函数图像(识图)

合集下载

函数图像知识点总结

函数图像知识点总结

函数图像知识点总结基本初等函数的图像:一次函数:图像是直线,根据斜率k的正负,函数可能单调递增或递减。

二次函数:图像是抛物线,其开口方向由a决定,与x轴的交点由判别式b^2-4ac决定,对称轴两边函数的单调性不同。

反比例函数:图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

指数函数:当底数不同时,其图像会有所变换。

对数函数:底数不同时,图像也会发生变换。

对勾函数:对于函数y=x+k/x,当k>0时,是对勾函数,可以通过均值定理找到其最值。

函数图像的基本性质:定义域和值域:函数的定义域是指函数所能接收的自变量的集合,值域是指函数所能取到的因变量的集合。

函数图像应当包含在定义域和值域的笛卡尔积上。

单调性:如果函数在定义域内递增,那么函数图像应当从左向右逐渐上升;如果函数在定义域内递减,那么函数图像应当从左向右逐渐下降。

奇偶性:如果函数是偶函数,那么函数图像在原点处具有对称性;如果函数是奇函数,那么函数图像在原点处具有中心对称性。

周期性:如果函数具有周期性,那么函数图像在一段区间内会重复出现,并且重复的间隔是固定的。

极值:函数在定义域内的最大值和最小值分别称为函数的最大值和最小值,对应的自变量称为函数的极大值和极小值。

函数图像在极值处存在驻点,即切线斜率为零。

函数图像在数学中的应用:函数图像可以直观地表示函数的性质与特征,例如单调性、极值点、零点等。

通过观察函数图像,我们可以更好地理解函数的表现特征和性质。

函数图像不仅在数学中有应用,还涉及其他相关领域,如经济学、生物学、人文社科等。

函数图像可以帮助解释实验现象,描述物理现象的变化规律,并帮助人们理解和解释实验结果。

这些知识点对于理解和分析函数图像非常重要,通过熟练掌握和应用这些知识点,可以更好地理解函数的性质,解决实际问题。

函数及其图象PPT课件

函数及其图象PPT课件

s
s
s
s
t
t
O
O
A
B
O
t
C
t
O D
3、(09湖州市)如图,一只蚂蚁从 O 点出发,沿着扇形 OAB 的边缘匀速
爬行一周,设蚂蚁的运动时间为 t ,蚂蚁到 O 点的距离为 S ,则 S 关于 t 的函数图象大致为( C )
A
S
S
S
S
O
O
tO
tO
tO
t
第(3)题
B
A.
B.
C.
D.
4、(09内江市)打开某洗衣机开关(洗衣机内无水),在洗涤衣服时,洗衣机 经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗
(2)(09大连)函数y x 2 中,自变量x的取值范围是 ( D )
A.x < 2 B.x ≤2 C.x > 2 D.x≥2
x x 2
(3)(09哈尔滨)函数y=
的自变量 的取值范围是_____________.
x2
x (4)(09齐齐哈尔)函数 y x 的自变量 的取值范围是_x_≥_0_且__x_≠1 ___. x 1
5000
4000 3000 2000


A
1000
O
5
10 15
20 x(分)
(3)解: x 15 时,甲的路程是: 25015 5000 1250 米,
乙的路程是2000米, 两人相距:2000 — 1250 = 750米
在15<x<20的时段内, 乙速:2000÷(20 — 15)= 400 米/分 两人速度之差: 400 — 250 = 150米/分
热身练习:

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。

而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。

1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

常用函数图像

常用函数图像

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

函数图像总结

函数图像总结

函数图像总结函数图像是数学中的重要概念,它反映了数学函数在坐标系中的表现形式。

通过观察函数图像,我们可以了解函数的性质、特征以及与其他函数的关系。

本文将对常见的函数图像进行总结,以便读者更好地理解和掌握函数的图像特点。

一、线性函数图像线性函数是最简单也是最容易理解的函数之一。

它的图像即一条直线。

线性函数的一般形式为:y = kx + b,其中k和b为常数。

当k大于0时,直线是向上倾斜的,当k小于0时,直线是向下倾斜的。

b则表示直线与y轴的交点,称为截距。

通过改变k和b的取值,我们可以观察到直线的斜率和截距对图像的影响。

二、二次函数图像二次函数的一般形式为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。

二次函数的图像通常是一个抛物线。

抛物线的开口方向由a的正负决定,当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

同时,b和c的取值也会对抛物线的位置产生影响。

通过调整a、b、c的值,我们可以观察到抛物线的顶点、焦点以及与x轴和y轴的交点等特征。

三、指数函数图像指数函数的一般形式为:y = aⁿ,其中a为常数且a > 0,n为自变量。

指数函数图像的特点是随着自变量的增大,函数值呈现出迅速增长或迅速衰减的趋势。

当a大于1时,指数函数图像是递增的;当a位于0和1之间时,指数函数图像是递减的。

指数函数还可以通过调整a的值来改变函数增长或衰减的速度。

四、对数函数图像对数函数的一般形式为:y = logₐx,其中a为底数,x为自变量。

对数函数图像的特点是随着自变量的增大,函数值的增长速度逐渐减缓。

当底数a大于1时,对数函数图像是递增的;当底数a位于0和1之间时,对数函数图像是递减的。

不同底数的对数函数之间在图像形状上有所差异,但都满足递增或递减的特点。

五、三角函数图像三角函数包括正弦函数、余弦函数和正切函数等。

它们的图像都是一条曲线,周期性地在坐标轴上反复出现。

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

函数类型及图像

函数类型及图像

函数类型及图像函数是数学中重要的概念,在很多应用中都有着重要的作用。

函数是由一些特定的变量来决定另一个变量的一种依赖关系,它可以用来表达某种物理规律或事物间的关系。

函数可以用解析式或图像来表述,不同的表述方式有着不同的特性和优势。

函数类型可分为常数函数、线性函数、平方函数、立方函数、多项式函数、指数函数和对数函数等等。

常数函数是特殊的线性函数,它是所有变量均相等的函数。

线性函数是一种简单的函数,它的图形是一条直线,其特征为变量的比例性增长以及满足首项定理。

平方函数与线性函数的图形相似,但它是一个二次函数,变量增长必须满足平方定律。

立方函数与线性函数和平方函数的图形相似,但它是一个三次函数,变量增长必须满足立方定律。

多项式函数的图像比线性函数的图像更加复杂,但它的特征是变量增长是所有幂次的函数的综合。

指数函数的图形是一条曲线,变量的增长必须满足指数定律。

对数函数的图形也是一条曲线,变量的增长必须满足对数定律。

不同类型的函数可以用图像来表述其特性和能力,从而更加直观地展示其变量之间的依赖关系。

如常数函数的图像就是一条水平线,表示变量之间没有任何依赖关系;线性函数的图像是一条直线,表示变量间呈现线性增长关系;平方函数的图像是一条右上凹下凹的曲线,表示变量间变量按平方增长;多项式函数的图像是一条右上凹下凹的曲线,表示变量间按多项式函数增长关系;指数函数的图像是一条上凹下凸的曲线,表示变量间按指数函数增长;对数函数的图像是一条上凸下凹的曲线,表示变量间按对数函数增长关系。

图像不仅可以表述函数的特性,还可以用于求函数极值点、判断函数单调性,从而更好地分析推导函数。

函数图像还可以用于数学模型分析和科学研究,在图像处理、生物信息处理、市场营销中都有广泛的应用,因此掌握和熟练使用图像的相关知识成为当今世界的科学研究以及工程实践的基础。

以上就是有关函数类型及图像的介绍,希望能够给读者有所帮助。

函数的图像除了可以用于简单的图形表述外,还可以用于分析函数的特性,从而进一步推导函数模型并利用其应用于工程实践和科学研究,期望读者能够熟练掌握并活用函数图像的相关知识,获得成功与成就。

函数的图象(精品课件)

函数的图象(精品课件)
解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12

高中数学函数的图像ppt课件

高中数学函数的图像ppt课件
34
真题透析 例 (2010 年高考湖南卷)函数 y=ax2+bx 与 y = logb x(ab≠0,|a|≠|b|)在同一直角坐标系中的图
a
像可能是( )
35
【解析】 从对数的底数入手进行讨论,再 结合各个选项的图像从抛物线对称轴的取值 范围进行判断,故选D. 【答案】 D 【名师点评】 (1)本题易出现以下错误:① 忽视 y= logb x 中底数的绝对值,误认为 a,b
(2)图像的左右平移,只体现出x的变化,与x 的系数无关;图像的上下平移,只与y的变化 有关.
19
识图 对于给定函数的图像,可从图像上下左右分布范 围,变化趋势,特殊点的坐标等方面进行判断, 必要时可借助解方程、解(证)不等式等手段进行 判断,未必非要写出函数的解析式进行判断.
20
例2
(2010年高考山东卷)函数y=2x-x2的图像
过点 P 且与 AB 垂直的截面面积记为 y,则 y=
12f(x)的大致图像是(
)
38
解析:选A.先从起始点排除B,D,再用验证 法,当点P为OA的中点时,截面面积大于大圆 面积的一半,即可判定A正确.
39
x+1,x∈[-1,0 2.已知 f(x)=x2+1,x∈[0,1] ,则下 列函数的图像错误的是( )
11
5.已知下列曲线: 以下编号为①②③④的四个方程 ① x- y=0;②|x|-|y|=0;③x-|y|=0; ④|x|-y=0. 请按曲线 A、B、C、D 的顺序,依次写出与 之对应的方程的编号________.
答案:④②①③
12
考点探究•挑战高考
考点突破
作图 1.熟悉基本初等函数的图像. 2.会通过函数的性质确定图像的形状:如奇偶 性→对称性;函数值的正负→x轴上方下方;渐 近线→变化趋势;过哪些特殊点、定点;极值、 最值等.

第04讲 函数的图象(解析版)

第04讲 函数的图象(解析版)

第04讲 函数的图象【知识点总结】一、掌握基本初等函数的图像 (1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等). 2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的;②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的;③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的;④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的;(2)对称变换①()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的②()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数. 三、函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.【典型例题】例1.(2022·浙江·高三专题练习)函数2ln ()1||x f x x =+的大致图象为( ) A . B .C .D .【答案】C 【详解】当0x >时2ln ()1x f x x=+,则()222222212ln 2ln 2(1ln )x x x x x f x x x x ⋅---'===. 当0e x <<时,()0f x '>,所以()f x 在区间(0,e)上单调递增, 当e x >时()0f x '<,所以()f x 在区间(e,)+∞上单调递减,排除A ,B . 又2ln e 2(e)110lel ef =+=+>,排除D . 故选:C .例2.(2022·全国·高三专题练习)已知()21πsin 42f x x x ⎛⎫=++ ⎪⎝⎭,()f x '为()f x 的导函数,则()f x '的大致图象是( )A .B .C .D .【答案】A 【详解】 ∵()221π1sin cos 424f x x x x x ⎛⎫=++=+ ⎪⎝⎭, ∴()1sin 2f x x x '=- 易知()1sin 2f x x x '=-是奇函数,其图象关于原点对称,故排除B 和D ,由ππ106122f ⎛⎫'=-< ⎪⎝⎭,排除C ,所以A 正确.故选:A.例3.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x hr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H Hπππ==⋅⋅=⋅, 令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例4.(2022·全国·模拟预测)函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .3()cos f x x x =-B .1()sin f x x x =+C .21()cos f x x x =- D .1()sin f x x x=-【答案】D 【详解】由图知0x ≠,排除A 选项;当0x >,且x 趋近于0时,由图知()f x 趋近于-∞,排除B ; 又C 选项中2211()cos()cos ()()f x x x f x x x -=--=-=-,其图象关于y 轴对称,不符合. 故选:D.例5.(2022·全国·高三专题练习)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.【技能提升训练】一、单选题1.(2022·全国·高三专题练习)函数()()1xxa f x a x=>的大致图象是( ) A . B .C .D .【答案】C 【分析】按x 的正负分类讨论,结合指数函数图象确定结论. 【详解】由题意,0,0x x a x y a x ⎧>=⎨-<⎩,∵1a >,∴只有C 符合. 故选:C.2.(2022·全国·高三专题练习)函数()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭的图象大致形状为( ).A .B .C .D .【答案】A 【分析】首先判断函数的奇偶性,再根据特殊点的函数值判断可得; 【详解】解:因为()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭,所以定义域为R ,且()()()221sin 1sin 11x xf x x x f x e e -⎛⎫⎛⎫-=--=-= ⎪ ⎪++⎝⎭⎝⎭,即()f x 为偶函数,函数图象关于y 轴对称,故排除C 、D ;当2x =时,222210111e e e--=<++,sin 20>,所以()2221sin 201f e ⎛⎫=-< ⎪+⎝⎭,故排除B ; 故选:A3.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A4.(2022·江苏·高三专题练习)设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .【答案】B 【分析】根据导函数看正负,原函数看升降,分析出大致图像,在结合每个选项可得出答案.【详解】由函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值, 所以当1x >时,()0f x '<;1x =时,()0f x '=;1x <时,()0f x '>; 所以当0x <时,()0y xf x '=->,当01x <<时,()0y xf x '=-<, 当0x =或1x = 时,()0y xf x '=-=,当1x >时,()0y xf x '=->, 可得选项B 符合题意. 故选:B .5.(2022·全国·高三专题练习)函数()ln ,0ln(),0x x e x x f x e x x -⎧>=⎨-<⎩在[)(]2,00,2-上的大致图象是( )A .B .C .D .【答案】D 【分析】通过函数的奇偶性可排除A ,B ;通过计算(2)f 的值可排除C ,进而可得结果. 【详解】由题可知函数()f x 的定义域关于原点对称,且当0x >时,0x -<,[]()()ln ()ln ()x x f x ex e x f x ---=⋅--=⋅=, 当0x <时,0x ->,()ln()()x f x e x f x --=⋅-=,故()f x 为偶函数,排除A ,B ;而222(2)ln 232e f e e =>>,排除C .故选:D .6.(2022·全国·高三专题练习)已知函数f (x )=x +12x -,x ∈(2,8),当x =m 时,f (x )有最小值为n .则在平面直角坐标系中,函数1()log mg x x n =+的图象是( )A .B .C .D .【答案】A 【分析】由均值不等式易知m =3,n =4,则函数13()log |4|g x x =+,判断函数g (x )的单调性,结合选项即可得解. 【详解】∵函数1()2224,(2,8)2f x x x x =-++≥=∈-,当且仅当122x x -=-,即m=3时取等号, ∴m =3,n =4, 则函数13()log |4|g x x =+的图象在(﹣4,+∞)上单调递减,在(﹣∞,﹣4)上单调递增,观察选项可知,选项A 符合. 故选:A .7.(2022·全国·高三专题练习)函数()||3e x x xf =的部分图象大致为( )A .B .C .D .【答案】C 【分析】先求解()f x 的定义域并判断奇偶性,然后根据()1f 的值以及()f x 在()0,∞+上的单调性选择合适图象. 【详解】()e3xf x x =定义域为()(),00,-∞⋃+∞,()e 3xf x x-=-, 则()()f x f x -=-,()f x 为奇函数,图象关于原点对称,故排除B ;()e113f =<,故排除A ; ∵()e3xf x x =,当0x >时,可得()()21e 3xx f x x -'=,当1x >时,()0f x '>,()f x 单调递增,故排除D. 故选:C.8.(2022·全国·高三专题练习)函数y 3)A .B .C .D .【答案】A 【分析】判定奇偶性,根据奇函数的图象性质排除C;考察在(0,1)和(1,+∞)上的函数值的正负,进一步取舍判定.(也可使用赋值法) 【详解】 由题意,设3()f x =3()()f x f x -==-,所以函数的奇函数,故排除C;当01x <<时,()410,0x f x -<∴<,当1x >时,()41,0x f x >∴>,排除BD ,故选:A.9.(2022·全国·高三专题练习(文))已知函数()2,101x x f x x --≤≤⎧⎪=<≤,则下列图象错误的是( )A .()y f x =的图象:B .()1y f x =-的图象:C .()y f x =的图象:D .()y f x =-的图象:【答案】C 【分析】作出函数()2,101x x f x x --≤≤⎧⎪=<≤,结合四个选项的函数及图象变换,即可得出图象错误的选项,得到答案. 【详解】先作出()2,101x x f x x --≤≤⎧⎪=<≤的图象,如图所示,所以A 正确;对于B ,()1y f x =-的图象()f x 是由的图象向右平移一个单位得到,故B 正确; 对于C ,当0x >时,()y f x =的图象与()f x 的图象相同,且函数()y f x =的图象关于y 轴对称,故C 错误;对于D ,()y f x =-的图象与()f x 的图象关于y 轴对称而得到,故D 正确. 故选:C .10.(2022·全国·高三专题练习(文))下列四个图象中,与所给三个事件吻合最好的顺序为( )①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ②我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.其中y 表示离开家的距离,t 表示所用时间. A .④①② B .③①②C .②①④D .③②①【答案】A 【分析】根据三个事件的特征,分析离家距离的变化情况,选出符合事件的图像. 【详解】对于事件①,中途返回家,离家距离为0,故图像④符合;对于事件②,堵车中途耽搁了一些时间,中间有段时间离家距离不变,故图像①符合; 对于事件③,前面速度慢,后面赶时间加快速度,故图像②符合; 故选:A.11.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x hr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A12.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >【答案】A 【分析】 由()b xf x a-=,可得1()x bf x a -⎛⎫= ⎪⎝⎭,由图像可知函数是减函数,则101a<<,从而可求出a 的范围,由0(0)1f <<可求出b 的取值范围 【详解】 由()b xf x a-=,可得1()x bf x a -⎛⎫= ⎪⎝⎭,因为由图像可知函数是减函数,所以101a<<,所以1a >, 因为0(0)1f <<,所以001b a a <<=,所以0b <, 故选:A13.(2022·浙江·高三专题练习)函数2()x xe ef x ax bx c-+=++的图象如图所示,则( )A .0,0,0a b c <=<B .0,0,0a b c <<=C .0,0,0a b c >=>D .0,0,0a b c >=<【答案】D 【分析】由函数的奇偶性可求出0b =,再由函数图象不连续即可知分母等于零有解,即可排除AC. 【详解】解:由图象可知,函数的偶函数,即()()f x f x -=,即22x x x xe e e e ax bx c ax bx c--++=+++-,则0b =,B 不正确;由图象可知,20ax bx c ++=有解,即0ac <,故AC 不正确, 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.14.(2022·全国·高三专题练习)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B 【分析】 令()0f x =得到1ln x n m=,再根据函数图象与x 轴的交点和函数的单调性判断. 【详解】令()0f x =得mx e n =,即ln mx n =, 解得1ln x n m=, 由图象知1l 0n x mn =>, 当0m >时,1n >,当0m <时,01n <<,故排除AD , 当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B15.(2022·全国·高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【分析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可. 【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ; 当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .16.(2022·江苏·高三专题练习)为调整某学校路段的车流量问题,对该学校路段115时的车流量进行了统计,折线图如图,则下列结论错误的是( )A .9时前车流量在逐渐上升B .车流量的高峰期在9时左右C .车流量的第二高峰期为12时D .9时开始车流量逐渐下降【答案】D 【分析】根据图象得出车流量的增减性与最值,由此可得出结论. 【详解】由折线图知,9时前车流量在逐渐增加,选项A 正确; 车流量的高峰期在9时左右,选项B 正确;12时是车流量的第二高峰期,选项C 正确;12时左右车流量又有些回升,所以9时开始车流量逐渐下降错误,选项D 错误.故选:D .17.(2022·全国·高三专题练习)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .【答案】D 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 18.(2022·全国·高三专题练习)函数(1)lg ||()|1|x x g x x +=+的图象向右平移1个单位长度得到函数()f x 的图象,则()f x 的图象大致为( )A .B .C .D .【答案】D【分析】根据函数图象的变换,求得函数lg |1|()||x x f x x -=,根据当0x <时,得到()0f x <,可排除A 、B ;当01x <<时,得到()0f x <,可排除C ,进而求解. 【详解】由题意,可得lg |1|()(1)||x x f x g x x -=-=,其定义域为(,0)(0,1)(1,)-∞⋃⋃+∞, 当0x <时,11x -+>,函数lg |1|lg(1)()||x x x x f x x x--+===-lg(1)0x --+<, 故排除A 、B 选项;当01x <<时,011x <-+<,故函数lg |1|()||x x f x x -==lg(1)lg(1)0x x x x-+=-+<,故排除C 选项;当x 1>时,函数lg |1|lg(1)()lg(1)||x x x x f x x x x--===-, 该函数图象可以看成将函数lg y x =的图象向右平移一个单位得到,选项D 符合. 故选:D .19.(2022·全国·高三专题练习)已知函数f (x )的图像如图所示,则函数f (x )的解析式可能是( )A .()()44||x xf x x -=+ B .()2()44log ||x xf x x -=-C .()2()44log ||x xf x x -=+D .()12()44log ||x xf x x -=+【答案】C 【分析】()(44)||x x f x x -=+, f (1)≠0,A 不正确;2()(44)log ||x x f x x -=-是奇函数,不满足题意,B 不正确;12()(44)log ||x x f x x -=+,当x ∈(0,1)时,()0f x >,不满足题意,D 不正确.【详解】由函数f (x )的图像知函数f (x )是偶函数,且当x=1时,f (1)=0. ()(44)||x x f x x -=+是偶函数,但是f (1)≠0,A 不正确; 2()(44)log ||x x f x x -=-是奇函数,不满足题意,B 不正确;12()(44)log ||x x f x x -=+是偶函数,f (1)=0,但当x ∈(0,1)时,()0f x >,不满足题意,D不正确. 故选:C.20.(2022·全国·高三专题练习)已知函数f (x )的图象如图所示,则函数f (x )的解析式可能是( )A .f (x )=(4x ﹣4﹣x )|x |B .f (x )=(4x ﹣4﹣x )log 2|x |C .f (x )=(4x +4﹣x )|x |D .f (x )=(4x +4﹣x )log 2|x |【答案】D 【分析】根据题意,用排除法分析:利用函数的奇偶性可排除A 、B ,由区间(0,1)上,函数值的符号排除C ,即可得答案. 【详解】根据题意,用排除法分析:对于A ,f (x )=(4x ﹣4﹣x )|x |,其定义域为R ,有f (﹣x )=(4﹣x ﹣4x )|x |=﹣f (x ),则函数f (x )为奇函数,不符合题意;对于B ,f (x )=(4x ﹣4﹣x )log 2|x |,其定义域为{x |x ≠0},有f (﹣x )=(4﹣x ﹣4x )log 2|x |=﹣f (x ),则函数f (x )为奇函数,不符合题意;对于C ,f (x )=(4x +4﹣x )|x |,在区间(0,1)上,f (x )>0,不符合题意;对于D , f (﹣x )=(4x +4﹣x )log 2|x |=f (x )为偶函数,且在区间(0,1)上,f (x )<0,符合题意 故选:D21.(2022·全国·高三专题练习)已知某函数的部分图象大致如图所示,则下列函数中最合适的函数是( )A .()()sin x xf x e e -=+ B .()()sin x xf x e e -=- C .()()cos x xf x e e -=-D .()()cos x xf x e e -=+【答案】D 【分析】根据特殊值排除A 、C ,再判断函数的奇偶性即可排除B ; 【详解】解:对于A :()()sin x x f x e e -=+,()()000sin sin 20f e e =+=>,故A 错误; 对于B :()()sin x xf x e e -=-,则()()()()sin sin x x x x f x e e e e f x ---=-=--=-,故()()sin x x f x e e -=-为奇函数,故B 错误;对于C :()()cos x x f x e e -=-,则()()000cos cos01f e e =-==,故C 错误;对于D :()()cos x x f x e e -=+,()()000cos cos 20f e e =+=<,且()()()cos x xf x e e f x --=+=,即()()cos x xf x e e -=+为偶函数,满足条件;故选:D22.(2022·全国·高三专题练习)已知函数()y f x =的图象如图所示,则此函数可能是( )A .()sin ln f x x x =⋅B .()sin ln f x x x =-⋅C .()sin ln f x x x =⋅D .()sin ln f x x x =⋅【答案】A 【分析】由图象对称性确定奇偶性,再由函数值的正负排除错误选项,得出正确结论. 【详解】图象关于原点对称,为奇函数,选项BCD 中定义域都是{|0}x x >,不合,排除, 选项A 是奇函数. 故选:A . 【点睛】思路点睛:本题考查由函数图象选择函数解析式,可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.23.(2022·浙江·高三专题练习)已知函数()f x 的大致图象如下,下列选项中e 为自然对数的底数,则函数()f x 的解析式可能为( )A .x x eB .1x x e +C .2x x e e --D .x xx x e e e e--+-【答案】D 【分析】分析各选项中函数的奇偶性,结合特殊值法可得出合适的选项. 【详解】由图可知,函数()f x 为奇函数. 对于A 选项,函数()x x f x e =的定义域为R,()()x xx xf x f x e e ---=≠-=-, 函数()xxf x e =不是奇函数,排除A 选项; 对于B 选项,函数()1x x f x e +=的定义域为R,()()11x xx x f x f x e e --+-=≠-=-,函数()1xx f x e +=不是奇函数,排除B 选项; 对于C 选项,由0x x e e --≠可得0x ≠,即函数()2x x e ef x -=-的定义域为{}0x x ≠, ()()2x x f x f x e e --==--,函数()2x x e e f x -=-为奇函数,()22221f e e-=<-, C 选项不满足要求;对于D 选项,由0xxe e --≠可得0x ≠,即函数x x x xe ef xe e的定义域为{}0x x ≠,()()x xx x e e f x f x e e --+-==--,函数x x x xe ef xe e为奇函数,当0x >时,()1x xx x e e f x e e--+=>-,满足题意.故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.二、多选题24.(2022·全国·高三专题练习)函数()||()af x x a R x=+∈的图象可能是( )A .B .C .D .【答案】ABD 【分析】根据题意,分0a =、0a >以及0a <三种情况讨论函数的图象,分析选项即可得答案.【详解】 解:根据题意,当0a =时,()||f x x =,(0)x ≠,其图象与选项A 对应,当0a >时,,0(),0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩,在区间(0,)+∞上,()a f x x x =+,其图象在第一象限先减后增,在区间(,0)-∞上,()f x 为减函数,其图象与选项B 对应,当0a <时,,0(),0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩,在区间(0,)+∞上,()f x 为增函数,在区间(,0)-∞上,()[()]a af x x x x x-=-+=-+-,其图象在第二象限先减后增,其图象与选项D 对应, 故选:ABD .25.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.26.(2022·全国·高三专题练习)如图所示的四个容器高度都相同.将水从容器项部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中正确的是( )A .B .C .D .【答案】BCD 【分析】根据几何体的形状判断每增加一个高度需要的水是越多那么增加的比较平缓,每增加一个高度需要的水越少,那么增加的比较快,比较图象判断选项. 【详解】对于第一幅图,不难得知水面高度的增加应是均匀的,因此A 不正确;对于第二幅图,随着时间的增加,越往上,增加同一个高度,需要的水越多,因此趋势愈加平稳,所以B 正确;对于第三幅图,开始是下面窄,上面宽,增加同一个高度需要的水越多,因此趋势愈加平稳,过了一半以后,越往上面越窄,增加同一个高度需要的水越少,因此趋势越快,所以C 正确;对于第四幅图,开始下面宽,上面窄,随着时间的增加,越往上,增加同一个高度,需要的水越少,因此趋势越快,过了一半以后,越往上面越宽,增加同一个高度,需要的水水越多,因此趋势越平稳,所以D 正确. 故选:BCD 【点睛】本题考查根据实际问题判断函数的图象,重点考查理解能力,属于中档题型. 27.(2022·全国·高三专题练习)已知函数f(x)的局部图象如图所示,则下列选项中不可能是函数f(x)解析式的是()A.y=x2cos x B.y=x cos x C.y=x2sin x D.y=x sin x【答案】ABCD【分析】根据图象判断函数为奇函数,且当x>0,f(x)>0,利用排除法进行判断即可.【详解】由图象知函数为奇函数,则排除A,D,两个函数为偶函数,当x>0时,f(x)>0,排除B,C,故ABCD都不成立,故选:ABCD.三、填空题28.(2022·全国·高三专题练习)在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图像只有一个交点,则a的值为________.【答案】1 2【分析】在同一平面直角坐标系内,作出函数图象,找出符合题意的临界条件,求出a的值,【详解】在同一平面直角坐标系内,作出函数y=2a与y=|x-a|-1的大致图象,如图所示.由题意,可知2a=-1,则a=1 2 -.故答案为:1 2 -【点睛】本题考查函数的图象,考查学生数形结合思想,属于基础题.。

六讲 认识函数图像

六讲 认识函数图像
少秒两班运动员第一次并列.
(1 ) ( 2) ( 3) () 4
( 1题 ) 第
() 车 从 光 滑 的 斜 面 上 滑 下 ( 车 的速 度 与 时 间 a小 小
的关系)
( ) 个 弹 簧 不 挂 重 物 到 逐 渐 挂 重 物 ( 簧 长 度 与 b一 弹 所 挂 重 物 的质 量 的关 系)
() ( ) c 、 d 对应 排序
图 中 的 实 线 和 虚 线 分 别 是 初 三 ・一 班 、 三 ・ 初
二 班 代 表 队在 比赛 时 运 动 员 所 跑 的 路 程 Y( ) 米 与
所 用 时 间 z 秒 ) 函 数 图 像 ( 设 每 名 运 动 员 跑 ( 的 假 步 速 度 不 变 , 接 棒 时 间 忽 略 不 计 ) 求 发 令 后 多 交 ,
度 .
例 2 某 种 洗衣 机 在洗 衣 服 时经 历 了进 水 、 清
洗 、 水 、 水 四 个 连 续 的过 程 . 中 进 水 、 洗 、 水 排 脱 其 清 排
时 洗 衣 机 中 的 水 量 ( ) 时 间 ( ) 间 的 关 系 如 升 与 分 之 图所 示 . 据 图像 回答 问 题 : 根
六 讲 认 识 函 数 图 像
讲 认 识 函 数 图 像


认 识 函 数 图 像 就 是 从 函 数 的 图 像 中 找 出 自 变 量 与 函 数 的 关 系 及 变 化 规 律 , 中 找 出 已 知 条 件 , 而 找 到 解 从 从
题的途径 . 例 1 某 企业 有 甲 、 两个 长方 体 的蓄水 池 , 乙 将 甲池 中 的水 以 每 小 时 6立 方 米 的 速 度 注 入 乙 池 . 、 甲 乙 两 个 蓄水 池 中 水 的 深 度 ( ) 米 与注 水 时 间 J 时 ) r " ( 之 间 的 函数 图像 如 图 所 示 . 合 图 像 回答 下 列 问 题 : 结 ( ) 别 求 m 甲 、 两 个 蓄 水 池 中 水 的 深 度 y与 1分 乙 注 水 H 间 之 间 的 函 数 关 系 式 . l 『 ( )I 水 多 f 时 间 甲 、 两 个 蓄 水 池 中 水 的 深 2 = 之 = ∈ 乙

《函数的图像》 人教版 八年级下册课件

《函数的图像》 人教版 八年级下册课件

从由函小数变图大象时观,察函得数,曲y 线6x从随左之向右减少下.降,即当x
归纳: 描点法画函数的一般步骤为:
第一步,列表——表中给出一些自变量的值及
知 其对应的函数值; 识 第二步,描点——在平面直角坐标系中,以自 点 变量的值为 横坐标,相应的函数值为 纵坐标, 一 描出表格中数值对应的各点;
第三步:连线——按照横坐标 由小到大 的顺序, 把所描出的各点用 平滑曲线 连接起来.
练习
1、(1)画出函数 y 2x 1 的图象; 列表:
2x–1 -1 0 1 … … .. .. y -3 -1 1 … … .. ..
y 2x 1
描点并连线:
若一个点在某个函数图
AB不在,C在
象上,那么这一点的横、 纵坐标一定满足这个函
3、(1)画出函数 y x2 的图象;
列表:
y x2
x -3 -2 -1 0 1 2 3
y9410149
描点并连线:
y随x的增 大而减小
(2)从图象中观察,当x<0时,y随x的增大 而增大,还是y随x的增大而减小?当x>0时呢?
由上可知,写出函数解析式, 或者列表格,或者画函数图像, 都可以表示具体的函数。这三 种表示函数的方法,分别称为 解析式法、列表法和图像法。
函数 s x2 (x>0)
的图象.
用描点法画函数图象
例3 在下列式子中,对于x的每一个确定的值,y都 有唯一的对应值,即y是x的函数.画出这些函数的图象:
知 识
(1)y
x
0.5;(2) y
6 x
(x>0).
点 解:(1)从函数可以看出,x的取值范围是:全体实数

列表:从x的取值范围中选取一些数值,算出y的对应值, 填写在表格里;

函数图像

函数图像
b 3a, b 0
例6、 甲 、 乙 二 人 沿 同 一 方向 去B地 , 途 中 都 用 两 种 不 同的 速 度
v1与v2 (v1 v2 ).甲 前 一 半 的 路 程 用 速 度v1, 后 一 半 的 路 程 用 速 度v2;







使

速度v

1






使

速度v
第八讲 函数的图象
一、 知识要点:
1.函数的图象
在平面直角坐标系中,以函数y=f(x)中的x为横坐标, 函数值y为纵坐标的点(x,y)的集合,就是函数y=f(x)的图 象.图象上每一点的坐标(x,y)均满足函数关系y=f(x), 反过来,满足y=f(x)的每一组对应值x、y为坐标的点(x,
y),均在其图象上 。

cos
logcos x (0 x logcos x (1 x)
1)

x(0 x

1 x
(1

x)
1)
y
o
x
返回
1 (3) log x y log y x log x y log x y log x y 1 y x或y 1 ( x, y 0且x, y 1)
2
y x 2 4 | x | 3 | x |2 4 | x | 3
y
-3
-2
-1
–4 –3 –2 –1
|
|
|
|
o
1 234
|
|
|
|
- –1
x
返回
(2) y cos |logcos x| (0 );

函数及其图像(课堂PPT)

函数及其图像(课堂PPT)
aM, aM, A {a1 , a2 , , an } 有限集(列举表示) M { x x所具有的特征} 无限集(命题式表示)
集合:A,B,C…表示;元素:a,b,c…表示
函数与极限
4
2.实数与数轴
实数R有理数Q分 整数 数(Z12负非, 整 负86 ,数 整)( 数(1,自2然,数集nN,:0),1,2, )
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故定义域是[-3, -1].
函数与极限
28
例3 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2. 函数中根式,要求负数不能开偶次方
3. 函数中有对数式,要求真数必须大于零
4. 函数中有对数式和反三角函数式,要求符合它们定义域
5. 若函数式是上述各式的混合式,则应取各部分定义域
的交集
函数与极限
20
例1 求下列函数的定义域
(1()1(y)1y)y44411x1x22x2 xxx222; ;
((22()2)y)yylglgxlxg11;x; 1 ; x x22x 2
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U 0
(t )
E
0
2
即U 2E (t )
函数与极限
29
当 t (,) 时, U 0.
U
( , E)
2

函数图像识图

函数图像识图
A 40米2 B 50米2 C 80米2 D 100米2
(2014•四川广安,第9题3分)如图 ,△ABC,AC=BC,有一动点P从点A出发,沿 A→C→B→A匀速运动、则CP得长度s与 时间t之间得函数关系用图象描述大致 就是( )
A
B
C
D
我最棒
(2014•德州,第8题3分)图象中所反映得过程就是 :张强从家跑步去体育场,在那里锻炼了一阵后,
y(米) 900
y(米) 900
y(米) 900
y(米) 900
O 20 40
x(分) O 20 40 x(分) O 20 40 x(分) O 20 30 40
x(分)
A
B
C
D
走进中考 (2014•湖南衡阳,第5题3分)小明从家出发,外出散 步,到一个公共阅报栏前瞧了一会报后,继续散步 了一段时间,然后回家,如图描述了小明在散步过 程汇总离家得距离s(米)与散步所用时间t(分)之 间得函数关系,根据图象,下列信息错误得就是( )
(5)图书馆离小明家多远? 小明从图书馆回家得时间就是多少?
小明从图书馆回家得平均速度就是多少?
小明得父母出去散步,从家走了20分钟到 一个离家900米得报亭,母亲随即按原路返回。 父亲在报亭瞧了10分钟报纸后,用15分钟返回 家。下列选项中哪一个表示父亲离家后距离 与时间之间得关系?哪一个表示母亲离家后 距离与时间之间得关系?
T/℃
上海
8

O
7 12

24
X/小时
下图反映得过程就是小明从家去食堂吃 早餐,接着去图书馆读报,然后回家、其中x表 示时间,y表示小明离家得距离,小明家、食堂 、图书馆在同一直线上、观察图象,您能获得 哪些信息?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T/℃
8
0 -3
4
14
24
t/小时
(2)这一天中
时气温最低;
时气温最高
T/℃
8
0 -3
4
14
24 t/小时
(3)从 从
时到 时到
时气温呈上升趋势, 时气温呈下降趋势,
T/℃
8
0 -3
4
14
24 t/小时
(4)曲线与x轴的交点表示什么?
你来填一填
下图是北京与上海在某天的气温随时间变化的图 象,观察图象回答: 1.在___点和___点的时候,两地气温相同; 2.在___点到___点之间,北京的气温比上海的气温 要高.
y(米) 900 900 y (米 ) 900 y(米) 900 y(米)
O
20 A
40
x(分) O
20 B
40
x(分) O
20 C
40
x(分)
O
20 30 40 D
x(分)
走进中考 (2014•湖南衡阳,第5题3分)小明从家出发,外 出散步,到一个公共阅报栏前看了一会报后,继 续散步了一段时间,然后回家,如图描述了小明 在散步过程汇总离家的距离s(米)与散步所用时 间t(分)之间的函数关系,根据图象,下列信息 错误的是( )
A公共阅报栏距小明家200米 B小明离家最远的距离为400米 C小明从出发到回家共用时16分钟 D小明看报用时8分钟
走进中考 (2014北京中考,6,4分)园林队在某公园进行 绿化,中间休息了一段时间,已知绿化面积S (单位:米2)与工作时间t(单位:小时)的 函数关系的图象如图所示,则休息后园林队每 小时的绿化面积为( )
龟兔赛跑的故事: 领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了 一觉,当它醒来时,发现乌龟快到终点了,于是急忙追 赶,但已经来不及了,乌龟先到达了终点………现在 用 S 1和 S 2 分别表示乌龟、兔子所走的路程,t 为时 间,则下列图象中,能够表示S 和 t 之间的函数关 系式的是( )
S/m
S/m
2
y
6 (3)从式子 y ( x 0) 来看, x
x越大,y(
)。
(4)当 x 的值分别为1,2,3,4,5,6 时,列表表示变量之间的对应关系
一般的,对于一个 函数,如果把自变量与 函数的每对对应值分别 作为点的(横坐标)和 (纵坐标),那么坐标 平面内由(这些点)组 成的图形,就是这个函 数的图象。
S/m
S/m
s1 s2
O
s1
X/s
O
s1 s2
X/s
O
s1 s2
X/s
O
s2
X/s
A
B
C
D
小结:
图象信息(形)
数 形 结 合
对应关系和变化趋势
解决实际问题
函数 图象
图象上点的 坐标特点(数)
A体育场离张强家2.5千米 B张强在体育场锻炼了15分钟 C体育场离早餐店4千米 D张强从早餐店回家的平均速度是18/7千米/小时
假定甲、乙两人在一次赛跑中,路程S与时间T 的关系在平面直角坐标系中所示,如图,请结合 图形和数据回答问题: (1)这是一次 米赛跑; (2)甲、乙两人中先到达终点的是 ; (3)乙在这次赛跑中的速度为 ; (4)甲到达终点时,乙离终点还有 米。
A 40米2 B 50米2 C 80米2 D 100米2
(2014•四川广安,第9题3分)如图, △ABC,AC=BC,有一动点P从点A出发,沿 A→C→B→A匀速运动.则CP的长度s与 时间t之间的函数关系用图象描述大致 是( )
A
B
C
D
我最棒
(2014•德州,第8题3分)图象中所反映的过程 是:张强从家跑步去体育场,在那里锻炼了一 阵后,又去早餐店吃早餐,然后散步走回家. 其中x表示时间,y表示张强离家的距离.根据 图象提供的信息,以下四个说法错误的是( )
判断下列图象是不是函数图象,并说明 理由
T/℃
8
t/小时
(1)
(2) (3)
例1:如图是自动测温仪记录的图象,它 反映了北京的春季某天气温T 随时间 t 变化而变化,气温T是时间t的函数,观 察图象,你能获得哪些信息?
T/℃ 8
0 -3
4
14
24 t/小时
T/℃
8
0 -3
4
14
24
t/小时
(1)横坐标代表 ___,纵坐标代表____
要做一个面积为6 m 的小花坛,该花 坛的一边长为 x m,另一边为 y m.
2
y
(1)变量y与变量x是函数关系吗? (2)它们的函数关系式怎样表示? 自变量x的取值范围是什么? 变量y与变量x的函数关系ቤተ መጻሕፍቲ ባይዱ为 6 : y ( x 0)
x
要做一个面积为6 m 的小花坛,该花 坛的一边长为 x m,另一边为 y m.
读报 吃早餐 去图书馆 去食堂 回家
(1)食堂离小明家多远? 小明从家到食堂用了多少时间?
下图反映的过程是小明从家去食堂吃 早餐,接着去图书馆读报,然后回家.其 中x表示时间,y表示小明离家的距离,小 明家、食堂、图书馆在同一直线上.根据 图象回答下列问题:
读报 吃早餐 去食堂 去图书馆 回家
(2)小明在食堂吃早餐用了多少时间? 此时小明离家的距离有变化吗?为什么?
人教版第十九章一次函数
19.1.2函数的图象 第一课时
学习目标: 1.理解函数图象的概念; 2.体会函数图象建立数形联系的关键是 分别用点的横、纵坐标表示自变量和对 应的函数值; 3.会观察函数图象获取信息,根据图象 初步分析函数的对应关系和变化趋势; 4.能结合图象对简单实际问题中的函数 关系进行分析。
T/℃ 8
上海 北 京
O
7
12
24
X/小时
下图反映的过程是小明从家去食堂吃早 餐,接着去图书馆读报,然后回家.其中x表 示时间,y表示小明离家的距离,小明家、食 堂、图书馆在同一直线上.观察图象,你能 获得哪些信息?
读报
吃早餐 去图 书馆 去食堂
回家
下图反映的过程是小明从家去食堂吃 早餐,接着去图书馆读报,然后回家.其 中x表示时间,y表示小明离家的距离,小 明家、食堂、图书馆在同一直线上.根据 图象回答下列问题:
读报 吃早餐 去食堂 去图书馆 回家
(4)小明读报用了多长时间? 此时小明离家的距离有变化吗?为什么?
下图反映的过程是小明从家去食堂吃 早餐,接着去图书馆读报,然后回家.其 中x表示时间,y表示小明离家的距离,小 明家、食堂、图书馆在同一直线上.根据 图象回答下列问题:
读报 吃早餐 去食堂 去图书馆 回家
下图反映的过程是小明从家去食堂吃 早餐,接着去图书馆读报,然后回家.其 中x表示时间,y表示小明离家的距离,小 明家、食堂、图书馆在同一直线上.根据 图象回答下列问题:
吃早餐 去食堂 读报 去图书馆 回家
(3)食堂离图书馆多远? 小明从食堂到图书馆用了多少时间?
下图反映的过程是小明从家去食堂吃 早餐,接着去图书馆读报,然后回家.其 中x表示时间,y表示小明离家的距离,小 明家、食堂、图书馆在同一直线上.根据 图象回答下列问题:
(5)图书馆离小明家多远? 小明从图书馆回家的时间是多少? 小明从图书馆回家的平均速度是多少?
小明的父母出去散步,从家走了20分钟 到一个离家900米的报亭,母亲随即按原路返 回。父亲在报亭看了10分钟报纸后,用15分 钟返回家。下列选项中哪一个表示父亲离家 后距离与时间之间的关系?哪一个表示母亲 离家后距离与时间之间的关系?
相关文档
最新文档