2017年春季学期新版新人教版八年级数学下学期19.1.1、变量与函数课件80
合集下载
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)
子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
人教版数学八年级下册19.1.1《变量与函数》课件
在一个变化过程中,数值发 生变化的量为变量;数值始终 不变的量为常量。
闯关吧!少年!
第一关:简单!
指出下列问题中的变量和常量 1,某市的自来水价为4元/立方米。现要抽取若干户居民调查水费支出 情况,记某户月用水量为x立方米,月应交水费为y元。
变量是:月用水量为x、月应交水费为y;常量是:自来 水价为4元/立方米
2,某地手机通话费为0.2元/分钟。李明的手机通话时间为t分钟,话 费卡中的余额为m元(在这个过程中,李明没有充话费,也没有欠费 停机)。 变量:时间t、余额m;常量:通话费为0.2元/分钟
3,你有一本读物,是可以在学校合法看的,所以你每天读10页,已 经读了x天,还剩下y页未读。
变量:时间x天、读物剩余页数y;常量:每天的读书量10.
4,有10本书,我带走x本,还剩下y本。 变量:x、y;常量:10
第一关战后总结 你觉得,判断变量与常量的关键是什么?
数值变还是不变是判断变量与常 量的关键!
第二关:学校那点事儿
1,你有一本读物,是私下里跟其他同学借的,读的时候不能被 老师发现,你同学只给了你5天的时间,每天读得多少取决于自 习的多少以及课下我过来的多少,设你每天读x页,还剩余y页
(1)试分别写出长度变和不变的线段,面积变和不变的三角形。
长度不变的线段:AB、BC、CD、AD; 长度变的线段:AP、PD、PB、PC; 面积不变的三角形是:△PBC; 面积变的三角形是:△ABP、△PDC。
(2)若AP=x,BC=8,AB=4,求 S P C D 和 SPBC
SPCD
1 4(8 2
80
160
240
320 ...
请用时间t表示路程s:_s_=_8_0_t
第二关战后总结
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版
例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)
在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
人教版八年级数学下册19.1.1变量与函数课件(24张PPT)
3化.的一函个数梯关形系的式上底s 是14(4,下9)h底,是常9量,是写出1 ,面4,9积,S变随量高h变
是 h和s,
2
2
自变量是 h , s 是 h 的函数。
4.小张准备将平时的零用钱节约一些储存起 来.他已存有50元,从现在起每个月节存12 元.设x个月后小张的存款数为y,试写出小张 的存款数与从现在开始的月份数之间的函数关 系式 y=50+12x ,其中常量是50,12 ,变量是 x,y ,自变量是 x , y 是 x 的函数。
19.1.1 变量与函数
导入新课
汽车以60 km/h的速度匀速行驶,行驶路 程为s km,行驶时间为t h.
在这今个天过我程们中就,来哪学些习量变“变量” 化,哪些量不变?
这些量之间有什么关系?
一导学
学习目标: 1.了解变量与常量及函数的意义; 2.体会运动变化过程中的数量变化. 学习重点:
了解变量与常量的意义,充分体会运动变化过程 中量的变化.
变量:通话时间 t min,话费卡中的余额w元; 常量:通话费0.2元/min.
3.水中涟漪(圆形水波)不断扩大,记它的 半径为r,圆周长为C,圆周率(圆周长和直径 之比)为π.
变量:半径r,圆周长C; 常量:圆周率π.
4.把10本书随意放入两个抽屉(每个抽屉 内都放),第一个抽屉放入x本,第二个抽屉 放入y本.
变量
4.用10m长的绳子围一个矩形.当矩形的 一边长x分别为3m,3.5m,4m,4.5m时, 它的邻边长y分别为多少? 常量
变量
有些量的数值是变化的,例如 时间t,路程s,售出票数x……
有些量的数值是始终不变的,例如 速度60km/h,票价10元/张……
在一个变化过程中,我们称数值发生变化 的量为变量,数值始终不变的量为常量.
人教版八年级数学下册变量与函数精品课件PPT
圆面积S(cm2) 100 400 900 …
问题: 在这个变化过程中,变化的量是__r_,_S________
不变化的量是________,试用含r的式子表示S
S r2
人教版八年级数学下册课件-19.1.1 变量与函数
人教版八年级数学下册课件-19.1.1 变量与函数
找一找
(4)用10 m长的绳子围一个矩形,当矩形的一边长x
用含一个变量的式子表示另一个变量
人教版八年级数学下册课件-19.1.1 变量与函数
人教版八年级数学下册课件-19.1.1 变量与函数
找一找
找出下面问题中变化的量和不变的量:
(1)汽车以60 km/h 的速度匀速行驶,行驶时间为 t h,
行驶路程为 s km.
t/时 1
23
4 5…
s /千米 60 120 180 240 300 …
•
6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
感谢观看,欢迎指导!
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
问题: 在这个变化过程中,变化的量是____S_,_t______ 不变
化的量是___6_0_______,试用含t的式子表示s
S = 60t
问题: 在这个变化过程中,变化的量是__r_,_S________
不变化的量是________,试用含r的式子表示S
S r2
人教版八年级数学下册课件-19.1.1 变量与函数
人教版八年级数学下册课件-19.1.1 变量与函数
找一找
(4)用10 m长的绳子围一个矩形,当矩形的一边长x
用含一个变量的式子表示另一个变量
人教版八年级数学下册课件-19.1.1 变量与函数
人教版八年级数学下册课件-19.1.1 变量与函数
找一找
找出下面问题中变化的量和不变的量:
(1)汽车以60 km/h 的速度匀速行驶,行驶时间为 t h,
行驶路程为 s km.
t/时 1
23
4 5…
s /千米 60 120 180 240 300 …
•
6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
感谢观看,欢迎指导!
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
问题: 在这个变化过程中,变化的量是____S_,_t______ 不变
化的量是___6_0_______,试用含t的式子表示s
S = 60t
人教版八年级下册数学课件:19.1.1变量与函数%28共27张PPT%29
(4)库容V可以看成平均水深的函数吗?
(5)求x=18时的函数值,并说明它的实际意义
(2)当x=10时,y=2.5×10=25; 当x=18时,y=2.5×18=45
(3)当y50时,x=20。
想一想
588
活 动
504
30
分
时 420
间
消 400
P
耗 336
的
如图所示的图象表
热 量
252
W
示骑车时热量消耗W(焦)
( 焦
168
)
与身体质量x (千克)之间 84
的函数关系:
0
10
20
问(1)利率y是存期x的函数吗?
(2)3个月的整存整取的利率是多少?一年期的呢?
思考?
议一议!
3 对函数y= x 来讲自变量x取任意
实数,都有对应的函数y?
答:当x=0时,函数 y= 3 没有意义,函数值不存在。x
因此,自变量取值范围是:
x≠0的实数
(2)自变量与函数值 探究:一辆汽车在高速公路上以每小时 100 千米的速度行 驶,它走过的路程 s( 千米) 与行驶时间 t( 小时) 之间的关系是 _s_=__1_0_0_t_(t 的取值范围为__t_≥_0__). 当 t=____0__时,s=0,当 t=_____2___时,s=200, 当 t=___3_.5__时,s=350,当 t=_____8___时,s=800. 归纳:使函数_有__意__义_的自变量取值的全体,叫做函数自变 量的取值范围. 对于自变量 x 为取值范围内的某个确定的值 a,函数 y 都有 唯__一__确__定__的值 b 和它对应,即当___x_=__a__时,____y_=__b_,那么 b 叫做自变量 x 的值为 a 时的函数值.
人教版八年级下册数学:19.1.1变量与函数课件(27张PPT)
变量是 总金额y元,数量x本,常量是_1_0_元___,___x____ 是自变量,___y___是__x___的函数.函数关系式为 _y_=__1_0_x_.
2、边长为x的正方形, 周长为 y ,则 y 与 x 的函
数关系式为 y = 4x ,自变量是__x___, __y__是 __x___的函数 .
变量:通话时间 t 分钟和话费余额 w 元, 常量:通话费 0.2 元/分钟和存入话费 30 元.
(1)汽车以 60千米/时的速度匀速行驶,行驶路程 为 s 千米,行驶时间为 t 小时,填下面的表:
t/时 s/千米
1 2 3 45
60 120 180 240 300
S = 60t
(2)电影票的售价为 10 元∕张。第一场售出 150 张票,第二 场售出 205 张票,第三场售出 310 张票,三场电影的票房 收入各多少元?若设一场电影售出票 x 张,票房收入为 y 元,怎样用含 x 的式子表示 y ?
年份 x 人口数y/亿
1984 1989 1994 1999 2010
10.34 11.06 11.76 12.52 13.71
一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一 确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.
如果当 x = a 时,对应的 y = b, 那么 b 叫做当自变量的值为 a 时的函数值.
变化的量 不变的量
邻边长 y ,边长 x 绳长10 m
数值不断 变化的量
数值始终 不变的量
变量 常量
数值
问题1 问题1 问题1 问题1 量
变化的量
路程 s 时间 t
票房收入 y 面积 S 售出票数 x 半径 r
2、边长为x的正方形, 周长为 y ,则 y 与 x 的函
数关系式为 y = 4x ,自变量是__x___, __y__是 __x___的函数 .
变量:通话时间 t 分钟和话费余额 w 元, 常量:通话费 0.2 元/分钟和存入话费 30 元.
(1)汽车以 60千米/时的速度匀速行驶,行驶路程 为 s 千米,行驶时间为 t 小时,填下面的表:
t/时 s/千米
1 2 3 45
60 120 180 240 300
S = 60t
(2)电影票的售价为 10 元∕张。第一场售出 150 张票,第二 场售出 205 张票,第三场售出 310 张票,三场电影的票房 收入各多少元?若设一场电影售出票 x 张,票房收入为 y 元,怎样用含 x 的式子表示 y ?
年份 x 人口数y/亿
1984 1989 1994 1999 2010
10.34 11.06 11.76 12.52 13.71
一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一 确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.
如果当 x = a 时,对应的 y = b, 那么 b 叫做当自变量的值为 a 时的函数值.
变化的量 不变的量
邻边长 y ,边长 x 绳长10 m
数值不断 变化的量
数值始终 不变的量
变量 常量
数值
问题1 问题1 问题1 问题1 量
变化的量
路程 s 时间 t
票房收入 y 面积 S 售出票数 x 半径 r
人教版八年级数学下册19.1.1变量和函数 (2)(共22张PPT)
分的面积是多少?
解:设重叠部分面积为y cm2,
MA长为x cm,y与x之间的
xy x
函数关系式为
y
1
x2
2
当x=1时, y 1 12 1
2
2
∴MA=1cm时,重叠部分的面积是1 cm2
1
Hale Waihona Puke 2我们把 做这个函数当x=1时的函数值
2
怎样求函数值? 把自变量的值代入计算即可
例5、已知函数 y= 2x ,4 求
例1 求下列函数中自变量x的取值范围:
(1) y=3x-1 (2) y=2x2+7
(3) y = 1 (4) y=
x2
x2
(5) y 3 x 5
解:(1)任意实数
(2)任意实数
(3) x≠-2
(4) x≥2
(5)任意实数
怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值 3.二次根式: 取使“被开方数≥0”的值 4.三次根式: 取全体实数
5
(1)当x = 1时,函数y的值。
(2)当y = 3时,自变量x的值。
解:(1)把x = 1代入函数式,得
y 21 4 = 6
5
5
(2)把y=3代入函数式,得
3 2x 4 5
x 11 2
练习P28练习1,2,3, P29 4,6
小结
1.求函数自变量取值范围的方法:
(1)当函数关系用解析式来表示时,要使解析式有意义. (2)对于反映实际问题的函数关系,应使实际问题有意义
(1)每一个同学购一本代数书,书的单价为2元,则 x 个同学共 付 y 元。
解:y是x的函数.其关系式为: y=2x
解:设重叠部分面积为y cm2,
MA长为x cm,y与x之间的
xy x
函数关系式为
y
1
x2
2
当x=1时, y 1 12 1
2
2
∴MA=1cm时,重叠部分的面积是1 cm2
1
Hale Waihona Puke 2我们把 做这个函数当x=1时的函数值
2
怎样求函数值? 把自变量的值代入计算即可
例5、已知函数 y= 2x ,4 求
例1 求下列函数中自变量x的取值范围:
(1) y=3x-1 (2) y=2x2+7
(3) y = 1 (4) y=
x2
x2
(5) y 3 x 5
解:(1)任意实数
(2)任意实数
(3) x≠-2
(4) x≥2
(5)任意实数
怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值 3.二次根式: 取使“被开方数≥0”的值 4.三次根式: 取全体实数
5
(1)当x = 1时,函数y的值。
(2)当y = 3时,自变量x的值。
解:(1)把x = 1代入函数式,得
y 21 4 = 6
5
5
(2)把y=3代入函数式,得
3 2x 4 5
x 11 2
练习P28练习1,2,3, P29 4,6
小结
1.求函数自变量取值范围的方法:
(1)当函数关系用解析式来表示时,要使解析式有意义. (2)对于反映实际问题的函数关系,应使实际问题有意义
(1)每一个同学购一本代数书,书的单价为2元,则 x 个同学共 付 y 元。
解:y是x的函数.其关系式为: y=2x
人教版八年级数学下册课件:19.1.1 变量与函数(共30张PPT)
(1)写出表示y与x的函数关系的式子; (2)指出自变量x的取值范围;
(3)该电动汽车行驶200 km时,还剩下多少电量? 解:(1)y=75-0.15x
(2)0.15x ≤75,即0≤x≤500 (3)y=75-0.15×200=45
思考:题目中的0.15x表示什么意思?第(2)题自 变量x的取值范围0-500中的500又代表什么意思. 注意:确定自变量的取值范围时,不仅要考虑使函数 关系式有意义,而且还要注意问题的实际意义.
S=3(2+x)÷2= 3+ 3 x (2< x ≤5) 2
谢 谢 观 看!
t/min 0 1 2 3 4 5 … h/m 3 10 37 45 37 11 …
(2)对于给定的时间t ,相应 的高度h能确定吗?
情景二 下面的我国人口数统计表中,年份与人口数可
以分别记作两个变量x和y.对于表中每一个确定的年 份x,都对应着一个确定的人口数y吗?
年份 x 1984 1989 1994 1999 2010
上面两个问题中的两个变量互相联系,当其中一 个变量取定一个值时,另一个变量就有一个取定的值 与之对应.
一些用图或表格表达的问题中,也能看到两个 变量之间有上面那样的关系.
情景一
想一想,如果你坐在摩 天轮上,随着时间的变化, 你离开地面的高度是如何变 化的?
下图反映了摩天轮上的一点的高度h (m)与旋转 时间t(min) 之间的关系. (1)根据左图填表:
在问题(3)中,可以发现:r和S是两个变量,每 当r取定一个值时,S就有唯一确定的值与其对应.它 们的关系式为 S r2 .据此可以算出r分别为10cm, 20cm,30cm时,S分别为100πcm²,400πcm², 900πcm².
人教版八年级数学初二下册19.1.1变量与函数课件
(1)n(n>2)边形的内角和的度数s与边数n的关系
式;
s=180° (n-2).
(2)等腰三角形的顶角度数y与底角度数x的关系式.
y=180 ° -2x.
巩固练习
连接中考
(2018•安徽)据省统计局发布,2017年我省有效发明专利数比 2016年增长22.1%.假定2018年的年增长率保持不变,2016年和 2018年我省有效发明专利分别为a万件和b万件,则( B ) A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a
少?S的值随r的值的变化而变化吗?
当圆的半径为10cm时,面积为S=100π cm2 ;
当圆的半径为20cm时,面积为S=400π cm2 ; 当圆的半径为30cm时,面积为S=900π cm2 .
注意:此处的 2是一种运算
圆面积S与圆的半径r之间的关系式是———S—=——π—r2—;
其中变化的量是——S—,——r;不变化的量是—————π———.
其中变化的量是—x—,——y—;不变化的量是———1—0————.
探究新知
上述运动变化过程中出现的数量,你认为 可以怎样分类?
数值发生 变化的量
数值始终 不变的量
变量 常量
探究新知
s = 60t y = 10x S=πr2 2(x+y)=10 变量:在一个变化过程中,数值发生变化的量为变量. 常量:在一个变化过程中,数值始终不变的量为常量.
探究新知 素养考点 1 利用函数的定义判断函数
例1 下列关于变量x ,y 的关系式:①y =2x+3;②y =x2+3;
③y =2|x|;④y x ;⑤y2-3x=10,其中表示y 是x 的函数关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 校服问题:
学校委托某服装厂生产校服,已知 每2米布料可以生产一件校服,那么, 若设校服需求量为m件,所需布料为k米, 你能用含m的代数式来表示k吗?
K=2m
这个式子表示的是什么样的关系? 在这中间,哪些量是不确定的?会发生变化? 哪些又是确定不变的呢?
例3
要画一个面积为10cm² 的圆, 圆的半径应取多少?面积为20cm² 呢?怎样用含圆面积S的式子来表 示圆半径r? S
一次函数
变量与函数
例1 出租车车价问题:
浏阳市出租车起步价为3元,2公里以后 每公里收费为1.2元,如果出租车行驶里程为 x千米(x≥2),乘客所付车费为y元,则怎 样用含有行驶里程数x的代数式表示乘客所付 车费y?
y=1.2x+0.6
(x ≥2)
这个式子表示的是什么样的关系? 在这中间,哪些量是不确定的?会发生变化? 哪些又是确定不变的呢?
பைடு நூலகம்
r
这个式子表示的是什么样的关系? 在这中间,哪些量是不确定的?会发生变化? 哪些又是确定不变的呢?
畅所欲言
• 这三个例子有什么共同的特征? • 你觉得在这三个例子的分析过程中,有哪 些重点的字眼? • 你还能举出一些变化的实例吗?指出其中 的常量和变量。 • 根据你的理解,什么是函数?
题目中分别有几个变量?你能将其中的 某个变量看成是另一个变量的函数吗?
下图是北京某日温度变化图
温度T(℃)
时间t(小时)
思考:
用10cm长的绳子围成长方形, 如果改变长方形的长,长方形的面 积是否会发生变化呢?试探索它们 的变化规律,设长方形的长为xcm, 面积为Scm,怎样用含x的式子表 示S?这是一个函数式吗?