九年级数学上册 圆 几何综合单元综合测试(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册 圆 几何综合单元综合测试(Word 版 含答案)
一、初三数学 圆易错题压轴题(难)
1.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F .
(1)若⊙O 半径为2,求线段CE 的长;
(2)若AF =BF ,求⊙O 的半径;
(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.
【答案】(1)CE =42;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6
【解析】
【分析】
(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;
(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到
OE OC BC BA =,即8610r r -= 解得即可;
(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC
=,即12108
GE =,解得即可. 【详解】
解:(1)如图①,连接OE ,
∵CE 切⊙O 于E ,
∴∠OEC =90°,
∵AC=8,⊙O的半径为2,
∴OC=6,OE=2,
∴CE=2242
OC OE
-=;
(2)设⊙O的半径为r,
在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC=22
AB A C
-=6,
∵AF=BF,
∴AF=CF=BF,
∴∠ACF=∠CAF,
∵CE切⊙O于E,
∴∠OEC=90°,
∴∠OEC=∠ACB,
∴△OEC∽△BCA,
∴OE OC
BC BA
=,即
8
610
r r
-
=
解得r=3,
∴⊙O的半径为3;
(3)如图②,连接BG,OE,设EG交AC于点M,
由对称性可知,CB=CG,
∵CE=CG,
∴∠EGC=∠GEC,
∵CE切⊙O于E,
∴∠GEC+∠OEG=90°,
∵∠EGC+∠GMC=90°,
∴∠OEG=∠GMC,
∵∠GMC=∠OME,
∴∠OEG=∠OME,
∴OM=OE,
∴点M和点D重合,
∴G、D、E三点在同一直线上,
连接AE、BE,
∵AD是直径,
∴∠AED=90°,即∠AEG=90°,
又CE=CB=CG,
∴∠BEG=90°,
∴∠AEB=∠AEG+∠BEG=180°,
∴A、E、B三点在同一条直线上,∴E、F两点重合,
∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,
∴GB GE
AB AC
=,即
12
108
GE
=
∴GE=9.6,
故G、E两点之间的距离为9.6.
【点睛】
本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关
2.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;
(1)如图1,求证:CD⊥AB;
(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;
(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.
【答案】(1)见解析;(2)见解析;(3)AC=48 5
【解析】
【分析】
(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;
(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;
(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由
∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得
BF=4,解出BC=8,sin∠OBC=3
5
,所以可得AC=2CK,CK=BC•sin∠OBC=
24
5
得
AC=48 5
.
【详解】
解:(1)如图1,令∠OBC=∠1,∠ACD=∠2
延长BO交⊙O于F,连接CF.
∵BF是⊙O的直径,∴∠FCB=90°
∴∠1+∠F=90°,
∵弧BC=弧BC,
∴∠A=∠F
又∵∠1=∠2,
∴∠2+∠A=90°,
∴∠3=90°,
∴CD⊥AB
(2)如图2,令∠OBC=∠1,∠BCD=∠4
延长BO交AC于K
∵∠A=∠1+∠4,∠5=∠1+∠4,
∴∠A=∠5,
∵∠A+∠2=90°,
∴∠5+∠2=90°,
∴∠6=90°
∵∠7=180°﹣∠3=90°,
∴∠6=∠7,
又∵∠5=∠8,∴∠9=∠2
∵∠2=∠1,∴∠9=∠1,
∴BO平分∠ABC
(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN