第五章 溶剂萃取PPT课件
合集下载
核燃料后处理工学PUREXppt课件
11
5.2 共去污-分离循环
(二) 工艺条件的选择
(1) 共萃取共去污(1A) ➢ ① 料液铀浓度 ➢ ② 料液和洗涤剂的硝酸浓度 ➢ ③ TBP浓度 ➢ ④ 铀饱和度 ➢ ⑤ 流比 ➢ ⑥ 温度
12
5.2 共去污-分离循环
(1) 共萃取共去污(1A) ➢ ① 料液铀浓度
✓ 高(生产能力/进料级的铀饱和度) ✓ 太高(粘度/密度/流动性)
• 加浓铀燃料元件:200-300g/L • 天然铀或低加浓铀:1.8mol/L
13
5.2 共去污-分离循环
(1) 共萃取共去污(1A) ➢ ② 料液和洗涤剂的硝酸浓度
高酸(3mol/L)进料低酸(1mol/L)洗涤
✓ 优点: • 有利于去除钌/锆/铌 ✓ 缺点: • 降低了设备的生产能力; • 有机相降解比较严重; • 提高了试剂消耗量,增加了强放废液处理和贮存费用。
25
5.2 共去污-分离循环
(3) 铀的反萃取(1C槽)
➢ ① 硝酸浓度 ➢ ② 温度
提高温度有利于 • 铀的反萃 • 分相,减少相夹带
➢ ③ 流比
铀的收率 反萃水相的铀浓度不致太低
26
5.2 共去污-分离循环
(4) 污溶剂的净化与复用
➢ 定义 ➢ 目的 ➢ 要求 ➢ 方法
27
5.2 共去污-分离循环
蒸发浓缩器
➢ 装置: 1CU ➢ 任务:便于对2DF调料
调料罐
➢ 装置: 2DF,2AF ➢ 任务:调酸调价
水相废液
➢ 装置:1AW,2DW,2AW
污溶剂
➢ 装置:1CW,2BW,2EW
5
6
5.2 共去污-分离循环
(一) 过程概述 ➢ (1) 共萃取共去污(1A)
5.2 共去污-分离循环
(二) 工艺条件的选择
(1) 共萃取共去污(1A) ➢ ① 料液铀浓度 ➢ ② 料液和洗涤剂的硝酸浓度 ➢ ③ TBP浓度 ➢ ④ 铀饱和度 ➢ ⑤ 流比 ➢ ⑥ 温度
12
5.2 共去污-分离循环
(1) 共萃取共去污(1A) ➢ ① 料液铀浓度
✓ 高(生产能力/进料级的铀饱和度) ✓ 太高(粘度/密度/流动性)
• 加浓铀燃料元件:200-300g/L • 天然铀或低加浓铀:1.8mol/L
13
5.2 共去污-分离循环
(1) 共萃取共去污(1A) ➢ ② 料液和洗涤剂的硝酸浓度
高酸(3mol/L)进料低酸(1mol/L)洗涤
✓ 优点: • 有利于去除钌/锆/铌 ✓ 缺点: • 降低了设备的生产能力; • 有机相降解比较严重; • 提高了试剂消耗量,增加了强放废液处理和贮存费用。
25
5.2 共去污-分离循环
(3) 铀的反萃取(1C槽)
➢ ① 硝酸浓度 ➢ ② 温度
提高温度有利于 • 铀的反萃 • 分相,减少相夹带
➢ ③ 流比
铀的收率 反萃水相的铀浓度不致太低
26
5.2 共去污-分离循环
(4) 污溶剂的净化与复用
➢ 定义 ➢ 目的 ➢ 要求 ➢ 方法
27
5.2 共去污-分离循环
蒸发浓缩器
➢ 装置: 1CU ➢ 任务:便于对2DF调料
调料罐
➢ 装置: 2DF,2AF ➢ 任务:调酸调价
水相废液
➢ 装置:1AW,2DW,2AW
污溶剂
➢ 装置:1CW,2BW,2EW
5
6
5.2 共去污-分离循环
(一) 过程概述 ➢ (1) 共萃取共去污(1A)
第五章萃取技术.课件
有机溶剂中胶束 的表面活性剂分子的 疏水尾部向外,而亲 水头部向内,称为反 胶束。
当表面活性剂在有机溶剂中形成 反胶束时,水在有机溶剂中的溶解 度随表面活性剂浓度线性增大。
通过测定有机相中平衡水浓度的 变化,可以确定形成反胶束的最低 表面活性剂浓度。
反胶束的形成是表面活性剂分子 自发形成的纳米尺度的聚集体,是热 力学稳定的体系。
K a AH
(5-3)
其中,Ka为弱酸的解离常数;
[AH]和[A-]分别为游离酸和其酸根离 子的浓度。
如果在有机相中溶质不发生缔和, 仅以单分子形式存在,则游离的单分 子溶质符合分配定律,其分配常数为
Aa
AH
AH
(5-4)
其中,AH 表示有机相中游离酸的
浓度,Aa为游离酸的分配常数。
利用一般的分析方法测得的水 相浓度为游离酸和酸根离子的总 浓度,故为方便起见,用水相总
3.物理萃取和化学萃取
物理萃取
定义:溶质根据相似相溶原理在两相间 达到分配平衡,萃取剂与溶质间不发生 化学反应。
应用:广泛应用于抗生素及天然植物中 有效成分的提取。如利用乙酸丁酯萃取 青霉素。
化学萃取
定义:利用脂溶性萃取剂与溶质的化 学反应生成脂溶性复合分子,使溶质 向有机相分配。
应用:用于氨基酸、抗生素和有机酸 等生物产物的分离回收。
液体
双水相萃取
萃取剂
液固萃取(浸取)
固体原料 超临界流体
液体原料
2.反 萃 取
定义:调节水相条件,将目标产物从有机相 转入水相的操作。
作用:为了进一步纯化目标产物或便于后续 分离操作。
洗涤:常常加在萃取与反萃取操作之间,目 的是除去与目标产物同时萃取到有机相的杂 质,提高反萃取液中目标产物纯度。
当表面活性剂在有机溶剂中形成 反胶束时,水在有机溶剂中的溶解 度随表面活性剂浓度线性增大。
通过测定有机相中平衡水浓度的 变化,可以确定形成反胶束的最低 表面活性剂浓度。
反胶束的形成是表面活性剂分子 自发形成的纳米尺度的聚集体,是热 力学稳定的体系。
K a AH
(5-3)
其中,Ka为弱酸的解离常数;
[AH]和[A-]分别为游离酸和其酸根离 子的浓度。
如果在有机相中溶质不发生缔和, 仅以单分子形式存在,则游离的单分 子溶质符合分配定律,其分配常数为
Aa
AH
AH
(5-4)
其中,AH 表示有机相中游离酸的
浓度,Aa为游离酸的分配常数。
利用一般的分析方法测得的水 相浓度为游离酸和酸根离子的总 浓度,故为方便起见,用水相总
3.物理萃取和化学萃取
物理萃取
定义:溶质根据相似相溶原理在两相间 达到分配平衡,萃取剂与溶质间不发生 化学反应。
应用:广泛应用于抗生素及天然植物中 有效成分的提取。如利用乙酸丁酯萃取 青霉素。
化学萃取
定义:利用脂溶性萃取剂与溶质的化 学反应生成脂溶性复合分子,使溶质 向有机相分配。
应用:用于氨基酸、抗生素和有机酸 等生物产物的分离回收。
液体
双水相萃取
萃取剂
液固萃取(浸取)
固体原料 超临界流体
液体原料
2.反 萃 取
定义:调节水相条件,将目标产物从有机相 转入水相的操作。
作用:为了进一步纯化目标产物或便于后续 分离操作。
洗涤:常常加在萃取与反萃取操作之间,目 的是除去与目标产物同时萃取到有机相的杂 质,提高反萃取液中目标产物纯度。
生化工程下游技术知识课件第五章溶剂萃取和浸取
03
浸取技术简介
浸取技术的原理
01
浸取技术是一种分离和提取固体物料中可溶性组分的方法,其 原理是利用溶剂将固体物料中的可溶性组分溶解,然后通过固
液分离,将溶剂和溶解的组分分离。
02
浸取过程中,溶剂和固体物料在一定条件下充分接触,使可溶 性组分从固体物料表面逐渐扩散到溶剂中,形成浓集。
03
浸取过程通常在常温或加热条件下进行,根据不同物料和 组分的性质选择合适的溶剂和操作条件。
萃取剂的再生与循环使用
01
萃取剂的再生与循环使用是溶 剂萃取技术中的重要环节,通 过再生和循环使用可以降低生 产成本、减少环境污染。
02
萃取剂的再生方法包括蒸馏、 结晶、吸附等,根据不同的萃 取剂和分离需求选择合适的再 生方法。
03
为了实现萃取剂的循环使用, 需要将再生后的萃取剂进行纯 化和浓缩,以便再次用于萃取 过程。
浸取技术的应用领域
矿物浸取
通过浸取技术提取矿物中的有价组分,如铜、 金、银等。
固体废弃物资源化
通过浸取技术提取固体废弃物中的有用组分, 实现资源化利用。
植物资源提取
利用浸取技术提取植物中的有用成分,如草 药、茶叶、香料等。
环境治理
利用浸取技术处理环境污染问题,如土壤修 复、水处理等。
04
溶剂萃取与浸取的比较与选择
进料液与萃取剂的混合。
混合过程中还需注意控制温度、压力等参数,以确保萃取过程
03
的稳定性和安全性。
分相过程
分相过程是将混合后的料液与 萃取剂进行分离,使各个组分 得到分离。
分相的方法包括静置分层、离 心分离等,根据不同的分离需 求选择合适的分相方法。
分相过程中需要控制好温度、 压力等参数,以获得较高的分 离效果和纯度。
《Ch溶剂萃取》PPT课件
C=[AH]+[A-]〔水中弱电解质总浓度〕
AH 表观分配系数定义为:K表= AHA
…③
将①、②式代入③式得:
K0 AH
K表== AHK=pA H
H
HH ……K④K0p
∵-lgKp=pKp ∴Kp=10-pkp
-lg[H+]=pH [H+]=10-pH代入④
得
K表=
K0 …… 11 0pHpKa
第二节 溶剂的选择
1、溶解度 2、别离因素 3、相似相溶的原那么 4、选择适宜溶剂的条件:①②③④
第三节 水相条件的影响
1、pH值 2、温度 3、盐析 4、★带溶剂:
第四节 乳化和去乳化
乳化:是一种液体〔分散相〕分散在另一种不 相混溶的液体〔连续相〕中的现象, 这种体系是不均一的,不稳定的体系, 生成的这种液体称为乳状液或乳浊液。
由于某些prot 是憎水性〔亲油基强度>亲水基〕 故发酵液(含有大量prot)和有机溶剂形成的乳状 液很多属于W/O型。而由蛋白质引起的乳化多为O/W型的。
4、介质的粘度:
〔二〕乳浊液的类型表征
1、一般来讲,外表活性剂的亲水基>亲油基, 那么易形成O/W型乳浊液,反之,易形成 W/O型。
2、H L B数:〔hydrophile-lipophile balance〕 又称〔亲憎平衡值〕它表示亲水和亲 油的平衡程度,外表活性剂上亲水和 亲油基团的相对强弱称为HLB值。
解:根据⑤式得K0=30〔1+102.5-2.75〕=47
当苄基青霉素在两相中浓度相等即K表=1时,
1=
47 110pHpKa
∴pH=4.4
47-1= 10 pH 10 pKa
说明:
表观分配系数=1即苄基霉素在醋酸丁酯 相与水相中的浓度相等,其pH=4.4,当 pH<4.4时,苄基青霉转移到丁酯相称为 萃取;pH>4.4时,苄基青霉素又从丁酯相 转移到水相,称为反萃取。
生物分离工程-第五章-萃取技术PPT课件
mCl
[R Cl - ] [Cl - ]
则
mAKeC mlCl1[H K 2][K H 1 K ]2 21
43
-化学萃取平衡之分配平衡(2)
二(2-乙基己基)磷酸萃取氨基酸为例,其所对应的离 子交换反应
A2(H2RA ) R(3H H R )
KeH[A[AR]([(HH3R]R[2)H])]
氨基酸的表观分配系数为
6
生物产品萃取根据分子量大小划分
小分子类 化合物相对分子量约小于1000,如氨基酸、 抗生素、维生素、有机酸等,采用有机溶 剂萃取
大分子类 相对分子量大于1000,如酶,抗体,蛋白 质等,有机溶剂不适用,可选用反胶团萃 取、双水相萃取等
7
工业上生产青霉素
大多采用醋酸丁酯为萃取剂,pH=1.8~2.2, 相比VO/VW=1/2~1/2.5,温度5℃,反萃取过 程采用碳酸氢钾或碳酸钾水溶液为反萃取剂。
A
A+
A+
AA+
A AClA
有机相
R+Cl-
RR++CA-l-
R+Cl-
R+Cl-
R+Cl-
42
化学萃取平衡之分配平衡
季胺盐萃取氨基酸为例,其所对应的离子交换反应
R C lA R A -C l
[RA-][Cl- ] KeCl [RCl- ][A- ]
氨基酸和氯离子对应的表观分配系数分别为
[R A- ] mA cA
51
2、双水相形成
当两种高分子聚合物之间存在相互排斥作 用时,即一种分子周围将聚集同种分子而 排斥异种分子,则在达到平衡时,就形成 分别富含不同聚合物的两相 。
溶剂提取法PPT课件
• 本法需加水加热煎煮,适用于能溶于水且遇热 稳定成分的提取。
• 此法操作简单,提取效率高于冷浸法,但煎煮 液黏稠,滤过困难,且杂质较多,易发生霉变。
第23页/共39页
回流提取法
• 回流提取法是为保 持溶剂与原料持续 的接触,通过加热 提取液,使溶剂受 热蒸发,经冷凝后 变为液体流回提取 器,如此反复至提 取比较完全的一种 热提取方法。
入新溶剂,可以连续收集
浸提液。
第19页/共39页
第20页/共39页
特点及使用范围:
• 由于原料不断与新溶剂或含有低浓度提取物的 溶剂接触,始终保持一定的浓度差,属于动态 浸出,因此浸提效果要比浸渍法高。
• 不经过滤处理可直接收集渗漉液,可省去过滤 操作。
• 不足之处为溶剂消耗多,提取时间长。
• 当渗漉液颜色极浅或渗漉液的体积相当于原料 重的10倍时,便可认为基本上已提取完全。在 大 量 生 产 中 常 将 收 第集21的页/共稀39页渗 漉 液 作 为 另 一 批 新
影响提取效果的因素
• 粉碎度 由于提取过程包括渗透、溶解、扩散等过程,因此 样品粉碎得越细,表面积就越大,浸出过程就越快, 但粉碎度过高,样品颗粒表面积过大,吸附作用增 强,反而影响过滤速度。故粉碎的粒度需适中,一
般 而言,视原料质地粉碎粒度以20~60目为宜。 • 提取温度 冷提杂质少,效率低,热提杂质多,效率高。因温
• 实验室常用提取器是 索氏提取器。
第26页/共39页
该提取器有上、中、下三部分组成, 上部是冷凝器;中部是带有虹吸管 的提取器;下部是烧瓶。将盛原料 粉的滤纸装置中部,内装物高度不 得超过虹吸管,溶剂由上部加入烧 瓶中,烧瓶置水浴上加热,溶剂受 热气化,通过中部提取器旁的通气 侧管到达上部冷凝器,遇冷变为液 体滴入提取器中,当滴入的溶剂达 一定高度时,因虹吸作用,使提取 成分后的提取液又流入烧瓶中,其 中溶剂可因再受热而气化,提出的 成分留在烧瓶中,如此连续操作, 即可提尽有效成分。
• 此法操作简单,提取效率高于冷浸法,但煎煮 液黏稠,滤过困难,且杂质较多,易发生霉变。
第23页/共39页
回流提取法
• 回流提取法是为保 持溶剂与原料持续 的接触,通过加热 提取液,使溶剂受 热蒸发,经冷凝后 变为液体流回提取 器,如此反复至提 取比较完全的一种 热提取方法。
入新溶剂,可以连续收集
浸提液。
第19页/共39页
第20页/共39页
特点及使用范围:
• 由于原料不断与新溶剂或含有低浓度提取物的 溶剂接触,始终保持一定的浓度差,属于动态 浸出,因此浸提效果要比浸渍法高。
• 不经过滤处理可直接收集渗漉液,可省去过滤 操作。
• 不足之处为溶剂消耗多,提取时间长。
• 当渗漉液颜色极浅或渗漉液的体积相当于原料 重的10倍时,便可认为基本上已提取完全。在 大 量 生 产 中 常 将 收 第集21的页/共稀39页渗 漉 液 作 为 另 一 批 新
影响提取效果的因素
• 粉碎度 由于提取过程包括渗透、溶解、扩散等过程,因此 样品粉碎得越细,表面积就越大,浸出过程就越快, 但粉碎度过高,样品颗粒表面积过大,吸附作用增 强,反而影响过滤速度。故粉碎的粒度需适中,一
般 而言,视原料质地粉碎粒度以20~60目为宜。 • 提取温度 冷提杂质少,效率低,热提杂质多,效率高。因温
• 实验室常用提取器是 索氏提取器。
第26页/共39页
该提取器有上、中、下三部分组成, 上部是冷凝器;中部是带有虹吸管 的提取器;下部是烧瓶。将盛原料 粉的滤纸装置中部,内装物高度不 得超过虹吸管,溶剂由上部加入烧 瓶中,烧瓶置水浴上加热,溶剂受 热气化,通过中部提取器旁的通气 侧管到达上部冷凝器,遇冷变为液 体滴入提取器中,当滴入的溶剂达 一定高度时,因虹吸作用,使提取 成分后的提取液又流入烧瓶中,其 中溶剂可因再受热而气化,提出的 成分留在烧瓶中,如此连续操作, 即可提尽有效成分。
溶剂萃取法ppt课件
料
轻 相
液 重相入
轻相入
入
入
口
轻相出
第一级
第二级
轻相出
第三级 萃余液出口
轻相出
重相出38
多级错流萃取未被萃取分率和理论收率
设第一级萃取因素为E1,经过一级萃取后,未被
萃取的分率φ1为
1 1
E1 1
设第二级萃取因素为E2,经过二级萃取后,未被
萃取的分率φ2为
2 1 1
1
E2 1 (E1 1)(E2 1)
AB
( CLA / ( CRA /
CLB ) CRB )
KA KB
β=1 KA = KB 分离效果不好; β>1 KA > KB 分离效果好; β越大,KA 越大于KB,分离效果越好。
13
两元素相互分离的判据
一般来说,要使共存于同一体系的A和B分离,A的 萃取率q应在99%以上,而B的萃取率q应小于1%, 此时:
乳浊液类型:水包油型;油包水型
油滴 O/W
水滴 W/O
水
油
亲水性基团强度 > 亲油性基团强度,O/W; 亲油性基团强度 > 亲水性基团强度, W/O
发酵液的乳化现象主要由蛋白质引起。
24
乳浊液类型
当将有机溶剂(通称为油)和水混在一起搅拌时,可 能产生两种形式的乳浊液。
乳浊液类型:水包油型;油包水型
5杂质溶质原溶剂萃取剂lightphaseheavyphase溶剂萃取概述6分液漏斗有机相水相溶剂萃取概述7萃取洗涤反萃取萃取剂稀释剂料液待分离物质杂质萃取液待分离物质少量杂质洗涤剂萃残液杂质杂质少量待萃物质产物待萃物质待返回使用萃取剂稀释剂反萃剂待萃物质一般工业液液萃取过程溶剂萃取概述8生物萃取与传统萃取相比的特殊性?生物工程不同于化工生产主要表现在生物分离往往需要从浓度很稀的水溶液中除去大部分的水而且反应液中存在多种副产物和杂质使生物萃取具有特殊性
课件 溶剂萃取
基本概念
萃取:利用流体为溶剂提取原料中目标产物 的操作。 萃取剂:流体(液体,超临界流体) 目标物 固体:液固萃取(浸取)
有机溶剂萃取
液膜萃取
液体:液液萃取
双水相萃取 反胶团萃取
萃取相(轻相)
萃余相(重相)
操作的一般过程
萃取 – 洗涤 – 反萃取
分配常数 分配系数
c1 萃取相浓度 K c2 萃余相浓度
弱碱性电解质的分配系数
18.2 有机溶剂的选择
选择原则:根据相似相溶的原理(最重要参数:介电常数, 极性),选择与目标产物性质相近的萃取剂,可以得到较 大分配系数。此外,有机溶剂还应满足以下要求: 1)、价廉易得; 2)、与水相不互溶; 3)、与水相有较大的密度差,并且粘度小,表面张力适中, 相分散和相分离较容易; 4)、容易回收和再利用; 5)、毒性低,腐蚀性小,闪点低,使用安全; 6)、不与目标产物发生反应。 常用于抗生素类萃取剂有:丁醇等醇类、乙酸乙酯、乙酸丁 酯和乙酸戊酯等乙酸酯类以及甲异丁基甲酮 ( methyl isobutyl ketone)等。
例 1 :利用乙酸乙酯萃取发酵液中的放线菌 素D(Actinomycin D), pH3.5时分配系数m =57。令H = 450 l/h,单级萃取剂流量为39 l/h。计算单级萃取的萃取率。 解: 单级萃取的萃取因子:E = 57*39/450 = 4.94 单级萃取率: = 0.832 = 4.94/(1+4.94)
线性平衡 适应条件:低浓度
Langmuir型平衡 适应条件:高低浓度
18.1.2 弱电解质的分配平衡
弱电解质的萃取理论
弱碱和弱酸的解离平衡关系分别为: Ka Kb + + AH ↔ A + H BH ↔ B + H+ 弱酸性电解质的分配系数 AH(light phase) AH = A- + H+(water)
萃取:利用流体为溶剂提取原料中目标产物 的操作。 萃取剂:流体(液体,超临界流体) 目标物 固体:液固萃取(浸取)
有机溶剂萃取
液膜萃取
液体:液液萃取
双水相萃取 反胶团萃取
萃取相(轻相)
萃余相(重相)
操作的一般过程
萃取 – 洗涤 – 反萃取
分配常数 分配系数
c1 萃取相浓度 K c2 萃余相浓度
弱碱性电解质的分配系数
18.2 有机溶剂的选择
选择原则:根据相似相溶的原理(最重要参数:介电常数, 极性),选择与目标产物性质相近的萃取剂,可以得到较 大分配系数。此外,有机溶剂还应满足以下要求: 1)、价廉易得; 2)、与水相不互溶; 3)、与水相有较大的密度差,并且粘度小,表面张力适中, 相分散和相分离较容易; 4)、容易回收和再利用; 5)、毒性低,腐蚀性小,闪点低,使用安全; 6)、不与目标产物发生反应。 常用于抗生素类萃取剂有:丁醇等醇类、乙酸乙酯、乙酸丁 酯和乙酸戊酯等乙酸酯类以及甲异丁基甲酮 ( methyl isobutyl ketone)等。
例 1 :利用乙酸乙酯萃取发酵液中的放线菌 素D(Actinomycin D), pH3.5时分配系数m =57。令H = 450 l/h,单级萃取剂流量为39 l/h。计算单级萃取的萃取率。 解: 单级萃取的萃取因子:E = 57*39/450 = 4.94 单级萃取率: = 0.832 = 4.94/(1+4.94)
线性平衡 适应条件:低浓度
Langmuir型平衡 适应条件:高低浓度
18.1.2 弱电解质的分配平衡
弱电解质的萃取理论
弱碱和弱酸的解离平衡关系分别为: Ka Kb + + AH ↔ A + H BH ↔ B + H+ 弱酸性电解质的分配系数 AH(light phase) AH = A- + H+(water)
溶剂萃取优秀课件
分开,使其中一侧液体中的 机酸、氨基酸和抗生素的分
溶质选择性地透过液膜进入 离及废水处理,在酶的包埋
另一侧,实现溶质之间的分 固定化和生物医学方面的应
离。
用也前景广阔。
2020/11/19
超临界流体萃取
对利物用质超进临行界溶流解体和作分为离萃。取剂,类分适等、用物酮于质类脂的、肪萃甘酸取油、分酯植离、物。芳碱香、成醚
③采用多级萃取时,溶质浓缩倍数大、纯
化度高。
缺点:
由于有机溶剂使用量大,对设备和安全要 求高,需要各项防火防爆等措施。
2020/11/19
6
一、基本概念
(一)萃取与反萃取
被提取的溶液称为原料液,其中欲提取 的物质称溶质,而用以进行萃取的溶剂 称为萃取溶剂(萃取剂)
达到萃取平衡后,大部分溶质转移到萃 取溶剂中,这种含有溶质的萃取溶剂溶 液称为萃取液,而被萃取出溶质以后的 料液称为萃余液。
溶剂萃取优秀课件
❖ 萃取具有可连续操作、分离效果好等优点,在化
学工业中的应用非常广泛,例如抗生素、维生素
等发酵产物通常采用有机溶剂萃取法来提取,近
年来又相继开发成功超临界萃取、反胶束萃取和
双水相萃取等一些新的萃取技术,尤其适用于氨
基酸、酶和蛋白质类药物的提取。此外,随着天
然药物需求量的增加,固-液萃取逐渐得到重视。
4
第一节 溶剂萃取法
❖ 广义的溶剂萃取法(solvent extraction) 包括液-固萃取和液-液萃取:
❖ 液-固萃取又称浸取、浸提
❖ 液-液萃取指用一种溶剂将 物质从另一种溶剂(如发酵 液)中提取出来的方法。
2020/11/19
5
溶剂萃取法优点:
①操作可连续化,速度快,生产周期短;
萃取分离讲解 ppt课件
4 萃取分离
● 溶剂萃取 ● 索氏萃取(提取) ● 微波萃取
PPT课件
1
§4.1 溶剂萃取(Solvent extraction)
溶剂萃取是利用液-液界面的平衡分配关系 进行的分离操作。液液界面的面积越大,达 到平衡的速度也就越快。因此要求两相的液 滴应尽量细小化。平衡后,各自相的液滴还 要集中起来再分成两相。通常溶剂萃取指物 质由水相转入另一与水相不互溶的有机相后 实现分离的方法。
M n nHR有 MRn有 nH
Kex
[ MRn ]有 [ H ]n [ M ][ HR]n有
当萃取反应达到平衡时,金属离子在两相中的分
配比为:
[
D
[
CM ]有
[ MRn ]有
CM ]水 [ M n ] [ MRn ]
上式可进一步简化:
D
[ MRn ]有 [ M n ]
PPT课件
6
Ni2+
CH3 C N OH
+2
Ni(H2O)62+
CH3 C N OH
丁二酮肟
H
O
O
CH3 C N
N C CH3
Ni
CH3 C N
N C CH3
O
O
H
中和电荷
NiDx2/CHCl3
引入疏水基
萃取剂----“运载工具”
PPT课件
7
亲水性水合阳离子→中性疏水螯合物→ 萃入有机相
+
8-羟基喹啉
PPT课件
28
索氏 (Soxhlet) 萃取器
常将试样置于索氏萃取器中,用 溶剂连续抽提,然后蒸出溶剂, 便可达到含量较原试样增加上百 倍的试液,有利于后续的测定。
● 溶剂萃取 ● 索氏萃取(提取) ● 微波萃取
PPT课件
1
§4.1 溶剂萃取(Solvent extraction)
溶剂萃取是利用液-液界面的平衡分配关系 进行的分离操作。液液界面的面积越大,达 到平衡的速度也就越快。因此要求两相的液 滴应尽量细小化。平衡后,各自相的液滴还 要集中起来再分成两相。通常溶剂萃取指物 质由水相转入另一与水相不互溶的有机相后 实现分离的方法。
M n nHR有 MRn有 nH
Kex
[ MRn ]有 [ H ]n [ M ][ HR]n有
当萃取反应达到平衡时,金属离子在两相中的分
配比为:
[
D
[
CM ]有
[ MRn ]有
CM ]水 [ M n ] [ MRn ]
上式可进一步简化:
D
[ MRn ]有 [ M n ]
PPT课件
6
Ni2+
CH3 C N OH
+2
Ni(H2O)62+
CH3 C N OH
丁二酮肟
H
O
O
CH3 C N
N C CH3
Ni
CH3 C N
N C CH3
O
O
H
中和电荷
NiDx2/CHCl3
引入疏水基
萃取剂----“运载工具”
PPT课件
7
亲水性水合阳离子→中性疏水螯合物→ 萃入有机相
+
8-羟基喹啉
PPT课件
28
索氏 (Soxhlet) 萃取器
常将试样置于索氏萃取器中,用 溶剂连续抽提,然后蒸出溶剂, 便可达到含量较原试样增加上百 倍的试液,有利于后续的测定。
《溶剂萃取》幻灯片
2.4 有机萃取〔重点〕
在天然产物有效成分的别离、有机合成中广泛应用。 根本原理:根据被提取成分和共存杂质的理化特性, 选择适宜的溶剂和萃取技术,使目标成分从物料〔固体 或液体原料〕向萃取溶剂中转移。
➢液体溶剂萃取固体物料,称为固-液萃取。 ➢液体溶剂萃取液体物料,称为液-液萃取。
2.4.1 溶剂的选择原那么
E 溶质在两相中的量 100% 对于一次萃取操作,萃取率为:
E CorV gorg 10% 0 CorV gor gCaV qaq
Vaq ,Vorg 分别表示水相和有机相的体积,通常将有 机相与水相的体积之比Vorg/Vaq 称为相比R。
萃取率和分配比及相比的关系为:
E C oV C r o o g V r r o C g g a r V a g q q 1% 0 D 0 V D aV q o r1 g% 0 D D 0 1 1% 0 0 R
答案:萃取一次萃取率98.7%;连续萃取三次萃取率99.9%。 萃取一次水溶液中残留碘量:0.013mg;连续萃取三次水溶液 中残留的碘0.0001mg.
2.3 无机化合物萃取〔了解〕
无机萃取一般包括如下过程: 〔1〕水相中的被萃取溶质与参加的萃取剂形成萃取物〔通 常是配合物〕; 〔2〕在两相界面,萃合物因疏水分配作用进入有机相,最 终溶质在两相间达成平衡。
挑选具有不同选择性的另外一种极性溶剂替换原极 性溶剂,通过调整该极性溶剂的比例维持原p’, 从而找到溶解性和选择性都适宜的溶剂。
〔3〕油/水分配系数Ko/w或 lgP
油/水分配系数可估计化合物的极性。油水分配系 数是指物质在油相的浓度与在水相的浓度比值,该 数值越大,化合物亲脂性越强,极性越小。
P'1P 1'2P 2'.. .. iP i'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
800:39:22
第二节 萃取过程的化学原理
2.1分配平衡
(1)分配定律 原理:组分在两不互相混溶的液相中进行分配。符合
能斯特定律。能斯特分配平衡常数λ,能斯特热力学分配 平衡常数λФ。
M (2 )/M ( 1 ) ex (1 p 2 [ )/R () T ]
为活度,为标准化学位
M ( 2 )/M ( 1 ) [ M 2 ] 2 /M ( 1 ] [ 1 ) 1 /1
800:39:22
在欲分离的液体混合物中加入一种与其不溶或部分互溶 的液体溶剂,经过充分混合,利用混合液中各组分在溶剂中 溶解度的差异而实现分离的一种单元操作。此外还存在组分 与溶剂之间的配合反应而分离。
溶质 A : 混合液中欲分离的组分
稀释剂(原溶剂)B: 混合液中的溶剂,作用是使萃合常数 发生变化 ,使分配比发生变化。
[Th4 ] [Th(NO3 )3 ] [Th(NO3 )22 ] [Th(NO3 )3 ] [Th(NO3 )4 ] [Th(NO3 )62 ]
能斯特分配平衡常数:
[Th(NO3)4]
Th(NO3)4 [Th(NO3)4]
/03:50:2212:57:0723:
1111
29:5601:44:1902:01:3
1122
29:5601:44:1902:01:3
800:39:22
例:在HCl介质中,用乙醚萃取Ga时,D = 18,若萃 取Ga时V水 = V有,则Ga的q = ?
DCT [M 1][M 2]...[M n] CT [M 1][M 2]...[M n]
分配比D与能斯特分配平衡常数 是有区别的 。
/03:50:2212:57:0723:
1100
29:5601:44:1902:01:3
800:39:22
分配比受能斯特分配平衡常数的支配,能斯特分配平衡 常数难以测定,而分配比容易测定。
800:39:22
(2)萃取过程的参数 ①分配比D(分配系数):被萃取物在有机相与水相总浓 度之比。
若萃取物A在两相中并不仅以某一型体存在,如发生了解 离、缔合等副反应,导致A在两相中以多种型体存在,则用分 配比D来表示两相中的分配情况。
分配平衡时,A在有机相中的各种型体的总浓度CA(有)与在 水相中的各种型体的总浓度CA(水)的比值称为分配比,用D表示。
为能斯特热力学分衡配常平数 为能斯特分配平衡常数
/03:50:2212:57:0723:
88
29:5601:44:1902:01:3
800:39:22
(2)能斯特分配平衡常数
1891年,Nernst发现了分配定律:“在一定温度下,当某
一物质在两种互不混溶的溶剂中分配达到平衡时,则该物质在
两相中的浓度之比为一常数。”即:
第五章 溶剂萃取
第一节 概述
1.1基本概念
萃取:使含有萃取剂的有机相与含有欲被提取的金属离 子的水溶液在一个接触器中充分混合,此时发生化学反应, 被萃取的金属离子与萃取剂生成萃合物而进入有机相,澄清 后分离液相。此外被萃取金属离子在互不相溶的两相中分 配差异的不同进行萃取,故萃取既可化学过程也可物理过
①相似性原则:结构相似的溶剂容易互相混溶。
②分子间的相互作用与溶剂的互溶性:两种溶剂混合生成 氢键的数目大于混合前氢键的数目和强度则有利于混溶。
(3)常用萃取剂及其分类
①含氧萃取剂;②含磷萃取剂;③含氮萃取剂;④含硫萃 取剂。
/03:50:2212:57:0723:
77
29:5601:44:1902:01:3
萃取剂S:所选用的溶剂
/03:50:2212:57:0723:
22
29:5601:44:1902:01:3
800:39:22
•加料 •混合 •分相 •排除 •纯化和回收
混合液 A+B
萃取相 (S+A+B)
搅拌
萃取剂 (溶剂S)
萃余相 (B+A+S)
/03:50:2212:57:0723:
33
29:5601:44:1902:01:3
例:用TBP从硝酸溶液中萃取,钍因时钍在硝酸溶液能中有可 Th4、Th(NO3)3、Th(NO3)22、Th(NO3)3、Th(NO3)4、Th(NO3)62 各种形态存在时,仅而中仅性分T子h(NO3)4能被萃取。求钍的分配 比和能斯特分配平数衡。常 分配比(分配系数):
DTh
CT CT
[Th(NO3)4]
A水 A有
能斯特分配平衡 常 [A数 ]有 [A]水
能斯特分配平衡常数大的物质,绝大部分进入有机相,能斯 特分配平衡常数小的物质,仍留在水相中,据此可将物质彼此 分离。上式称为分配定律,它是溶剂萃取的基本原理。
前提:A在两相中仅以一种型体存在
/03:50:2212:57:0723:
99
29:5601:44:1902:01:3
洗涤:也叫萃洗,负载金属离子的有机相因含少量杂 质金属离子,需要用水进行洗涤使其进入水相。
反萃取:也叫反萃,经洗涤净化后的负载有机相在第 三个接触器中与合适的水溶液接触,使被萃金属离子进入 水相并送往后续提取单元过程的处理。
/03:50:2212:57:0723:
11
29:5601:44:1902:01:3
800:39:22
/03:50:2212:57:0723:
44
29:5601:44:1902:01:3
800:39:22
萃取相(轻相) 萃余相(重相)
/03:50:2212:57:0723:
55
29:5601:44:1902:01:3
800:39:22
操作的一般过程
萃取 – 洗涤 – 反萃取
/03:50:2212:57:0723:
66
29:5601:44:1902:01:3
800:39:22
1.2溶剂及其互溶规则
为研究各溶剂间的互溶规律,可根据溶剂分子之间形
成的氢键的能力将溶剂分类。
(1)溶剂分类:N型溶剂(惰性溶剂);A型溶解(受电 子溶剂) ;B型溶剂(给电子溶剂) ;9:22
②萃取率q:被萃取物进入有机相中的量占萃取前料液中 被萃取物总量的百分数。
q CTV 10% 0
CT
10% 0 CT
10% 0
CTVCTV
CT CT(V/V)
CT CT(1/R)
D 10% 0 D1/R
其R 中 称为相比,积 即和 有水 机相 相体 体积之比。
/03:50:2212:57:0723: