【数学】2017学年天津市部分区八年级下学期数学期末试卷带解析答案PDF
2017-2018天津市部分区八(下)期末数学试卷
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,)1.如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.下列二次根式;5;;;;.其中是最简二次根式的有()A.2个B.3个C.4个D.5个3.计算的结果为()A.±3B.﹣3C.3D.94.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上) 13.计算(4+)÷3的结果是 .14.在△ABC 中,∠C =90°,AB =10,其余两边长是两个相邻的偶数,则这个三角形的周长为 .15.每本书的厚度为0.62cm ,把这些书摞在一起总厚度h (单位:cm )随书的本数n 的变化而变化,请写出h 关于n 的函数解析式 .16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4 5 6 8 户数5753则这组数据的中位数是 .17.已知一次函数y =mx +n (m ≠0,m ,n 为常数),x 与y 的对应值如下表:x ﹣2 ﹣1 0 1 2 3 y﹣11234那么,不等式mx +n <0的解集是 .10.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( ) A .AD =BC ,AD ∥BC B .AD ∥BC ,AB =DCC .AD =BC ,AB =DCD .AD ∥BC ,AB ∥DC11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED 为( ) A .45° B .15°C .10°D .125°12.如图是甲、乙两个探测气球所在位置的海拔y (单位:m ),关于上升时间x (单位:min )的函数图象.有下列结论: ①当x =10时,两个探测气球位于同一高度;②当x >10时,乙气球位置高;③当0≤x <10时,甲气球位置高。
2016-2017学年天津市部分区八年级下学期期末考试数学试题(含答案)
天津市部分区2016~2017学年度第二学期期末考试八年级数学评分标准一、单选题.(本题包括12小题,每小题3分,共36分)二、填空题.(本题包括6小题每题3分,共18分)13. 14. 4.8 15. > 16. 8 17. 2 18. 2或三、解答题.( 本题包括7小题,共46分)19. 计算:(每小题3分,共6分)(Ⅰ)解:原式/--------------------------3/(Ⅱ)解:原式//20. (本题6分)解:(Ⅰ)X 甲= 8 X 乙= 8 -----------------------2/ (Ⅱ)甲种麦苗长势较整齐 --------------------------4/因为S 2甲= 1.2,S 2乙= 1.6 -------------------------5/ 由于S 2甲<S 2乙 , 所以, 甲种麦苗长势较整齐 -------------------------6/2714321. (本题6分)解:在矩形A B C D 中,A D =4,D C =A B =8,∠ D 为直角 -------------------1/ ∵四边形A F C E 是菱形,AF=FC=CE=EA ------------------------2/设AE 的长为x,则EC=x, DE=8-x, ----------------------3/ 由勾股定理得,222AD DE AE +=∴ --------------------------4/ 解得x=5 -------------------------5/∴AE=5, 菱形A F C E 的周长为20 . --------------------------6/ 22. (本题6分)(Ⅰ)解:联立方程组 解得 ∴A(1,3)------------1'易得B(-2,0) C(4,0), BC=6------------2's △ABC= ----------3'(Ⅱ)解:由已知可得D(0,2),----------4'-----------------5'由(1)知∴s 四边形ADOC =s △ABC -s △BOD =9-2 = 7 ------------------6'2224(8)x x +-=24y x y x =+⎧⎨=-+⎩13x y =⎧⎨=⎩16392⨯⨯=12222BOD S ∆=⨯⨯=9ABC S ∆=23. (本题6分)解:(Ⅰ) 25 ; 28 ___________2/ (Ⅱ)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6 __________________________________4/∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21 _______________________________________5'∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18. ---------------------6/24. (本题8分)(Ⅰ)证明:在正方形ABCD 中,AC ⊥BD ,OA=OB又∵AM ⊥BE, AFO=BFM,∴FAO=EBO ________________________2'∴ △AFO ≌ △BEO (ASA) _______________________3'∴ OE=OF _______________________4'(2) 成立 _______________________5'同理可得AFO=BEO _______________________6'∠∠∠∠∠∠可得△AFO ≌△BEO (AAS) ------------------------7'得 OE=OF -------------------------8'25. (本题8分)解:(Ⅰ)表一:_______________________3' 表二:注:每空1分,列式对,没化简,不扣分!_______________________6'(Ⅱ)设总运费W元,由(Ⅰ)可知,总运费为:W=20x+15(200-x) + 25(240-x)+ 24(60+x)=4x+10440 ------------------------7' 其中,0≤x≤200 .∵ 4>0,∴W随x的增大而增大.∴当x=0时,W取得最小值10440.答:此时方案为:把甲仓库的物资(240吨)全部运往B港口,再从乙仓库运200吨往A港口,乙仓库余下的物资(60吨)全部运往B港口.-------------------------8' (说明:解答题用其他方法解,只要合理,请参照评分标准酌情给分)。
天津市部分区2017-2018学年八年级下学期期末考试数学试题(解析版)
天津市部分区2017-2018学年八年级下学期期末考试数学试题一、选择题.(本大题共12小题,每小题3分,共36分)1.如果有意义,那么()A. a≥B. a≤C. a≥﹣D. a【答案】C【解析】【分析】被开方数为非负数,列不等式求解即可.【详解】根据题意得:,解得.故选:.【点睛】本题考查二次根式有意义的条件,二次根式的被开方数是非负数.2.下列二次根式;5;;;;.其中,是最简二次根式的有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】根据最简二次根式的定义即可判断.【详解】,,,、、是最简二次根式.故选:.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.3.计算的结果为()A. ±3B. -3C. 3D. 9【答案】C【分析】根据=|a|进行计算即可.【详解】=|-3|=3,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.4.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A. 6,7,8B. 5,6,8C. ,,D. 4,5,6【答案】C【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】,,,能组成直角三角形的一组数是、、.故选:.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.【详解】①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.【点睛】此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A. (,0),(0,5)B. (﹣,0),(0,5)C. (,0),(0,﹣5)D. (﹣,0),(0,﹣5)【答案】A【解析】【分析】分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标. 【详解】令,则,解得,故此直线与轴的交点的坐标为;令,则,故此直线与轴的交点的坐标为.故选:.【点睛】本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.【详解】时,,随的增大而减小,函数图象从左往右下降,,,,即函数图象与轴交于正半轴,这个函数的图象不经过第三象限.故选:.【点睛】本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85 93 93 86S2 3 3 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A. 赵研B. 钱进C. 孙兰D. 李丁【答案】B【解析】【分析】根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.9.在▱ABCD中,∠C=32°,则∠A的度数为()A. 148°B. 128°C. 138°D. 32°【答案】D【解析】【分析】根据平行四边形的性质:对角相等即可求出的度数.【详解】四边形是平行四边形,,,.故选:.【点睛】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.10.下列条件中,不能判断四边形ABCD是平行四边形的是()A. AB=CD,AD∥BCB. AB∥CD,AB=CDC. AB=CD,AD=BCD. AB∥CD,AD∥BC【答案】A【解析】分析:由平行四边形的判定方法得出B、C、D能判断四边形ABCD是平行四边形,A不能判断,即可得出结论.详解:∵AB=CD,AD∥BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,∴A不能判断;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),∴B能判断;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形),∴C能判断;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),∴D能判断;故选:A.点睛:本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...A. 45°B. 15°C. 10°D. 125°【答案】A【解析】【分析】由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.【详解】是等边三角形,,,四边形是正方形,,,,,,.故选:.【点睛】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.12.如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A. 3个B. 2个C. 1个D. 0个【答案】A【解析】【分析】根据图象进行解答即可.【详解】①当时,两个探测气球位于同一高度,正确;②当时,乙气球位置高,正确;③当时,甲气球位置高,正确.故选:.【点睛】本题考查了一次函数的应用、解题的关键是根据图象进行解答.二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.计算(4+)÷3的结果是_____.【答案】2【解析】【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】原式.故答案为:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.【解析】【分析】设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.15.每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式_____.【答案】h=0.62n【解析】【分析】依据这些书摞在一起总厚度()与书的本数成正比,即可得到函数解析式.【详解】每本书的厚度为,这些书摞在一起总厚度()与书的本数的函数解析式为.故答案为:.【点睛】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨 4 5 6 8户数 5 7 5 3则这组数据的中位数是_____.【答案】5吨【分析】找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】表中数据为从小到大排列,吨处在第10位、第11位,为中位数,故这组数据的中位数是吨.故答案为:吨.【点睛】考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.17.已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x ﹣2 ﹣1 0 1 2 3y ﹣1 0 1 2 3 4那么,不等式mx+n<0的解集是_____.【答案】x<﹣1【解析】【分析】由表格得到函数的增减性后,再得出时,对应的的值即可.【详解】当时,,根据表可以知道函数值随的增大而增大,故不等式的解集是.故答案为:.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间联系.理解一次函数的增减性是解决本题的关键.18.在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.【解析】如图1,当点D与点Q重合时,根据翻折对称性可得A′D=AD=13,在Rt△A′CD中,A′D2=A′C2+CD2,即132=(13-A′B)2+52,解得A′B=1,如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,∵5-1=4,∴点A′在BC边上可移动的最大距离为4.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)【答案】(Ⅰ)33;(Ⅱ)6﹣5.【解析】【分析】(Ⅰ)利用平方差公式计算可得;(Ⅱ)先化简二次根式,再合并同类二次根式即可得.【详解】(Ⅰ)原式=(3)2﹣(2)2=45﹣12=33;(Ⅱ)原式=5﹣2﹣3+1=6﹣5.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质与运算法则及平方差公式.20.某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.纸笔测试实践能力成长记录甲90 83 95乙88 90 95【答案】乙学生将被评为优秀的学生【解析】【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】甲学生的学期总评成绩为=90.1,乙学生的学期总评成绩为=90.5,所以乙学生将被评为优秀的学生.【点睛】本题考查了加权成绩的计算.加权成绩等于各项成绩乘以不同的权重的和.21.如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【答案】见解析【解析】【分析】根据平行四边形的性质:平行四边的对边相等,可得,,根据一组对边平行且相等的四边形是平行四边形,可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.【点睛】本题考查了平行四边形的判定与性质,根据条件选择适当的判定方法是解题关键.22.如图,四边形ABCD为菱形,已知A(3,0),B(0, 4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.【答案】(Ⅰ)点C的坐标为(0,﹣1);(Ⅱ)y=﹣x﹣1.【解析】【分析】(Ⅰ)根据、的坐标求出线段的长度,由于菱形的四条边都相等,点位于轴上,即可得到点坐标;(Ⅱ)根据菱形四条边相等且对边平行,求出的坐标,再用待定系数法即可得到答案.【详解】(Ⅰ)∵四边形ABCD为菱形,∴AB=BC,∵A(3,0),B(0,4),∴AB==5,∴B C=5,∴OC=1,∴点C的坐标为(0,﹣1);(Ⅱ)∵四边形ABCD为菱形,∴AD=AB=5,AD∥CB,∴点D的坐标为(3,﹣5),设经过点C,D两点的一次函数的解析式为y=kx+b,把(0,﹣1),(3,﹣5)代入得:,解得:,∴经过点C,D两点的一次函数的解析式为y=﹣x﹣1.【点睛】本题考查菱形的性质和待定系数法求一次函数解析式,正确观察和分析图象和掌握待定系数法求一次函数解析式是解决本题的关键.23.某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为_____;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【答案】(Ⅰ)40;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)用38号人数除以其所占百分比可得总人数;(Ⅱ)根据各鞋号人数之和等于总认识求得37号的人数即可补全图形;(Ⅲ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg 以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表购买量/kg 0 50 100 150 200 …付款金额/元0 250 _ 700 __ …(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.【答案】(1). 【答案】(Ⅰ)500(2). 900;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)根据图表的规律解答即可;(Ⅱ)根据图表得出函数解析式即可;(Ⅲ)把代入解析式解答即可.【详解】(Ⅰ)由图表可得苹果100kg时,付款金额为500元,苹果200kg时,付款金额为500+100×5×0.8=900元;(Ⅱ)设购买量为xkg,付款金额为y元,当0≤x≤100时,y=5x;当x>100时,y=100×5+(x﹣100)×5×0.8=4x+100;(Ⅲ)把y=2100代入y=4x+100得:2100=4x+100,解得:x=500,答:如果某人付款2100元,其购买苹果的数量为500kg.故答案为:500;900.【点睛】此题主要考查了一次函数解析式的求法,以及一次函数的最值的求法,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.25.如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】【分析】(Ⅰ)连接,由菱形的性质结合,可得出,和,进而可得出(),根据全等三角形的性质可得出,由等边三角形的性质可得出,由邻补角互补及三角形内角和定理,可得出,进而可证出;(Ⅱ)由(Ⅰ)的结论可得出,,,进而可证出(),根据全等三角形的性质可得出,利用等边三角形的性质可得出,由可得出.【详解】(I)证明:在图(1)中,连接AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD,CA平分∠BCD.∵∠B=60°,∴△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.∵AB∥CD,∴∠ACD=∠BAC=60°,∴∠B=∠ACD=60°.∵∠EAF=60°,∴∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠CEF+∠AEB=120°.∵∠BAE+∠AEB=120°,∴∠BAE=∠CEF.(II)解:∠BAE=∠CEF.在图(2)中,连接AC,由(I)知:∠ABC=∠ACD=60°,∠EAF=∠BAC=60°,AB=AC,∴∠ABE=∠ACF=120°,∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°.∵∠AEB+∠BAE=∠ABC=60°,∴∠BAE=∠CEF.【点睛】本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质以及角的计算,解题的关键是:(1)利用全等三角形的判定定理证出;(2)利用全等三角形的性质结合角的计算找出.。
2017-2018天津市部分区八(下)期末数学试卷
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,)1.如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.下列二次根式;5;;;;.其中是最简二次根式的有()A.2个B.3个C.4个D.5个3.计算的结果为()A.±3B.﹣3C.3D.94.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386 S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°10.如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.计算(4+)÷3的结果是.14.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为.15.每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式.16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是.17.已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x﹣2﹣10123y﹣101234那么,不等式mx+n<0的解集是.18.如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N 分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.纸笔测试实践能力成长记录甲908395乙88909521.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表购买量/kg050100150200…付款金额/元0250700…(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.。
天津市部分区2017-2018学年度第二学期期末考试八年级数学含答案
八年级数学参考答案 第 1 页(共 4 页)天津市部分区2017~2018学年度第二学期期末考试八年级数学参考答案一、选择题.二、填空题.13.2; 14.24; 15.0.62h n =; 16.5; 17.1x <-; 18.4三、解答题.19.(Ⅰ)解:原式22=-------1′4512=- ------2′33= ------3′(Ⅱ)解:原式51=- ------2′6=- -----3′20.解:甲学生的学期总评成绩是90583295390.1523⨯+⨯+⨯=++ ------2′ 乙学生的学期总评成绩是88590295390.5523⨯+⨯+⨯=++ ------4′ 由上可知乙学生将被评为优秀. ------6′21.证明:∵四边形ABCD 是平行四边形∴AB CD ∥,AB CD = ------2′ ∵点M ,N 分别是边AB ,CD 的中点 ∴12CN CD =,12AM AB = ∴CN AM = ------4′ ∴四边形ANCM 是平行四边形∴AN CM = ------6′ A N M D CB(第21题图)八年级数学参考答案 第 2 页(共 4 页) 22.解:(Ⅰ)∵四边形ABCD 为菱形∴AB BC AD ==,AD BC ∥ ------1′ ∵(3,0)A (0,4)B∴5AB === ------2′ ∴1OC =,∴点C 的坐标为(0,1)- ------3′ (Ⅱ)由上面可知5AD =,90AOB ∠=︒,90OAD ∠=︒ ∴点D 的坐标为(3,5)-设一次函数解析式为y kx b =+把(0,1)-,(3,5)-代入得135b k b =-⎧⎨+=-⎩ ------5′ 解得:431k b ⎧=-⎪⎨⎪=-⎩∴经过点,C D 两点的一次函数的解析式为413y x =-- ------6′ 23.解:(Ⅰ)40 -----2′(Ⅱ)如图所示-----4′(Ⅲ)∵在这组样本数据中,35出现了12次, 出现的次数最多∴这组样本数据的众数为35 -----5′ ∵这组样本数据中处于中间的两个数据是36,36 ∴ 这组样本数据的中位数为36+36=362-----6′(第23题图)24.解:(Ⅰ)-----2′ (Ⅱ)设购买量为x kg ,付款金额为y 元.当0100x ≤≤时,5y x = -----4′当100x >时,510050.8(100)4100y x x =⨯+⨯-=+ -----6′ (Ⅲ)把2100y =代入4100y x =+得:21004100x =+ 解得:500x =∴如果某人付款2100元,其购买苹果的数量为500kg . -----8′ 25.证明:(Ⅰ)连接AC ∵四边形ABCD 是菱形∴AB BC AB CD =,∥,CA 平分BCD ∠ ∵B ∠︒60= ∴ABC △是等边三角形∴60B BAC ∠=∠=︒,AB AC = -----1′ ∵B ∠︒60=AB CD ∥ ∴120BCD ∠=︒ ∴60ACD ∠=︒∴=60B ACD ∠=∠︒ -----2′ ∵EAF ∠︒60=∴60BAE EAC CAF EAC ∠+∠=∠+∠=︒ ∴BAE CAF ∠=∠∴ABE ACF △≌△ ∴AE AF = -----3′FEDCBA图(1)∴AEF △为等边三角形 ∴ 60AEF ∠=︒ ∴120CEF AEB ∠+∠=︒ ∵120BAE AEB ∠+∠=︒∴BAE CEF ∠∠= -----4′ (Ⅱ)BAE CEF ∠=∠ -----5′ 由(Ⅰ)知=60ABC ACD ∠=∠︒60EAF BAC ∠=∠=︒,AB AC =∴120ABE ACF ∠=∠=︒,BAE CAF ∠=∠∴ABE ACF △≌△ -----6′ ∴AE AF =∴AEF △为等边三角形 ∴60AEF ∠=︒∴60AEB CEF ∠+∠=︒ -----7′ ∵60AEB BAE ABC ∠+∠=∠=︒∴BAE CEF ∠=∠ -----8′ABDC FE图(2)。
【数学】2017学年天津市红桥区八年级下学期数学期末试卷带解析答案PDF
2016-2017学年天津市红桥区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列各式的计算中,成立的是()A.B.C.D.2.(3分)已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253.(3分)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x+10 D.y=﹣x﹣14.(3分)下列结论正确的是()A.对角线相等且一组对角相等的四边形是平行四边形B.一边长为5cm,两条对角线长分别是4cm和6cm的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的四边形是平行四边形5.(3分)已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是()A.3cm B.26cm C.24cm D.65cm6.(3分)关于x的方程(k﹣3)x2+2x+1=0有实数根,则k的取值范围为()A.k≥4 B.k≤4且k≠3 C.k<4 D.k≤47.(3分)某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学习水平一样B.成绩虽然一样,但方差大的班学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的学习成绩不稳定,忽高忽低8.(3分)某农机厂四月份生产零件50万个,第二季度共生产临建182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x)+50(1+x)2=182 B.50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)=1829.(3分)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B. C.D.10.(3分)下列各组数中,以a,b,c为边的三角形不是Rt△的是()A.a=7,b=24,c=25 B.a=7,b=24,c=24C.a=6,b=8,c=10 D.a=3,b=4,c=511.(3分)若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<312.(3分)若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3,②m>﹣,③方程(x﹣x1)(x﹣x2)+m=0的解为x1=2,x2=3,其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)函数的自变量的取值范围是.14.(3分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.15.(3分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是.16.(3分)已知x1、x2是方程x2+6x+3=0的两实数根,则的值为.17.(3分)已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF ⊥AC于F,PE⊥BC于E,则EF的最小值是.18.(3分)如图,在平面直角坐标系xOy中,E(8,0),F(0,6).①当G(4,8)时,则∠FGE=;②在图中的网格区域内找一点P,使∠FPE=90°,且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,则P点坐标为()(要求:写出点P坐标,画出过P点的分割线并指出分割线,不必说明理由,不写画法)三、解答题(本大题共6小题,共46分)19.(6分)解方程(1)x2+4x﹣1=0(2)(x+1)(x+3)=8.20.(6分)如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.21.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注.某校计划将这种学习方式应用到教育教学中,从各年级共1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备情况进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为图①中m的值为(2)求本次调查获取的样本数据的众数、中位数和平均数;(3)根据样本数据,估计该校学生家庭中;拥有3台移动设备的学生人数.22.(8分)为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,(1)根据题意,填写表:(2)设一户居民的年用气量为xm 3,付款金额为y 元,求y 关于x 的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.23.(8分)如图①,将边长为4cm的正方形纸片ABCD 沿EF 折叠(点E ,F 分别在边AB ,CD 上,使点B 落在AD 边上的点M 处,点C 落在点N 处,MN 与CD 交于点P ,连接EP .(1)如图②,若M 为AD 边的中点,①△AEM 的周长= cm ;②求证:EP=AE +DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?若不发生变化,直接写出△PDM 的周长,若发生变化,请说明理由.24.(10分)已知y 1=kx +1经过点(2,﹣1)与x 轴交于点A ,F 点为(1,2) ①求k 值及A 点坐标;②将函数y 1的图象沿y 轴的方向向上平移得到函数y 2,其图象与y 轴交于点Q ,且OQ=QF ,求平移后的函数y 2的解析式;③若点A 关于y 1的对称点为K ,请直接写出直线FK 与x 轴的交点坐标.2016-2017学年天津市红桥区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列各式的计算中,成立的是()A.B.C.D.【解答】解:A、不是同类二次根式,不能合并,故错误;B、正确的结果为,故错误;C、开平方是错误的;D、原式==,所以D成立.故选:D.2.(3分)已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25【解答】解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选:D.3.(3分)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x+10 D.y=﹣x﹣1【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.4.(3分)下列结论正确的是()A.对角线相等且一组对角相等的四边形是平行四边形B.一边长为5cm,两条对角线长分别是4cm和6cm的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的四边形是平行四边形【解答】解:如图已知:AB∥CD,∠A=∠C,则四边形ABCD是平行四边形.理由:∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∵∠A=∠C,∴四边形ABCD爱上平行四边形,由此可知答案C是正确的,故选:C.5.(3分)已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是()A.3cm B.26cm C.24cm D.65cm【解答】解:∵D,E,F分别是△ABC的三边的中点,∴DE=AC,DF=BC,EF=AB,∴AC+BC+AB=2(DE+DF+EF)=2×(3+4+6)=26(cm).故选:B.6.(3分)关于x的方程(k﹣3)x2+2x+1=0有实数根,则k的取值范围为()A.k≥4 B.k≤4且k≠3 C.k<4 D.k≤4【解答】解:①当k﹣3=0,即k=3时,方程为2x+1=0,解得:x=﹣,符合题意;②当k﹣3≠0,即k≠3时,△=22﹣4(k﹣3)=16﹣4k≥0,解得:k≤4且k≠3.综上即可得出k的取值范围为k≤4.故选:D.7.(3分)某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学习水平一样B.成绩虽然一样,但方差大的班学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的学习成绩不稳定,忽高忽低【解答】解:A、学习水平不能只看平均成绩,故A错误;B、潜力的大小不能只看方差,和本人的智力有关,故B错误;C、方差越小,波动越小,越稳定,故C正确;D、方差越小,波动越小,越稳定,故D错误.故选:C.8.(3分)某农机厂四月份生产零件50万个,第二季度共生产临建182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x)+50(1+x)2=182 B.50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)=182【解答】解:设该厂五、六月份平均每月的增长率为x,那么得五、六月份的产量分别为50(1+x)、50(1+x)2,根据题意,得50+50(1+x)+50(1+x)2=182.故选:A.9.(3分)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B. C.D.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.10.(3分)下列各组数中,以a,b,c为边的三角形不是Rt△的是()A.a=7,b=24,c=25 B.a=7,b=24,c=24C.a=6,b=8,c=10 D.a=3,b=4,c=5【解答】解:A项中252=242+72,故本选项错误,B项中242≠242+72,故本选项正确,C项中102=82+62,故本选项错误,D项中52=42+32,故本选项错误,故选:B.11.(3分)若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3【解答】解:∵函数y=(3﹣k)x﹣k的图象经过第二、三、四象限∴3﹣k<0,﹣k<0∴k>3故选:A.12.(3分)若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3,②m>﹣,③方程(x﹣x1)(x﹣x2)+m=0的解为x1=2,x2=3,其中,正确结论的个数是()A.0 B.1 C.2 D.3【解答】解:一元二次方程(x﹣2)(x﹣3)=m化为一般形式得:x2﹣5x+6﹣m=0,∵方程有两个不相等的实数根x1、x2,∴b2﹣4ac=(﹣5)2﹣4(6﹣m)=4m+1>0,解得:m>﹣,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6﹣m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;∵(x﹣x1)(x﹣x2)+m=x2﹣(x1+x2)x+x1x2+m=x2﹣5x+(6﹣m)+m=x2﹣5x+6=(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,故选项③正确.综上所述,正确的结论有2个:②③.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)函数的自变量的取值范围是x≥1且x≠2.【解答】解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故答案为x≥1且x≠2.14.(3分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【解答】解:由勾股定理,得路长==5,少走(3+4﹣5)×2=4步,故答案为:4.15.(3分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.16.(3分)已知x1、x2是方程x2+6x+3=0的两实数根,则的值为﹣2.【解答】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴x1+x2=﹣6、x1•x2=3,∴===﹣2.故答案是:﹣2.17.(3分)已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF ⊥AC于F,PE⊥BC于E,则EF的最小值是 2.4.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:×4×3=×5×CP,∴CP=2.4,即EF=2.4,故答案为:2.4.18.(3分)如图,在平面直角坐标系xOy中,E(8,0),F(0,6).①当G(4,8)时,则∠FGE=90°;②在图中的网格区域内找一点P,使∠FPE=90°,且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,则P点坐标为(7,7)(要求:写出点P坐标,画出过P点的分割线并指出分割线,不必说明理由,不写画法)【解答】解:(1)如图1,连接EF,由勾股定理得:FG2=22+42=20,GE2=42+82=80,EF2=62+82=100,∴FG2+GE2=EF2,∴∠FGE=90°,故答案为:90°;(2)如图2,过P作PM⊥x轴于M,当P(7,7),PM为分割线;根据格点的长度易得:△APF≌△MEP≌△BFP,∴∠APF=∠MEP,∵∠MEP+∠MPE=90°,∴∠APF+∠MPE=90°,即∠FPE=90°,四边形OEPF将△EPM剪下放在△BFP上,构建正方形BOMP;故答案为:(7,7).三、解答题(本大题共6小题,共46分)19.(6分)解方程(1)x2+4x﹣1=0(2)(x+1)(x+3)=8.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=±,∴x=﹣2;(2)原方程整理为一般式可得:x2+4x﹣5=0,∴(x﹣1)(x+5)=0,则x﹣1=0或x+5=0,解得:x=1或x=﹣5.20.(6分)如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.21.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注.某校计划将这种学习方式应用到教育教学中,从各年级共1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备情况进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为50图①中m的值为32(2)求本次调查获取的样本数据的众数、中位数和平均数;(3)根据样本数据,估计该校学生家庭中;拥有3台移动设备的学生人数.【解答】解:(1)本次接受随机抽样调查的学生人数为:=50(人),图①中m的值为×100=32;(2)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,∴这组数据的中位数是3;由条形统计图可得==3.2,∴这组数据的平均数是3.2.(3)1500×28%=420(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.故答案为:50,32.22.(8分)为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,(1)根据题意,填写表:(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.【解答】解:(1)当一户居民的年用气量为150m3时,付款金额为:2.5×150=375(元);当一户居民的年用气量为350m3时,付款金额为:2.5×300+3×50=900(元);故表格中答案为375,900;(2)分两种情况:①当x≤300时,y=2.5x;②当x>300时,y=2.5×300+3×(x﹣300)=3x﹣150.综上所述,y关于x的解析式为y=;(3)由题意,将y=870代入y=3x﹣150,得870=3x﹣150,解得x=340.即该户居民的年用气量为340m3.23.(8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E,F分别在边AB,CD上,使点B落在AD边上的点M处,点C落在点N处,MN与CD 交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=6cm;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM 的周长是否发生变化?若不发生变化,直接写出△PDM的周长,若发生变化,请说明理由.【解答】(1)①解:由折叠知BE=EM,∠B=∠EMP=90°,△AEM的周长=AE+EM+AM=AE+EB+AM=AB+AM.∵AB=4,M是AD中点,∴△AEM的周长=4+2=6(cm);故答案为6.②证明:如图②中,延长EM交CD延长线于Q点.∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ,∴△AME≌△DMQ.∴AE=DQ,EM=MQ.又∵∠EMP=∠B=90°,∴PM垂直平分EQ,有EP=PQ.∵PQ=PD+DQ,∴EP=AE+PD.(2)解:△PDM的周长保持不变.理由如下:如图①中,设AM=x,则MD=4﹣x.由折叠性质可知,EM=4﹣AE,在Rt△AEM中,AE2+AM2=EM2,即AE2+x2=(4﹣AE)2,整理得:AE2+x2=16﹣8AE+AE2,∴AE=(16﹣x2),又∵∠EMP=90°,∴∠AME+∠DMP=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠DMP.又∵∠A=∠D,∴△PDM∽△MAE.∴=,=C△MAE•=(4+x)•=8.∴C△PDM∴△PDM的周长保持不变.24.(10分)已知y1=kx+1经过点(2,﹣1)与x轴交于点A,F点为(1,2)①求k值及A点坐标;②将函数y1的图象沿y轴的方向向上平移得到函数y2,其图象与y轴交于点Q,且OQ=QF,求平移后的函数y2的解析式;③若点A关于y1的对称点为K,请直接写出直线FK与x轴的交点坐标.【解答】解:①∵y1=kx+1经过点(2,﹣1),∴2k+1=﹣1,∴k=﹣1,y1=﹣x+1,令y=0,∴x=1,∴A(1,0);②设平移后的直线解析式为y=﹣x+m,∴Q(0,m),如图,过点F作EF⊥y轴于E,∵F点为(1,2),∴EF=1,EQ=2﹣m,FQ=OQ=m,根据勾股定理得,EF2+EQ2=FQ2,∴1+(2﹣m)2=m2,∴m=,∴平移后的函数y2的解析式y2=﹣x+;③如图,设直线y2=﹣x+与x轴的交点为D,∴D(,0),Q(0,),∴OD=OQ,∴∠ODQ=45°,∵A(1,0),∴AD=OD﹣OA=,连接DH,∵点A关于y1的对称点为K,∴DK=DA=,∠KDQ=∠ODQ=45°,∴∠ADK=90°,∴K(,),∵F(1,2),∴直线FK的解析式为y=﹣7x+9,∴FK与x轴的交点为(,0).。
2017-2018学年天津市部分区八年级(下)期末数学试卷(解析版)
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中)1.(3分)如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.(3分)下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个B.3个C.4个D.5个3.(3分)计算的结果为()A.±3B.﹣3C.3D.94.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.(3分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.(3分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4+)÷3的结果是.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式.16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:则这组数据的中位数是.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:那么,不等式mx+n<0的解集是.18.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.21.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.2017-2018学年天津市部分区八年级(下)期末数学试卷参考答案与试题解析一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中)1.(3分)如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a【解答】解:根据题意得:3a+5≥0,解得a≥.故选:C.2.(3分)下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个B.3个C.4个D.5个【解答】解:=,=,=2∴5、、是最简二次根式,故选:B.3.(3分)计算的结果为()A.±3B.﹣3C.3D.9【解答】解:=3,故选:C.4.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,6【解答】解:∵()2+()2=5、()2=5,∴()2+()2=()2,∴能组成直角三角形的一组数是、、,故选:C.5.(3分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个【解答】解:①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有:①y=5x;②y=﹣2x﹣1;④y=x﹣6共3个.故选:C.6.(3分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)【解答】解:令y=0,则﹣2x+5=0,解得x=,故此直线与x轴的交点的坐标为(,0);令x=0,则y=5,故此直线与y轴的交点的坐标为(0,5);故选:A.7.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x1<x2时,y1>y2,∴y随x的增大而减小,函数图象从左往右下降,∴m﹣1<0,∴m<1,∴2﹣m>0,即函数图象与y轴交于正半轴,∴这个函数的图象不经过第三象限.故选:C.8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁【解答】解:从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进,故选:B.9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠C=32°,∴∠A=32°,故选:D.10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC【解答】解:A、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°【解答】解:∵△ADE是等边三角形,∴∠DAE=60°,AD=AE=DE,∵四边形ABCD是正方形,∴∠EAB=90°,AD=AB∴∠BAE=90°+60°=150°,AE=AB∴∠AEB=30°÷2=15°,∴∠BED=60°﹣15°=45°,故选:A.12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个【解答】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:A.二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4+)÷3的结果是2.【解答】解:原式=(4+2)÷3=6÷3=2.故答案为2.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为24.【解答】解:设其余两边长分别为n、n+2,由勾股定理得,n2+(n+2)2=102,整理得,n2+2n﹣48=0,解得,n1=﹣8(舍去),n2=6,则其余两边长分别为6、8,则这个三角形的周长=6+8+10=24,故答案为:24.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式h=0.62n.【解答】解:∵每本书的厚度为0.62cm,∴这些书摞在一起总厚度h(cm)与书的本数n的函数解析式为h=0.62n,故答案为:h=0.62n16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:则这组数据的中位数是5吨.【解答】解:表中数据为从小到大排列,5吨处在第10位、第11位,为中位数.故这组数据的中位数是5吨.故答案为:5吨.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:那么,不等式mx+n<0的解集是x<﹣1.【解答】解:当x=﹣1时,y=0,根据表可以知道函数值y随x的增大而增大,故不等式mx+n<0的解集是x<﹣1.故答案为:x<﹣118.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为4.【解答】解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,在Rt△HCB中,HC2=BC2+HB2,即132=(13﹣AH)2+52,解得:AH=1,所以点H在AB上可移动的最大距离为5﹣1=4.故答案为:4.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)【解答】解:(Ⅰ)原式=(3)2﹣(2)2=45﹣12=33;(Ⅱ)原式=5﹣2﹣3+1=6﹣5.20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.【解答】解:甲学生的学期总评成绩为=90.1,乙学生的学期总评成绩为=90.5,所以乙学生将被评为优秀的学生.21.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.【解答】解(Ⅰ)∵四边形ABCD为菱形,∴AB=BC,∵A(3,0),B(0,4),∴AB==5,∴BC=5,∴OC=1,∴点C的坐标为(0,﹣1);(Ⅱ)∵四边形ABCD为菱形,∴AD=AB=5,AD∥CB,∴点D的坐标为(3,﹣5),设经过点C,D两点的一次函数的解析式为y=kx+b,把(0,﹣1),(3,﹣5)代入得:,解得:,∴经过点C,D两点的一次函数的解析式为y=﹣x﹣1.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为40;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.【解答】解:(Ⅰ)由图表可得苹果100kg时,付款金额为500元,苹果200kg时,付款金额为500+100×5×0.8=900元;(Ⅱ)设购买量为xkg,付款金额为y元,当0≤x≤100时,y=5x;当x>100时,y=100×5+(x﹣100)×5×0.8=4x+100;(Ⅲ)把y=2100代入y=4x+100得:2100=4x+100,解得:x=500,答:如果某人付款2100元,其购买苹果的数量为500kg.故答案为:500;900.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.【解答】(I)证明:在图(1)中,连接AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD,CA平分∠BCD.∵∠B=60°,∴△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.∵AB∥CD,∴∠ACD=∠BAC=60°,∴∠B=∠ACD=60°.∵∠EAF=60°,∴∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠CEF+∠AEB=120°.∵∠BAE+∠AEB=120°,∴∠BAE=∠CEF.(II)解:∠BAE=∠CEF.在图(2)中,连接AC,由(I)知:∠ABC=∠ACD=60°,∠EAF=∠BAC=60°,AB =AC,∴∠ABE=∠ACF=120°,∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°.∵∠AEB+∠BAE=∠ABC=60°,∴∠BAE=∠CEF.。
2017-2018学年天津市和平区八年级(下)期末数学试卷
2017-2018学年天津市和平区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知ABC V 的三边分别是6,8,10,则ABC V 的面积是( ) A .24 B .30C .40D .482.(3分)在实数范围内有意义,则x 的取值范围是() A .0x ≥ B .1x ≥C .1x >D .0x ≥且1x ≠3.(3分)()A B .253nC .53n D D 4.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,225.(3分)下列命题正确的是( ) A .有一个角是直角的四边形是矩形 B .有三个角是直角的四边形是矩形 C .对角线相等的四边形是矩形 D .对角线互相平分的四边形是矩形6.(3分)不论实数k 取何值,一次函数y=kx -3的图象必过的点坐标为( ) A .(0.-3) B .(0,3)C .3(,0)2D .3(,2-0)7.(3分)如图所示,菱形ABCD 中,对角线AC BD 、相交于点,O H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( )A .4.5B .5C .6D .98.(3分)当3x =时,函数y x k =-和函数1y kx =+的函数值相等,则k 的值为( ) A .2B .12C .12-D .-29.(3分)关于函数21y x =-+,下列结论正确的是( ) A .图象与直线21y x =+平行 B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当12x >时,0y < 10.(3分)如图是甲、乙两射击运动员的10次射击训练成绩的折线统计图,则下列说法正确的是( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定11.(3分)如图,OB AB 、分别表示两名同学沿着同一路线运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快。
天津市滨海新区2017-2018学年八年级(下)期末数学试卷(解析版)
天津市滨海新区2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
天津市南开区2017-2018学年八年级下期末数学试卷(含答案解析)
(A)6cm
(B) 4cm
(C)3cm
(D)2cm
【分析】由菱形 ABCD 中,OE∥DC,可得 OE 是△BCD 的中位线,又由
AD=6cm,根据菱形的性质,可得 CD=6cm,再利用三角形中位线的性质,即可
求得答案. 【解答】解:∵四边形 ABCD 是菱形, ∴CD=AD=6cm, OB=OD, ∵OE∥DC, ∴BE: CE=BO: DO, ∴BE=CE, 即 OE 是△BCD 的中位线,
在等号两边加上 4,得 x2-4x+4=-2+4
∴ ( x-2) 2=2.
故 C 答案正确.
故选:C.
【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法-
-配 方 法 的 运 用 , 解 答 过 程 注 意 解 答 一 元 二 次 方 程 配 方 法 的 步 骤 .
(4)点(1,m)为直线 y 2x 1 上一点,则 OA 的长度为
的长,则 AD=AC 即可求得,然后求得 OD 即可. 【解答】解:∵点 A 表示-1,O 是 AB 的中点, ∴OA=OB=1, ∴AB=2,
故选:D. 【点评】本题考查了三角函数,在直角三角形中利用三角函数求得 AC 的长是 关键.
(8)已知,如图,菱形 ABCD 中,对角线 AC、BD 相交于点 O,OE∥CD 交 BC 于点 E,AD=6cm, 则 OE 的长为
【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即
可求得 CE2+CF2=EF2,进而可求出 CE2+CF2 的值. 【解答】解:∵CE 平分∠ACB,CF 平分∠ACD,
∴△EFC 为直角三角形, 又∵EF∥BC,CE 平分∠ACB,CF 平分∠ACD, ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF, ∴CM=EM=MF=5, EF=10, 由勾股定理可知 CE2+CF2=EF2=100.
2017-2018年天津市和平区八年级下学期期末数学试卷和参考答案
2017-2018学年天津市和平区八年级下学期期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.482.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x>1D.x≥0且x≠1 3.(3分)化简的结果为()A.B.C.D.4.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21B.21,21.5C.21,22D.22,225.(3分)下列命题正确的是()A.有一个角是直角的四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形6.(3分)不论实数k取何值,一次函数y=kx﹣3的图象必过的点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)7.(3分)如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5C.6D.98.(3分)当x=3时,函数y=x﹣k和函数y=kx+1的函数值相等,则k的值为()A.2B.C.﹣D.﹣29.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<010.(3分)如图是甲、乙两射击运动员的10次射击训练成绩的折线统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定11.(3分)如图,OB、AB分别表示两名同学沿着同一路线运动的一次函数图象,图中s 和t分别表示运动路程和时间,已知甲的速度比乙快.有下列结论:①射线AB表示甲的运动路程与时间的函数关系;②甲出发时,乙已经在甲前面12米;③8秒后,甲超过了乙;④64秒时,甲追上了乙.其中,正确结论的个数是()A.1B.2C.3D.412.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE 沿BE折叠,点C恰好落在边AD上的点F处:点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的点H处,有下列结论:①∠EBG=45°②S△ABG=S△FGH③AG+DF=FG④其中,正确结论的个数是()A.1B.2C.3D.4二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(+)(﹣)的结果等于.14.(3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取.候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392 15.(3分)已知一次函数y=kx+2(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为16.(3分)如图,E,F,G,H分别是正方形ABCD各边的中点,则四边形EFGH是形.17.(3分)如图,正方形OABC的对角线OB在直线y=﹣x上,点A在第一象限.若正方形OABC的面积是50,则点A的坐标为.18.(3分)如图,在每个小正方形的边长为1的格中,点C,D,E,F,G均在格点上,DE与FG相交于点T.(1)CD的长等于(2)在如图所的网格中,用无刻度的直尺,画出①以DE为一边的正方形②以CD,DT为邻边的矩形CDTP三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤域推理过程19.(8分)计算:(1)(+)﹣(﹣)(2)(+)÷20.(8分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,捐款(元)1015305060人数3611136因不慎,表中数据有两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(Ⅰ)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(Ⅱ)该班捐款金额的众数,中位数分别是多少?(Ⅲ)如果用九年级(1)班捐款情况作为一个样本,请估计全校1200人中捐款在40元以上(包括40元)的人数是多少?21.(10分)如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC 上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D 重合.(1)AC的长=.(2)求CE的长.22.(10分)在▱ABCD中,(1)如图①,若AB=5,BC=3,则▱ABCD的周长为;若∠A=70°,则∠B的度数是,∠C的度数是;(2)如图②,点E是▱ABCD外一点,连接DB并延长交CE于点F,且CF=FE.求证DF∥AE.23.(10分)某公司计划组织员工外出,甲、乙旅行社的服务质量相问,且对外报价都是300元/人,该公同联系时,甲旅行社表示可给每人八折优惠;乙旅行社表示可免去一人的费用,其余人九折优惠.(1)根据题意,填写下表:外出人数(人)1011甲旅行社收费(元)2640乙旅行社收费(元)2430(2)设该公司此次外出有x人,选择甲旅行社的费用为y1元,选择乙旅行社的费用为y2元,分别写出y1,y2关于x的函数关系式(3)该公司外出人数在什么范围内,选甲旅行社划算?24.(10分)已知,四边形ABCD是正方形,点E在边AD上,点F在边AB的延长线上,且DE=BF,连接EF.(1)如图①,连接CE,CF.求证:△CEF是等腰直角三角形;(2)如图②,BD与EF交于点M,若正方形ABCD的边长为6,DE=2,求AM的长.(3)点G,点H分别在边AB,边CD上,GH与EF交于点N,且∠GNF=45°,若正方形ABCD的边长为6,GH=3,求DE的长(直接写出结果即可)25.(10分)在平面直角坐标系中,O为原点,已知直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)点A的坐标为,点B的坐标为,点C的坐标为,直线BC的解析式为.(2)点M是x轴上的一个动点(点M不与点O重合),过点M作x轴的垂线,交直线AB于点P.交直线BC于点Q①如图①,当点M在x轴的正半轴上时,若△PQB的面积为,求点M的坐标;②连接BM,若∠BMP=∠BAC,求点P的坐标.2017-2018学年天津市和平区八年级下学期期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【考点】KS:勾股定理的逆定理.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.【点评】本题考查勾股定理的逆定理,关键是根据三边长判断出为直角三角形,然后可求出三角形面积.2.【考点】72:二次根式有意义的条件.【解答】解:∵在实数范围内有意义,∴x≥0,x﹣1>0,解得:x>1,则x的取值范围是:x>1.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.【考点】75:二次根式的乘除法.【解答】解:==.故选:D.【点评】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.4.【考点】VC:条形统计图;W4:中位数;W5:众数.【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选:C.【点评】本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.5.【考点】LC:矩形的判定;O1:命题与定理.【解答】解:A、有一个角是直角的平行四边形是矩形,故此选项不能判定是矩形;B、有三个角是直角的四边形是矩形,能判定是矩形;C、对角线相等的平行四边形是矩形,故此选项不能判定是矩形;D、两条对角线互相平分四边形是平行四边形,故此选项不能判定是矩形.故选:B.【点评】此题主要考查了对矩形定义和判定的理解.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.6.【考点】F8:一次函数图象上点的坐标特征.【解答】解:∵一次函数y=kx﹣3,∴不论k取何值,函数图象必过点(0,﹣3).故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.【考点】KP:直角三角形斜边上的中线;KX:三角形中位线定理;L8:菱形的性质.【解答】解:∵四边形ABCD为菱形,且周长为36,∴AB=BC=CD=AD=9,又∵O为BD中点,H为AD的中点,∴OH为△ABD的中位线,∴OH=AB=4.5,故选:A.【点评】本题主要考查菱形的性质,掌握菱形的四边相等、对角线互相垂直平分是解题的关键.8.【考点】FF:两条直线相交或平行问题.【解答】解:由题意:3﹣k=3k+1,∴k=,故选:B.【点评】本题考查两直线相交或平行问题,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.9.【考点】F5:一次函数的性质;FF:两条直线相交或平行问题.【解答】解:A.由于直线y=﹣2x+1与直线y=2x+1的k值不相等,所以它们不平行,故本选项错误;B.函数y=﹣2x+1中,k=﹣2<0,y随x的增大而减小,故本选项错误;C.函数y=﹣2x+1中,k=﹣2<0,b=1>0,此函数的图象经过一、二、四象限,故本选项错误;D.函数y=﹣2x+1可化为x=,依据>,可得y<0,故本选项正确;故选:D.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b >0,图象与y轴的交点在x的上方.10.【考点】VD:折线统计图;W7:方差.【解答】解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10甲=8.5,甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.35∴S2甲<S2乙.故选:A.【点评】本题考查方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.【考点】FH:一次函数的应用.【解答】解:∵射线OB所表示的速度为=8米/秒,射线AB所表示的速度为=6.5米/秒,而甲的速度比乙快,∴射线AB表示乙的运动路程与时间的函数关系,所以①错误;∵乙8秒走了64﹣12=52米,甲8秒走了64米,而他们8秒时相遇,∴甲出发时,乙在甲前面12米,所以②正确;∵甲乙8秒时相遇,而甲的速度比乙快,∴8秒后,甲超过了乙,所以③正确;④错误.故选:B.【点评】本题考查了一次函数的应用:从一次函数的图象中获取信息,然后根据一次函数的性质进行发现解决实际问题.12.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以③正确;∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH.所以②正确.设CE=EF=x,在Rt△EFD中,x2=(6﹣x)2+22,解得x=,∴CE=,DE=6﹣=,∴=,故④正确,故选:D.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.二.填空题(本大题共6小题,每小题3分,共18分)13.【考点】79:二次根式的混合运算.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.【点评】本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.14.【考点】W2:加权平均数.【解答】解:甲的平均成绩=(90×4+86×6)÷10=876÷10=87.6(分)乙的平均成绩=(83×4+92×6)÷10=884÷10=88.4(分)丙的平均成绩=(83×4+90×6)÷10=872÷10=87.2(分)丁的平均成绩=(92×4+83×6)÷10=866÷10=86.6(分)∵88.4>87.6>87.2>86.6,∴乙的平均成绩最高,∴公司将录取乙.故答案为:乙.【点评】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.15.【考点】F5:一次函数的性质.【解答】解:∵一次函数y随x的增大而减小,∴k<0,不妨设k=﹣1,故答案为:﹣1【点评】本题考查了一次函数的性质,开放型题目,所写函数解析式必须满足k<0.16.【考点】LE:正方形的性质;LN:中点四边形.【解答】解:连接AC、BD.∵E、F、G、H分别是正方形ABCD各边的中点,∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=BD,EF=HG=AC,∴四边形EFGH为平行四边形,∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,∴EF=FG,EF⊥FG,∴▱EFGH是正方形,故答案为:正方.【点评】本题考查的是中点四边形,掌握三角形中位线定理、正方形的性质定理和判定定理是解题的关键.17.【考点】F8:一次函数图象上点的坐标特征;LE:正方形的性质.【解答】解:如图作OF⊥OB,交BA的延长线于F,作BM⊥x轴于M,FN⊥x轴于N.∵四边形ABCD是正方形,∴∠OBA=45°,∵∠BOF=90°,∴△BOF是等腰直角三角形,∴OB=OF,由△BOM≌△OFN,可得BM=ON,OM=FN,∵正方形OABC的面积是50,∴OB=10,∵点B在直线y=﹣上,∴B(﹣6,8),F(8,6),∵BA=AF,∴A(1,7),故答案为(1.7)【点评】主要考查了一次函数的应用、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.18.【考点】KQ:勾股定理;LB:矩形的性质;N4:作图—应用与设计作图.【解答】解:(1)由勾股定理可得,CD==;故答案为:;(2)①如图所示,四边形CDEQ即为所求;②如图所示,四边CDTP即为所求.【点评】本题考查作图﹣应用与设计,勾股定理以及正方形和矩形的判定等知识,解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤域推理过程19.【考点】79:二次根式的混合运算.【解答】解:(1)原式=3+3﹣2+5=8+;(2)原式=+=4+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【解答】解:(I)被污染处的人数为:50﹣3﹣6﹣11﹣13﹣6=11(人),被污染处的捐款数[50×38﹣(10×3+15×6+30×11+50×13+60×6)]÷11=40,答:被污染处的人数为11人,被污染处的捐款数为40元;(Ⅱ)这组数据中50出现了13次,出现次数最多,则这组数据的众数是50;将组组数据从小到大依次排列,最中间的两数据是40,40,所以中位数为(40+40)÷2=40;(Ⅲ)因为九年级一班捐款数40元以上(包括40元)的有30人,占到60%,因此估计全校1200人捐款在40元以上(包括40元)的人数是1200×60%=720,答:全校1200人中捐款在40元以上(包括40元)的人数是720人.【点评】此题主要考查了众数、中位数、加权平均数、以及利用样本估计总体,关键是掌握各种数的概念和计算方法.21.【考点】KQ:勾股定理;PB:翻折变换(折叠问题).【解答】解:(1)∵∠ACB=90°,BC=5,AB=13,∴AC=12,故答案为12.(2)根据将其三角形纸片ABC对折后点A落在BC的延长线上,则AB=BD=13,∵S△ABC=S△BCE+S△BDE,∴×5×12=BC×EC+EC×BD,∴30=×EC(5+13),∴CE=.【点评】此题主要考查了翻折变换的性质,根据已知得出S△ABC=S△BCE+S△BDE进而求出EC是解题关键.22.【考点】L5:平行四边形的性质.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴AD=BC=3,AB=CD=5,AD∥BC,∴∠A=∠C=70°,∠A+∠B=180°,∴∠B=110°,∴平行四边形ABCD的周长为16.故答案为16,110°,70°.(2)如图2中,连接AC交BD于O.∵四边形ABCD是平行四边形,∴CO=OA,∵CF=FB,∴OF∥AE,即DF∥AE.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题;23.【考点】FH:一次函数的应用.【解答】解:(1)根据题意,甲旅行社收费为300×0.8×10=2400;甲旅行社收费为300×0.9×(11﹣1)=2700;(2)由题意可得甲旅行社的费用:y1=300×0.8x=240x乙旅行社的费用:y2=300×0.9×(x﹣1)=270x﹣270(3)当y1<y2时,240x<270x﹣270,解得x>9∴当公司外出人数大于9人时,选甲旅行社划算.【点评】本题为一次函数应用问题,考查了根据题意列函数关系式和一元一次不等式.24.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质.【解答】解:(1)如图①,∵四边形ABCD是正方形,∴BC=CD,∠CBA=∠D=90°,∴∠D=∠CBF=∠BCD=90°,在△CDE和△CBF中,∵,∴△CDE≌△CBF(SAS),∴CE=CF,∠DCE=∠BCF,∴∠BCF+∠BCE=∠DCE+∠BCE=90°,∴△CEF是等腰直角三角形;(2)如图②,过M作MG⊥AF于G,∵DE=BF=2,AB=6,∴AE=4,AF=6+2=8,∵∠FGM=∠F AE=90°,∠FMG=∠FEA,∴△FGM∽△F AE,∴=2,∴FG=2GM,设GM=x,则FG=2x,∵四边形ABCD是正方形,∴∠ABM=45°,∴△BGM是等腰直角三角形,∴BG=GM=x,∴BG=BF=x=2,∴GM=2,AG=6﹣2=4,由勾股定理得:AM==2;(3)如图③,过G作GP⊥CD于P,由(1)知:∠CEF=45°,∵∠GNF=∠ENM=45°,∴∠EMN=90°,∴∠D=∠EMH=90°,∴∠GHC=∠DEC,∵GP=BC=CD,∠D=∠GPH=90°,∴△GHP≌△CED,∴CE=GH=3,∵CD=6,在Rt△CED中,由勾股定理得:DE==3.【点评】本题是四边形综合题,考查了正方形、等腰直角三角形的判定和性质、勾股定理、三角形全等的性质和判定,第1问证明△CDE≌△CBF是关键;第2问作辅助线,构建直角三角形是关键;第3问通过作辅助线构建全等三角形是解决问题的关键.25.【考点】FI:一次函数综合题.【解答】解:(1)解:对于y=x+3,由x=0得:y=3,∴B(0,3)由y=0得:0=x+3,解得x=﹣6,∴A(﹣6,0),∵点C与点A关于y轴对称∴C(6,0)设直线BC的函数解析式为y=kx+b,根据题意得:,解得∴直线BC的函数解析式为y=﹣x+3.故答案为:(﹣6,0);(0,3);(6,0);y=﹣x+3.(2)如图1所示:过点B作BD⊥PQ,垂足为D.设M(x,0),则P(x,x+3)、Q(x,﹣x+3),则PQ=x,DB=x.∵△PQB的面积为,∴BD•QP x•x=,解得x=(负值舍去).∴M(,0).(3)如图2所示:当点M在x轴的正半轴上时.∵OB∥QP,∴∠BMP=∠OBM.又∵∠BMP=∠BAC,∴∠BAO=∠OBM.∴=,即,解得OM=.将x=代入y=x+3得:y=,∴P(,).如图3所示:当点M在x轴的负半轴上时.∵OB∥QP,∴∠BMP=∠OBM.又∵∠BMP=∠BAC,∴∠BAO=∠OBM.∴=,即,解得OM =.将x =﹣代入y =x+3得:y =,∴P (﹣,).∴点P 的坐标为(﹣,)或(,).【点评】本题主要考查的是一次函数的综合应用,解答本题主要应用了待定系数法求一次函数的解析式,三角形的面积公式,锐角三角函数的定义,用含x的式子表示BD 和PQ的长是解答问题(2)的关键,证得=,从而求得点M的横坐标是解答问题(3)的关键.注意事项.1.答题前填写好自己的姓名、班级、考号等信息第21页(共21页)。
天津市八年级下学期数学期末考试试卷
天津市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·市北区模拟) 下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2018八下·越秀期中) 顺次连接菱形各边中点所形成的四边形是()A . 平行四边形B . 菱形C . 矩形D . 正方形3. (2分)甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为S2甲=2.0,S2乙=2.7,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。
其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分)四张质地、大小相同的卡片上,分别画上如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A .B .C .D . 15. (2分)用配方法解方程,下列配方的结果正确的是()A .B .C .D .6. (2分) (2016九上·临洮期中) 关于x的一元二次方程x2+ax﹣1=0的根的情况是()A . 没有实数根B . 只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根7. (2分)(2017·碑林模拟) 正比例函数y=(2k+1)x,若y的值随x值增大而增大,则k的取值范围是()A . k>﹣B . k<﹣C . k=﹣D . k=08. (2分) (2017九下·盐都期中) 如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停下,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A . 当x=2时,y=5B . 矩形MNPQ 的面积是20C . 当x=6时,y=10D . 当y= 时,x=3二、填空题 (共5题;共6分)9. (1分) (2018九上·武昌期中) 若是一元二次方程x²+ =0的解,则的值为________。
2017-2018学年天津市和平区八年级(下)期末数学试卷(解析版)
2017-2018学年天津市和平区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.482.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x>1D.x≥0且x≠1 3.(3分)化简的结果为()A.B.C.D.4.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21B.21,21.5C.21,22D.22,225.(3分)下列命题正确的是()A.有一个角是直角的四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形6.(3分)不论实数k取何值,一次函数y=kx﹣3的图象必过的点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)7.(3分)如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5C.6D.98.(3分)当x=3时,函数y=x﹣k和函数y=kx+1的函数值相等,则k的值为()A.2B.C.﹣D.﹣29.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<010.(3分)如图是甲、乙两射击运动员的10次射击训练成绩的折线统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定11.(3分)如图,OB、AB分别表示两名同学沿着同一路线运动的一次函数图象,图中s 和t分别表示运动路程和时间,已知甲的速度比乙快.有下列结论:①射线AB表示甲的运动路程与时间的函数关系;②甲出发时,乙已经在甲前面12米;③8秒后,甲超过了乙;④64秒时,甲追上了乙.其中,正确结论的个数是()A.1B.2C.3D.412.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰好落在边AD上的点F处:点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的点H处,有下列结论:①∠EBG=45°②S△ABG=S△FGH③AG+DF=FG④其中,正确结论的个数是()A.1B.2C.3D.4二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(+)(﹣)的结果等于.14.(3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取.15.(3分)已知一次函数y=kx+2(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为16.(3分)如图,E,F,G,H分别是正方形ABCD各边的中点,则四边形EFGH是形.17.(3分)如图,正方形OABC的对角线OB在直线y=﹣x上,点A在第一象限.若正方形OABC的面积是50,则点A的坐标为.18.(3分)如图,在每个小正方形的边长为1的格中,点C,D,E,F,G均在格点上,DE与FG相交于点T.(1)CD的长等于(2)在如图所的网格中,用无刻度的直尺,画出①以DE为一边的正方形②以CD,DT为邻边的矩形CDTP三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤域推理过程19.(8分)计算:(1)(+)﹣(﹣)(2)(+)÷20.(8分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(Ⅰ)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(Ⅱ)该班捐款金额的众数,中位数分别是多少?(Ⅲ)如果用九年级(1)班捐款情况作为一个样本,请估计全校1200人中捐款在40元以上(包括40元)的人数是多少?21.(10分)如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合.(1)AC的长=.(2)求CE的长.22.(10分)在▱ABCD中,(1)如图①,若AB=5,BC=3,则▱ABCD的周长为;若∠A=70°,则∠B的度数是,∠C的度数是;(2)如图②,点E是▱ABCD外一点,连接DB并延长交CE于点F,且CF=FE.求证DF ∥AE.23.(10分)某公司计划组织员工外出,甲、乙旅行社的服务质量相问,且对外报价都是300元/人,该公同联系时,甲旅行社表示可给每人八折优惠;乙旅行社表示可免去一人的费用,其余人九折优惠.(1)根据题意,填写下表:(2)设该公司此次外出有x人,选择甲旅行社的费用为y1元,选择乙旅行社的费用为y2元,分别写出y1,y2关于x的函数关系式(3)该公司外出人数在什么范围内,选甲旅行社划算?24.(10分)已知,四边形ABCD是正方形,点E在边AD上,点F在边AB的延长线上,且DE=BF,连接EF.(1)如图①,连接CE,CF.求证:△CEF是等腰直角三角形;(2)如图②,BD与EF交于点M,若正方形ABCD的边长为6,DE=2,求AM的长.(3)点G,点H分别在边AB,边CD上,GH与EF交于点N,且∠GNF=45°,若正方形ABCD的边长为6,GH=3,求DE的长(直接写出结果即可)25.(10分)在平面直角坐标系中,O为原点,已知直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)点A的坐标为,点B的坐标为,点C的坐标为,直线BC的解析式为.(2)点M是x轴上的一个动点(点M不与点O重合),过点M作x轴的垂线,交直线AB 于点P.交直线BC于点Q①如图①,当点M在x轴的正半轴上时,若△PQB的面积为,求点M的坐标;②连接BM,若∠BMP=∠BAC,求点P的坐标.2017-2018学年天津市和平区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.2.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x>1D.x≥0且x≠1【解答】解:∵在实数范围内有意义,∴x≥0,x﹣1>0,解得:x>1,则x的取值范围是:x>1.故选:C.3.(3分)化简的结果为()A.B.C.D.【解答】解:==.故选:D.4.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21B.21,21.5C.21,22D.22,22【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选:C.5.(3分)下列命题正确的是()A.有一个角是直角的四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形【解答】解:A、有一个角是直角的平行四边形是矩形,故此选项不能判定是矩形;B、有三个角是直角的四边形是矩形,能判定是矩形;C、对角线相等的平行四边形是矩形,故此选项不能判定是矩形;D、两条对角线互相平分四边形是平行四边形,故此选项不能判定是矩形.故选:B.6.(3分)不论实数k取何值,一次函数y=kx﹣3的图象必过的点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)【解答】解:∵一次函数y=kx﹣3,∴不论k取何值,函数图象必过点(0,﹣3).故选:A.7.(3分)如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5C.6D.9【解答】解:∵四边形ABCD为菱形,且周长为36,∴AB=BC=CD=AD=9,又∵O为BD中点,H为AD的中点,∴OH为△ABD的中位线,∴OH=AB=4.5,故选:A.8.(3分)当x=3时,函数y=x﹣k和函数y=kx+1的函数值相等,则k的值为()A.2B.C.﹣D.﹣2【解答】解:由题意:3﹣k=3k+1,∴k=,故选:B.9.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【解答】解:A.由于直线y=﹣2x+1与直线y=2x+1的k值不相等,所以它们不平行,故本选项错误;B.函数y=﹣2x+1中,k=﹣2<0,y随x的增大而减小,故本选项错误;C.函数y=﹣2x+1中,k=﹣2<0,b=1>0,此函数的图象经过一、二、四象限,故本选项错误;D.函数y=﹣2x+1可化为x=,依据>,可得y<0,故本选项正确;故选:D.10.(3分)如图是甲、乙两射击运动员的10次射击训练成绩的折线统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【解答】解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.35∴S2甲<S2乙.故选:A.11.(3分)如图,OB、AB分别表示两名同学沿着同一路线运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快.有下列结论:①射线AB表示甲的运动路程与时间的函数关系;②甲出发时,乙已经在甲前面12米;③8秒后,甲超过了乙;④64秒时,甲追上了乙.其中,正确结论的个数是()A.1B.2C.3D.4【解答】解:∵射线OB所表示的速度为=8米/秒,射线AB所表示的速度为=6.5米/秒,而甲的速度比乙快,∴射线AB表示乙的运动路程与时间的函数关系,所以①错误;∵乙8秒走了64﹣12=52米,甲8秒走了64米,而他们8秒时相遇,∴甲出发时,乙在甲前面12米,所以②正确;∵甲乙8秒时相遇,而甲的速度比乙快,∴8秒后,甲超过了乙,所以③正确;④错误.故选:B.12.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰好落在边AD上的点F处:点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的点H处,有下列结论:①∠EBG=45°②S△ABG=S△FGH③AG+DF=FG④其中,正确结论的个数是()A.1B.2C.3D.4【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以③正确;∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH.所以②正确.设CE=EF=x,在Rt△EFD中,x2=(6﹣x)2+22,解得x=,∴CE=,DE=6﹣=,∴=,故④正确,故选:D.二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(+)(﹣)的结果等于2.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.14.(3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取乙.【解答】解:甲的平均成绩=(90×4+86×6)÷10=876÷10=87.6(分)乙的平均成绩=(83×4+92×6)÷10=884÷10=88.4(分)丙的平均成绩=(83×4+90×6)÷10=872÷10=87.2(分)丁的平均成绩=(92×4+83×6)÷10=866÷10=86.6(分)∵88.4>87.6>87.2>86.6,∴乙的平均成绩最高,∴公司将录取乙.故答案为:乙.15.(3分)已知一次函数y=kx+2(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为﹣1【解答】解:∵一次函数y随x的增大而减小,∴k<0,不妨设k=﹣1,故答案为:﹣116.(3分)如图,E,F,G,H分别是正方形ABCD各边的中点,则四边形EFGH是正方形.【解答】解:连接AC、BD.∵E、F、G、H分别是正方形ABCD各边的中点,∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=BD,EF=HG=AC,∴四边形EFGH为平行四边形,∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,∴EF=FG,EF⊥FG,∴▱EFGH是正方形,故答案为:正方.17.(3分)如图,正方形OABC的对角线OB在直线y=﹣x上,点A在第一象限.若正方形OABC的面积是50,则点A的坐标为(1,7).【解答】解:如图作OF⊥OB,交BA的延长线于F,作BM⊥x轴于M,FN⊥x轴于N.∵四边形ABCD是正方形,∴∠OBA=45°,∵∠BOF=90°,∴△BOF是等腰直角三角形,∴OB=OF,由△BOM≌△OFN,可得BM=ON,OM=FN,∵正方形OABC的面积是50,∴OB=10,∵点B在直线y=﹣上,∴B(﹣6,8),F(8,6),∵BA=AF,∴A(1,7),故答案为(1.7)18.(3分)如图,在每个小正方形的边长为1的格中,点C,D,E,F,G均在格点上,DE与FG相交于点T.(1)CD的长等于(2)在如图所的网格中,用无刻度的直尺,画出①以DE为一边的正方形②以CD,DT为邻边的矩形CDTP【解答】解:(1)由勾股定理可得,CD==;故答案为:;(2)①如图所示,四边形CDEQ即为所求;②如图所示,四边CDTP即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤域推理过程19.(8分)计算:(1)(+)﹣(﹣)(2)(+)÷【解答】解:(1)原式=3+3﹣2+5=8+;(2)原式=+=4+2.20.(8分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(Ⅰ)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(Ⅱ)该班捐款金额的众数,中位数分别是多少?(Ⅲ)如果用九年级(1)班捐款情况作为一个样本,请估计全校1200人中捐款在40元以上(包括40元)的人数是多少?【解答】解:(I)被污染处的人数为:50﹣3﹣6﹣11﹣13﹣6=11(人),被污染处的捐款数[50×38﹣(10×3+15×6+30×11+50×13+60×6)]÷11=40,答:被污染处的人数为11人,被污染处的捐款数为40元;(Ⅱ)这组数据中50出现了13次,出现次数最多,则这组数据的众数是50;将组组数据从小到大依次排列,最中间的两数据是40,40,所以中位数为(40+40)÷2=40;(Ⅲ)因为九年级一班捐款数40元以上(包括40元)的有30人,占到60%,因此估计全校1200人捐款在40元以上(包括40元)的人数是1200×60%=720,答:全校1200人中捐款在40元以上(包括40元)的人数是720人.21.(10分)如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合.(1)AC的长=12.(2)求CE的长.【解答】解:(1)∵∠ACB=90°,BC=5,AB=13,∴AC=12,故答案为12.(2)根据将其三角形纸片ABC对折后点A落在BC的延长线上,则AB=BD=13,∵S△ABC=S△BCE+S△BDE,∴×5×12=BC×EC+EC×BD,∴30=×EC(5+13),∴CE=.22.(10分)在▱ABCD中,(1)如图①,若AB=5,BC=3,则▱ABCD的周长为16;若∠A=70°,则∠B的度数是110°,∠C的度数是70°;(2)如图②,点E是▱ABCD外一点,连接DB并延长交CE于点F,且CF=FE.求证DF ∥AE.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴AD=BC=3,AB=CD=5,AD∥BC,∴∠A=∠C=70°,∠A+∠B=180°,∴∠B=110°,∴平行四边形ABCD的周长为16.故答案为16,110°,70°.(2)如图2中,连接AC交BD于O.∵四边形ABCD是平行四边形,∴CO=OA,∵CF=FB,∴OF∥AE,即DF∥AE.23.(10分)某公司计划组织员工外出,甲、乙旅行社的服务质量相问,且对外报价都是300元/人,该公同联系时,甲旅行社表示可给每人八折优惠;乙旅行社表示可免去一人的费用,其余人九折优惠.(1)根据题意,填写下表:(2)设该公司此次外出有x人,选择甲旅行社的费用为y1元,选择乙旅行社的费用为y2元,分别写出y1,y2关于x的函数关系式(3)该公司外出人数在什么范围内,选甲旅行社划算?【解答】解:(1)根据题意,甲旅行社收费为300×0.8×10=2400;甲旅行社收费为300×0.9×(11﹣1)=2700;(2)由题意可得甲旅行社的费用:y1=300×0.8x=240x乙旅行社的费用:y2=300×0.9×(x﹣1)=270x﹣270(3)当y1<y2时,240x<270x﹣270,解得x>9∴当公司外出人数大于9人时,选甲旅行社划算.24.(10分)已知,四边形ABCD是正方形,点E在边AD上,点F在边AB的延长线上,且DE=BF,连接EF.(1)如图①,连接CE,CF.求证:△CEF是等腰直角三角形;(2)如图②,BD与EF交于点M,若正方形ABCD的边长为6,DE=2,求AM的长.(3)点G,点H分别在边AB,边CD上,GH与EF交于点N,且∠GNF=45°,若正方形ABCD的边长为6,GH=3,求DE的长(直接写出结果即可)【解答】解:(1)如图①,∵四边形ABCD是正方形,∴BC=CD,∠CBA=∠D=90°,∴∠D=∠CBF=∠BCD=90°,∵,∴△CDE≌△CBF(SAS),∴CE=CF,∠DCE=∠BCF,∴∠BCF+∠BCE=∠DCE+∠BCE=90°,∴△CEF是等腰直角三角形;(2)如图②,过M作MG⊥AF于G,∵DE=BF=2,AB=6,∴AE=4,AF=6+2=8,∵∠FGM=∠F AE=90°,∠FMG=∠FEA,∴△FGM∽△F AE,∴=2,∴FG=2GM,设GM=x,则FG=2x,∵四边形ABCD是正方形,∴∠ABM=45°,∴△BGM是等腰直角三角形,∴BG=GM=x,∴BG=BF=x=2,∴GM=2,AG=6﹣2=4,由勾股定理得:AM==2;(3)如图③,过G作GP⊥CD于P,由(1)知:∠CEF=45°,∵∠GNF=∠ENM=45°,∴∠EMN=90°,∴∠D=∠EMH=90°,∴∠GHC=∠DEC,∵GP=BC=CD,∠D=∠GPH=90°,∴CE=GH=3,∵CD=6,在Rt△CED中,由勾股定理得:DE==3.25.(10分)在平面直角坐标系中,O为原点,已知直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)点A的坐标为(﹣6,0),点B的坐标为(0,3),点C的坐标为(6,0),直线BC的解析式为y=﹣x+3.(2)点M是x轴上的一个动点(点M不与点O重合),过点M作x轴的垂线,交直线AB 于点P.交直线BC于点Q①如图①,当点M在x轴的正半轴上时,若△PQB的面积为,求点M的坐标;②连接BM,若∠BMP=∠BAC,求点P的坐标.【解答】解:(1)解:对于y=x+3,由x=0得:y=3,∴B(0,3)由y=0得:0=x+3,解得x=﹣6,∴A(﹣6,0),∵点C与点A关于y轴对称∴C(6,0)设直线BC的函数解析式为y=kx+b,根据题意得:,解得∴直线BC的函数解析式为y=﹣x+3.故答案为:(﹣6,0);(0,3);(6,0);y=﹣x+3.(2)如图1所示:过点B作BD⊥PQ,垂足为D.设M(x,0),则P(x,x+3)、Q(x,﹣x+3),则PQ=x,DB=x.∵△PQB的面积为,∴BD•QP x•x=,解得x=(负值舍去).∴M(,0).(3)如图2所示:当点M在x轴的正半轴上时.∵OB∥QP,∴∠BMP=∠OBM.又∵∠BMP=∠BAC,∴∠BAO=∠OBM.∴=,即,解得OM=.将x=代入y=x+3得:y=,∴P(,).如图3所示:当点M在x轴的负半轴上时.∵OB∥QP,∴∠BMP=∠OBM.又∵∠BMP=∠BAC,∴∠BAO=∠OBM.∴=,即,解得OM=.将x=﹣代入y=x+3得:y=,∴P(﹣,).∴点P的坐标为(﹣,)或(,).。
【新课标-精品卷】2017-2018学年天津市宝坻区八年级下学期学期期末考试数学试题及答案
o y x y x o yx o yx o 2017-2018学年度天津市八年级数学下册期末试卷题 号 一 二 三 四 五 总分 得 分 总分人卷首语:请同学们拿到试卷后,不必紧张,用半分钟时间整理一下思路,要相信我能行.评卷人得分一、相信你的选择(每小题3分,共30分) 1. 当分式13-x 有意义时,字母x 应满足( ) A. 0=x B. 0≠x C. 1=x D. 1≠x2.若点(-5,y 1)、(-3,y 2)、(3,y 3)都在反比例函数y= -3x 的图像上,则( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 23.如图,在直角梯形ABCD 中,AD BC ∥,点E 是边CD 的中点,若52AB AD BC BE =+=,,则梯形ABCD 的面积为( )A .254B .252C .258D .254.函数ky x=的图象经过点(1,-2),则k 的值为( ) A.12 B. 12- C. 2 D. -2 5.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )A B C D 6.顺次连结等腰梯形各边中点所得四边形是( )A .梯形 B.菱形 C.矩形 D.正方形7.若分式34922+--x x x 的值为0,则x 的值为( )A .3 B.3或-3 C.-3 D.0AD E B8.甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( ) A.bba +倍 B.ba b+倍 C.ab ab -+倍 D.ab ab +-倍 9.如图,把一张平行四边形纸片ABCD 沿BD 对折。
使C 点落在E 处,BE 与AD 相交于点D .若∠DBC=15°,则∠BOD= A .130 ° B.140 ° C.150 ° D.160°10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( ) A .4 B.5 C.6 D.7评卷人 得分二、请准确填空(每小题3分,共24分) 11.已知正比例函数y kx =的图像与反比例函数4ky x-=的图像有一个交点的横坐标是1-,那么它们的交点坐标分别为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6. (3 分)某市测得一周 PM2.5 的日均值(单位: )如下:50,40,75,50,37, 50,40,这组数据的中位数和众数分别是( A.50 和 50 B.50 和 40 C.40 和 50 D.40 和 40 7. (3 分) 若平行四边形中两个内角的度数比为 1: 2, 则其中较小的内角是 ( A.90° B.60° C.120°D.45° 8. (3 分)下列说法不正确的是( ) ) )
12. (3 分)某书定价 8 元,如果一次购买 10 本以上,超过 10 本部分打八折, 那么付款金额 y 与购书数量 x 之间的函数关系如何,同学们对此展开了讨论: (1)小明说:y 与 x 之间的函数关系为 y=6.4x+16 (2)小刚说:y 与 x 之间的函数关系为 y=8x (3) 小聪说: y 与 x 之间的函数关系在 0≤x≤10 时, y=8x; 在 x>10 时, y=6.4x+16 (4)小斌说:我认为用下面的列表法也能表示它们之间的关系 购买量/本 付款金额/元 1 8 2 16 3 24 4 32 … … 9 72 10 80 11 86.4 12 92.8 … …
22. (6 分)直线 a:y=x+2 和直线 b:y=﹣x+4 相交于点 A,分别与 x 轴相交于点 B 和点 C,与 y 轴相交于点 D 和点 E. (1)求△ABC 的面积; (2)求四边形 ADOC 的面积. 23. (6 分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的 销售额 (单位: 万元) , 并根据统计的这组数据, 绘制出如下的统计图①和图②. 请 根据相关信息,解答下列问题.
) C. =3 D. =
4. (3 分)如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组 数是( ) B.4,5,6 C. ,1, D. ,4,5
A.6,8,10
5. (3 分)如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3) , 则这两点之间的距离是( )
A.
B.
C.13 D.5
(5)小志补充说:如图所示的图象也能表示它们之间的关系.
2
其中,表示函数关系正确的个数有(
)
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 13. (3 分)计算: (2 )2= . .
14. (3 分)在△ABC 中,∠C=90°,AC=6,BC=8,则高 CD 共 46 分) 19. (6 分)计算: (Ⅰ) (Ⅱ) ( × + × )+( ﹣ )
20. (6 分)为了考察甲、乙两种小麦的长势,分别从中抽取 5 株麦苗,测得苗 高(单位:cm)如下: 甲:6、8、9、9、8; 乙:10、7、7、7、9. (Ⅰ)分别计算两种小麦的平均苗高; (Ⅱ)哪种小麦的长势比较整齐?为什么? 21. (6 分)如图,在矩形 ABCD 中,AB=8,AD=4,点 E,F 分别在边 CD,AB 上, 若四边形 AFCE 是菱形,求菱形 AFCE 的周长.
4
(Ⅰ)该商场服装部营业员的人数为
,图①中 m 的值为
(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数. 24. (8 分)如图(1) ,正方形 ABCD 的对角线 AC,BD 相交于点 O,E 是 AC 上一 点,连结 EB,过点 A 作 AM⊥BE,垂足为 M,AM 与 BD 相交于点 F. (1)求证:OE=OF; (2)如图(2)若点 E 在 AC 的延长线上,AM⊥BE 于点 M,AM 交 DB 的延长线 于点 F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果 不成立,请说明理由.
18. (3 分)如图,在梯形 ABCD 中,AD∥BC,AD=6,BC=16,E 是 BC 的中点.点 P 以每秒 1 个单位长度的速度从点 A 出发,沿 AD 向点 D 运动;点 Q 同时以每秒 2 个单位长度的速度从点 C 出发,沿 CB 向点 B 运动.点 P 停止运动时,点 Q 也 随之停止运动.当运动时间 平行四边形. 秒时,以点 P,Q,E,D 为顶点的四边形是
2016-2017 学年天津市部分区八年级(下)期末数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分) 1. (3 分)如果 A.a≥﹣2 B.a≤2 有意义,那么( C.a≥2 )
D.a≤﹣2 合并的是( )
2. (3 分)下列二次根式,不能与 A. B. C. D.﹣
3. (3 分)下列计算正确的是( A. + = B. ﹣ =
1
A.对角线互相垂直的矩形一定是正方形 B.对角线相等的菱形一定是正方形 C.对角线互相垂直且相等的平行四边形一定是正方形 D.顺次连接任意对角线相等的四边形的各边中点所得的四边形一定是正方形 9. (3 分)如图,菱形 ABCD 的边长为 20,∠DAB=60,对角线为 AC 和 BD,那么 菱形的面积为( )
15. (3 分)已知点(﹣2,y1) , (3,y2)都在直线 y=kx﹣1 上,若 y1<y2,则 k 0. (填>,<或=) 16. (3 分)已知矩形 ABCD 的对角线 AC,BD 相交于点 O,∠AOB=60°,AB=4, 则矩形对角线的长是 . .
17. (3 分)函数 y=kx 与 y=6﹣x 的图象如图所示,则 k=
A.50
B.100
C.200
D.400
10 . ( 3 分)下列变量之间关系中,一个变量是另一个变量的正比例函数的是 ( )
A.正方形的面积 S 随着边长 x 的变化而变化 B.正方形的周长 C 随着边长 x 的变化而变化 C.水箱有水 10L,以 0.5L/min 的流量往外放水,水箱中的剩水量 V(L)随着放 水时间 t(min)的变化而变化 D.面积为 20 的三角形的一边 a 随着这边上的高 h 的变化而变化 11. (3 分)一次函数 y=kx+b 中,y 随 x 的增大而减小,b<0,则这个函数的图 象不经过( A.第一象限 ) B.第二象限 C.第三象限 D.第四象限