Efficient CuInS2 solar cells from a rapid thermal process (RTP)

合集下载

CuInS_2薄膜太阳能电池_周少雄

CuInS_2薄膜太阳能电池_周少雄

CuInS 2薄膜太阳能电池*周少雄方 玲(钢铁研究总院 北京 100081)摘 要 近年来,CuInS 2作为太阳能电池光吸收材料,由于其优异的综合特征已经引起人们的广泛关注.文章介绍了CuInS 2太阳能电池的发展历史和研究现状,综述了有关CuInS 2材料结构与特性,制备方法和反应动力学,元素掺杂和后处理工艺对电池性能的影响以及窗口材料等方面的研究成果,评述了CuInS 2太阳能电池的产业化进展及基于电沉积-硫化方法制备CuInS 2薄膜太阳能电池的低成本产业化技术,展望了CuInS 2太阳能电池的发展前景.关键词 太阳能电池,光伏,Cu InS 2薄膜Solar cells based on CuInS 2t hin fil mZ HOU Shao -X iongF ANG L i ng(Centra l Iron and S teel R esearch In stit u t e ,B eiji ng 100081,Ch in a )Abstract O ver recent years CuI nS 2(CIS)has e mer ged as a pro m isi ng a bsor ber m ateri al for solar cells .The h i storical devel op m ent and curre nt stat us o f cells base d on C I S thi n fil m are rev i e w e d .T he m icr ostructure andm a -teri a l properties ,preparation tec hniques ,reacti on ki net i cs ,the i nfl ue nce o f i ncorporat i ng additional ele m ents a nd post -gro w th treat m ents ,and the buffer layers of CIS are described .A brief descri ption of i ndustri al C I S solar cells a nd t he lo w-cost tec hno l ogy e mploying electr o -depositi on and sulf urization to prepare the thi n fil m is also g i ve n .T he future of these so l ar cells is assessed ..K eywords solar cel,l photovoltaic ,CuI nS 2,thi n F il m* 国家高技术研究发展计划(批准号:2006HH 03Z237)资助项目2007-05-21收到通讯联系人.Em ai:l sxz hou@at m cn .com1 引言太阳能是人类取之不尽用之不竭的清洁可再生能源.在太阳能的有效利用中,光伏发电是近些年来发展最快、最具活力的研究领域.目前,在大规模应用和工业生产中,晶体硅太阳能电池占据主导地位,但由于受晶体硅材料价格及相应繁琐的电池工艺影响,其生产成本居高不下.因此,人们将目光投向低成本、高稳定性的CuI nS 2(C I S)薄膜太阳能电池.CuI nS 2材料的性质、制备方法以及电池结构与目前得以广泛研究的黄铜矿结构的CuInSe 2光吸收材料相似,均具有吸收系数高、本征缺陷自掺杂、易于选择窗口材料、结构缺陷电中性等特点.但又具有其独特的特性[1].CuInS 2材料的禁带宽度接近太阳能电池材料所需的最佳禁带宽度值,因此不需要添加其他元素来调整其禁带宽度,从而简化了生产过程,提高了生产的稳定性.目前的主要问题是如何促进CuInS 2太阳能电池产业化进程,并在此基础上提高电池的光电转换效率和降低电池的生产成本.另外,薄膜的生长机理和缺陷形成机制及其对电池光电转换效率的影响等理论方面的研究还有待深入.2 CuInS 2电池的研究状况2.1 CuInS 2材料的微观结构与特性CuInS 2是重要的 B - A - A 族化合物半导体材料,为直接带隙半导体材料,禁带宽度为1.55e V,且禁带宽度对温度的变化不敏感,非常适合作为太阳能电池的光吸收材料.CuInS 2材料的吸收系数高达105c m-1数量级,以其作为太阳能电池的光吸收层,厚度仅需1 2 m.在室温下,CuI nS2的晶体结构为黄铜矿结构,这种结构可以看作是由两个面心立方晶格套构而成.一个为阴离子S组成的面心立方晶格,另一个为阳离子(Cu,In)对称分布的面心立方晶格.Cu I nS2的晶体结构属正方晶系,晶格常数a=0.5545nm,c=1.1084nm,其c/a随着材料制备工艺的不同会有少许变化[2].当CuI nS2化合物成分偏离化学剂量比时就会产生点缺陷, - - 族化合物的本征点缺陷如空位、间隙和位错的种类达12种[3],这些点缺陷会在禁带中产生新能级,因此,CuInS2具有本征缺陷自掺杂特性,不需要其他元素的掺杂,仅通过调整自身元素的成分就可以获得不同的导电类型.另外,CuI nS2允许成分偏离化学计量比范围较宽,即使严重偏离化学剂量比依然具有黄铜矿结构以及相似的物理及化学特性.由于CuInS2半导体材料不必借助外加杂质,因此其抗干扰、抗辐射性能稳定,制成的光伏器件的使用寿命长,并且适于空间应用.2.2 CuInS2电池的发展历程20世纪70年代人们开始关注CuI nS2作为太阳能电池吸收材料的研究.1974年,美国贝尔实验室最早采用CuI nS2作为太阳能电池吸收材料制备C I S/CdS电池.1977年,W agner[4]等也成功地制备了p-CuI nS2/n-CdS结构的电池.1984年,H odes[5]等采用电镀合金预制薄膜,然后用H2S硫化方法制备C I S薄膜.1992年,W alter[6]等采用共蒸发方法制备CuI n(Se,S)2/CdS电池,其光电转换效率达到10%.图1显示了C I S薄膜太阳能电池光电转换效率的发展,目前实验室水平达到12.5%.图1 C uInS2电池转换效率的发展趋势2.3 CuInS2薄膜制备方法制备CuInS2薄膜的方法有硫化法[7]、真空多元共蒸发法,喷雾热解法[8]、电沉积法[9,10]、雾化化学气相沉积法[11]、射频溅射法[12]、有机金属化学气相沉积法[13]、离子层气相反应法[14]等.其中电沉积方法制备CuInS2薄膜时,由于三元共沉积容易析出杂质,很难形成单一CuI nS2黄铜矿相[15].另一种较为新颖的方法是非真空制备Cu I nS2薄膜两步法[16]:第一步采用化学沉积方法合成预制薄膜(包括采用I n2(SO4)3和Na2S2O3水溶液制备I nS薄膜,采用CuSO4和N a2S2O3水溶液制备Cu x S薄膜);第二步是将InS/Cu x S薄膜在300 保温30m i n,形成接近化学计量比的CuI nS2薄膜.目前研究较多的主要是多元真空共蒸发方法和硫化法.多元真空共蒸发法就是采用Cu,I n,S三种元素材料共同蒸发沉积到特定温度的衬底上硫化形成CuInS2薄膜的过程.其优点是材料沉积和薄膜的形成可以一步完成,但是在制备过程中很难控制各个元素的蒸发速率和保持衬底温度的稳定.目前,可以工业化生产的主要是硫化法,即在H2S或S的气氛中对预制薄膜进行硫化,其中预制薄膜可以是Cu-In二元合金薄膜、Cu-I n-O三元相薄膜或Cu-I n-S 三元相薄膜.研究较成熟的方法是采用H2S气体进行硫化[17],但由于H2S的使用不符合环保要求,近年来人们开始重视采用硫蒸气的硫化方法.2.4 CuInS2薄膜生长机理除CuInS2材料成分偏差容易引发施主或受主能级外,On ish i[18]等的实验表明,CuI nSe2晶体结构畸变也可能引发施主或受主深能级,如形成能级为0.83 1.24e V深复合中心.CuI nS2化合物中存在的大量本征缺陷和深复合中心是影响Cu I nS2电池光电性能的主要因素.而Cu I nS2薄膜的生长机理和缺陷形成机制又与制备工艺方法密切相关.因此,选择适当的制备方法并有效地控制和减少缺陷的形成是制备高效率CuI nS2电池的关键.光致发光谱[19]、X 射线衍射(XRD)和拉曼光谱是常用的检测CuI nSe2薄膜光学特性和结构的分析测试方法.对Cu-I n合金的硫化反应过程的测试表明,CuInS2的形成动力学与CuI nSe2不同.CuI nSe2的形成过程一般是先形成Cu-Se和In-Se的二元相,然后由Cu-Se和In-Se 的二元相化合生成CuI nSe2.因此,CuInSe2的形成主要受二元相硒化反应速度的限制;而Cu I nS2的形成过程是Cu-In合金相与S直接化合生成三元相的过程,CuI nS2的形成主要是受到各元素扩散速度的限制,因此可以通过提高反应温度来促进CuInS2化合反应的进行[20].2.5 掺杂对CuInS2薄膜性能的影响元素掺杂可以在一定程度上改变CuInS2材料的能带宽度.如Rabeh[21]等采用Sn元素掺杂制备了n型半导体CuI nS2薄膜,薄膜材料的能带宽度在1.45 1.49e V之间.Zri b i[22]等报道了Sn掺杂的CuI nS2薄膜的能带宽度可以在1.42 1.50e V之间调节.据Chavhan[23]报道,适当地进行Se掺杂,可以在1.07 1.44e V之间调整CuInS2材料能带宽度的变化.1998年,Ohash i[24]等人采用Se元素掺杂制备Culn(S x Se1-x)2电池的转换效率达到8.1%.Peza-T apia[25]等报道,在p型贫铜CuInS2薄膜中掺杂N a,可以将材料的能带宽度从1.4e V提高到1.45 e V;John等[26]的实验也表明,N a的少量掺杂可以提高贫铜CuI nS2薄膜的结晶性和光电特性.尽管有许多元素掺杂对CuInS2薄膜性能影响方面的研究报道,但由于Cu I nS2的能带宽度已经接近最佳太阳能电池材料所需的禁带宽度,因此通过元素掺杂来提高CuI nS2电池光电性能的空间不大.另外,引入掺杂元素将增加相应的工艺环节,从而增加薄膜中的缺陷形成几率.目前还没有看到由于元素掺杂而显著提高CuI nS2薄膜太阳能电池性能的报道.2.6 CuInS2薄膜后处理工艺为提高CuI nS2薄膜电池的性能,一般在CuI nS2薄膜制备后采用相应的后处理工艺来改善薄膜的结晶完整性和电池的性能.CuInS2薄膜的后处理工艺主要是退火和清洗工艺.一般认为,采用退火处理或在H2S气氛下的热处理,可以改善CuI nS2薄膜的性能,提高薄膜的导电性[27,28].另外,在Cu-I n合金薄膜硫化过程中,薄膜体内可快速生成CuI nS2相,但在薄膜表面会有Cu2-x S二元相生成[29],一般采用氰化钾(KCN)溶液对薄膜进行清洗除去Cu2-x S多余相.近年来,也有采用电化学刻蚀方法代替KCN 清洗方法的报道[30,31].采用KC N清洗方式虽然可以通过相应的KCN溶液回收和处理过程完全避免KC N直接排入环境,但采用电化学刻蚀方法不使用对环境有害的化学物质,因此被认为是更加环保的解决方案.W il h el m[32]等采用电化学刻蚀Cu2-x S方法制备的CuI nS2薄膜电池的转换效率已经达到8%.可见采用电化学刻蚀Cu2-x S方法值得深入研究和倡导.2.7 CuInS2薄膜电池的窗口材料窗口层是太阳能电池的重要组成部分,它与CuInS2吸收层的晶格匹配程度是影响电池效率的重要因素之一.CdS是应用最广泛的窗口层材料,但对人体有害,而且本身带隙又偏窄,因此逐步被其他材料替代.1994年,Subbara m aiah[33]等采用CdZnS: I n作为窗口材料,成功地制备了p-CuI n(S0.5Se0.5)2/ n-CdZnS:I n结构的电池.但不使用有害的重金属镉一直是绿色制造的目标,人们想到了I n2S3材料,并采用喷射热解方法制备In2S3薄膜作为Cu I nS2电池的窗口材料.John[34]等成功地制备了结构为CuInS2/I n2S3的电池,电池的转换效率达到9.5%.由于ZnO的禁带宽度为3.2e V,短波的透过率高,以ZnO作为窗口材料可使更多的光入射到吸收层,增加光生载流子数目.但是用ZnO作为窗口材料直接与CuInS2层构成异质结晶格匹配不理想,这是因为它们的禁带宽度相差太大,导致异质结界面失配,由此带来的缺陷态较多,制约着光电转化率.在CuInS2/ZnO之间增加一层很薄的缓冲层可以解决这一问题.如出现了CuI nS2/I n2S3/ZnO[35]结构、Zn (S,O)/ZnS/CuInS2[36]结构和ZnO/p-CuI/n-CuInS2[37]结构的异质结电池.近来也有探索采用导电聚合物作为Cu I nS2电池窗口材料的报道[38],但还处在的探索阶段,电池的光电性能和稳定性还有待验证.3 产业化情况德国H ahn-M eit n er学院和SULF URCELL公司采用溅射硫化方法[39],在玻璃衬底材料上溅射沉积M o薄膜作为电池的背电极,采用溅射方法制备Cu 薄膜和I n薄膜预制层,然后采用H2S作为硫源进行硫化反应,形成CuInS2薄膜.采用该方法生产的面积为17.1c m2的Cu I nS2太阳能电池,其光电转换效率达到9.3%,并且已经在德国建成组件面积为120 60c m的1MW的生产示范线[1].由于很多工艺环节采用了真空方法,因此采用该技术制备C I S薄膜太阳电池的总成本很难降低,这也正是目前已产业化的Cu(In,Ga)Se2薄膜太阳电池成本高于晶体硅太阳电池成本的主要原因.我国安泰科技股份有限公司和德国Odersun公司合作,在条带衬底上制备轻质柔性Cu I nS2薄膜太阳能电池带卷.其条带衬底为金属带,可以选用铜带或不锈钢等材料.以非真空环境下的电化学和化学技术为主,在金属基带上先后沉积Cu和In薄膜,并通过硫化处理等工序形成CuInS2化合物半导体吸收层[40],采用喷涂方法制备CuI薄膜作为缓冲层,最后通过磁控溅射沉积ZnO窗口层和透明电极.以此工艺制备的薄膜太阳能电池带卷如图2所示,电池的光电转换效率达到9.2%,并且于2007年4月在德国建成了5MW的示范生产线.此技术的突出优点是工艺简单,生产成本与真空制备方法相比可大幅降低,由于采用卷对卷连续化生产技术,生产效率高,工艺稳定性好、适合规模生产.在太阳能电池带卷上连续截取所需长度条带,采用并联压接和高分子材料封装方式,构成特定功率的组件[41],如图3所示.其突出优点在于,组件的面积几乎不受限制,组件的质量轻、柔软,适用性强,并且适合高度自动化生产.图2 C uInS2柔性薄膜太阳能电池带卷图3 C uInS2柔性薄膜太阳能电池组件4 今后的展望经过30多年的研究,Cu I nS2化合物半导体太阳能电池已经走向产业化阶段.CuI nS2材料的成分和光电特性对工艺过程敏感,这是影响CuI nS2薄膜太阳能电池成品率问题的主要因素,也是制约其产业化发展的主要问题.而采用连续化非真空生产工艺,在较窄的条带衬底上制备CuI nS2薄膜太阳能电池,不但降低了设备投入成本,而且有效地避免大面积制备工艺带来的材料成分均匀性问题.从而解决了规模化生产稳定性这一关键问题.另外,采用条带拼接的方法实现了对电池组件大面积以及特定尺寸规格的要求,满足了多领域的商业化应用需求.因此该方法生产的CuI nS2太阳能电池有望成为光伏产业中新的生力军.目前,生产、研发工作集中在改进衬底材料和封装材料上,以便进一步提高电池性能和降低成本.产品开发工作以建筑材料一体化设计以及太阳能电池电子器件一体化设计为主.另外, CuInS2电池的光电转换效率与其理论转换效率相比还有很大的提升空间,进一步提高Cu I nS2太阳能电池的光电转换效率,可以通过对该方法制备的CuInS2材料中载流子输运和复合机理,以及CuInS2电池界面结构与器件性能的相互关系等方面进行深入研究.参考文献[1]K l enk R,K l aer J,S c h eer R et al.Th i n S oli d F il m s,2005,480 481:509[2]H ergert F,H ock R,S chorr S.Sol ar EnergyM ateri als and SolarC ell s,2007,91(1):44[3]李建军,邹正光,龙飞.能源技术,2005,26(4):164[L i JJ,Zou Z G,Long F.Energy Techn ol ogy,2005,26(4):164(i n Ch i nes e)][4]W agner S,B ri denb augh P M.Jou rnal of C rystal Grow t h,1977,39(1):151[5]H od es G,Engel hard T,H erri ngton C R et al.Progress i nC ryst a lGrow t h and Characteri zati on,1984,10:345[6]W al ter T,Con tentA,Velt h aus K O et al.S ol ar EnergyM ater-ial s and Sol ar C ells,1992,26(4):357[7]Onum a Y,T akeuch iK,Ich i ka w a S et al.S ol ar Energy,2006,80(1):132[8]Krunks M,K ij at k i na O,M ere A e t al.S ol ar E nergy M ateri alsand S ol ar C ell s,2005,87(1 4):207[9]M arti nez A M,Arri aga L G,Fern nd ez A M e t a l.M ateri alsChe m istry and Physics,2004,88(2 3):417[10]Kuranouch i S,N akaz a w a T.Solar En ergy M ateri als and SolarC ell s,1998,50(1 4):31[11]Jin M H,B anger K K,H arri s J D et a l.M at eri als Science andEng i neeri ng,B,2005,116(3):395[12]Ya m a m ot o Y,Y a m aguch i T,D e m iz u Y et a l.Th i n Soli dF il m s,1996,281 282(1 2):372[13]Naka m ura S,Ando S.Jou rnal ofPhysics and Ch e m istry of So-lids,2005,66(11):1944[14]Q i u J J,J i n Z G,W u W B et al.Th i n So li d Fil m s,2006,510(1 2):1[15]A s en jo B,Chaparro A M,Gu ti rrez M T et a l.Th i n Soli dFil m s,2006,511 512:117[16]Podder J,M i ya w ak iT,Ich i m uraM.Jou rnal ofC rys t alG ro w th,2005,275(1 2):e937[17]GosslaM,M ahnkeH E,M etz n er H.Th i n Soli d F il m s,2000,361 362:56[18]On is h iT,Ab e K,M i yoshi Y e t a l.Jou r n al of Physics andC he m i stry of Soli d s,2005,66(11):1947[19]Gheluw e J V,V ersl uys J,Poel m an D et a l.Th i n S oli d F il m s,2006,511 512:304[20]Rud i gierE,D j ord jevic J,K lopmann C et al.Journal ofPhysicsand C he m i stry of Soli d s,2005,66(11):1954[21]Rab eh M,Zri b iM,Kan z ariM e t al.M ateri als L etters,2005,59(24 25):3164[22]Zri b iM,Rabeh M,Bri n i R e t al.Th i n Soli d F il m s,2006,511 512:125[23]C havh an S,Shar m a R.Jou rnal of Physics and Ch e m istry ofSolids,2006,67(4):767[24]Ohas h i T,Inakos h iK,H ash i m oto Y et al.Solar E nergyM ate-rials and Sol ar C ells,1998,50(1 4):37[25]Peza-Tap i a JM,S nch ez-Res nd iz V M,A l bor-Agu ileraM Let a l.Th i n Soli d Fil m s,2005,490(2):142[26]John T T,Sebasti an T,Kart ha C S et a l.Phys.B:Cond ensedM atter,2007,388(1 2):1[27]O ja I,Nanu M,K atersk iA et a l.Th i n So li d F il m s,2005,480 481:82[28]Krunks M,M ereA,K at ersk iA e ta l.Th i n Soli d F il m s,2006,511 512:434[29]K l opm ann C,D jord jevic J,Rudigi er E e ta l.Journal ofC rystalGrow t h,2006,289(1):121[30]W ilhel m T,B erengu i er B,A ggour M et al.C o mp tes R endu sCh i m i e,2006,9(2):294[31]B erengu i er B,Le w eren z H J.E l ectroche m istry Comm un i ca-ti ons,2006,8(1):165[32]W ilhel m T,B erengu i er B,AggourM et a l.Th i n Solid F il m s,2005,480-481:24[33]Subbara m aiah K,Raj a V S.Solar En ergy M ateri als and SolarC ell s,1994,32(1):1[34]John T T,M at h e w M,K artha C S et al.Sol ar Energy M ateri alsand S ol ar C ell s,2005,89(1):27[35]Asen j o B,Ch aparro A M,Guti errez M T et a l.Solar E nergyM at eri als and So l ar C ell s,2005,87(1 4):647[36]B rrM,Ennaou iA,K l aer J et al.Ch e m ical Phys i cs Letters,2006,433(1 3):71[37]S ankapal B R,Ennaou iA,Gum i nskaya T et a l.Th i n Soli dF il m s,2005,480 481:142[38]B erez n ev S,Konoval ov I, p i k A et a l.Synthetic M etals,2005,152(1 3):81[39]S cheer R,K lenk R,K laer J e t al.Solar E nergy,2004,77(6):777[40]W i nk ler M,Gr i esch e J,Tober O et a l.Th i n S oli d F il m s,2001,387(1 2):86[41]W i nk ler M,Griesche J,K onoval ov I e t al.Solar E nergy,2004,77(6):705物理新闻和动态单光子晶体管美国和丹麦的科学家公布了研制光学晶体管的计划.众所周知,光子极少彼此发生相互作用.通常情况下,使用一束光中的光子来控制另一光束是非常困难的.物理学家相信,使光子相互作用的方法是将光子压缩到微小的空间,如像量子点或光学阱中的单个原子那样.压缩光子可以增强它们的电磁场,从而增加它们相互作用的机会.科学家们提出了一种新的压缩光子的方法.他们建议将光子聚焦到微小的金属纳米丝上,使其转换成沿着纳米丝表面传播的表面等离子体脉冲(这一过程类似于沿着同轴电缆传送无线电波)将光子压缩到比光子的波长还要小的空间中.他们的计算表明,一个位于纳米丝附近的单个原子将吸收经过纳米丝的第一个表面等离子体脉冲,并被激发到激发态.被激发的原子不再能吸收相继到来的光子,晶体管将处于 开 的位置.通过用另一个光子或用常规的激光脉冲照射,使原子从激发态退激发到基态,使这个装置变成 闭 的状态.研究者指出,对于压缩光子来说,纳米丝要比光学阱优越.纳米丝装置无须调谐,可以在很宽的波长范围内工作,而光学阱需要调谐,只能在一定的频率范围内工作.他们相信,纳米丝装置将会作为非常有效的单光子探测器用于光学通信中,还可以作为量子逻辑门用于量子计算机中.利用这一原理制造一个实际的装置所面临的主要问题是,如何选出一种合适的能够与纳米丝等离子体耦合的原子,以及如何将光纤电缆与纳米丝联接,以保证光子可以进入该装置并从装置中发射出来.研究者正试图利用像量子点那样的人造原子制作这种装置.(树华 编译自P hysicsW or l d N e w s,4Septe mber2007)。

CuInSe2薄膜太阳电池材料微观结构与其光电性能的关系

CuInSe2薄膜太阳电池材料微观结构与其光电性能的关系

CuInSe2薄膜太阳电池材料微观结构与其光电性能的关系自1954年美国贝尔实验室研制成功第一个实用硅太阳能电池以来,无机和有机化合物类光伏材料相继问世。

近年来,伴随着各种技术的蓬勃发展,导致薄膜太阳能电池的制造技术也不断发展并不断趋于成熟和稳定。

在薄膜太阳能电池中,材料种类很多。

现在用于太阳能电池作为吸收光能并转换成电能的吸收层半导体材料以非晶硅(a-Si)、锑化镉(CdTe)、铜铟硒(CulnSe2)以及衍化物铜铟稼硒(CIGS)为主。

早期研究最多的是非晶硅(a-si)与锑化镉(CdTe)相关的太阳能电池的研制和开发,但是在费用和器件的转换效率方面还存在着一定的不足,费用太高且效率太低。

随着时代和科技的进步研究者发现并开发出一种新的太阳能电池,那就是以CulnSe2(CIS)以及其衍生物Cu(In,Ga)Se2(CIGS)为主的太阳能电池,以其高稳定性、高效率和低费用而受到各国研究者的青睐。

主要因为CulnSe2是直接带隙半导体材料,且其能隙值能包括大部分的太阳光谱,具有相当高的光吸收系数,同时可调整其本身的化学组分而得到热稳定好,在长时间的工作状态下依然能维持良好的光电转换性能等特性。

综上所述,铜铟硒及其衍化物是一种很有前景的太阳能吸收材料,同时与此半导体材料相关的太阳能电池元件也相应成为很有吸引力的一种光电转换装置。

本文主要探讨CuInSe2薄膜太阳电池材料微观结构与其光电性能间的关系。

1974年,Wagner利用单晶CulnSe2研制出高效太阳能电池,其效率可以达到6%,标志着CIS光伏材料的崛起。

但是单晶CulnSe2制备困难,价格昂贵,限制了其发展。

1976年,第一个CIS多晶薄膜太阳能电池的诞生,真正激励了各国研究者。

1982年,波音公司制备的CdS/CulnSe2薄膜太阳能电池,其效率超过10%。

研究中,人们通过合金化Cu(Ga,In)Se2和Culn(S,Se)2成功将材料的禁带宽度增大,使其能更接近光伏转换最佳值约为1.4eV,在提高转换效率的同时获得了更高的开路电压。

2024版新教材高考英语复习特训卷期中检测卷二

2024版新教材高考英语复习特训卷期中检测卷二

期中检测卷(二)第一部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、和D四个选项中选出最佳选项。

AEnjoy amazing 360­degree views over London from the London Eye, a rotating (旋转的) observation wheel which is 135 meters high. Spot some of the capital's most famous landmarks, including Big Ben, the Houses of Parliament and Buckingham Palace.How long does it take to go round the London Eye?The gradual rotation in one of the 32 high­tech glass cap sules takes approximately 30 minutes and gives you an ever­changing view of London. You can skip most of the queues with a fast­track ticket.Where is the London Eye and how do I get there?The London Eye is located on the South Bank of the River Thames. The nearest tube station is Waterloo, but Charing Cross, Westminster and Embankment are also a short walk away. Several bus routes stop near the London Eye.How to book London Eye tickets?Tickets to the London Eye must be pre­booked on the Internet within the prescribed time limit.PricesChild ticket: From £23.00 per ticket.Adult ticket: From £28.00 per ticket.Children under three years old enter free.Opening hoursThe London Eye opening time varies throughout the year. Typically the attraction opens at 10 a.m. and closes between 6 p.m. and 8:30 p.m. Make sure you check it before your visit to get the best experience.Important informationWe encourage you to arrive at the attraction as early as possible, in order to allow more time for security checks. Please note items that CAN and CANNOT said on board.1.What do we know about the London Eye?A.It has fixed opening hours. B.No queuing is needed to take it.C.A ride on it takes about half an hour. D.It lies some distance away from Waterloo.2.What is a must to pay a visit to the London Eye?A.Booking tickets online in advance. B.Taking no items on board.C.Being accompanied by an adult. D.Arriving at the attraction ahead.3.How much should a couple with their son aged 5 and daughter aged 2 pay to visit the London Eye?A.At least £56. B.At least £74.C.At least £79. D.At least £102.BHow does a brilliant teacher get that way? The question of how they developed has as many answers as there are inspired instructors. One example is an original and charming woman who has become one of the best ever at taking disadvantaged students to a new level.Jackson was born in Altoona. Her father was a construction worker. When she was in the eighth grade, her father died. Her principal, Mrs. Brown, said not to worry about schoolwork for a while. That upset her. Her father would not have wanted her to do anything but her best. He always said, “Don't let your first failure be the reason for your next.”Jackson was an accomplished shooting guard in basketball and a star sprinter on the track team, running the quarter­mile in 57 seconds. She thought she might become a sports broadcaster. She gave no thought to teaching until a friend took her to an introduction to a program, which placed novice instructors in schools full of low­income children. Jackson liked the idea of giving back, as well as the chance to have some of her student loans forgiven.She is a big sports person, and that is how she connects with lots of kids. She couldn't motivate children until she knew what was bothering or pleasing them. “Students learn from people who love them,” she said. “They will be motivated and inspired to learn if they know deep down that you care about them.” In class she gave basketball tickets to students who were doing their work. At weekly drawings they could win sticky notes, pencils or other small prizes.She helped create after­school clubs. A tall student said to her, “I'm a baller.I heard you play ball.” There was a basketball league in Paterson, but the s chool didn't have a team. Jackson started one with support from local business executives. The student, Essence Carson, went to Rutgers University, was a first­round draft (运动员选拔制) selection for the WNBA's New York Liberty and now plays for the Connecticut Sun.4.Why did Mrs. Brown's words upset Jackson?A.Her father just passed away. B.She was taught to do her best.C.Her first failure led to another one. D.She was concerned about her grades.5.What is the main idea of Paragraph 3?A.The way Jackson turned teacher. B.The dream job Jackson desired.C.The student loans Jackson owed. D.The athletics Jackson did well in.6.why did Jackson give small prizes to her students in class?A.To connect with them. B.To please or bother them.C.To encourage them to learn. D.To show her love to them.7.What can we infer from the last paragraph?A.Jackson founded a school team in Paterson alone.B.Jackson played in the basketball league in Paterson.C.Jackson selected Essence to play for WNBA's New York Liberty.D.Jackson should take some credit for Essence's professional career.CRussell Warne has spent many hours examining college psychology textbooks. As a professor of psychology at Utah Valley University, he wasn't looking for insight, but for mistakes—and he found plenty. Some of the worst concerned IQ tests.“Themost common inaccuracy I found, by far, was the claim that intelligence tests are biased__against certain groups,” he says. Yet intelligence researchers are at pains to ensure that IQ tests ar e fair and not culturally biased.“Another very common one was the idea that intelligence is difficult to measure.”No wonder IQ tests often cause disagreements. But that simply isn't the case.“Despite the criticism, the intelligence test is one of the mo st reliable tests ever invented,” says Rex Jung at the University of New Mexico. Nevertheless, you shouldn't trust the kind of 10­minute test that might pop up in your social media feed.A comprehensive IQ test takes over an hour and is ideally administered by a professional examiner. It is designed to assess precisely those cognitive (认知的) skills that constitute intelligence, so it consists of a series of subtests that cover reasoning, mental processing speed, spatial (空间的) ability and more. Shorter IQ tests, assessing fewer of these skills, can still provide a general indication of someone's mental abilities, however, because of the nature of intelligence, it means that someone who scores highly on one type of cognitive test will also do comparatively well on others.However, particular applications of IQ tests have faced a thorough inspection.A common criticism of using them to select job applicants is that they only measure certain cognitive skills. They don't scientifically measure creativity, for instance. Neither do they measure personality, which tends to make for reliable and hard­working employees—or ability to get on with other people. However, it is rare for examiners to test IQ independently: candidates might be given a personality test too a nd a practical exercise to assess job­related skills. They usually also have to name several professionals to judge.8.What does the underlined words “biased against” in Paragraph 1 probably mean?A.Unfamiliar to. B.Irrelevant to.C.Unfavorable for. D.Irresponsible for.9.What does Rex Jung think of the intelligence tests?A.They are inaccurate. B.They are trustworthy.C.They are properly used. D.They are precisely designed.10.What can we infer about IQ tests in the last paragraph?A.They are rarely accepted. B.They are heavily criticized.C.They may still be employed. D.They can motivate creativity.11.What can be the best title of the passage?A.Do IQ tests really work? B.Applications of IQ tests.C.Misinformation in textbooks. D.Can IQ tests shape personality?DScientists say they've developed a system using machine for learning to predict when and where lightning will strike. The research was led by engineers from the École Polytechnique Fédérale de Lausanne in Lausanne, Switz erland.European researchers have estimated that between 6,000 and 24,000 people are killed by lightning worldwide each year. The strikes can also cause power outages, destroy property, damage electrical equipment and start forest fires. For these reasons, climate scientists have long sought to develop methods to predict and control lightning. In the United States and other places, ground­based sensing devices are used to identify strikes as they happen. But, no system has been created to effectively predict lightning.The system tested in the experiments used a combination of data from weather stations and machine learning methods. The researchers developed a prediction model that was trained to recognize weather conditions that were likely to cause lightning.The model was created with data collected over a 12­year period from 12 Swiss weather stations in cities and mountain areas. The data related to four main surface conditions: air pressure, air temperature, relative humidity and wind speed.The atmospheric data was placed into a machine learning algorithm (算法), which compared it to records of lightning strikes. Researchers say the algorithm was then able to learn the conditions under which lightning happens.Amirhossein Mostajabi is a PhD student at the institute who led the developmentof the method. He said,“Current systems for gathering such data are slow and complex and require costly collection equipment like radar or satellites.”“Our method uses data that can be obtained from any weather stati on,” Mostajabi said.“This will improve data collection in very remote areas not covered by radar and satellites or in places where communication systems have been cut,” he added.The researchers plan to keep developing the technology in partnership with a European effort that aims to create a lightning protection system. The effort is called the European Laser Lightning Rod Project.12.Why have climate scientists tried to predict and control lightning?A.To collect relative data.B.To reduce the destruction lightning has been causing.C.To create a scientific system.D.To do research in relation to machine learning.13.The four mentioned surface conditions include all of the following EXCEPT ________.A.air pollution B.wind speedC.relative humidity D.air temperature14.What does the underlined word “it” in Paragraph 5 refer to?A.Lightning. B.The system being tested.C.The atmospheric data. D.The machine learning algorithm.15.What can we learn about Mostajabi from the passage?A.He developed the method and the system by himself.B.He thinks the current systems are too slow and simple.C.He is a professor at the Swiss Federal Institute of Technology.D.He believes their system does much better in data collection.第二节(共5小题;每小题2.5分,满分12.5分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

CuInS2三元量子点荧光探针测定新霉素

CuInS2三元量子点荧光探针测定新霉素

CuInS2三元量子点荧光探针测定新霉素毛永强;胡美娜;李娜【摘要】采用水热法制备了巯基乙酸修饰的CuInS2三元量子点,基于CuInS2量子点荧光强度能够被新霉素显著猝灭的特性,建立了CuInS2三元量子点荧光探针测定新霉素的方法.优化的试验条件如下:①p H 8.0的三羟甲基氨基甲烷-盐酸缓冲溶液的用量为0.5 mL;②CuInS2量子点的浓度为2.0×10-7mol·L-1;③ 反应时间为5 min.新霉素的浓度在1.0×10-8~2.0×10-7mol·L-1内与其对应的荧光猝灭强度呈线性关系,检出限(3s/k)为2.0×10-10mol·L-1.以空白样品为基体进行加标回收试验,所得回收率在98.4%~106%之间,测定值的相对标准偏差(n=5)在1.9%~2.4%之间.%The ternary CuInS2 quantum dots were prepared using thioglycolic acid as modifiers by hydrothermal synthesis method.Based on the fact of the fluorescence intensity of CuInS2 quantum dots could be quenched remarkably by neomycin,a method for determination of neomycin with ternary CuInS2 quantum dots as fluorescent probe was established.The optimized conditions found were as follows:① amount of Tris-HCl buffer solution of pH 8.0:0.5 mL;②concentration of CuInS2 quantum dots:2.0×10-7mol·L-1;③time of reaction:5 min.Linear relationship between values of the fluorescence quenching intensity and concentration of neomycin was obtained in the range of 1.0×10-8-2.0×10-7mol·L-1 ,with detection limit (3s/k)of 2.0×10-10mol·L-1 .On the base of blank sample,test for recovery was made by standard addition method;values of recovery found were in the range of 98 .4%-106%,with RSD′s (n= 5 )in the range of 1 .9%-2 .4%.【期刊名称】《理化检验-化学分册》【年(卷),期】2017(053)005【总页数】4页(P538-541)【关键词】CuInS2量子点;新霉素;荧光探针【作者】毛永强;胡美娜;李娜【作者单位】辽宁工程技术大学理学院,阜新123000;辽宁工程技术大学安全科学与工程学院,矿山热动力灾害与防治教育部重点实验室,阜新123000;辽宁工程技术大学理学院,阜新123000;辽宁工程技术大学理学院,阜新123000【正文语种】中文【中图分类】O657.3新霉素(NEO)是一种易溶于水、性质稳定的氨基糖甙类抗生素,对很多植物病原菌具有较好的抑制作用,可有效防治大白菜软腐病、姜瘟病、柑桔溃疡病等果蔬病害[1]。

美国科学家发明能产生电流人工树叶

美国科学家发明能产生电流人工树叶

美国科学家发明能产生电流人工树叶
据国外媒体报道,近日,美国北卡罗来纳州立大学的研究团队展示了一种神奇的水凝胶太阳能电池——人工树叶,能够产生电流的人工树叶,这一新型太阳能电池比硅电池更加环保和便宜。

研究人员利用植物中的叶绿素作为感光因子,注入水凝胶制成的可弯曲电池中,并外加碳材料如石墨或碳纳米管包裹的电极,感光分子在太阳光照射下产生电流。

研究人员之一北卡州大学的教授奥林表示,尽管合成的感光分子可以用于太阳能电池,但研究人员一直努力寻找更加绿色的方式利用太阳能。

由于来自自然界的物体如叶绿素等含有水凝胶基质,因此可以用于新型太阳能电池。

既然这一概念已经得到验证,研究人员所要做的是使这种新型水凝胶电池更像真正的树叶。

这一研究的下一步便是模拟植物的自我再生机理,并提高新型电池的效率。

奥林教授表示,尽管现阶段该新型电池的效率仍很低,还需要很长时间才能用于实际生活,但这种利用自然界物体产生电流的理念在未来可能取代现有的晶体管技术。

可以想象未来的屋顶上都覆盖着一片片人工树叶的太阳能电池的美好景象。

据悉,这一研究项目是由美国空军研究工作实验室和美国能源部共同资助的,同时韩国中央大学(Chung-Ang University)也参与了部分研究。

屠呦呦英语介绍作文初三

屠呦呦英语介绍作文初三

屠呦呦:青蒿素的发现者,中国的科学之光Tu Youyou, a renowned Chinese scientist, has made significant contributions to the global fight against malaria. She is best known for her groundbreaking discovery of artemisinin, a drug that has saved millions of lives worldwide. Tu's journey to this remarkable achievement began in the 1960s, when malaria was a major public health problem in China.Born in 1930, Tu Youyou grew up in a family with a strong tradition of medicine. Her interest in science and medicine was piqued at a young age, and she went on to study pharmacology at Peking University. After graduating, she joined the China Academy of Chinese Medical Sciences and began her research on traditional Chinese medicine.In the early 1970s, the Chinese government launched a nationwide campaign to find a treatment for malaria. Tu Youyou and her team were assigned to study traditional Chinese medicine for potential anti-malarial agents. They screened hundreds of herbal remedies and eventuallyidentified a plant called Artemisia annua, or sweet wormwood, as a promising source of anti-malarial compounds. The extraction and purification of the activeingredient from Artemisia annua was a challenging task. Tu Youyou and her team spent years experimenting withdifferent extraction methods and refining the purification process. Finally, in 1972, they succeeded in isolating artemisinin, a compound that was highly effective against malaria parasites.Artemisinin and its derivatives have become the mainstay of anti-malarial treatment worldwide. The drug is particularly effective against drug-resistant strains of malaria, making it a crucial tool in the global fight against this deadly disease.Tu Youyou'sdiscovery of artemisinin has not only saved millions of lives but also brought recognition and honor to China's scientific community. Her work has been recognized by numerous international awards, including the Nobel Prize in Medicine in 2015.Tu Youyou's journey is an inspiration to young scientists and researchers. Her dedication to science,perseverance in the face of challenges, and commitment to improving global health have left a lasting impact on the scientific community. She remains a beacon of hope for those who strive to make a difference in the world through science and research.屠呦呦:青蒿素的发现者,中国的科学之光屠呦呦,这位杰出的中国科学家,在全球抗击疟疾的战斗中做出了重大贡献。

《2024年CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《2024年CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一一、引言随着环境问题的日益突出和能源需求的不断增长,寻找清洁、可持续的能源成为了科学研究的热点。

太阳能作为一种无污染、可再生的能源,其利用方式多种多样,其中太阳电池技术是利用太阳能的主要手段之一。

CuInS2基量子点因其独特的电子结构和光电性能,在太阳电池领域展现出巨大的应用潜力。

本文将重点研究CuInS2基量子点太阳电池光阳极的制备工艺及其敏化特性。

二、CuInS2基量子点的制备与性质CuInS2基量子点因其优异的光电性能,被广泛应用于太阳电池的光吸收层。

其制备方法主要包括化学浴沉积法、共沉淀法等。

这些方法可以制备出具有良好分散性、尺寸均匀的CuInS2基量子点。

量子点的尺寸效应和表面效应使得其具有较高的光吸收系数和较大的载流子迁移率,从而提高了太阳电池的光电转换效率。

三、CuInS2基量子点太阳电池光阳极的制备CuInS2基量子点太阳电池光阳极的制备过程主要包括以下几个步骤:1. 基底选择与处理:选择适当的基底,如FTO玻璃等,并进行清洗、干燥处理。

2. 制备光阳极薄膜:采用溶胶-凝胶法或喷雾热解法等制备TiO2光阳极薄膜。

3. 制备CuInS2基量子点敏化层:将制备好的CuInS2基量子点溶液涂覆在光阳极薄膜上,形成敏化层。

4. 后续处理:对敏化层进行烧结、退火等处理,以提高其结晶度和稳定性。

四、敏化特性研究CuInS2基量子点敏化太阳电池的光电性能主要取决于敏化层的性质。

本文将重点研究CuInS2基量子点敏化层的敏化特性,包括以下几个方面:1. 光吸收性能:通过紫外-可见吸收光谱、光谱响应等手段,研究CuInS2基量子点敏化层的光吸收性能,分析其光吸收范围和光吸收强度。

2. 载流子传输性能:通过电化学工作站等设备,研究CuInS2基量子点敏化层的载流子传输性能,分析其电子迁移率、复合速率等参数。

3. 稳定性分析:通过长时间光照实验、循环伏安法等手段,研究CuInS2基量子点敏化层的稳定性,分析其在不同环境下的老化机制和稳定性影响因素。

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一一、引言随着全球能源需求的不断增长和传统能源的日益枯竭,可再生能源的开发与利用已成为人类社会发展的迫切需求。

其中,太阳电池作为一种重要的可再生能源技术,其发展对于解决能源危机和环境保护具有重要意义。

近年来,CuInS2基量子点太阳电池因具有较高的光吸收系数、较低的毒性以及优异的电学性能,在太阳电池领域展现出广阔的应用前景。

本文以CuInS2基量子点太阳电池的光阳极制备及敏化特性为研究对象,通过制备工艺的优化和敏化特性的研究,旨在提高太阳电池的光电转换效率。

二、光阳极制备1. 材料选择与准备制备CuInS2基量子点太阳电池的光阳极,首先需要选择合适的材料。

本实验选用铜源、铟源和硫源等原材料,经过提纯后得到高纯度的化合物。

同时,还需要准备导电玻璃、电解质等辅助材料。

2. 制备工艺(1)溶液配制:按照一定比例将铜源、铟源和硫源溶解在有机溶剂中,配制成CuInS2量子点溶液。

(2)光阳极制备:在导电玻璃上涂抹一层透明的导电层,然后将配制好的CuInS2量子点溶液滴涂在导电层上,通过旋涂法将量子点均匀地分布在导电层上,形成光阳极。

3. 制备参数优化通过调整溶液浓度、旋涂速度等参数,优化光阳极的制备工艺,使量子点在导电层上分布更加均匀,提高光阳极的光吸收性能。

三、敏化特性研究1. 敏化原理CuInS2基量子点太阳电池的敏化过程是通过将量子点吸附在光阳极上,提高光阳极的光吸收能力。

敏化过程中,量子点的能级与太阳电池的能级相匹配,从而有效地收集并传输光生电子。

2. 敏化方法本实验采用浸渍法进行敏化。

将制备好的光阳极浸入CuInS2量子点溶液中,使量子点吸附在光阳极表面。

通过控制浸渍时间、温度等参数,实现量子点的均匀吸附。

3. 敏化效果评价通过测试光阳极的光吸收性能、光电转换效率等指标,评价敏化效果。

利用紫外-可见光谱仪测试光阳极的光吸收谱,分析量子点对光吸收性能的改善程度。

《基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》篇一一、引言近年来,CuInS2量子点因其优异的电子结构和光电性能在光电器件领域展现出巨大潜力。

尤其是当其作为敏化剂用于太阳电池时,通过调控其组分和核壳结构,可以有效提升太阳电池的光电转换效率和稳定性。

本文将重点探讨基于组分和核壳结构调控的CuInS2量子点的制备方法,以及其敏化太阳电池的特性。

二、CuInS2量子点的制备与组分调控1. 制备方法:CuInS2量子点的制备主要采用溶液法,通过调整前驱体溶液的比例和浓度,控制反应温度和时间,从而得到不同组分的CuInS2量子点。

2. 组分调控:通过调整Cu、In和S元素的摩尔比,可以实现对CuInS2量子点组分的调控。

不同组分的CuInS2量子点具有不同的能级结构和光电性能,从而影响其在太阳电池中的应用。

三、CuInS2量子点的核壳结构调控1. 核壳结构的设计:为了进一步提高CuInS2量子点的光电性能和稳定性,可以引入核壳结构。

以CuInS2量子点为核心,外围包裹一层其他材料(如ZnS、CdS等),形成核壳结构。

2. 核壳结构的作用:核壳结构不仅可以提高量子点的光学稳定性,还能调整能级结构,优化电子传输和收集效率。

此外,核壳结构还能有效防止量子点在环境中的氧化和腐蚀。

四、CuInS2量子点敏化太阳电池的制备与特性1. 制备过程:将制备得到的CuInS2量子点作为敏化剂,涂覆在太阳能电池的光阳极上。

通过控制量子点的浓度和涂覆方式,优化电池的性能。

2. 电池特性:基于CuInS2量子点敏化的太阳电池具有较高的光电转换效率和稳定性。

核壳结构调控和组分调控可以进一步优化电池的性能,提高其在实际应用中的竞争力。

五、实验结果与讨论1. 实验结果:通过组分和核壳结构调控,我们得到了具有优异光电性能的CuInS2量子点。

将其应用于太阳电池,取得了较高的光电转换效率。

2. 讨论:组分和核壳结构的调控对CuInS2量子点的能级结构和光电性能具有显著影响。

《2024年CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《2024年CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一摘要:本文详细研究了CuInS2基量子点太阳电池光阳极的制备工艺及其敏化特性。

通过对制备过程的优化,实现了高效、稳定的光阳极制备,并对其光电性能进行了深入分析。

本文的研究为CuInS2基量子点太阳电池的进一步发展提供了理论依据和实验支持。

一、引言随着环境污染和能源短缺问题的日益严重,太阳能电池作为一种清洁、可再生的能源转换器件,受到了广泛关注。

CuInS2基量子点太阳电池因其高光电转换效率、低成本、制备工艺简单等优点,成为研究的热点。

本文重点研究了CuInS2基量子点太阳电池光阳极的制备及敏化特性,以期为太阳能电池的发展提供新的思路和方法。

二、CuInS2基量子点的制备及性质CuInS2量子点具有优异的光电性能,是制备高效太阳电池的关键材料。

本文采用化学溶液法,通过调整反应条件,成功制备了具有良好分散性、高纯度和均匀尺寸的CuInS2量子点。

通过X 射线衍射、紫外-可见光谱等手段,对量子点的结构、光学性质进行了表征。

三、光阳极的制备工艺及优化光阳极是太阳电池的关键组成部分,其性能直接影响电池的光电转换效率。

本文采用溶胶-凝胶法,结合浸渍提拉技术,制备了CuInS2基量子点敏化的TiO2光阳极。

通过调整量子点的浓度、浸渍时间等参数,优化了光阳极的制备工艺。

同时,对光阳极的微观结构、形貌及成分进行了分析,探讨了其与光电性能的关系。

四、敏化特性研究敏化是提高太阳电池光电转换效率的重要手段。

本文研究了CuInS2量子点对TiO2光阳极的敏化作用,分析了量子点的能级结构、光学性质与太阳电池性能的关系。

通过紫外-可见光谱、电化学工作站等手段,测试了敏化前后光阳极的光响应范围、光电流密度等性能参数。

实验结果表明,CuInS2量子点的敏化作用显著提高了光阳极的光电性能。

五、结论本文通过优化制备工艺,成功制备了高效、稳定的CuInS2基量子点敏化的TiO2光阳极。

《2024年基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《2024年基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》篇一一、引言随着能源危机和环境问题的日益严峻,对新型、高效的太阳能转换技术的研究成为了科学家们的焦点。

近年来,基于CuInS2(简称CIS)量子点的敏化太阳能电池由于其较高的光电转换效率和较好的稳定性备受关注。

CuInS2量子点的特性和性能受其组分以及核壳结构的调控,是提升其光吸收和电荷传输性能的关键。

本文将探讨基于组分和核壳结构调控的CuInS2量子点及其在敏化太阳电池中的应用。

二、CuInS2量子点的合成与组分调控CuInS2量子点因其独特的电子结构和良好的光吸收性能在太阳能电池中有着广泛的应用。

其合成过程通常包括组分的调控,通过控制合成过程中的原料比例,如Cu、In和S的原子比例,可以实现对其光学和电学性能的调控。

此外,通过改变合成温度、时间和溶剂等条件,可以进一步优化CuInS2量子点的尺寸和形状。

三、核壳结构调控的CuInS2量子点为了进一步提高CuInS2量子点的性能,研究者们引入了核壳结构的调控策略。

在CuInS2量子点外层包裹一层其他材料(如ZnS或CdS)形成核壳结构,不仅可以提高其稳定性,还能调整其能级结构,从而改善光吸收和电荷传输性能。

通过控制壳层的厚度和材料种类,可以实现对核壳结构CuInS2量子点光电性能的精细调控。

四、基于CuInS2量子点的敏化太阳电池特性基于CuInS2量子点的敏化太阳电池利用量子点的光吸收性能来提高光电转换效率。

在太阳光照射下,CuInS2量子点吸收光子并产生电子-空穴对,这些载流子随后被分离并传输到电极上,从而产生电流。

由于核壳结构调控的CuInS2量子点具有更高的光吸收能力和更好的电荷传输性能,因此其敏化太阳电池具有更高的光电转换效率和更好的稳定性。

五、结论本文通过对基于组分和核壳结构调控的CuInS2量子点及其在敏化太阳电池中的应用进行探讨,发现组分和核壳结构的调控对于提高CuInS2量子点的光吸收和电荷传输性能具有关键作用。

《2024年基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《2024年基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》篇一一、引言随着可再生能源的日益重要,太阳能电池成为了科研和工业界的研究热点。

CuInS2(CIS)量子点因其具有高的光吸收系数和优良的电子传输特性,在太阳能电池领域中受到了广泛关注。

本文旨在研究基于组分和核壳结构调控的CuInS2量子点,并探讨其敏化太阳电池的特性和性能。

二、CuInS2量子点的合成与组分调控CuInS2量子点的合成主要通过热注射法或化学气相沉积法等方法实现。

组分调控是影响CuInS2量子点性能的关键因素之一。

通过调整铜、铟和硫的比例,可以实现对CuInS2量子点能级结构和光学性质的有效调控。

此外,还可以通过掺杂其他元素如Se或Te来进一步优化其性能。

三、核壳结构调控CuInS2量子点为了进一步提高CuInS2量子点的稳定性和光吸收效率,核壳结构调控成为了一种有效的手段。

在CuInS2量子点外层包裹一层其他材料(如ZnS或CdS)可以形成核壳结构,这不仅可以提高量子点的抗光氧化能力,还能通过调整壳层厚度来进一步优化其能级结构和光学性质。

四、敏化太阳电池的制备与性能测试将合成好的CuInS2量子点应用于敏化太阳电池中,通过光伏效应将太阳能转化为电能。

电池的制备过程包括制备导电基底、制备光阳极、敏化处理、电解液注入等步骤。

通过对电池性能的测试,包括开路电压、短路电流、填充因子和能量转换效率等参数,可以评估CuInS2量子点敏化太阳电池的性能。

五、实验结果与讨论通过实验,我们发现组分和核壳结构调控的CuInS2量子点能够有效提高敏化太阳电池的性能。

具体而言,当Cu、In和S的比例在一定范围内调整时,量子点的能级结构和光学性质得到优化,从而提高了太阳电池的光吸收效率和电子传输效率。

此外,核壳结构的引入进一步提高了量子点的稳定性和光吸收效率,从而提高了太阳电池的性能。

六、结论本文研究了基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性。

《2024年CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《2024年CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一摘要:本文详细研究了CuInS2基量子点太阳电池光阳极的制备工艺及其敏化特性。

通过优化制备条件,成功制备了具有高光电转换效率的光阳极,并对其敏化特性进行了深入分析。

实验结果表明,所制备的光阳极在太阳电池领域具有潜在的应用价值。

一、引言随着全球能源需求的不断增长,太阳能电池作为一种清洁、可再生的能源转换技术,受到了广泛关注。

近年来,量子点敏化太阳电池因其高光电转换效率和低成本而备受关注。

CuInS2基量子点因其独特的光电性能,在太阳电池领域具有广阔的应用前景。

本文旨在研究CuInS2基量子点太阳电池光阳极的制备工艺及其敏化特性,为进一步优化太阳电池性能提供理论依据。

二、材料与方法1. 材料准备实验所需材料包括CuInS2量子点、导电玻璃、光阳极基底等。

2. 制备工艺(1)光阳极基底的预处理;(2)制备CuInS2量子点溶液;(3)将量子点溶液涂覆于光阳极基底上,形成量子点敏化层;(4)对敏化后的光阳极进行性能测试。

3. 敏化特性研究方法通过紫外-可见光谱、电化学阻抗谱等手段,对光阳极的敏化特性进行研究。

三、实验结果与分析1. 光阳极的制备与表征通过优化制备条件,成功制备了具有高光电转换效率的CuInS2基量子点敏化光阳极。

利用扫描电子显微镜(SEM)观察了光阳极的形貌,发现量子点均匀地分布在光阳极表面,形成了良好的敏化层。

2. 敏化特性的研究(1)紫外-可见光谱分析通过紫外-可见光谱分析,发现所制备的光阳极在可见光范围内具有较好的光吸收性能,吸收边缘延伸至较长波长。

(2)电化学阻抗谱分析电化学阻抗谱分析表明,量子点的引入有效降低了光阳极的界面电阻,提高了电子传输效率。

同时,敏化层中的量子点能够有效地捕获光生电子,减少了电子复合的几率。

3. 光电转换效率的测试与分析测试了所制备的光阳极的光电转换效率,结果表明,CuInS2基量子点敏化光阳极具有较高的光电转换效率,明显优于未敏化的光阳极。

《2024年基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《2024年基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》范文

《基于组分和核壳结构调控的CuInS2量子点及其敏化太阳电池特性》篇一一、引言随着科技的进步,太阳能电池已成为现代绿色能源领域的重要研究方向。

其中,CuInS2(CIS)量子点因其独特的光电性能和优越的太阳能电池应用潜力,正受到广泛关注。

通过调整其组分和核壳结构,我们可以优化其光电性能,进一步提高敏化太阳电池的效率。

本文将详细探讨基于组分和核壳结构调控的CuInS2量子点及其在敏化太阳电池中的应用特性。

二、CuInS2量子点的组分调控CuInS2量子点的组分对其光电性能具有重要影响。

通过调整Cu、In和S的原子比例,我们可以改变其吸收光谱、能级结构和载流子传输性能。

在合成过程中,采用不同的前驱体比例和反应条件,可以实现对CuInS2量子点组分的有效调控。

此外,还可以通过后处理过程,如硫化和硒化等,进一步优化其光电性能。

三、核壳结构调控的CuInS2量子点核壳结构的引入可以进一步提高CuInS2量子点的稳定性和光电性能。

通过在CuInS2量子点外包裹一层能级匹配的壳材料,如ZnS或CdS,可以有效地减少量子点的表面缺陷,提高其光吸收能力和载流子传输效率。

此外,核壳结构还可以调整量子点的能级结构,使其与敏化太阳电池中的其他组件更好地匹配,从而提高电池的效率。

四、CuInS2量子点敏化太阳电池的特性将调控后的CuInS2量子点应用于敏化太阳电池中,可以显著提高电池的光吸收能力和光电转换效率。

由于量子点的尺寸效应和表面效应,其光吸收范围可覆盖可见光和近红外区域,从而提高太阳光的利用率。

此外,量子点的能级结构与电池中的其他组件相匹配,有利于载流子的传输和收集,降低电池的内阻。

这些特性使得CuInS2量子点敏化太阳电池具有较高的光电转换效率和稳定性。

五、实验结果与讨论通过实验,我们发现在一定组分和核壳结构调控下,CuInS2量子点的光电性能得到了显著提高。

具体而言,当Cu、In和S的原子比例在一定范围内调整时,量子点的吸收光谱和能级结构发生了有利于光电转换的变化。

【初中化学】让太阳能在日落后继续工作的电池

【初中化学】让太阳能在日落后继续工作的电池

【初中化学】让太阳能在日落后继续工作的电池
近日,2021年《麻省理工科技评论》全球十大突破性技术榜单发布。

作为全球最为著名的技术榜单之一,《麻省理工科技评论》全球十大突破性技术具备极大的全球影响力和权威性。

今年的这一榜单提到了一项能源技术:太阳能热光伏电池,这是一种可以让太阳能电池效率翻倍的技术。

新的设计可能会带来廉价的太阳能发电技术,在日落后仍然可以工作。

这项技术由大卫·比尔曼、马里索尔·贾西奇、麻省理工学院的伊芙琳·王和普渡大学的弗拉德米尔·沙拉夫研究。

该技术预计将于2027年至2032年成熟并投入使用。

mit团队研发的原型设备,阳光从中间的窗口射入真空腔。

一种黑色碳纳米管层,用于捕捉阳光并将其转化为热量。

实现太阳能电池效率翻倍的秘诀在于先将太阳光变成热能,然后将其重新变成聚集在太阳能电池可以使用的光谱范围内的光。

而且,麻省理工学院的这个装置是第一个可以比只使用光伏电池吸收更多能量的装置。

成功实施这项技术的关键步骤是开发一种叫做吸收辐射器的工具,它本质上是一个放置在太阳能电池上方的光漏斗。

吸收层由固体黑色碳纳米管组成,用于捕获阳光中的所有能量,并将其中大部分转化为热量。

麻省理工学院团队的这项技术当然也有其弊端,比如部分部件相对而言价格仍然非常高昂,以及目前仅能在真空环境下工作等。

不过其经济性应该会随着效率的提高而提高。

如果研究人员能够集成蓄热设备并提高效率,该系统将有一天实现清洁、廉价和连续的太阳能供电。

《中国科学报》(2021-02-23第6版前沿)。

CuInS2敏化一维有序TiO2太阳能电池光阳极材料的制备与表征的开题报告

CuInS2敏化一维有序TiO2太阳能电池光阳极材料的制备与表征的开题报告

CuInS2敏化一维有序TiO2太阳能电池光阳极材料
的制备与表征的开题报告
尊敬的评委老师:
我选择的课题是关于CuInS2敏化一维有序TiO2太阳能电池光阳极
材料的制备与表征。

在当今世界,太阳能电池已成为最为重要的可再生
能源之一,其具有绿色、安全、可再生等优势。

然而,目前太阳能电池
材料的效率还有很大提高空间,因此我选择了这样的课题,希望能通过
自己的努力与研究,为太阳能电池材料效率的提高贡献一份力量。

在此课题中,我将通过对CuInS2敏化一维有序TiO2太阳能电池光
阳极材料的制备与表征进行深入研究。

具体来说,我将采用溶液法对CuInS2敏化剂进行制备,并利用水热法制备一维有序TiO2纳米管阵列。

然后,我将通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线
衍射(XRD)等手段对制备的材料进行表征,研究它们的形貌、结构、光学性质和电化学性能。

最后,我将利用光电化学测试仪测试该太阳能电池
的效率和稳定性。

本课题所研究的CuInS2敏化一维有序TiO2太阳能电池光阳极材料
具有广阔的应用前景,它不仅可以应用于太阳能电池等领域,还可以用
于光电催化、光氧化等领域。

因此,该课题的研究具有极大的意义和价值。

最后,我将以此课题为契机,不断提高自己的知识水平和实践能力,力争取得令人满意的研究成果,为太阳能电池材料效率的提高做出自己
的努力。

感谢您的关注。

CuInS2及CdS敏化的纳米结构太阳电池构筑和性能研究的开题报告

CuInS2及CdS敏化的纳米结构太阳电池构筑和性能研究的开题报告

CuInS2及CdS敏化的纳米结构太阳电池构筑和性能研究的开题报告引言:太阳能电池是将太阳辐射能转化为电能的一种光电转换技术,是一种绿色、可再生、无污染的能源。

传统的太阳能电池主要以硅材料为主,但是其制备成本较高、生产过程污染严重,限制了其在大规模应用中的发展。

因此,研究和发展低成本、高效率的非硅基材料太阳能电池具有重要的意义。

纳米材料具有特殊的物理、化学和电学性质。

纳米材料的小尺寸使得其具有更强的表面积效应、更优异的光电性能等特性,因此能够作为太阳能电池的敏化剂来提高太阳能电池的光电转换效率。

CuInS2和CdS是具有良好光电性能的半导体材料,其敏化的纳米结构太阳电池也取得了一定的研究进展。

本文旨在研究和构筑一种基于CuInS2和CdS敏化的纳米结构太阳电池并对其性能进行分析和研究。

研究内容:1. CuInS2和CdS纳米材料的制备与表征:采用化学合成方法制备纳米结构的CuInS2和CdS材料,并对其进行表征,包括粒径、结构、形貌等方面的研究。

2. 纳米结构太阳电池的构筑:采用TiO2作为电子传输层,在其表面上负载敏化剂CuInS2和CdS材料,最后在负载有敏化剂的TiO2表面上涂覆一层Pt作为电子传输媒介层,构筑出纳米结构太阳电池。

3. 性能测试与分析:对制备的纳米结构太阳电池进行性能测试,包括光电转换效率、短路电流、开路电压、填充因子等参数的测量,分析敏化剂对电池性能的影响和优化比较不同敏化剂的性能。

预期成果:1. 成功制备出CuInS2和CdS纳米材料,并对其进行表征。

2. 构筑出基于CuInS2和CdS敏化的纳米结构太阳电池,并对其进行性能测试,得到其光电转换效率等关键性能参数。

3. 通过对实验结果的分析和比较,探索提高纳米结构太阳电池性能的优化方法,为发展高效低成本太阳能电池提供一定的理论和实践基础。

Development of thin-film Cu (In, Ga) Se 2 and CdTe solar cells

Development of thin-film Cu (In, Ga) Se 2 and CdTe solar cells

PROGRESS IN PHOTOVOLTAICS:RESEARCH AND APPLICATIONSProg.Photovolt:Res.Appl.2004;12:93–111(DOI:10.1002/pip.527)Development of Thin-filmCu(In,Ga)Se 2and CdTeSolar CellsA.Romeo 1,M.Terheggen 2,D.Abou-Ras 1,D.L.Ba¨tzner 1,F.-J.Haug 1,M.Ka ¨lin 1,D.Rudmann 1and A.N.Tiwari 3*,y1Thin Film Physics Group,Laboratory for Solid State Physics,ETH (Swiss Federal Institute of Technology)Zurich,Technopark,ETH-Building,Technoparkstr.1,CH-8005Zurich,Switzerland 2ETH Zurich,Institute of Applied Physics,CH-8093Zurich,Switzerland 3Also at Centre for Renewable Energy Systems and Technology,Department of Electronic and Electrical Engineering,Loughborough University,Loughborough,Leicestershire,LE113TU,UK Cu(In,Ga)Se 2and CdTe heterojunction solar cells grown on rigid (glass)or flexiblefoil substrates require p-type absorber layers of optimum optoelectronic propertiesand n-type wide-bandgap partner layers to form the p–n junction.Transparent con-ducting oxide and specific metal layers are used for front and back electrical contacts.Efficiencies of solar cells depend on various deposition methods as they control theoptoelectronic properties of the layers and interfaces.Certain treatments,such asaddition of Na in Cu(In,Ga)Se 2and CdCl 2treatment of CdTe have a direct influenceon the electronic properties of the absorber layers and efficiency of solar cells.Processes for the development of superstrate and substrate solar cells are reviewed.Copyright #2004John Wiley &Sons,Ltd.key words :solar cells;CdTe;Cu(In,Ga)Se 2;thin-films;photovoltaics;solar energyINTRODUCTIONP olycrystalline thin-film solar cells such as CuInSe 2(CIS),Cu(In,Ga)Se 2(CIGS)and CdTe compoundsemiconductors are important for terrestrial applications because of their high efficiency,long-term stable performance and potential for low-cost production.Because of the high absorption coefficient ($105cm À1)a thin layer of $2m m is sufficient to absorb the useful part of the spectrum.Highest record effi-ciencies of 19Á2%for CIGS 1and 16Á5%for CdTe 2have been achieved.Many groups across the world have developed CIGS solar cells with efficiencies in the range of 15–19%,depending on different growth procedures.Glass is the most commonly used substrate,but recently some effort has been made to develop flexible solar cells on polyimide and metal foils.Highest efficiencies of 12Á8%and 17Á6%have been reported for CIGS cells on polyimide 3and metal foils,4respectively.Similarly,CdTe solar cells in the efficiency range of 10–16%,depending on the deposition process,have been developed on glass substrates,while flexible cells with effi-ciency of 7Á8%on metal,5and 11%on polyimide 6have been achieved.Currently,these polycrystalline com-pound semiconductors solar cells are attracting considerable interest for space applications,because proton and electron irradiation tests of CIGS and CdTe solar cells have proven that their stability against particle irradiation is superior to Si or III–V solar cells.7Moreover,lightweight and flexible solar cells can yield a high specific Copyright #2004John Wiley &Sons,Ltd.Received 17October 2003*Correspondence to:A.N.Tiwari,Thin Film Physics Group,Laboratory for Solid State Physics,ETH (Swiss Federal Institute of Technology)Zurich,Technopark,ETH-Building,Technoparkstr.1,CH-8005Zurich,Switzerland.y E-mail:tiwari@phys.ethz.chSpecial Issuepower (W/kg)and open numerous possibilities for a variety of applications.As shown in Figure 1,thin-film solar cells based on CdTe or chalcopyrite absorbers can be grown in ‘superstrate’or ‘substrate’configurations.The superstrate configuration facilitates low-cost encapsulation of solar modules.This configuration is also important for the development of high-efficiency tandem solar cells,effectively utilizing the complete solar spectrum for photovoltaic power conversion.There are several chalcopyrite compounds with optical and electrical properties suitable for photovoltaic con-version,but this review article is focused on the CIGS compound because of space limitation,and for the same reason many important papers and reviews are not mentioned in the references.Module manufacturing tech-nologies have matured in recent years and several companies are involved in industrial or pilot-scale production of solar modules.However,module related issues are not covered in this review article.The emphasis is placed on various aspects of solar cell development and most of the efficiencies reported are related to small-area cells( 1cm 2).Figure 1.Schematic cross-section of ‘superstrate’and ‘substrate’configurations for CdTe and CIGS solarcellsFigure 2.(a)TEM micrograph of the cross-section of a CdTe/CdS cell after deposition—both the columnar grain structure and the high density of twins on f 111g plains in the CdTe and f 0001g plains in the CdS layer are visible;(b)a sample area after CdCl 2treatment—both,the CdTe and the CdS layers are characterized by grain growth (note the different scale bars),recovery and recrystallization;the CdTe/CdS interface exhibits grain coarsening 16694 A.ROMEO ET AL.Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–111THIN-FILM CU(In,Ga)Se2AND CdTe SOLAR CELLS95 CELL CONFIGURATIONCIGS solar cellsGenerally,CIGS solar cells are grown in a substrate configuration(see Figure1).This configuration gives the highest efficiency owing to favorable process conditions and material compatibility but requires an additional encapsulation layer and/or glass to protect the cell surface.This cover glass,in contrast,is not required for the cells grown in the superstrate configuration.CIS-based superstrate solar cells were investigated by Duchemin et al.8using spray pyrolysis deposition,but efficiencies did not exceed5%.The main reason for this low efficiency in CdS/CIGS superstrate cells is the undesirable interdiffusion of Cd into CIS(or CIGS)during the elevated temperatures required for absorber deposition on CdS buffer layers.9To overcome this problem of interdiffusion more stable buffer materials and low-temperature deposition pro-cesses such as electrodeposition(ED),low-substrate temperature co-evaporation and screen printing were investigated.Nakada et al.10achieved a breakthrough by replacing CdS with undoped ZnO and co-evaporating Na x Se during CIGS deposition.With the additional introduction of composition grading in absorber layer, 12Á8%efficiency cells were developed.10This co-evaporation of Na x Se for incorporation of sodium in CIGS is essential for high-efficiency cells,as the ZnO front contact acts as diffusion barrier for Na from the glass substrate and leads to a low net carrier density in CIGS and cells with low open-circuit voltage V OC andfill factor.11Investigations of the interface between the ZnO buffer layer and CIGS revealed the presence of a thin layer of Ga2O3which acts as barrier against photo-current transport.10,12,13However,Na-free superstrate solar cells with efficiencies of up to11Á2%have been obtained,but a strong light-soaking treatment was necessary.14The fundamental reasons for light-soaking-induced improvements in cell efficiency are not yet investigated.CdTe solar cellsThe CdTe solar cells can be grown in both substrate and superstrate configurations(see Figure1),but the highest efficiency is achieved in the superstrate configuration.The CdTe/CdS layers for superstrate cells are grown on transparent conducting oxide(TCO)-coated glass substrates.The glass substrate can be a low-cost soda-lime glass for growth process temperatures below550 C,or alkali-free glass for high-temperature processes(550–600 C). Various kinds of back contacts can be applied,as they do not have to withstand the high temperature of successive layer deposition.Cells in superstrate configuration have given the highest efficiency2of up to16Á5%.For substrate configuration(see Figure1),CdTe is deposited on metal foils or metal-covered glass substrates. The main advantage of the substrate configuration is that the substrate does not have to be transparent,which allows a variety of foils(e.g.,molybdenum,stainless steel or polyamide)as a substrate for the development of flexible cells.15The highest efficiency obtained in the substrate configuration is10Á3%on a Mo/Cu-coated glass substrate,16whileflexible cells of7Á8%efficiency on molybdenum foils have been realized.5However,the sta-bility of the back contact remains a limiting factor in the substrate configuration.Recently,with a novel lift-off process,11%efficiency cells in superstrate and7Á7%efficiency cells in substrate configuration have been devel-oped onflexible polyimidefilms.6,17By reversing the order of deposition and subsequent lift-off to reconfigure the substrate configuration,the issue of back contact stability at high temperature—encountered during cell processing—is avoided.6FRONT CONTACTCIGS solar cellsDuring the early days of CIS and CIGS substrate cell development a bilayer of undoped and doped CdS served as a buffer and front contact,respectively.18,19High conductivity in doped CdS was achieved either by control-ling the density of donor type defects or by extrinsic doping with Al or In.18,19Spectral absorption loss in the conducting CdS layer was reduced by increasing the bandgap,alloying with ZnS or later replacing it with TCOs Copyright#2004John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–111with bandgaps of above 3eV.18Transmission spectra of various TCOs and buffers are shown in Figure 3.Today,CIGS solar cells employ either In 2SnO 3(ITO)or,more frequently,RF-sputtered Al-doped ZnO.A combination of an intrinsic and a doped ZnO layer is commonly used,although this double layer yields consistently higher efficiencies,the beneficial effect of intrinsic ZnO is still under discussion.20Doping of the conducting ZnO layer is achieved by group III elements,particularly with aluminum.21However investigations show boron to be a feasible alternative,as it yields a high mobility of charge carriers 22and a higher transmission in the long-wavelength spectral region,giving rise to higher currents.23For high-efficiency cells the TCO deposition temperature should be lower than 150 C in order to avoid the detrimental interdiffusion across CdS/CIGS interface.CdTe solar cellsA highly transparent and conducting TCO layer with an electron affinity below 4Á5eV is required to form an ohmic contact and a good band alignment with the CdS.If the electron affinity of the TCO is higher than that of CdS,a blocking Schottky contact is formed.The most commonly used TCOs for CdTe solar cells are F-doped SnO x [SnO x :F (FTO)]or ITO (see their transmission spectra in Figure 3).They are often used in combination with a thin intrinsic SnO x layer between the TCO and the CdS window layer maintaining a high voltage by preventing possible shunts through pinholes in the CdS.24Intrinsic (high-resistivity)TCO facilitates the use of a thinner CdS layer for reducing photon absorption losses for wavelengths smaller than 500nm.The Al doped ZnO,commonly used in CIGS cells,yields a high series resistance in CdTe cells,resulting in low efficiency.25However,recently 14%efficiency cells have been developed on ZnO:Al with a sputtering method.26The CdS deposition and post-deposition annealing of the cell can change the properties of the TCO layer and the CdS/TCO interface characteristics.ITO front contacts are often sensitive to annealing treatment,an increase of the electron affinity from around 4to 5eV,caused by oxidation or a post-deposition treatment,results in a blocking contact.27,28By doping ITO with F,N.Romeo et al .(private communication)were able to increase the stability of the front contact.Best results have been achieved with a RF-sputtered stack of highly conductive Cd 2SnO 4and resistive Zn 2SnO 4buffer layers,2each with a thickness of 200nm.The Cd 2SnO 4excels in conductivityand Figure 3.Optical transmission of different front contacts and buffer layers (left)and of different absorber layers (right)96 A.ROMEO ET AL.Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–111THIN-FILM CU(In,Ga)Se2AND CdTe SOLAR CELLS97 bandgap,allowing for a higher current andfill factor in solar cells.Similarly the high conductivity and trans-mission of CdIn2O4layers have been obtained by a co-sputtering method.29,30A drawback of the stannates is their high deposition temperature,above600 C,which does not allow the use of low-cost soda-lime glass sub-strates.BUFFER LAYERSCIGS solar cellsSemiconductor compounds with n-type conductivity and bandgaps between2Á0and3Á6eV have been applied as buffer for CIGS solar cells.However,CdS remains the most widely investigated buffer layer,as it has continu-ously yielded high-efficiency cells.CdS for high-efficiency CIGS cells is generally grown by a chemical bath deposition(CBD),which is a low-cost,large-area process.However,incompatibility with in-line vacuum-based production methods is a matter of concern.Physical vapor deposition(PVD)-grown CdS layers yield lower-efficiency cells,as thin layers grown by PVD do not show uniform coverage of CIGS and are ineffective in chemically engineering the interface properties.For a comprehensive review on CBD-deposited CdS see Ortega-Borges and Lincot31and Hodes.32The recent trend in buffer layers is to substitute CdS with‘Cd-free’wide-bandgap semiconductors and to replace the CBD technique with in-line-compatible processes.Thefirst approach has been to omit CdS and form a direct junction between CIGS and ZnO,but the plasma(ions)during ZnO deposition by RF sputtering can damage the CIGS surface and enhance interface recombination.Possible solutions include ZnO deposited by metal organic chemical vapor deposition(MOCVD),atomic layer deposition(ALD)or a novel technique, called ion layer gas reaction.33–35As an alternative to CdS,various materials show promising results.These include layers of CBD-ZnS,36 MOCVD-ZnSe,37ALD-ZnSe,38CBD-ZnSe,39PVD-ZnIn2Se4,40co-sputtered Zn1Àx Mg x O41and ALD-In2S3.42,43All of these Cd-free buffer layers have demonstrated efficiencies well above11%with a record effi-ciency36for CBD-ZnS of18Á1%.However,Zn-based compounds tend to form a blocking barrier due to the band alignment with CIGS.44Using layers of less than50nm thickness,the barrier can be crossed by tunneling of charge carriers,but this poses high requirements on the quality of the deposition process and the CIGS sur-face to obtain a uniform coverage.The band offset can be reduced as well,if impurities such as hydroxides that can be present in a CBD are incorporated in the CIGS/buffer layer interface.45CdTe solar cellsDue to the limited dopability and high absorption coefficient of CdTe,high-efficiency homojunction devices are not attractive.Heterojunction structure with n-CdS and p-CdTe is most commonly used for high-efficiency cells.Like CdTe,CdS grows under most deposition conditions in a stable stoichiometric phase, -CdS,which has the hexagonal wurtzite structure.Under high-pressure growth conditions or in thinfilms,CdS may be found in the cubic,metastable zincblende structure.46Layers of n-conducting CdS are easily grown by various deposi-tion methods including CBD as well as PVD.CBD yields the highest efficiency devices,owing to its inherent ability to form very thin(5–50nm),but continuous layers,that allow a high transmission through the window layer for low-wavelength photons.High-vacuum evaporation(HVE)-grown CdSfilms exhibit47sub-micrometer-sized,columnar grains that grow with preferred[2110]orientation parallel to the substrate(Figure2a).Recently,attempts have been made to enhance the crystal quality of CdS by the incorporation of O or CdCl2asflux agent and post-deposition treat-ments in air and Ar.Impurities can compensate the doping in CdS and act as carrier traps,turning the CdS into a transport barrier modulated by light.This mechanism has already been investigated for CIGS cells,48and adapted models have been developed for CdTe cells.49Hence,not only the direct influence of the front contact, but its indirect influence on the electrical properties of the CdS by interdiffusion of impurities across the TCO/ CdS interface should be considered in terms of cell stability.Copyright#2004John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–11198 A.ROMEO ET AL. MATERIAL PROPERTIES OF THE ABSORBERSCIGSI–III–VI2semiconductors,such as CIS or CIGS are often simply referred to as chalcopyrites because of their crystal structure.These materials are easily prepared in a wide range of compositions and the corresponding phase diagrams are well investigated.50–52For the preparation of solar cells only slightly Cu-deficient composi-tions of p-type conductivity are suited.53,54Depending on the[Ga]/[InþGa]ratio,the bandgap of CIGS can be varied continuously between1Á04and1Á68eV,(Figure3).The current high-efficiency devices are prepared with bandgaps in the range1Á20–1Á25eV,this corresponds to a[Ga]/[InþGa]ratio between25and30%.CdTeThe CdTe phase diagram is characterized by a congruently melting intermediate phase,55 -CdTe,which forms at50at%Te.It has a cubic zincblende(sphalerite)structure.Under pressure or in thinfilms,two other phases of cubic or hexagonal structure can form.46,56The deviation from stoichiometric composition is negligible,the width of the stability region of the stoichiometric phase above400 C is10À6at.%.The high liquidus tempera-ture results from a strong ionic binding between Cd and Te atoms.These features make CdTe as a robust mate-rial suitable for high-deposition-rate industrial processes.While the CdS/CdTe interface suffers from a10%lattice mismatch that produces misfit dislocations,57CdTe absorber layers can be separated in two groups,depending on the substrate temperature used during the CdTe growth.For low-temperature processes(e.g.,HVE)CdTe grows epitaxially on the CdS grains,with the{111} planes of CdTe being parallel to the{0001}planes of CdS.The CdS grain size is conserved across the interface and determines the lateral grain diameter of CdTe,which remains unchanged throughout the absorber layer. The high density of microtwins on{111}planes,seen in Figure2(a)as black stripes,is the result of low sub-strate temperatures during deposition,combined with a low stacking fault energy in CdTe.The CdTe layers grown by high-temperature($550 C)close-space sublimation(CSS)processes have grain sizes equivalent to the CdS grain size at the interface,but develop into much larger grains of several micrometers in diameter towards the CdTe top surface.The density of microtwins is smaller,compared with low-temperature-grown CdTe and an orientational relationship between the CdS and the CdTe layers is less apparent.When grown under Cd rich conditions,as-grown CdTe is intrinsic or n-conducting due to the Fermi level being pinned near the midgap by the compensating donor defect Cd i2þ.In the Te-rich limit CdTe is intrinsic or slightly p-conducting since the Fermi energy is pinned closer to the valence band maximum.The reliable enhancement of n-and p-conductivity by doping remains a difficult and long-standing problem.58Limitations for n-doping are the self-compensation by intrinsic defects such as Cd vacancies,and p-doping suffers from the lack of available dopants with both high solubility and shallow acceptor levels.59Moreover,most of the doping atoms have a high mobility and a tendency to segregation in CdTefilms.Typical doping concentration in poly-crystalline CdTe is of the order of1015cmÀ3for a high-efficiency device.ABSORBER GROWTHCIGS layersCo-evaporation processesThe most successful technique for deposition of CIGS absorber layers for highest-efficiency cells is the simul-taneous evaporation of the constituent elements from multiple sources in single or sequential processes where Se is offered in excess during the whole deposition process.While a variation of the In to Ga ratio during the deposition process leads to only minor changes in the growth kinetics,variation of the Cu content strongly affects thefilm growth.Thus,different co-evaporation growth procedures are classified by their Cu evaporation profile.In spite of the variations in the Cuflux,in most cases a homogeneous Cu distribution throughout the finished absorber layer is established,which should be Cu poor for high-efficiency cells.Copyright#2004John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–111The use of a bilayer process (also called the ‘Boeing process’)(Figure 4)originates from the work of Mickelsen and Chen.60This bilayer process yields larger grain sizes compared to the constant rate (single-stage)process.This is attributed to the formation of a Cu x Se phase during the Cu-rich first stage,that improves the mobility of group III atoms during growth.61–63An ‘inverse’two-stage process starts with a precursor layer that is more Cu-poor than the finished film.64,65The so-called three-stage process,introduced by NREL,66is obtained by starting the deposition with an (In,Ga)x Se y precursor,followed by the co-deposition of Cu and Se until Cu-rich overall composition is reached,and finally the overall Cu concentration is readjusted by sub-sequent deposition of In,Ga and Se.66This method leads,up to now,to the most efficient solar cells.CIGS films prepared by the three-stage process exhibit a smooth surface,which reduces the junction area and thereby is expected to reduce the number of defects at the junction.66This smoother surface facilitates the uniform conformal deposition of a thin buffer layer and prevents ion damage in CIGS during sputter deposition of ZnO/ZnO:Al.Variation of the In/Ga flux ratio during the deposition allows the fabrication of graded bandgap absorbers.An increasing Ga/In concentration ratio towards the back of the absorber results in an increased conduction band minimum and therewith enhanced back-surface field,which increases V OC and fill factor.This concept is being applied to reduce the indium concentration and the thickness of the absorber layer.The optimum grading is determined by a trade-off between enhanced open-circuit voltage and lower current density because of reduced electron–hole pair generation due to a reduced absorption of low-energy photons.Selenization of precursor materialsThe interest in sequential processes is sparked by its suitability for large-area film deposition with good control of the composition and film thickness.Such processes consist of the deposition of a precursor material,followed by thermal annealing in controlled reactive or inert atmosphere for optimum compound formation via the chalcogenization reaction (Figure 5).Among possible precursor materials,metallic and metal selenide layers are the most investigated.Alloyed or stacked metal layers are commonly deposited by thermal evaporation,67sputtering 68or electrodeposition.69,70The DC-magnetron sputtering technique is well established for the production of large-area solar modules up to 60Â120cm 2yielding maximum efficiencies of 13%on 30Â30cm 2modules.71,72Adhesion problems due to the high volume expansion during the selenization of metallic precursors can be reduced by using metal selenide precursors which additionally reduce interdiffusion of In and Ga.73,74A maximum cell efficiency of 17Á5%after annealing has been achieved with an In–Ga–Se/Cu–Se bilayer evaporated on a heated substrate.75By far the most common chalcogenization reactants are vapors of selenium 76and selenium hydride,68,70sometimes combined with sulfur or sulfur hydride.72Hydrides are generally diluted in argon or nitrogen,but remain problematic because of their high toxicity.In a recent investigation,diethylselenide was proposed asa THIN-FILM CU(In,Ga)Se 2AND CdTe SOLAR CELLS 99Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–111substitute for the toxic hydrogen selenide.77Chemical reaction enthalpy calculations for Se and hydride vapors predict a more efficient conversion by elemental vapors,78but reaction analysis indicates that the rate of selenium incorporation into the film is the same,79and qualitatively a higher degree of reaction control is reported for hydride reactions.80Annealing at high temperature in inert Ar atmosphere was identified to pro-mote interdiffusion of In and Ga in segregated CIS and CGS phases,resulting in a homogeneous CIGS phase.68In industrial production,the processing time is a key factor for low-cost manufacturing and has led to the devel-opment of rapid thermal processes.81Fast heating rates are reported to inhibit binary compound formation and de-wetting of amorphous Se layers from layered elemental stacks.The use of toxic hydride chalcogen sources is not required,but a Se or S vapor atmosphere improves film uniformity.82,83Selenization of compound metal oxide precursor materials replaces O by Se.84,85The long selenization times required,owing to the stability of the In 2O 3and Ga 2O 3phases,are a drawback of oxide precursors and can only be overcome by a prior chemical reduction to the metallic state using hydrogen gas at high temperature.A recent innovative approach utilizes the stability of the oxides to produce nanosized precursor particles.86,87They are mixed in an ink suspension,which allows low-cost,large-area deposition by doctor blading,screen-printing or spraying,and results in solar cell efficiencies of over 13%.Such non-vacuum deposition of precur-sors allows a very efficient material utilization of almost 100%of the non-abundant metals indium and gallium.Alternative CIGS growth processesThe CIS compound can be formed directly by electrodeposition from a chemical bath,88but the as-deposited layers do not yield efficient devices.Therefore,annealing,typically done at 400 C in an Se atmosphere,89is required to increase the grain size,form a proper stoichiometric compound,improve the electrical properties and finally obtain efficiencies of up to 8Á8%.Another approach 90uses additional vacuum deposition of In,Ga and Se at high temperatures,to yield efficiencies as high as 15Á4%.In spray pyrolysis,metal salts with a chalcogen reactant are sprayed on a heated substrate to form a CIS layer.However a subsequent heat treatment in a reducing atmosphere is still required to improve crystallinity and purity.91MOCVD has recently been investigated 92for the deposition of CGS layers as part of a tandem structure,but the growth rate and cell efficiency are rather low.Sodium incorporation in CIGSAs early as 1993the importance of sodium ‘contamination’in CIGS absorber layers was realized by Hedstro ¨m et al .93Since then,the effects of Na have been investigated by numerous groups and different mechanismshaveFigure 5.Schematic of the various processes for selenization of precursor materials100 A.ROMEO ET AL.Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–111been proposed,but no comprehensive interpretation of the structural and electronic effects of Na has been achieved up to now.Most commonly,Na is introduced into CIGS by diffusion from a soda-lime glass substrate during the absor-ber deposition.The diffusion of Na through the Mo back contact appears to be primarily determined by Mo oxide phases,present at grain boundaries.94,95However,the Na concentration inside the CIGS is relatively inde-pendent of the Mo deposition conditions.95,96Since soda-lime glass is not a reliable source of Na for the man-ufacturing of solar cells and modules,alternative methods are used to incorporate sodium in CIGS grown on soda-lime glass covered with barrier layers (Al 2O 3,Si 3N 4,etc.).These buffer layers inhibit sodium diffusion from the glass substrate.CIGS on flexible substrates (metal and polyimide foils)also need controlled incorpora-tion of sodium.Various methods have been used for reliable Na incorporation of sodium in CIGS (Figure 6).The methods include the co-evaporation or the deposition of a thin precursor of a Na compound such as NaF,Na 2Se or Na 2S.The effects of other alkali metal salts (e.g.,KF,CsF,LiF)have been investigated.97,98The observed effects of the KF and LiF precursors were similar to those of NaF,but less pronounced,while the CsF precursor had only a minor influence on the CIGS properties.Generally,Na in CIGS improves the cell efficiency by increasing the V OC and fill factor.97,99,100The optimum Na dose is often considered to be equal to the amount diffusing from a soda-lime glass substrate,resulting in a typical Na concentration of approxi-mately 0Á1at.%.While some groups 101,102have reported an increase of the grain size in CIGS films containing Na,others did not support these observations.103–106A decreasing grain size was observed for several Na incorporation meth-ods in a direct comparison.107The CIS compound formation in rapid-thermal-processed layers was found to be delayed in the presence of Na,resulting in CIS growth at a higher mean temperature,which serves as an expla-nation for the observed increase in grain size.108The main portion of sodium in CIGS films was shown to reside on grain boundaries and surfaces.109In several reports,99,101a change in texture of CIGS films towards (112)orientation has been attributed to Na and supported by theoretical considerations for the case of high Na con-centrations,110but remains disputed,owing to contrary results.100,104,106,107Higher doses of Na are shown to lead to small grain sizes and porous films and to be detrimental to the cell performance.104,105The most obvious electronic effect of Na incorporation into CIGS films is a decrease in resistivity by up to two orders of magnitude.111–113An increase in carrier concentration of typically one order of magnitude is often associated with a lower number of compensating donors.104,114,115Various models have been proposed to explain the effects of Na on the electronic and structural properties of layers and influence on solar cells.97,110,116–118CdTe layersCdTe thin films have been succesfully grown by a variety of vacuum and non-vacuum deposition methods.Gen-erally,CdTe growth methods such as CSS or close-spaced vapor transport with deposition temperature above 500 C are classified as high-temperature processes,while methods such as electrodeposition,HVE and sputter-ing with deposition temperature below 450 C are classified as low-temperatureprocesses.Figure 6.Schematics of different Na incorporation methods into the CIGS absorberTHIN-FILM CU(In,Ga)Se 2AND CdTe SOLAR CELLS 101Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:93–111。

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一CuInS<sub>2</sub>基量子点太阳电池光阳极制备及敏化特性研究摘要:本文研究了CuInS2基量子点太阳电池光阳极的制备工艺及其敏化特性。

通过优化制备过程,成功制备了具有高光电转换效率的光阳极,并对其敏化性能进行了系统研究。

实验结果表明,所制备的CuInS2量子点光阳极在太阳电池应用中具有较好的性能表现。

一、引言随着太阳能电池技术的不断发展,量子点太阳电池因其高光电转换效率和低成本等优势受到了广泛关注。

CuInS2基量子点因其良好的光电性能和稳定性,在太阳电池领域具有广阔的应用前景。

光阳极作为太阳电池的关键组成部分,其制备工艺和敏化特性对电池性能具有重要影响。

因此,研究CuInS2基量子点光阳极的制备及敏化特性具有重要意义。

二、光阳极制备1. 材料选择与预处理选择高纯度的Cu、In和S前驱体材料,进行严格的纯度检测和预处理,以确保制备过程中材料的稳定性和一致性。

2. 制备工艺采用溶胶-凝胶法结合旋涂技术,将CuInS2量子点溶液均匀涂布在导电玻璃基底上,形成光阳极薄膜。

通过控制溶液浓度、涂布速度和温度等参数,优化薄膜的形貌和结构。

3. 性能表征利用X射线衍射、扫描电子显微镜和紫外-可见光谱等技术手段,对制备的光阳极进行结构、形貌和光学性能的表征。

三、敏化特性研究1. 敏化处理将制备的光阳极进行敏化处理,通过吸附染料或其他敏化剂,提高光阳极对太阳光的吸收和利用效率。

2. 敏化效果评价通过测量光阳极的光电流-电压曲线、量子效率等参数,评价敏化处理对光阳极性能的影响。

同时,对比不同敏化剂的效果,找出最佳敏化方案。

3. 稳定性测试对敏化后的光阳极进行长时间的光照测试,观察其性能变化,评估光阳极的稳定性。

四、实验结果与讨论1. 制备结果通过优化制备工艺,成功制备了具有良好形貌和光学性能的CuInS2基量子点光阳极。

CuInS2纳米材料的溶剂热合成及薄膜太阳能电池中的应用的开题报告

CuInS2纳米材料的溶剂热合成及薄膜太阳能电池中的应用的开题报告

CuInS2纳米材料的溶剂热合成及薄膜太阳能电池中的应用的开题报告一、选题背景太阳能电池是一种绿色环保的能源,具有广阔的应用前景。

其中,CuInS2(铜铟硫)纳米材料作为一种新型的吸收层材料,展现出优异的光电性能和潜在的应用价值。

由于CuInS2纳米材料的光电性能受到合成条件的影响较大,因此研究其高效的溶剂热合成方法,以及其在薄膜太阳能电池中的应用是非常有意义的。

二、研究目的和意义该课题旨在研究CuInS2纳米材料的溶剂热合成方法,探索其在薄膜太阳能电池中的应用。

通过对溶剂热合成中的关键控制参数进行优化,制备出优异的CuInS2纳米材料,并运用于薄膜太阳能电池制备中,以提高其光电转换效率和稳定性。

该研究将深入探究CuInS2纳米材料的合成机制和性能特点,为其在太阳能电池领域的应用提供重要参考。

三、研究内容及方法(1)CuInS2纳米材料的溶剂热合成方法优化通过调整反应物的配比、温度和反应时间等关键参数,优化CuInS2纳米材料的溶剂热合成方法,制备出高质量、高稳定性的CuInS2纳米材料。

(2)制备CuInS2纳米材料薄膜采用旋涂法、离心法等方法将合成的CuInS2纳米材料制备成薄膜,并对其结构、光学和电学特性进行表征分析。

(3)制备薄膜太阳能电池并测试性能基于所制备的CuInS2纳米材料薄膜,制备薄膜太阳能电池,并测试其光电转换效率、稳定性和光谱响应等性能指标。

四、预期结果及意义通过对CuInS2纳米材料的溶剂热合成方法进行优化,制备出具有较高效率和稳定性的CuInS2纳米材料,可以为其在薄膜太阳能电池领域的应用提供有效支撑和参考。

同时,研究结果可以深入探究CuInS2纳米材料的合成机制和性能特点,为其在其他领域的应用提供参考和指导。

该研究具有较高的科学价值和应用前景,对于促进太阳能电池技术的发展具有积极意义。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*Corresponding author.Tel.:#49-30-8062-2584,fax:#49-30-8062-2931.E-mail address:siemer @hmi.de (K.Siemer).Solar Energy Materials &Solar Cells 67(2001)159}166E $cient CuInS solar cells from a rapid thermal process (RTP)Kai Siemer *,Jo Klaer,Ilka Luck,Ju rgen Bruns,Reiner Klenk,Dieter Bra unigHahn-Meitner-Institut Berlin,Dept.SE3,Glienicker Strasse 100,D-141009Berlin,GermanyAbstractCuInS -based solar cells are prepared by a rapid thermal process (RTP).We use a sequential preparation with metallic layers of Cu and In rapidly heated in elemental sulfur vapor.Absorber layers from this process show good crystallinity,as seen from XRD and SEM.For further analysis of the defect chemistry,photoluminescence and admittance spectroscopy measurements are carried out.Solar cells prepared from these RTP absorbers have reached 11.4%total area e $ciency (A "0.5cm ),which is to our knowledge the best CuInS -based solar cell so far. 2001Elsevier Science B.V.All rights reserved.Keywords:CuInS;Solar cells;Rapid thermal process 1.IntroductionCuInS is a promising absorber material for the development of thin "lm solar cells.We have recently presented a sequential process with conventional heating resulting in 11.1%total area e $ciency for a glass/Mo/CuInS /CdS/ZnO cell structure [1].For potential commercial applications short processing times and low thermal budgets are of great importance in order to meet high throughput and low cost.Additionally,it has been reported for selenide chalcopyrites that the use of rapid thermal processes improves crystal growth as detrimental phases can be avoided by passing intermedi-ate temperature ranges rapidly [2].In this work we use a rapid thermal process for the preparation of CuInS absorbers.Both absorbers and corresponding solar cells are characterized with respect to their structural and electronic properties.0927-0248/01/$-see front matter 2001Elsevier Science B.V.All rights reserved.PII:S 0927-0248(00)00276-2Fig.1.Temperature course of a typical sulfurization by RTP.Temperatures given are nominal,sample temperature is up to 803C higher.2.Experimental2.1.Sample preparationCu and In are deposited subsequently as a stacked elemental layer by DC magnet-ron sputtering onto Mo-coated #oat-glass substrates.All samples are prepared under Cu excess with atomic ratio [Cu]/[In]"1.8.The layer thickness is about d ! "550nm and d ' "650nm,respectively.For the formation of CuInS ,a rapid thermal process is performed in a customized halogen lamp furnace with a quartz tube as reaction chamber.The samples are rapidly heated by radiation from the front to about 6003C and kept at this stage for a few minutes.Sulfur is added in elemental form prior to processing.Both the samples and the sulfur are placed onto a quartz sample holder.The furnace is evacuated but no pumping is done during the heating cycle.The pressure in the chamber is thus only determined by the vapor pressure of sulfur.The temperature and the time of sulfurization as well as the amount of sulfur added to the reaction are varied.The process temperature is determined using a chromel/alumel thermocouple which is inserted into a small quartz tube close to the center of the furnace.For comparison,the temperature was measured with a Pt100RTD directly attached to the sample.It shows that the sample temperature is about 803C higher than the temperature measured with the thermocouple.Fig.1shows the temperature course of the sulfurization for a typical process.To reduce the amount of sulfur to be added to the reaction,the size of the reaction volume was decreased by the use of a petri dish covering samples and sulfur for a number of experiments.This reduces the reaction volume from about 10 cm to about 170cm .The amount of sulfur per volume is kept comparable.The large reaction volume however is partly bordered by cold #anges.This might reduce the vapor pressure of sulfur during the process due to condensation.In contrast,in the small reaction volume,the vapor pressure is probably constant or even increasing.It can,however,not be assumed that this small chamber is sealed with respect to the rest of the reaction tube.160K.Siemer et al./Solar Energy Materials &Solar Cells 67(2001)159}166K.Siemer et al./Solar Energy Materials&Solar Cells67(2001)159}166161 For completion of the solar cell,segregation of CuS due to Cu excess has to be removed by a cyanide etch.Subsequently,a CdS bu!er and a two-layer ZnO window are deposited.The cell is contacted with a Ni}Al grid.Best cells are further improved by a MgF anti-re#ection coating.2.2.CharacterizationThe crystallinity and morphology of absorber layers are studied by X-ray di!rac-tion(XRD)and scanning electron microscopy(SEM),respectively.The defect chemistry is examined by means of photoluminescence(PL).These measurements are carried out on absorbers at10K with a diode laser( "668nm)as excitation source giving a power density of about100W/cm .Additionally,admit-tance spectroscopy measurements are carried out on completed cells to get informa-tion about the distribution of deep defects in the band gap of the absorber.These measurements are performed in the temperature range between40and360K at frequencies of100Hz to1MHz.Performance of the solar cells under AM1.5global illumination with100mW/cm as well as quantum e$ciency are measured.3.Results3.1.Structural characterizationFig.2shows a SEM picture of a CuInS absorber layer from RTP after cyanide etch taken under453angle.The grain size is about1}2 m which is comparable to layers from a conventional heating process[3].The cross section shows a closed layer above the back contact though the layer is very rough.Thus,the existence of pin holes in the absorber layer cannot be excluded from these observations.The adhesion of the absorber layer to the molybdenum back contact seems to be poor.However,this might be a consequence of the sample preparation for SEM including breakage of the substrate.Fig.3shows the X-ray di!ractogram of a layer comparable to the one seen in Fig.2. All peaks can be easily identi"ed with CuInS roquesite phase.For large angles,the splitting of Cu K lines can be observed which is a consequence of the small linewidth of the peaks and thus an indication for good crystal quality.Tetragonal splitting can be seen for(004)/(200),(204)/(220),and(116)/(312)peaks which indicates a well ordered sublattice of Cu and In atoms of the roquesite phase.The relative intensity of the observed peaks is in good accordance with JCPDS standard spectra.Therefore,we can conclude that these layers have no preferred orientation.3.2.Defect distributionTo study the defect structure of the absorber layers,samples are examined by means of photoluminescence.Fig.4shows PL of di!erent CuInS layers after cyanide etch.Fig.2.SEM picture of a RTP-CuInSabsorber layer after cyanide etch (453tilted).Fig.3.X-ray di !ractogram of a RTP-CuInS absorber layer after cyanide etch.Numbers indicate roquesite re #exes except where indicated.The spectra usually show an excitonic emission at 1.53eV and a broad band emission at 1.2eV which has not yet been clearly identi "ed.It possibly results from structural defects.Additionally,in some spectra shoulders at 1.50and 1.45eV can be seen.The latter one can be ascribed to a donor acceptor recombination <1}<! [4].The relative intensity of the peak at 1.2eV with respect to the excitonic emission correlates with process parameters as shown in Fig.4.With increasing process162K.Siemer et al./Solar Energy Materials &Solar Cells 67(2001)159}166Fig.4.PL-spectra of RTP-CuInSabsorber layers after cyanide etch prepared at di !erent temperatures.temperature the relative intensity of the broad band emission decreases which can be explained by an increasing crystal quality.The intensity of the excitonic emission increases and/or (structural)defects decrease in density with increasing process tem-perature.This is in good accordance with observations from XRD where the linewidth of roquesite peaks decreases with increasing process temperature.The same correla-tion of PL with process parameters has been observed for increasing slope of the heating-up ramp and }to a minor extent }for increasing processing time (not shown here).For further examination of electronic defects,admittance spectrocopy measure-ments were carried out for solar cells.A single defect level at 140meV is found which we attribute to interface defects [5](not shown here).So far,we have not observed any signi "cant correlation of defect distribution deduced from admittance spectra with parameters of the RTP process nor with any electrical parameters of RTP-CuInS-based solar cells.3.3.Solar cell performanceFig.5a shows the quantum e $ciency of two CuInS solar cells prepared in di !erent reaction volumes.To obtain the smaller volume both the samples and the sulfur was covered by a petri dish (see above).At about 450nm the absorption in CdS can be seen.Between 500and 800nm the quantum e $ciency is at a constant level of about 80%showing a constant collection e $ciency independent of penetration depth.Quantum e $ciency rapidly decreases at the band edge of the absorber.Therefore,it is assumed that the di !usion length is no limitation for the collection e $ciency.The spectral dependence is almost the same for both cells;however,the overall level is signi "cantly higher for the sample from the small reaction volume resulting in higher e $ciency.Fig.5b shows the current-voltage measurement of the same solar cells as shown in Fig.5a.As expected from the quantum e $ciency results,the short circuitK.Siemer et al./Solar Energy Materials &Solar Cells 67(2001)159}166163Fig.5.(a)Quantum e $ciency of two RTP-CuInS solar cells prepared in di !erent reaction volume sizes.(b)j }<measurement of the same cells under AM 1.5globalillumination.Fig.6.j }<-measurement of the best RTP-CuInS solar cell as independently con "rmed by Fhg-ISE,Freiburg,Germany.Electrical parameters are given as inset.current density is signi "cantly higher for samples prepared in the small reaction volume.Furthermore,the "ll factor has increased from about 65%to 70%.This results in an increased e $ciency of more than 11%compared to about 10%for the sample from the larger reaction volume.From this result,we can conclude that the sulfur vapor pressure during the preparation plays an important role on the device performance.The large reaction volume of 10 cm is partly bordered by cold #anges.Sulfur probably condenses at these #anges during the process.When the small reaction volume is used,in contrast a constant or even increasing vapor pressure of sulfur can be assumed to be present during the process.Fig.6shows the result of our best cell as independently con "rmed by Fhg-ISE,Freiburg.This cell was prepared at 5003C nominal for 3min,heating-up ramp was164K.Siemer et al./Solar Energy Materials &Solar Cells 67(2001)159}166Fig.7.Open-circuit voltages and "ll factors as a function of process parameters.Best cell of each sample is shown.(a)Di !erent amount of sulfur added to the reaction (¹+5803C,t "3min.,ramp 10K/s,reaction volume 170cm ).(b)Di !erent process temperature.Temperatures given are nominal,at 5003C about 80K must be added for sample temperature (reaction volume 10 cm ).10K/s.The small reaction volume of about 170cm was used with 50mg of sulfur added.This cell has an open-circuit voltage of < "729.4mV,FF "71.7%"ll factor,and short-circuit current density of j "21.83mA/cm resulting in "11.4$0.4%total area e $ciency for A "0.511cm .3.4.In y uence of process parametersTo examine the in #uence of the amount of sulfur added to the reaction we have taken j }<-curves under AM 1.5global illumination at 100mW/cm .Fig.7a shows the open-circuit voltage and the "ll factor as a function of the amount of sulfur.The reaction volume for this experiment was about 170cm .Sample temperature was about 5803C,kept for 3min.The heating-up ramp was run with a constant slope of 10K/s.The values for the best cell on each sample are shown.Obviously,there is a minimum amount of sulfur necessary to get reasonable results.For the lowest amount of sulfur,no diode behavior is obtained.With a minimum of 50mg in this case,the open-circuit voltage exceeds 700mV and the "ll factor is in the 70%range.With increasing amount of sulfur the open-circuit voltage slightly improves while the "ll factor decreases.For 1000mg sulfur both values decrease signi "cantly.For 100to 500mg sulfur cells have 11%e $ciency or above.The best value for < )FF and the highest e $ciency is obtained with 100mg sulfur.The characterization of these samples in terms of structural properties is on the way.Fig.7b shows a typical example of the impact of process temperature on solar cell performance.The large reaction volume of about 10 cm was used with 3000mg of sulfur added,which proved to be the best condition for the large volume.The slope of the ramp was again 10K/s.The top temperature was varied to keep the product K.Siemer et al./Solar Energy Materials &Solar Cells 67(2001)159}166165166K.Siemer et al./Solar Energy Materials&Solar Cells67(2001)159}166¹(3C)t(s)constant to partly discriminate between the in#uence of thermic power and the in#uence of temperature.At3003C all cells were ohmic.Between4003C and6003C fair results were obtained with a maximum at5003C nominal.Additionally,homogen-eity is by far the best at5003C with all cells on the sample in the10%e$ciency range.4.ConclusionWe have presented a RTP process for the preparation of CuInS absorber layers. These layers are of pure roquesite phase with no preferred orientation observed from XRD.SEM pictures show rough but closed layers with grain sizes of1}2 m. Photoluminescence spectra show excitonic as well as deep broad band emission.The relative intensity of these two emissions correlates with process parameters such as temperature and ramp slope.Admittance spectra show a maximum in defect distribu-tion about140meV which we attribute to interface states.The vapor pressure of sulfur and its constancy during the process has an important in#uence on device quality as the e$ciency of solar cells was signi"cantly improved by the use of a smaller reaction volume.Solar cells made from RTP-CuInS layers have reached11.4%e$ciency which is to our knowledge the best value for CuInS based cells so far.AcknowledgementsFor sample preparation,the help of E.Mu ller,C.Kelch,T.Mu nchenberg,M. Kirsch,and P.Szimkowiak is gratefully acknowledged.The authors wish to thank K. Diesner for XRD measurements.Part of this work has been funded by the Joule III Programme of the European Commission(Contract JOR3-CT98-0297).References[1]J.Klaer,J.Bruns,R.Henninger,K.Siemer,R.Klenk,K.Ellmer,D.Bra unig,Semicond.Sci.Technol.13(1998)1456}1458.[2]V.Probst,F.Karg,J.Rimmasch,W.Riedl,W.Stetter,H.Harms,O.Eibl,Materials Research SocieySymposium Proceedings,Pittsburgh,PA,Vol.426,1996,pp.165}176.[3]J.Klaer,J.Bruns,R.Henninger,K.To pper,R.Klenk,K.Ellmer,D.Bra unig,A tolerant two-stepprocess for e$cient CuInSsolar cells,In:J.Schmid et al.(Eds.),Second World Conference Photovol-taic Solar Energy Conversion,Vienna1998,537}540.[4]K.To pper,J.Bruns,R.Scheer,M.Weber,A.Weidinger,D.Bra unig,Photoluminescence of CuInSthin"lms and solar cells modi"ed by postdeposition treatments,Appl.Phys.Lett.71(4)(1997)482}484.[5]J.Kneisel,Admittanzspektroskopie an CuInS-Du nnschichtsolarzellen,Diploma Thesis,Technical University Berlin,Germany,1999。

相关文档
最新文档