奇异函数singular graph 奇异图singular homology 奇异下同调 singular homology class 奇异同掂singular homology group 连续同岛 singular integral 奇解singular integral element 奇异积分元素 singular integral equation 奇异积分方程singular kernel 奇核singular line element 奇异线素 singular linear operator 奇异线性算子singular linear transformation 奇异线性变换singular locus 奇轨迹singular mapping 奇异映射singular matrix 退化阵singular operator 奇异算子 singular ordinal 特异序数singular part 奇异部分singular plane 奇异平面singular point 奇点singular proposition 特称命题 singular quadric 奇异二次曲面 singular series 奇异级数singular solution 奇解singular space 奇异空间singular submodule 奇子模singular subspace 奇异子空间 singular surface 奇曲面singular transformation 奇异变换 singular value 奇异值singular variational problem 奇异变分问题singular vector 奇异向量singularity 奇点sink 收点sinusoid 正弦摆线sinusoidal 正弦的sinusoidal function 正弦函数 sinusoidal law 正弦定律sinusoidal spiral 正弦螺线 situation 情况size 样本的大小skeleton 骨架skew curve 空间曲线skew derivation 斜微分skew determinant 斜对称行列式skew distribution 偏斜分布 skew field 非交换域skew hermitian form 斜埃尔米德型 skew hermitian matrix 斜埃尔米德矩阵 skew lines 偏斜线skew position 歪扭位置skew quadrilateral 挠四边形 skew surface 非可展直纹曲面 skew symmetric 反对称的skew symmetric determinant 斜对称行列式skew symmetric matrix 斜对称矩阵 skew symmetric tensor 斜对称张量slack variable 松弛变量slide rule 计算尺sliding vector 滑动向量slitregion 裂纹区域slope 斜率slope function 斜率函数slope intercept form 斜截式 slope line 倾斜线slope of a curve 曲线的斜率 slowly increasing sequence 缓增序列small circle 小圆small inductive dimension 小归纳维数 small sample 小样本small set 小集smallest element 最小元smash 收缩smooth curve 平滑曲线smooth map 光滑映射smooth morphism 光滑射smooth projective plane curve 光滑射影平面曲线smoothing 光滑化smoothness 光滑度sobolev embedding theorem 水列夫嵌入定理sobolev space 水列夫空间sojourn time 逗留时间solenoidal group 螺线群solenoidal vector field 螺线向量场 solid 立体;固体solid angle 立体角solid geometry 立体几何solid n sphere n维球体solid of revolution 旋转体soliton 孤立子soluble 可解的solution 解solution curve 积分曲线solution domain 解域solution formula 解公式solution set of equation 方程的解集 solution space 解空间solution surface 积分曲面 solution tree 解树解答树solution vector 解向量solvability 可解性solvable 可解的solvable equation 可解方程 solvable group 可解群solvable ideal 可解理想solve 解sorter 分类器source 发点source free vector field 无源向量场 source function 格林函数source of field 场源source program 源程序space 空间space coordinates 空间坐标 space curve 空间曲线space integral 体积积分space like manifold 类空廖 space of left cosets 左傍系空间 space of matrices 矩阵空间 space of quaternions 四元数空间 space of right cosets 右傍系空间 space quadratic transformation 空间二次变换space region 空间区域span 生成spanning tree 最大树生成树 sparse matrix 稀巯阵spatial 空间的spatial co ordinate 空间坐标 spatial isomorphism 空间同构 spatial point 空间点special divisor class 特殊除子类 special functional equations 特殊函数方程special functions 特殊函数special group 特殊群special homology manifold 特殊同滴 special jordan algebra 特殊约当代数 special linear group 特殊线性群 special linear homogeneous group 特殊线性齐次群special orthogonal group 特殊正交群 special purpose computer 专用计算机 special representation 特殊表示 special unitarian group 特殊酉群special valuation 特殊赋值specialization 特定化specific 特殊的specific address 绝对地址specific heat 比热specificity 特性spectral analysis of operators 算子的谱分析spectral decomposition 谱表示 spectral density 谱线密度spectral distribution 谱分布 spectral distribution curve 光谱分布曲线 spectral function 谱函数spectral functor 谱函子spectral geometry 谱几何spectral integral 谱积分spectral invariant 谱不变量 spectral line 谱线spectral mapping theorem 谱映射定理 spectral measure 谱测度spectral multiplicity 谱重度 spectral norm 谱模spectral point 谱点spectral property 谱性质spectral radius 谱半径spectral representation 谱表示 spectral sequence 谱序列spectral set 谱集spectral space 谱空间spectral subspace 谱子空间spectral synthesis 谱综合spectral theorem 谱定理spectrum 谱spectrum of a matrix 阵的谱 speed 速度sphere 球sphere bundle 球丛sphere of contact 相切球面sphere of the inversion 反演球 spherical 球形的spherical angle 球面角spherical astronomy 球面天文学 spherical asymptote 球面渐近线spherical bessel function 球贝塞耳函数 spherical cap 球冠spherical cohomology class 球上同掂 spherical coordinates 球极坐标spherical curvature 球面曲率spherical curve 球面曲线spherical cyclic curve 球面循环曲线 spherical derivative 球面导数spherical domain 球面域spherical epicycloid 球面外摆线 spherical excess 球面角盈spherical fiber 球面纤维spherical function 球函数spherical geometry 球面几何学 spherical harmonic function 球面低函数spherical harmonics 球面低函数 spherical helix 球面螺旋线spherical homology class 球面同掂 spherical image 球面象spherical indicatrix 球面指标 spherical indicatrix of binormal 副法线球面指标spherical indicatrix of principal normal 吱线球面指标spherical indicatrix of tangents 切线球面指标spherical mean 球中值spherical neighborhood 球形邻域 spherical parallelogram 球面平行四边形 spherical polar coordinates 球极坐标 spherical polygon 球面多边形spherical pyramid 球面棱锥spherical sector 球心角体spherical segment 球截形spherical shell 球壳spherical space 球面空间spherical surface 球面spherical triangle 球面三角形 spherical triangular coordinates 球面三角坐标spherical trigonometry 球面三角学spherical zone 球带spherics 球面几何学sphero quartic 球面四次曲线 spheroid 回转椭圆面spheroidal coordinates 球体坐标 spheroidal function 球体低函数spheroidal harmonic 球体低函数 spheroidal wave function 球体波函数spinode 第一类尖点spinor 旋子spinor field 旋量场spinor genus 旋量狂spinor group 旋子群spinor representation 旋量表示 spiral 螺线spiral point 螺线极点spiral surface 螺面spline 样条spline function 样条函数 spline interpolation 样条内插 splitting 分裂splittingfield 分裂域spur 迹squarable 可平方的square 正方形square bracket 方括弧square contingency 平方列联 square deviation 平方偏差 square matrix 方阵square measure 平方测度square mesh 正方网格square root 平方根square root transformation 平方根变换square summable function 平方可积函数squareintegrable function 平方可积函数stability 稳定性stability conditions 稳定条件 stability criterion 稳定性判据stability group 稳定群stability number 稳定数stability region 稳定区stabilization 稳定stabilization method 稳定法 stabilizer 迷向群stable convergence 稳定收敛 stable equilibrium 稳定平衡 stable homotopy group 稳定同伦群 stable manifold 稳定廖stable orbit 稳定轨道stable point 稳定点stable process 稳定过程 stable set 稳定集合stable solution 稳定解stable state 稳定状态stalk 茎standard complex 标准复形 standard deviation 标准差 standard equation 标准方程 standard form 标准型standard isobaric surfaces 标准等压面standard n simplex 标准n单形 standard regression coefficient 标准回归系数standard simplex 标准单形 standard topology 标准拓扑 standardization 标准化standardize 使标准化standardized normal distribution 标准化正态分布standardized normal variate 标准化正态变量standardized variable 标准化变量 standardized variate 标准化变量star body 星形体star covering 星形覆盖star neighborhood 星形邻域 star of a simplex 单形的星形 star region 拟星形域star shaped domain 拟星形域 starlike domain 拟星形域 starlike mapping 拟星形映射 starlike set 拟星集starrefinement 星型加细 start time 开始时间state 状态state coordinates 状态坐标 state function 状态函数 state of equilibrium 平衡状态 state region 状态区域state space 状态空间state variable 状态变数state vector 状态向量statement 命题static model 静态模型statics 静力学stationary 平稳的stationary curve 平稳曲线stationary distribution 平稳分布 stationary flow 平稳流定常流stationary function 平稳函数stationary osculating plane 平稳密切面 stationary point 平稳点stationary point process 平稳点过程 stationary process 平稳随机过程stationary state 定态stationary time series 平稳时间序列 stationary value 平稳值statistic 统计量statistical 统计的statistical accuracy 统计精确度 statistical analysis 统计分析statistical data analysis 统计数据分析 statistical decision function 统计判决函数 statistical decision problem 统计判决问题 statistical decision procedure 统计判决程序 statistical decision process 统计判决过程 statistical distribution 统计分布 statistical ergodic theorem 平均遍历定理 statistical error 统计误差statistical estimate 估计statistical estimation 统计估计 statistical hypothesis 统计假设statistical hypothesis testing 统计假设检验 statistical inference 统计推断statistical mechanics 统计力学statistical method 平均法statistical model 随机性模型statistical optimization 统计最佳化 statistical quality control 统计质量管理 statistical thermodynamics 统计热力学 statistics 统计学statistics of extreme values 极值统计 statistics of extremes 极值统计 steady 平稳的steady state 定态steenrod algebra 斯丁洛特代数steenrod operation 斯丁洛特运算 steepest descent method 最速下降法steering program 痔序steering routine 痔序steinberg group 斯坦因伯格群step 步长step function 阶梯函数step length 步长stepping stone method 起脚石法 steradian 球面度stereoangle 立体角stereogram 立体频数stereographic projection 球极平面射影 stereography 立体平画法stereometry 立体几何stiefel whitney class 斯蒂费尔惠特尼类 stieltjes integral 斯蒂尔吉斯积分 stirling formula 斯特林公式stochastic 随机的stochastic approximation 随机逼近 stochastic automaton 随机自动机stochastic connection 随机联络 stochastic control 随机控制stochastic dependence 随机相依 stochastic differential equation 随机微分方程stochastic differentiation 随机微分法 stochastic dynamic model 随机动态模型 stochastic dynamic programming 随机动态规划 stochastic filtering 随机滤波stochastic game 随机对策stochastic independence 随机独立 stochastic integral 随机积分stochastic integral equation 随机积分方程 stochastic integration 随机积分 stochastic matrix 随机阵stochastic maximum principle 随机极大原理 stochastic model 随机性模型stochastic optimization 随机规划法 stochastic process 随机过程stochastic programming 随机规划法 stochastic variable 随机变数stochastically dependent event 随机相依事件 stochastically independent event 随机独立事件stokes integral theorem 斯托克斯定理stokes theorem 斯托克斯定理 stop time 停止时间stopped process 停止过程 stopping rule 停止规则 storage 存储store 存储器store capacity 存储容量 store cell 存储单元straight 直的straight angle 平角straighten 弄平straightline 直线strain 应变strain tensor 应变张量 strategic equivalence 策略等价性 strategic model 策略模型 strategy 策略strategy of a game 对策的策略 strategy polygon 策略多角形stratification 层化stratified sample 分层样本 stratified sampling 分层抽样 stratified selection 分层抽样 stratum 层stream function 怜数streamline 吝strength 强度stress 应力stress ellipsoid 应力椭球 stress function 应力函数 stress of a body 体应力 stress tensor 应力张量 stretching transformation 伸缩变换strict convexity 严格凸性 strict decreasing 严格递减 strict epimorphism 严格满射 strict extremum 严格极值 strict implication 严格蕴涵 strict increasing 严格递增 strict inductive limit 严格归纳极限strict inequality 严格不等式 strict isotonicity 严格保序性 strict isotony 严格保序性strict minimum 严格极小strict morphism 严格射strict solution 严格解strict upper bound 严格上界strictly concave function 严格凹函数 strictly convex function 严格凸函数 strictly convex space 严格凸空间 strictly decreasing 严格减少的strictly dominant strategy 严格优策略 strictly finer topology 严格较细拓扑 strictly increasing 严格递增的strictly increasing mapping 严格递增映射 strictly lower triangular matrix 严格下三角矩阵 strictly monotone decreasing 严格单递减的 strictly monotone increasing 严格单递增的 strictly monotonic function 严格单弹数strictly monotonic mapping 严格单党射 strictly monotonic sequence 严格单凋列 strictly normed linear space 严格赋范线性空间 strictly positive measure 严格正测度 strictly upper triangular matrix 严格上三角矩阵 strip 带strip of conditional convergence 条件收敛带 strip region 带形区域strong component 强分支strong convergence 强收敛strong convergent operator 强收敛算子 strong deformation retract 强形变收缩核 strong discontinuity 强间断strong dual 强对偶strong ellipticity 强椭圆型strong epimorphism 强满射strong extremum 强相对极值strong inequality 严格不等式strong law of large numbers 强大数定律 strong markov process 强马尔可夫过程 strong monomorphism 强单射strong operator topology 强算子拓扑 strong solution 强解strong summability 强可和性strong topology 强拓扑strongly coercive 强强制的strongly connected compactum 强连通紧统 strongly connected graph 强连通图strongly continuous map 强连续映射 strongly elliptic operator 强椭圆算子 strongly inaccessible cardinal 强不可达基数 strongly inaccessible ordinal 强不可达序数 strongly mixing transformation 强混合变换 strongly paracompact space 强仿紧空间 strongly plurisubharmonic function 强多重次低函数strongly pseudoconvex domain 强伪凸域 strophoid 环诉structural morphism 结构射structural stability 构造稳定性 structure 结构structure constant 构造常数structure equations 结构方程structure formula 结构公式structure function 结构函数structure group 结构群structure morphism 结构射structure sheaf 结构层structure theorem 结构定理structured complex 结构复形student t distribution 学生t分布 sturm chain 斯图谟链sturm liouville eigenvalue problem 斯图谟刘维尔特盏问题subadditive function 次加性函数 subadditive functional 次加性泛函subadditive interval function 次加性区间函数 subadditive set function 次加性集函数 subadditivity 次可加性subalgebra 子代数subautomaton 子自动机subbase 子基subbundle 子丛subcategory 子范畴subchain 子链subclass 子类subcoalgebra 子上代数subcomplex 子复形subcontinuum 子连续统subcovering 子覆盖subdeterminant 子行列式subdifferential 次微分subdirect sum 次直和subdivide 细分subdivision 重分subdivision chain 剖分链 subdomain 子域subfamily 子族subfield 子域subformula 子公式subgradient 次梯度subgraph 子图subgroup 子群subgroupoid 子群化subharmonic 次低的subharmonic function 次低函数 subideal 子理想subinterval 子区间subject 质subjective probability 诸概率 sublattice 子格sublinear functional 次线性泛函 submanifold 子簇submartingale 半submatrix 子阵submersion 浸没submodel 子模型submodule 子模submultiple 因数subnet 子网subnormal 次法线subobject 子对象subordinate category 从属范畴 subordinate construction 从属构造subordinate partition of unity 从属单位分解subpolyhedron 子多面体subpresheaf 子预层subproduct 子积subprojective manifold 次射影廖 subquasigroup 子拟群subquotient of a module 模的子商 subreflexive 子反射的subregion 子域subrelation 子关系subrepresentation 子表示 subring 子环subroutine 子程序subsample 子样本subsampling 二段抽样subsampling unit 二段抽样单位 subscheme 子概型subscript 下标subsemigroup 子半群subsemiring 子半环subsequence 子序列subseries 子级数subset 子集。
复变函数与数理方程教学大纲.doc
复变函数与数理方程Functions of Complex Variables and Equations of Mathematical PhysicsFall Semester 201XSyllabusCourse Description:本课程是理工科有关专业的一门基础课,主要由”复变函数”"数学物理方程”和“特殊函数”三部分内容组成。
“复变函数”部分介绍解析函数的基本性质,积分,级数,留数等内容。
“数学物理方程”部分介绍数学物理方程的一些基本概念及三种典型方程、各种定解问题的常用解法,包括分离变量法、行波法、积分变换法和格林函数法等。
“特殊函数”部分讨论贝塞尔函数及勒让德多项式。
通过这门课程的学习,学生应掌握复变函数论的基本知识和方法,三类典型方程定解问题的解法,了解贝塞尔函数及勒让德多项式的简单性质及其在数学物理方程中的应用,为学习电磁场、量子力学等有关后继课程和进一步扩大数学知识面奠定必要的数学基础,也为进一步了解和应用现代偏微分方程的有关内容解决科学技术和工程实际问题提供重要帮助。
This is a foundation course for engineering students. It mainly consists of three parts: functions of complex variables, equations of mathematical physics and special functions.By this course, the students are expected to grasp the basic knowledge and techniques in solving questions of complex variables and the three types of partial differential equations. The contents of this course will be of great benefit for later curriculums and applied in many aspects.Prerequisite: calculus, or equivalent courses.Textbook: A first course in partial differential equations with complex variables and transform methods, by H.F.Weinberger, Dover Pub.Inc.Examinations: One 120-minute midterm examination, and a comprehensive final examination given during the final examination period.Calculators: A calculator may be useful for some homework problems involving graphing. However, the use of calculators is not permitted on exams.Grading Policy: Grades will be assigned on the basis of 100 points distributed as follows30 points midterm examination30 points quizzes/homework40 points final examinationTentative Course Outline:Chp 1 The one dimensional wave equation 一维波动方程Chp 2 linear 2nd-order partial differential equations in 2 variables 二元二阶线性偏微分方程Chp 3 Some properties of elliptic and parabolic equations 椭圆和抛物型方程的性质Chp 4 Separation of variable and Fourier series 分离变量法和Fourier 级数Chp 5 Nonhomogeneous problems 非齐次问题Chp 6 Problems in higher dimensions and multiple Fourier series 高维问题和多元Fourier 级数Chp 7 Sturm-Liouville theory and general Fourier expansions 斯特姆■刘维尔理论和广义Fourier展开理论Chp 8 Analytic functions of a complex variable 一元解析函数Chp 9 Evaluation of integrals by complex variable methods 复变函数积分的方法Chp 10 The Fourier transform 傅里叶变换Chp 11 The Laplace transform 拉普拉斯变换Chp 12 Approximation methods近似方法(有限元方法)Details of the contentI.The one-dimensional wave equation1. A physical problem and its mathematical models: the vibrating string2.The one-dimensional wave equation3.Discussion of the solution: characteristics4.Reflection and the free boundary problem5.The nonhomogeneous wave equation11. Linear second-order partial differential equations in two variables6.Linearity and superposition7.Uniqueness for the vibrating string problem8.Classification of second-order equations with constant coefficients9.Classification of general second-order operatorsHI. Some properties of elliptic and parabolic equationsplace's equation11.Green's theorem and uniqueness for the Laplace's equation12.The maximum principle13.The heat equationIV.Separation of variables and Fourier series14.The method of separation of variables15.Orthogonality and least square approximationpleteness and the Parseval equation17.The Riemann-Lebesgue lemma18.Convergence of the trigonometric Fourier series19.Uniform convergence, Schwarz's inequality, and completeness20.Sine and cosine series21.Change of scale22.The heat equationplace's equation in a rectangleplace's equation in a circle25.An extension of the validity of these solutions26.The damped wave equationV.Nonhomogeneous problems27.Initial value problems for ordinary differential equations28.Boundary value problems and Green's function for ordinary differentialequations29.Nonhomogeneous problems and the finite Fourier transform30.Green's functionVI.Problems in higher dimensions and multiple Fourier series31.Multiple Fourier seriesplace's equation in a cubeplace's equation in a cylinder34.The three-dimensional wave equation in a cube35.Poisson's equation in a cubeVII.Sturm-Liouville theory and general Fourier expansions36.Eigenfunction expansions fbr regular second-order ordinary differentialequations37.Vibration of a variable string38.Some properties of eigenvalues and eigenfunctions39.Equations with singular endpoints40.Some properties of Bessel functions41.Vibration of a circular membrane42.Forced vibration of a circular membrane: natural frequencies and resonance43.The Legendre polynomials and associated Legendre functionsplace's equation in the sphere45.Poisson's equation and Green's function for the sphereVIII. A nalytic functions of a complex variableplex numbersplex power series and harmonic functions48.Analytic functions49.Contour integrals and Cauchy's theoremposition of analytic functions51.Taylor series of composite functions52.Conformal mapping and Laplace's equation53.The bilinear transformationplace's equation on unbounded domains55.Some special conformal mappings56.The Cauchy integral representation and Liouville's theoremIX.Evaluation of integrals by complex variable methods57.Singularities of analytic functions58.The calculus of residuesurent series60.Infinite integrals61.Infinite series of residues62.Integrals along branch cutsX.The Fourier transform63.The Fourier transform64.Jordan's lemma65.Schwarz's inequality and the triangle inequality for infinite integrals66.Fourier transforms of square integrable functions: the Parseval equation67.Fourier inversion theorems68.Sine and cosine transforms69.Some operational formulas70.The convolution product71.Multiple Fourier transforms: the heat equation in three dimensions72.The three-dimensional wave equation73.The Fourier transform with complex argumentXL The Laplace transform74.The Laplace transform75.Initial value problems fbr ordinary differential equations76.Initial value problems for the one-dimensional heat equation77. A diffraction problem78.The Stokes rule and Duhamel's principleXII. Approximation methods79.''Exact" and approximate solutions80.The method of finite differences for initial-boundary value problems81.The finite difference method for Laplace's equation82.The method of successive approximations83.The Rayleigh-Ritz method(This schedule is subject to change.)ACADEMIC INTEGRITY STATEMENT: All university policies regarding ethics and honorable behavior apply to this course.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:nlin/0502038v1 [nlin.SI] 18 Feb 2005
Abstract
We investigate the relation between the local variables of a discrete integrable lattice system and the corresponding separation variables, derived from the associated spectral curve. In particular, we have shown how the inverse transformation from the separation variables to the discrete lattice variables may be factorised as a sequence of canonical transformations, following the procedure outlined by Kuznetsov.
1
TN (u) =
n=N
ln (u) = lN (u)lN −1 (u)...............l2 (u)l1 (u)
(2.4)
Upon using ( 2.3 ) it is easy to deduce that {TN (u) ⊗ , TN (v )} = [r (u − v ), TN (u) ⊗ TN (v )] (2.5)
1
Here u is the complex spectral parameter and qn and pn are the nonlinear variables defined at the nth lattice points. They satisfy the canonical Poisson brackets {qk , qj } = {pk , pj } = 0 f or all k, j = 1, 2, ........, n and {qk , pj } = δkj It is a matter of simple computation to show that {ln (u) ⊗ , lm (v )} = [r (u − v ), ln (u) ⊗ lm (v )]δmn where r (u − v ) represents the classical r-matrix given by 1 P = u u
1
TN (u) =
n=N
ln (u) ≡
AN (u) BN (u) C N ( u ) DN ( u )
(2.6).
The Sklyanin algebra ( 2.5) then takes the following explicit form, namely {AN (u), AN (v )} = {BN (u), BN (v )} = {CN (u), CN (v )} = {DN (u), DN (v )} = 0, 1 {AN (u)CN (v ) − AN (v )CN (u)}, u−v 1 {AN (u), DN (v )} = {CN (u)BN (v ) − CN (v )BN (u)}, u−v 1 {BN (u), AN (v )} = {BN (u)AN (v ) − BN (v )AN (u)}, u−v 1 { C N ( u ) DN ( v ) − C N ( v ) DN ( u ) } , { C N ( u ) , DN ( v ) } = u−v 1 {DN (u)BN (v ) − DN (v )BN (u)}. {BN (u), DN (v )} = u−v {CN (u), AN (v )} = 2
(2.2)
(2.3)
r (u ) =
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
,
with P being the permutation matrix satisfying P 2 = I. We define the monodromy matrix TN (u) as the ordered product of ln (u)′ s over the entire lattice. That is,
1
1
Introduction
Of late there has been a great deal of interest in discrete integrable systems, owing to their numerous interesting properties. One such property which has emerged lately, is the existence of the so called spectral curve associated with an integrable system[1]. The latter in turn is closely connected with the motion of separability. Indeed, it is well known that the technique of separation of variables provides an invaluable tool for the analytic construction of action-angle variables of an integrable system[2]. Furthermore, it may be shown that the locus of points, given by the separation variables, define in fact the spectral curve. On the other hand, the concept of an r -matrix algebra marks a major development in theory of nonlinear integrable systems especially in regard to their Hamiltonian nature[3]. It provides an elegant formalism for proving the Poisson involutiveness of the integral of motions for such systems. However, it was only in the eighties that the connection betweenthe r -matrix formalism and separation variables of such systems clearly emerged as a result of the efforts of Komarov [4], Sklyanin [5] and other researchers of the St. Petersburg School. In this communication, we examine the nature of the relationship between the separation variables of a discrete lattice integrable system and the corresponding local lattice variables. In general, the nature of the transformation relations between these two sets of variables is rather complicated and an explicit determination of the generating function proves to be rather daunting. The existence of the latter is essential to gaurantee the canonical nature of the transformation. However, recently Kuznetsov [6] has shown that, not only does the inverse transformation between the separation variables and the local variables exists, but also that these trasformations can even be broken down into a sequence of transformations each with a generating function. The organisation of the paper is as follows. In section 2, we describe the basic features of the discrete model under consideration. The r -matrix algebra of the monodromy matrix is explicitly solved, as also the leading order structures of its elements. In section 3, we introduce the spectral curve and separation representation for the elements of the monodromy matrix. In section 4, which constitutes the main body of the paper, we derive explicitly the inverse separating map between the separation variables and the local lattice variables defining our system. The canonical nature of this mapping is displayed by working out the corresponding generating function.