高中数学新课标椭圆常结论

合集下载

新课标高中数学常用公式及常用结论大全

新课标高中数学常用公式及常用结论大全

1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12. 13.14.四种命题的相互关系原命题 互逆 逆命题。

高中数学圆锥曲线常用98条结论

高中数学圆锥曲线常用98条结论

高中数学圆锥曲线常用98条结论1.椭圆的离心率小于1,且焦点在中心到长轴的垂线上。

2. 长轴和短轴的长度分别为2a和2b,则椭圆的标准方程为(x/a)+(y/b)=1。

3. 椭圆的焦距为c=√(a-b)。

4. 椭圆的面积为πab。

5. 椭圆的周长近似为2π√((a+b)/2)。

6. 椭圆的离心率为e=c/a。

7. 双曲线的离心率大于1,且焦点在中心到长轴的垂线上。

8. 长轴和短轴的长度分别为2a和2b,则双曲线的标准方程为(x/a)-(y/b)=1。

9. 双曲线的焦距为c=√(a+b)。

10. 双曲线的面积为πab。

11. 双曲线的渐近线方程为y=±(b/a)x。

12. 双曲线的离心率为e=c/a。

13. 抛物线的离心率等于1,且焦点在抛物线的顶点上。

14. 抛物线的标准方程为y=4ax。

15. 抛物线的焦距等于a。

16. 抛物线的面积为2/3×a×(4a/3)。

17. 抛物线的顶点坐标为(0,0)。

18. 抛物线的准线方程为y=-a。

19. 圆的标准方程为(x-a)+(y-b)=r。

20. 圆的直径为圆心的两倍半径。

21. 圆的周长为2πr。

22. 圆的面积为πr。

23. 直线与圆相交,切点到圆心的距离垂直于直线。

24. 切线方程为y-y=k(x-x),其中k为切线斜率。

25. 直线与圆相切,切点坐标为(x,y),则切线方程为(y-y)=k(x-x),其中k为直线斜率。

26. 椭圆的切线方程为(ay/b)+(x/a)=1。

27. 双曲线的切线方程为(ay/b)-(x/a)=1。

28. 抛物线的切线方程为y=2ax。

29. 椭圆的法线方程为(by/a)+(x/a)=1。

30. 双曲线的法线方程为(by/a)-(x/a)=1。

31. 抛物线的法线方程为y=-x/(2a)。

32. 椭圆的两条直径的交点在椭圆的中心点上。

33. 椭圆的两条直径的长度之和为2a。

34. 椭圆的两条直径的中垂线交于椭圆的中心点。

高中数学-椭圆知识点

高中数学-椭圆知识点

高中数学-椭圆知识点椭圆是一种常见的几何图形,在高中数学中经常被讨论和应用。

下面是椭圆的一些重要知识点:1. 椭圆的定义和性质- 椭圆是平面上一点到两个给定点的距离之和等于常数的轨迹。

这两个给定点称为焦点,距离之和称为焦距。

- 椭圆的形状是一个长轴和短轴决定的闭合曲线。

长轴的两个端点是焦点,短轴是长轴垂直的线段。

- 椭圆有对称轴和中心,对称轴是长轴和短轴的中垂线,中心是椭圆的中点。

2. 椭圆的方程- 椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是中心坐标,a和b分别是长轴和短轴的半长。

- 标准方程中的参数a和b决定了椭圆的大小和形状。

- 当椭圆的中心在坐标原点时,方程简化为x²/a² + y²/b² = 1。

- 椭圆的离心率e是焦距与长轴长度之比。

3. 椭圆的性质和推论- 椭圆的离心率e满足0<e<1,离心率越接近0,椭圆越圆。

- 椭圆的焦点到直径的垂直距离是常数,称为椭圆的算术平均数定理。

- 椭圆的面积为πab,周长近似为2π√((a²+b²)/2)。

- 椭圆关于长轴和短轴有对称性,即对称轴垂直于长轴和短轴。

4. 椭圆的应用- 椭圆在物理学、工程学、天文学等领域中有广泛应用,例如描述行星轨道、弹道等。

- 椭圆可以用来模拟和预测某些运动和变化的特性。

- 椭圆的数学性质可以用于解决一些几何和物理问题。

以上是关于高中数学中椭圆的一些重要知识点。

了解和掌握这些知识有助于更好地理解椭圆的性质和应用。

(注:此处提供的是简要的椭圆知识点概述,具体内容请参考相关高中数学教材或资料。

)。

高考数学椭圆中的经典结论

高考数学椭圆中的经典结论

高中数学中椭圆的经典结论(一)1.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6.若000(,)P x y 在椭圆22221x y a b +=外,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=.7.椭圆22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q,A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11.AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12.若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+.13.若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程22002222x x y y x y a b a b+=+.高中数学中椭圆的经典结论(二)1.椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2.过椭圆22221x y a b+=(a >0,b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1,F 2是焦点,12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+.4.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin c e aαβγ==+.5.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8.已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.则(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +.。

椭圆的92条神仙级结论

椭圆的92条神仙级结论

椭圆的92条神仙级结论
椭圆是高中数学的重要内容,以下是椭圆的92条神仙级结论:
1. 若P是椭圆上一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|=2a。

2. 椭圆的焦点三角形面积公式:$\underline{S=b^2\tan\frac{\theta}{2}}$。

3. 椭圆的准线方程:$\underline{x=±a^2\frac{c}{a}}$。

4. 椭圆的焦半径公式:$\underline{|PF1|=a+ex}$,$\underline{|PF2|=a-ex}$(F1为左焦点,F2为右焦点,P为椭圆上任意一点)。

5. 椭圆的切线方程:$\underline{椭圆上一点P(x_0,y_0)处的切线方程是x_0x+y_0y=1}$。

6. 椭圆的焦准距:$\underline{椭圆的焦准距指的是椭圆的焦点到相应准线的距离,其数值为离心率的倒数,即$p={\frac{1}{e}}$。

$0\lt e\lt1$。

椭圆的性质还有很多,同学们可以在学习中不断总结和积累。

高中数学椭圆常见题型总结

高中数学椭圆常见题型总结

P
的轨迹方程。
8、已知动圆 C过点 A( 2,0) ,且与圆 C2 : ( x 2)2 y2 64 相内切,则动圆圆心的轨迹方
程为

9、已知椭圆的焦点在 y 轴上,焦距等于 4,并且经过点 P(2, 2 6) ,则椭圆方程为

10、已知中心在原点,两坐标轴为对称轴的椭圆过点
标准方程为

A( 3 , 5) , B( 3, 5) ,则该椭圆的 22
(C ) 16(2 3)
(D ) 16(2- 3)
x2 3、 P 是椭圆
25
y2 1 上的一点, F1 和 F2 为左右焦点,若
9
F1PF2 60 。
(1)求 F1PF2 的面积;( 2)求点 P 的坐标。
焦半径问题
x2
1椭圆
12
y2 3
1的左右焦点分别为 F1 、 F2 ,点 P 在椭圆上,如果线段 PF1 的中点在 y
轴上,那么 PF1 是的 PF2 的
倍;
椭圆的中点弦问题
例 1、已知椭圆 ax 2 by2 1(a b 0) 与直线 x y 1 0 相交于 A 、 B 两点, C 是 AB
的中点,若 AB 2 2 , OC 的斜率为 2 ,求椭圆方程。 2
高中数学
1、直线 l 交椭圆 x2 y 2 1于 A、 B 两点, AB 中点的坐标是 (2,1) ,则直线 l 的方程为 16 12
1 k2 x1 x2
1 k 2 (x1 x2) 2 4x1x2
3 、椭圆的中点弦:
x2 y2 设 A(x1, y1), B( x2 , y2 ) 是椭圆 a2 b2 1(a b 0) 上不同两点,
M ( x0, y0 ) 是线段 AB 的中点,可运用 点差法 可得直线 AB 斜率,且 kAB

高中数学椭圆常结论及其结论(完全版)

高中数学椭圆常结论及其结论(完全版)

⾼中数学椭圆常结论及其结论(完全版)2椭圆常⽤结论⼀、椭圆的第⼆定义:⼀动点到定点的距离和它到⼀条定直线的距离的⽐是⼀个)1,0(内常数e ,那么这个点的轨迹叫做椭圆其中定点叫做焦点,定直线叫做准线,常数e 就是离⼼率(点与线成对出现,左对左,右对右)对于12222=+by a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c a y l 22:=椭圆的准线⽅程有两条,这两条准线在椭圆外部,与短轴平⾏,且关于短轴对称焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数)⼆、焦半径圆锥曲线上任意⼀点M 与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。

椭圆的焦半径公式:焦点在x 轴(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离⼼率焦点在y 轴 1020,MF a ey MF a ey =+=-其中21,F F 分别是椭圆的下上焦点焦半径公式的两种形式的区别只和焦点的左右有关,⽽与点在左在右⽆关可以记为:左加右减,上减下加()c a PF c a PF -≥-≥21,推导:以焦点在x 轴为例如上图,设椭圆上⼀点()00,y x P ,在y 轴左边. 根据椭圆第⼆定义,e PMPF =1,则 02020201ex a c a x a c c a x e c c x e PM e PF +=+= += ???--== xO F 1F 2Py A 2A 1B 1B 2同理可得02ex a PF -=三、通径:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在x 轴为例,弦AB 坐标:-a b c A 2,,a b c B 2,弦AB 长度: ab AB 22=四、若P 是椭圆:上的点.为焦点,若,则的⾯积为. 推导:如图θsin 212121??=PF PF S F PF 根据余弦定理,得θcos =21221222PF PF F F PF PF ?-+=2122121242)PF PF c PF PF PF PF ?-?-+=2122122424PF PF c PF PF a ?-?-=21212224PF PF PF PF b ??-得θcos 12221+=?b PF PFθsin 212121??=?PF PF S F PF =θθsin cos 12212?+?b =θθcos 1sin 2+?b =2tan 2θb12222=+b y a x 21,F F θ=∠21PF F 21F PF ?2tan2θb xO F 1F 2 P y A 2A 1B 1B 2五、弦长公式直线与圆锥曲线相交所得的弦长直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长12AB x =-==注:实质上是由两点间距离公式推导出来的,只是⽤了交点坐标设⽽不求的技巧⽽已(因为1212()y y x x -=-k ,运⽤韦达定理来进⾏计算.当直线斜率不存在是,则12AB y y =-. 六、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式:设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平⾏y 轴)的中点,则有:22AB OMb k k a=-证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ?+=+=?? 两式相减得:22221212220x x y y a b --+=整理得:2221222212y y b x x a-=--,即2121221212()()()()y y y y b x x x x a+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a=-(2)遇到中点弦问题常⽤“韦达定理”或“点差法”求解。

高考椭圆选填题中常考的8个神奇结论

高考椭圆选填题中常考的8个神奇结论

高考椭圆选填题中常考的8个神奇结论【名师综述】在高考中,圆锥曲线肯定要出一至两道小题,难度在中等偏上,所以,为了节省时间,记住一些重要的结论,到时候就可以直接用了!下面小数老师给大家带来8条出题率最高的结论,一定要记住哦;【典例剖析】例题1.椭圆=1上存在n个不同的点P1,P2,…,P n,椭圆的右焦点为F.数列{|P n F|}是公差大于的等差数列,则n的最大值是()A.16B.15C.14D.1312 【分析】(|P n F|)min≥|a﹣c|=,(|P n F|)max≤a+c=3,|P n F|=|P1F|+(n﹣1)d.再由数列{|P n F|}是公差大于的等差数列,可求出n的最大值.【解答】解:∵(|P n F|)min≥|a﹣c|=,(|P n F|)max≤a+c=3,||P n F|=|P1F|+(n﹣1)d ∵数列{|P n F|}是公差d大于的等差数列,∴d=>,解得n<10+1,则n的最大值为15故选:B.【典例剖析】例题2.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.解法一:基本解题法【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.3∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.解法二:结论解题法【典例剖析】例题3.椭圆C:=1的左、右顶点分别为A1,A2,点P在C上且直线PA2的斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.45【分析】由题意求A 1、A 2的坐标,设出点P 的坐标,代入求斜率,进而求PA 1斜率的取值范围.【解答】解:由椭圆的标准方程可知, 左右顶点分别为A 1(﹣2,0)、A 2(2,0), 设点P (a ,b )(a ≠±2),则=1…①,=,=;则==,将①式代入得=﹣,∵∈[﹣2,﹣1],∴∈.故选:D .解法二:结论解题法【典例剖析】例题4.已知P是椭圆+=1上的点,F1、F2分别是椭圆的左、右焦点,若=,则△F1PF2的面积为()A.3B.2C.D.【分析】先根据椭圆的方程求得c,进而求得|F1F2|,设F1P=m,F2P=n,再根据条件求出∠F1PF2=60°,然后利用余弦定理可求得mn的值,je利用三角形面积公式求解.【解答】解:由题意可得:a=5,b=3,所以c=4,即F1F2=2c=8.设F1P=m,F2P=n,所以由椭圆的定义可得:m+n=10…①.因为,所以由数量积的公式可得:cos<>=,所以.在△F1PF2中∠F1PF2=60°,所以由余弦定理可得:64=m2+n2﹣2mn cos60°…②,由①②可得:mn=12,所以.故选:A.解法二:结论解题法67【典例剖析】例题5. 已知椭圆的两个焦点分别为F 1,F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是( ) A .B .C .D .【分析】当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值,由此可得结论.【解答】解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值.由此可得:∵椭圆上存在点P 使得∠F 1PF 2是钝角, ∴△P 0F 1F 2中,∠F 1P 0F 2>90°, ∴Rt △P 0OF 2中,∠OP 0F 2>45°, 所以P 0O <OF 2,即b <c ,∴a2﹣c2<c2,可得a2<2c2,∴e>,∵0<e<1,∴<e<1.故选:B.解法二:结论解题法【典例剖析】例题6.已知圆的方程为x2+y2=1,则经过圆上一点M(x0,y0)的切线方程为x0•x+y0•y=1,类比上述性质,可以得到椭圆x2+4y2=8上经过点的切线方程为8;.9【分析】已知圆的方程为x 2+y 2=1,则经过圆上一点M (x 0,y 0)的切线方程为x 0•x +y 0•y =1,类比上述性质,可以得到:椭圆mx 2+ny 2=c (m ,n ,c 同号,且m ≠n )经过椭圆上一点M (x 0,y 0)的切线方程为:.【解答】解:已知圆的方程为x 2+y 2=1,则经过圆上一点M (x 0,y 0)的切线方程为x 0•x +y 0•y =1,类比上述性质,可以得到:椭圆mx 2+ny 2=c (m ,n ,c 同号,且m ≠n )经过椭圆上一点M (x 0,y 0)的切线方程为:故椭圆x 2+4y 2=8上经过点的切线方程为:2x ﹣4y =8,即;,故答案为:.【典例剖析】例题7. 已知两定点A (﹣1,0),B (1,0),若直线l 上存在点M ,使得|MA |+|MB |=3,则称直线l 为“M 型直线”,给出下列直线:①x =2;②y =x +3;③y =﹣2x ﹣1;④y =1;⑤y =2x +3.其中是“M 型直线”的条数为( )A.1B.2C.3D.4【分析】点M的轨迹方程是,把①,②,③,④,⑤分别和联立方程组,如果方程组有解,则这条直线就是“M型直线”.【解答】解:由题意可知,点M的轨迹是以A,B为焦点的椭圆,其方程是,①把x=2代入,无解,∴x=2不是“M型直线”;②把y=x+3代入,无解,∴y=x+3不是“M型直线”;③把y=﹣2x﹣1代入,有解,∴y=﹣2x﹣1是“M型直线”;④把y=1代入,有解,∴y=1是“M型直线”;⑤y=2x+3代入,有解,∴y=2x+3是“M型直线”.故选:C.解法二:结论解题法10数学思想 高中数学【高考椭圆选填题中常考的8个神奇结论】数学思想 | 高中数学 11【典例剖析】例题8.过点(0,2)P 的直线l 交椭圆22:142x y E +=于,M N 两点,且OM ON ⊥,则直线l 的方程为 ;20y -+=或20y +-=22a b,则有OA OB ⊥,d =。

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结高中数学椭圆知识点1一、椭圆知识点总结1、椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆、这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2、椭圆的标准方程和几何性质一条规律椭圆焦点位置与x2,y2系数间的`关系:两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程。

(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程。

三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c。

(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1)。

(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴。

二、复习指导1、熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程。

2、掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等、体会解析几何的本质问题——用代数的方法解决几何问题。

高中数学椭圆知识点2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab +b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学椭圆知识点3椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)椭圆的对称性:不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结椭圆知识点总结1. 椭圆的定义:1,2〔1〕椭圆:焦点在x 轴上时12222=+by a x 〔222a b c =+〕⇔{cos sin x a y b ϕϕ==〔参数方程,其中ϕ为参数〕,焦点在y 轴上时2222bx a y +=1〔0a b >>〕。

方程22Ax By C +=表示椭圆的充要条件是什么?〔ABC ≠0,且A ,B ,C 同号,A ≠B 〕。

2. 椭圆的几何性质:〔1〕椭圆〔以12222=+by a x 〔0a b >>〕为例〕:①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心〔0,0〕,四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

⑥通径22b a2.点与椭圆的位置关系:〔1〕点00(,)P x y 在椭圆外⇔2200221x y a b+>;〔2〕点00(,)P x y 在椭圆上⇔220220b y a x +=1;〔3〕点00(,)P x y 在椭圆内⇔2200221x y a b+<3.直线与圆锥曲线的位置关系: 〔1〕相交:0∆>⇔直线与椭圆相交;〔2〕相切:0∆=⇔直线与椭圆相切; 〔3〕相离:0∆<⇔直线与椭圆相离;如:直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______〔答:[1,5〕∪〔5,+∞〕〕;4、焦半径〔圆锥曲线上的点P 到焦点F 的距离〕的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。

高中数学椭圆知识点总结

高中数学椭圆知识点总结

高中数学椭圆知识点总结一、椭圆的定义椭圆是平面上的一个几何图形,它是平面上的一个点到两个定点的距离之和等于常数的点的轨迹。

这两个定点称为焦点,连接焦点的直线称为长轴,长轴上的一半称为半长轴,长轴的中垂线称为短轴,短轴的一半称为半短轴。

椭圆的数学定义可以表示为:对于给定的两个不同点F1和F2,以及一个正数c,平面上的点P到F1和F2的距离之和等于常数c,即|PF1|+|PF2|=2a(a>0)。

二、椭圆的方程椭圆的标准方程为:x²/a²+y²/b²=1,其中a>b>0。

如果椭圆的中点在原点上,且长轴与x 轴重合,则椭圆的标准方程可以简化为x²/a²+y²/b²=1。

在此方程中,a称为长半轴,b称为短半轴,而长半轴和短半轴的关系可以表示为a²=b²+c²。

对于长轴与y轴重合的椭圆,其标准方程可以表示为:x²/b²+y²/a²=1。

三、椭圆的性质1. 椭圆的焦点性质:设椭圆的焦点为F1(c,0)和F2(-c,0),椭圆的标准方程为x²/a²+y²/b²=1,则a²=b²+c²;2. 椭圆的离心率:离心率e定义为焦点F到椭圆上任意一点P的距离的比值,即e=PF/PM,其中PF为点P到焦点F的距离,PM为点P到椭圆的直径的一半,通常表示为e²=1-b²/a²;3. 椭圆的对称性:椭圆以长轴和短轴为对称轴,对称于x轴和y轴;4. 椭圆的焦点与直径关系:椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度;5. 椭圆的参数方程:椭圆的参数方程为x=a*cosθ,y=b*sinθ,其中θ为参数,a和b分别为椭圆的长短半轴;6. 椭圆的面积:椭圆的面积可以表示为S=πab,其中a和b分别为椭圆的长短半轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新课标中椭圆的常用结论
一、椭圆上距离焦点距离最近的点,最远的点是长轴的两个端点。

二、通径:
圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在x 轴为例, 弦AB
坐标:⎪⎪⎭⎫
⎝⎛-a b c A 2,,⎪⎪⎭
⎫ ⎝⎛a b c B 2,
弦AB 长度:a
b AB 2
2=
三、若P 是椭圆:
上的点.为焦点,若,则的面积为
. 推导:如图θsin 2
12121⋅⋅=
∆PF PF S F PF 根据余弦定理,得
θcos =
2
12
2
12
22PF PF F F PF PF ⋅-+
=
2
12
2121242)PF PF c PF PF PF PF ⋅-⋅-+
=
2
12
2122424PF PF c PF PF a ⋅-⋅-
=
2
12
12224PF PF PF PF b ⋅⋅-
得θcos 122
21+=⋅b PF PF
θsin 212
12
1⋅⋅=∆PF PF S F PF =θθsin cos 12212⋅+⋅b =θθcos 1sin 2+⋅b =2
tan 2θb
12
22
2=+
b y a x 21,F F θ=∠21PF F 21F PF ∆2
tan
2θb
四、弦长公式
直线与圆锥曲线相交所得的弦长
直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,
则它的弦长
12AB x =-==注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为1212()y y x x -=-k ,运用韦达定理来进行计算.
当直线斜率不存在是,则12AB y y =-. 五、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式:
设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平行y 轴)的中点,则有:2
2AB OM b k k a
⋅=-
证明:设11(,)A x y ,22(,)B x y ,则有
1212AB
y y k x x -=-,22112222
22
221
1x y a b x y a b
⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得:
2222
1212
22
0x x y y a b
--+=整理得:222
1222
212y y b x x a
-=--,即2
121221212()()()()y y y y b x x x x a
+-=-+-,因为00(,)M x y 是弦AB 的中点,所以
0012
001222OM
y x y y k x y x x +===+,所以22AB OM b k k a
⋅=-
(2)遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆122
22=+b y a x 中,以00(,)M x y 为中点的弦所在直线的斜率k=-0
202y a x b ;
由(1)得2
2
AB OM
b k k a ⋅=-
0022221y x a b k a b k OM AB

-=⋅-=
六、椭圆的参数方程)(sin cos 为参数ϕϕ
ϕ
⎩⎨
⎧==b y a x
七、共离心率的椭圆系的方程:
椭圆的离心率是,方程是大于0的参
数,0>>b a 的离心率也是 我们称此方程为共离心率的椭圆系方程. 例1、已知椭圆116
252
2=+y x 上一点P 到椭圆左焦点的距离为3,
则点P 到右焦点的距离为____
例2、如果椭圆
22
1369
x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是
例3、已知直线1+-=x y 与椭圆22
221(0)x y a b a b
+=>>相交于A 、B 两点,且线段AB 的
中点在直线l :02=-y x 上,则此椭圆的离心率为_______
例4、F 是椭圆13
42
2=+y x 的右焦点,()1,1A 为椭圆内一定点,P 为椭圆上一动点。

求PF PA +的最小值为
分析:PF 为椭圆的一个焦半径,准线作出来考虑问题。

解:设另一焦点为F ',则F '(-1,0)连A F ',P F '
)0(122
22
b a b y a x =+)(2
2b a c a c e -==t t b
y a x (2222=+a
c
e =
542)(22-='-≥-'-='-+=+F A a PA F P a F P a PA PF PA
当P 是F 'A 的延长线与椭圆的交点时,PF PA +取得最小值为4-5。

例5、求椭圆13
22
=+y x 上的点到直线06=+-y x 的距离的最小值.
例6、椭圆
顶点A (a ,0),B (0,b ),若右焦点F 到直线AB 的
距离等于,则椭圆的离心率e=( )
A .
B .
C .
D .
例7、在椭圆
中,F 1,F 2分别是其左右焦点,若|PF 1|=2|PF 2|,则该
椭圆离心率的取值范围是( ) A . B .
C .
D .。

相关文档
最新文档