高中数学教师招聘测试试卷

合集下载

教室招聘数学试题及答案

教室招聘数学试题及答案

教室招聘数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是整数?A. 3.14B. 5C. 0.5D. -2.7答案:B2. 如果一个圆的半径是5厘米,那么它的周长是多少?A. 10πB. 15πC. 20πD. 25π答案:C3. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. 8答案:A4. 以下哪个表达式是正确的?A. 2x + 3y = 5zB. 2x - 3y = 5zC. 2x + 3y = 5z + 1D. 2x = 3y + 5z答案:D5. 一个班级有20名学生,其中15名男生,问女生有多少人?A. 5B. 4C. 3D. 2答案:A6. 一个数的立方是-27,这个数是:A. 3B. -3C. 9D. -9答案:B7. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 4 = 0D. x^2 - 4x + 4 = 0答案:B8. 一个直角三角形的两个直角边分别是3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 以下哪个是等差数列?A. 2, 4, 6, 8B. 2, 3, 5, 7C. 1, 1, 1, 1D. 1, 3, 6, 10答案:A10. 一个数的相反数是-5,这个数是:A. 5B. -3C. 3D. -7答案:A二、填空题(每题2分,共20分)1. 一个数的绝对值是其本身,这个数是______。

答案:非负数2. 如果一个数的平方是25,那么这个数是______。

答案:±53. 一个数的立方根是2,那么这个数是______。

答案:84. 一个数除以-2等于3,这个数是______。

答案:-65. 一个数的相反数加上这个数等于______。

答案:06. 如果一个数的平方根是2.5,那么这个数是______。

答案:6.257. 一个数的倒数是1/4,这个数是______。

高中数学教师招聘试题

高中数学教师招聘试题

高中数学教师招聘试题一、选择题1. 下面哪个图形是等边三角形?A. △ABCB. △ABDC. △ABED. △ABF2. 若直线L1垂直于直线L2,直线L2与直线L3平行,则直线L1与直线L3的关系是:A. 平行B. 垂直C. 相交D. 无法确定3. 若a+b=7,2a+3b=17,则a的值为:A. 2B. 3C. 4D. 54. 已知函数f(x)=ax^2+bx+c,且f(2)=5,f(4)=9,则a+b+c的值为:A. 5B. 7C. 9D. 115. 下列哪个不是二次方程的解?A. x=2B. x=3C. x=-7D. x=0二、填空题1. 若A是4阶方阵,且|A|=6,则方阵A的行列式的和为______。

2. 设函数f(x)=kx^2,当x=2时,f(x)的值为8,则k的值为______。

3. 直线L1过点A(2,-3)且与直线L2的斜率之积为-2,直线L2的斜率为______。

4. 设直线L1与直线L2垂直,直线L1的斜率为2/3,则直线L2的斜率为______。

5. 若已知三个实数a、b、c满足a+b+c=0,则a^2+b^2+c^2的值为______。

三、解答题1. 解方程组:2x + y = 53x + 2y = 82. 已知集合A={1,2,3,4},集合B={2,3,5},求A与B的交集、并集以及差集。

3. 已知函数f(x)=x^3-3x+2,求f(x)的最小值点的横坐标和纵坐标。

4. 给出函数y=f(x)的图像如下,请画出函数y=f(2x)的图像:[图像略]5. 在△ABC中,∠A=60°,AB=5,AC=8,求BC的长度。

四、解题思路简述1. 通过消元法或代入法解方程组,得出方程组的解。

2. 求交集:找出两个集合中相同的元素;求并集:将两个集合中的所有元素合并在一起;求差集:从一个集合中去掉与另一个集合中相同的元素。

3. 求函数的最小值点,需要求函数的导数,并令导数等于0,解得最小值点的横坐标,然后带入函数中求得纵坐标。

2024年高中数学教师招聘考试模拟试题

2024年高中数学教师招聘考试模拟试题

2024年高中数学教师招聘考试模拟试题1. 已知3()2log (19)f x x x =+≤≤,求函数22[()]()y f x f x =+的最大值. 2. 为了得到函数R x x y ∈+=),63sin(2π的图象,只需把函数R x x y ∈=,sin 2的图象上所有的点____(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)3. 已知不等式|2||3|x x m +-+>(1) 若不等式有解;(2)若不等式解集为R ;(3)若不等式解集为∅. 分别求出m的范围4. 已知椭圆方程为22143x y +=,试确定m 的取值范围,使得椭圆上有不同的两点关于直线4y x m =+对称.5. 圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 __________ .6. 设任意实数01230x x x x >>>>,要使不等式01202313log 2001log 2001log 2001log 2001x x x x x x x x k ++≥ 恒成立,则k 的最大值__________7. 已知ABC △的周长为1,且sin sin A B C +=.若ABC △的面积为1sin 6C ,求角C 的 度数.8. 设3()3x f x =,对任意实数t ,记232()3t g x t x t =-. (I )求函数8()()y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时, ()()t f x g x ≥对任意正实数t 成立;A BC D E F O (ⅱ)有且仅有一个正实数0x ,使得800()()t g x g x ≥对任意正实数t 成立.9. 空间四个球,它们的半径分别是2,2,3,3.每个球都与其他三个球外切.另一个小球与这四个球都相切,则这个小球的半径等于 .10. 设A ,B ,C 分别是复数Z 0=ai , Z 1=21+bi , Z 2=1+ci (其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线 Z =Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t R ) 与△ABC 中平行于AC 的中位线只有一公共点,并求出此点.。

高中数学教招试题及答案

高中数学教招试题及答案

高中数学教招试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2-2x+3的最小值是()A. 0B. 1C. 2D. 3答案:B2. 已知等差数列{a_n}的前三项依次为1,4,7,则该数列的通项公式为()A. a_n = 3n - 2B. a_n = 3n + 1C. a_n = 3n - 1D. a_n = 3n答案:A3. 若cosθ=1/3,则sinθ的值为()A. 2√2/3B. √2/3C. √6/3D. -√6/3答案:C4. 抛物线y^2=4x的焦点坐标是()A. (0, 0)B. (1, 0)C. (2, 0)D. (0, 1)答案:C二、填空题(每题5分,共20分)1. 已知圆的方程为x^2+y^2-6x-8y+24=0,该圆的半径为_________。

答案:2√52. 函数y=2x^3-3x^2+4x-1的导数为_________。

答案:6x^2-6x+43. 集合A={x|x^2-5x+6=0},则A的元素个数为_________。

答案:24. 已知向量a=(3, -4),b=(2, k),若a与b垂直,则k的值为_________。

答案:-2三、解答题(每题15分,共30分)1. 已知函数f(x)=x^3-3x^2+4,求证:f(x)在x=2处取得极值。

证明:首先求导数f'(x)=3x^2-6x。

令f'(x)=0,解得x=0或x=2。

计算f''(x)=6x-6,代入x=2,得到f''(2)=6,说明f(x)在x=2处取得极小值。

因此,f(x)在x=2处取得极值。

2. 已知三角形ABC的内角A,B,C所对的边分别为a,b,c,且满足a=2,b=3,c=√7,求三角形ABC的面积。

解:由余弦定理得cosC=(a^2+b^2-c^2)/(2ab)=1/2,因此C=π/3。

利用正弦定理,有S=1/2ab*sinC=1/2*2*3*√3/2=3√3/2。

高中数学教师招聘试题

高中数学教师招聘试题

高中数学教师招聘试题1、2.当m=-2时,代数式-2m-5的值是多少()[单选题] *A.-7B.7C.-1(正确答案)D.12、下列各角中,是界限角的是()[单选题] *A. 1200°B. -1140°C. -1350°(正确答案)D. 1850°3、13.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是() [单选题] *A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)(正确答案)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)4、7.已知点A(-2,y1),B(3,y2)在一次函数y=-x+b的图象上,则( ) [单选题]*A.y1 > y2(正确答案)B.y1 < y2C.y1 ≤y2D.y1 ≥y25、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数6、10.下列各数:5,﹣,03003,,0,﹣,12,1010010001…(每两个1之间的0依次增加1个),其中分数的个数是()[单选题] *A.3B.4(正确答案)C.5D.67、8.(2020·课标Ⅱ)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则?U(A∪B)=( ) [单选题] *A.{-2,3}(正确答案)B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}8、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案)D.{1,2,3,5,7,8}9、21.已知集合A={x|-2m},B={x|m+1≤x≤2m-1}≠?,若A∩B=B,则实数m的取值范围为___. [单选题] *A 2≤x≤3(正确答案)B 2<x≤3C 2≤x<3D 2<x<310、24、在▲ABC中中, ∠A=∠C=55°, 形内一点使∠PAC=∠PCA, 则∠ABP为()[单选题] *A. 30°B. 35°(正确答案)C. 40°D. 45°11、10. 已知方程组的解为,则、对应的值分别为()[单选题] *A、1,2B、1,5C、5,1(正确答案)D、2,412、计算(2x-1)(5x+2)的结果是() [单选题] *A. 10x2-2B. 10x2-5x-2C. 10x2+4x-2D. 10x2-x-2(正确答案)13、5.如图,点C、D是线段AB上任意两点,点M是AC的中点,点N是DB的中点,若AB=a,MN=b,则线段CD的长是()[单选题] *A.2b﹣a(正确答案)B.2(a﹣b)C.a﹣bD.(a+b)D.14、下列说法正确的是()[单选题] *A、任何直线都有倾斜角(正确答案)B、任何直线都有倾斜角C、直线倾斜角越大斜率就越大D、直线与X轴平行则斜率不存在15、44.若a+b=6,ab=4,则a2+4ab+b2的值为()[单选题] * A.40B.44(正确答案)C.48D.5216、7.把点平移到点,平移方式正确的为()[单选题] * A.先向左平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度(正确答案) 17、6.下列各图中,数轴画法正确的是()[单选题] *A.B.C.D.(正确答案)18、下列各角中与45°角终边相同的角是()[单选题] *A. 405°(正确答案)B. 415°C. -45°D. -305°19、42.已知m、n均为正整数,且2m+3n=5,则4m?8n=()[单选题] * A.16B.25C.32(正确答案)D.6420、椭圆的离心率一定()[单选题] *A、等于1B、等于2(正确答案)C、大于1D、等于021、25.{菱形}∩{矩形}应()[单选题] *A.{正方形}(正确答案)B.{矩形}C.{平行四边形}D.{菱形}22、1.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()[单选题] *A.(0,-2)B.(2,0)(正确答案)C.(4,0)D.(0,-4)23、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)24、在0°~360°范围中,与-460°终边相同的角是()[单选题] *200°(正确答案)560°-160°-320°25、15、如果m/n<0,那么点P(m,n)在()[单选题] *A. 第二象限B. 第三象限C. 第四象限D. 第二或第四象限(正确答案)26、12、下列说法: (1)等腰三角形的底角一定是锐角; (2)等腰三角形的内角平分线与此角所对边上的高重合; (3)顶角相等的两个等腰三角形的面积相等; (4) 等腰三角形的一边不可能是另一边的2 倍. 其中正确的个数有( ). [单选题] *A. 1 个(正确答案)B. 2 个C. 3 个D. 4 个27、22.若+3x+m=0的一个根为2,则m=()[单选题] *A.3B.10C.-10(正确答案)D.2028、11.2020·北京,1,4分)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=( ) [单选题] * A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}(正确答案)29、3.如果两个数的和是正数,那么[单选题] *A.这两个数都是正数B.一个为正,一个为零C.这两个数一正一负,且正数的绝对值较大D.必属上面三种情况之一(正确答案)30、下列说法中,正确的个数有?①减去一个数等于加上这个数②零减去一个数仍得这个数③有理数减法中被减数不一定比减数或差大④两个相反数相减得零⑤减去一个正数,差一定小于被减数⑥减去一个负数,差不一定大于被减数. [单选题] *A.2个(正确答案)B.3个C.4个D.5个。

高中教师招聘考试数学试卷

高中教师招聘考试数学试卷

高中教师招聘考试数学试卷第一部分:选择题(共50分)1. 下列哪个集合是四个正整数的平方?A. {1, 4, 6, 9}B. {4, 9, 16, 25}C. {2, 5, 7, 8}D. {1, 2, 3, 5}2. 若函数 y=f(x) 的图象关于 x 轴对称,则函数 f(x) 一定是什么类型的函数?A. 幂函数B. 指数函数C. 对数函数D. 偶函数3. 已知图中三角形 ABC 中,∠ACB=90°,CD 是 AB 边上的高,若CD=4,AC=5,则 BC 的长度为多少?A. 5B. 7C. 8D. 94. 关于虚数单位 i,下列说法正确的是:A. i^2=1B. i^2=-1C. i^2=iD. i^2=05. 一个半径为 r 的圆,设其周长为 L,面积为 S,则下列等式中哪个是正确的?A. L=πrB. S=πr^2C. L=2πrD. S=πr6. 已知函数 f(x) 和 g(x) 的定义域都是实数集,若 f(x)=x^2,g(x)=2x-1,则函数 h(x)=f(g(x)) 是什么函数?A. 幂函数B. 指数函数C. 对数函数D. 反函数7. 甲、乙两人同时从 A、B 两个点出发,A 点离终点 500km,B 点离终点300km。

已知甲的速度是乙的2 倍,甲、乙分别用匀速60km/h、x km/h 前进。

若两人同时到达终点,则 x 的值是多少?A. 40B. 50C. 55D. 608. 已知集合 A={1, 2, 3, 4, 5},集合 B={3, 4, 5, 6, 7},则 A∩B 是什么集合?A. {1, 2}B. {3, 4, 5}C. {4, 5}D. {6, 7}9. 若 A 为 4 阶矩阵,B 为 3 阶矩阵,且 AB=C,则 C 的阶数是多少?A. 1B. 2C. 3D. 410. 下列哪个不是一次函数的图象?A. 抛物线B. 直线C. 双曲线D. 斜线(略去40道题)第二部分:填空题(共20分)1. 在坐标平面中,点 A(3,4) 关于 x 轴对称的点是(3, )。

2023高中数学教师考编试题

2023高中数学教师考编试题

2023高中数学教师考编试题一、填空题1. 设函数 f(x) = 2x^3 - 5x^2 + 3x + m, 当 x = -2 时,f(x) = -23,则 m的值为_________。

2. 设函数 g(x) = ax^2 + bx + c,其中 a > 0,若对于任意的 x,都有g(x) ≥ 0,则满足条件的 a、b、c 列式为_________。

3. 已知等差数列的首项为 a,公差为 d,前 n 项和为 S_n。

若 a = 3,d = 2,S_n = 20,则 n 的值为_________。

二、选择题1. 如果一个三角形的两个内角分别为 40°和 80°,则第三个内角的度数为:A. 30°B. 40°C. 50°D. 60°2. 已知直线 y = kx + 3 与 x 轴交于点 A (a, 0),与 y 轴交于点 B (0, b)。

若 AB 的斜率为 2,那么 a 与 b 的值分别为:A. a = 0, b = 3B. a = 3, b = 0C. a = 1, b = 3D. a = 3, b = 13. 在任意平面上,过两个不重合的点可以作一条直线。

此命题的真值是:A. 错误B. 部分正确C. 不确定D. 正确三、解答题1. 解方程:2x + 5 = 3x - 1。

2. 求函数 f(x) = x^2 - 4x + 3 的最值,并写出对应的坐标点。

3. 已知等差数列的前 n 项和为 S_n = 2n^2 + 3n,求该等差数列的首项和公差。

四、解析题已知函数 f(x) = x^2 + 2ax + 3,若对于所有实数 x,都有f(x) ≥ 4,则 a 的取值范围是多少?解析:要使得f(x) ≥ 4 对所有实数 x 成立,可以考虑函数的顶点位置。

由于 x^2 的系数为正,所以函数的抛物线开口向上,且顶点处函数值最小。

因此,要使得函数值大于等于 4,只需要保证顶点的纵坐标大于等于 4。

教师资格考试高中数学学科知识与教学能力测试试题与参考答案

教师资格考试高中数学学科知识与教学能力测试试题与参考答案

教师资格考试高中数学学科知识与教学能力测试试题与参考答案一、单项选择题(本大题有8小题,每小题5分,共40分)1.题目:下列关于实数的说法中,正确的是()A. 实数都可以表示在数轴上B. 无理数都是无限小数C. 无限小数都是无理数D. 带根号的数都是无理数答案:B解析:A. 实数包括有理数和无理数,它们都可以在数轴上找到对应的点,所以A选项正确,但题目要求选择“正确”且“唯一正确”的选项,由于B选项也是正确的,且更具体,故A选项虽然正确但不是本题的最佳答案。

B. 无理数不能表示为两个整数的比,且其小数部分是无限不循环的,即都是无限小数。

所以B选项正确。

C. 无限小数包括无限循环小数和无限不循环小数,其中无限循环小数是有理数,无限不循环小数才是无理数。

所以C选项错误。

D. 带根号的数不一定都是无理数,例如√4=2,2是一个有理数。

所以D选项错误。

2.题目:在平面直角坐标系中,已知点A(2,3),若点B与点A关于x轴对称,则点B的坐标为()A.(2,−3)B.(−2,3)C.(−2,−3)D.(3,2)答案:A解析:关于x轴对称的两点,其横坐标相同,纵坐标互为相反数。

设点B的坐标为(x,y),由于点B与点A关于x轴对称,且点A的坐标为(2,3),则有x=2,y=−3。

所以点B的坐标为(2,−3)。

3.题目:已知一次函数y=kx+b(k≠0)的图象经过点(1,2)和点(−1,−4),则k+b=____.答案:0解析:将点(1,2)代入y=kx+b得:2=k×1+b,即k+b=2①;将点(−1,−4)代入y=kx+b得:−4=k×(−1)+b,即−k+b=−4②;① + ②得:2b=−2,解得b=−1;将b=−1代入①得:k=3;所以k+b=3−1=0。

4.题目:下列运算正确的是( )A.a6÷a2=a3B.3a−2=19a2C.(a3)2=a5D.(a−b)2=a2−b2答案:B解析:A. 根据同底数幂的除法法则,有a m÷a n=a m−n,所以a6÷a2=a6−2=a4,与选项A的a3不符,故A错误。

高中教师招聘考试数学试卷

高中教师招聘考试数学试卷

高中教师招聘考试数学试卷第一部分:选择题(共40题,每题2分,共计80分)请在每题的括号内选出正确的选项。

1. 200 ÷ (5 × 2) =(A) 40 (B) 10 (C) 50 (D) 202. 若x² + 2x = 12,则x的值为(A) 4 (B) -4 (C) 2 (D) -23. 已知三个数的平均数为50,且其中两个数为40和70,则另一个数为(A) 80 (B) 50 (C) 30 (D) 604. 一条直线与坐标轴的交点为(3, 0)和(0, 4),则该直线的斜率为(A) -4/3 (B) 3/4 (C) 4/3 (D) -3/45. 若log₃(p + 2) = 2,则p的值为(A) 7 (B) 9 (C) 25 (D) 5...第二部分:填空题(共20题,每题3分,共计60分)请在空格内填写合适的数值或选项。

1. 甲、乙两人同时赶路,甲的速度是乙的2倍,若甲行走6小时,乙行走的时间为______小时。

2. 若a + b = 8且a² - b² = 48,则a的值为______。

3. 设集合A = {x | x² - 4x - 5 = 0},则集合A内的元素个数为______。

4. 若f(x) = 2x² - 3x + 1,则f(1)的值为______。

5. 已知三角形ABC,若∠B = 60°,AB = 4,BC = 6,则AC的长度为______。

...第三部分:解答题(共4题,每题25分,共计100分)1. 解方程组:{ 3x + 5y = 4{ 2x - 3y = -72. 已知函数f(x) = x² - 3x + k,当x = 2时,f(x)的值为4。

求k的值。

3. 某种动物的数量每年都以30%的速率增长。

若现有该种动物100只,则经过多少年后,该种动物的数量将达到1000只?4. 某城市的公交车每10分钟一班,而地铁每15分钟一班。

招聘数学教师考试试题

招聘数学教师考试试题

招聘数学教师考试试题一、选择题(每题2分,共20分)1. 下列哪个选项是数学中的基本逻辑运算?A. 与B. 或C. 非D. 所有以上2. 在数学中,实数集通常用哪个符号表示?A. NB. ZC. QD. R3. 以下哪个公式是圆的面积公式?A. A = πr²B. A = 2πrC. A = r²D. A = 4πr²4. 函数f(x) = x² + 3x + 2的顶点坐标是:A. (-1, 2)B. (-2, 4)C. (1, 0)D. (2, 4)5. 以下哪个选项是数学归纳法的步骤?A. 基础情况B. 归纳假设C. 归纳步骤D. 所有以上6. 微积分中的导数定义涉及到哪个极限过程?A. Δx → 0B. Δy → 0C. (Δy/Δx) → ∞D. (Δy/Δx) → 17. 以下哪个是欧拉公式的一个特性?A. e^(iπ) + 1 = 0B. e^(iπ) - 1 = 0C. e^(iπ) × 1 = 0D. e^(iπ) ÷ 1 = 08. 一个集合的子集数量是2^n,其中n是该集合的元素数量。

这描述了什么数学原理?A. 组合数学B. 概率论C. 集合论D. 图论9. 以下哪个选项是复数的标准形式?A. a + biB. a - biC. a × biD. a ÷ bi10. 以下哪个定理是几何学中关于三角形的一个定理?A. 勾股定理B. 基本定理C. 等式定理D. 相似三角形定理二、填空题(每题2分,共20分)11. 二次方程ax² + bx + c = 0的判别式是_________。

12. 欧几里得算法是用来计算两个正整数的最大公约数,其基本步骤是_________。

13. 一个函数在某点连续的充分必要条件是该点的_________极限存在且有限。

14. 集合{1, 2, 3}的幂集包含的元素数量是_________。

高中部教师招聘数学试题 Word版含答案

高中部教师招聘数学试题 Word版含答案

数学教师招聘模拟试题一、选择题1、已知复数121,1z i z i =-=+,则12z z i等于 .A 2i .B 2i - .C 2i + .D 2i -+2、设P 和Q 是两个集合,定义集合Q P -={}Q x P x x ∉∈且,|,如果{}1log 2<=x x P ,{}12<-=x x Q ,那么Q P -等于{}{}{}{}32211010<≤<≤<<≤<x x D.x x C.x x B.x x A. 3、下列命题是真命题的是.A 若sin cos x y =,则2x y π+=.B 1,20x x R -∀∈> .C 若向量,//+=0a b a b a b r r r r r r r 满足,则 .D 若x y <,则 22x y <4、 已知向量为单位向量,且21-=⋅b a ,向量与+的最小值为...A B C D 131245、若函数)12(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是 2211-==-== D. x C. x B. x A. x6、设等比数列{}n a 的公比为q ,则“10<<q ”是“{}n a 是递减数列”的.A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件7、已知函数x x g x x f lg )(,)(2==,若有)()(b g a f =,则b 的取值范围是 .A [0,+∞) .B (0,+∞) .C [1,+∞) .D (1,+∞)8.观察数组: ()1,1,1--, ()1,2,2, ()3,4,12, ()5,8,40,…, (),,n n n a b c ,则n c 的值不可能为( )A. 112B. 278C. 704D. 16649.《九章算术》是我国古代内容极为丰富的数学典籍,其中第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果=n ( ) A. 5 B. 4 C. 3 D. 210.已知函数()sin 3cos ()f x x x x R =+∈, 先将()y f x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(0θ>)个单位长度,得到的图象关于直线π43=x 对称, 则θ的最小值为( )A.6π B. 3π C. 512π D. 23π11.已知F 为双曲线C : 22221x y a b-=(0a >, 0b >)的右焦点, 1l , 2l 为C 的两条渐近线,点A 在1l 上,且1FA l ⊥,点B 在2l 上,且1FB l P ,若45FA FB =,则双曲线C 的离心率为( )A .5 B. 52 C.52或352 D. 52或5 12.已知函数()ln(2)x f x x=,关于x 的不等式()()20f x af x +>只有两个整数解,则实数a 的取值范围是A .1(,ln 2]3B . 1(ln 2,ln 6)3-- C .1(ln 2,ln 6]3-- D .1(ln 6,ln 2)3-二、填空题(每小题5分,共20分)13、已知函数23)(nx mx x f +=的图象在点)2,1(-处的切线恰好与直线03=+y x 平行,若)(x f 在区间]1,[+t t 上单调递减,则实数t 的取值范围是________.14、设⎰-=π)sin (cos dx x x a ,则二项式6)1(xx a -的展开式中含2x 项的系数为__________.15、设,x y 满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-+30102x y x y x ,若z mx y =+的最小值为3-,则m 的值为 .16、已知正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为2,当球的体积最小时,正六棱柱底面边长为 . 三.解答题(共6小题,计70分)17、(本题12分)已知B A ,是直线0y =与函数2()2cos cos()1(0)23xf x x ωπωω=++->图像的两个相邻交点,且.2||π=AB(Ⅰ)求ω的值;(Ⅱ)在锐角ABC ∆中,c b a ,,分别是角A ,B ,C 的对边,若ABC c A f ∆=-=,3,23)( 的面积为33,求a 的值. 18、(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n 。

最新高中招考教师数学试题含参考答案(三套)

最新高中招考教师数学试题含参考答案(三套)

高中数学教学招聘考试一一、填空题(本题14小题,共计42分) 1.设数集M={x|m ≤x ≤m+43},N={x|n -31≤x ≤n},且M 、N 都是集合{x|0≤x ≤1}的子集,如果把b -a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是___________.2.矩阵⎥⎥⎦⎤⎢⎢⎣⎡-32521的特征值是 ______。

3.已知向量(2,1),(3,1)==-a b ,则a 与b 的夹角θ为 _____. 4.在等式“1=()1+()9”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数是 _________.5.已知(||1)5z z i =-+,则复数z = _______.6. 已知伪代码如图,则输出结果S =_7.过点(3,4)M -,且在两坐标轴上截距相等的直线的方程为 __________________________.8.若32200<-⎰⎰tt dx xdx ,则∈t ____ 9.已知对称轴为坐标轴的双曲线有一条渐近线的方程 为20x y -=,则双曲线的离心率为 __________.10.已知定义在实数集R 上的偶函数()f x 在区间[)0,+∞上的单调增函数,若(1)(lg )f f x <,则x 的取值范围是 ______________ .11.在ABC ∆中,已知cos cos a b c B c A -=-,则ABC ∆为 ________三角形. 12.用三种不同颜色给3个矩形随机涂色,每个矩形上涂一种颜色,则3个矩形颜色都不同的概率是 ______.13.老张、老刘、老李和老赵, 一个是教师,一个是职员,一个是工人,一个是干部,还知道(1)张、刘为邻居,每天骑车上班;(2)老刘比老李年纪大;(3)老张教老赵打太极拳;(4)教师每天步行上班;(5)职员的邻居不是干部;(6)干部和工人不认识;(7)干部比职员和工人年纪都大,那么他们的职业按职员、工人、干部、教师的姓氏排列为____________________.14. 设331)(+=xx f ,利用课本中推导等差数列前n 项和的公式的方法,可求得f (-12)+ f (-11)+ f (-10)+…+ f (0)+…+ f (11)+ f (12)+ f (13)的值为________.二、解答题(本题6小题,共计58分)15.如图,摩天轮的半径为40m ,点O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处. (1)试确定在时刻t (min )时点P 距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间点PI←0S←0 While I <6 I←I+2 S←S+I 2End while Print S (第6题)16.已知函数()ln(21)f x x =+. (Ⅰ)求曲线()ln(21)f x x =+,在12x =处的切线的方程; (Ⅱ)若方程()()f x f x a '+=有解,求a 的取值范围.17.如图,以长方体ABCD-A 1B 1C 1D 1的顶点A 、C 及另两个顶点为顶点构造四面体. (1)若该四面体的四个面都是直角三角形,试写出一个这样的四面体(不要求证明);(2)我们将四面体中两条无公共端点的棱叫做对棱,若该四面体的任一对对棱垂直,试写出一个这样的四面体(不要求证明);(3)若该四面体的任一对对棱相等,试写出一个这样的四面体(不要求证明),并计算它的体积与长方体的体积的比.18.设绝对值小于1的全体实数的集合为S ,在S 中定义一种运算“*”, 使得abba b a ++=*1(1) 证明:如果a 与b 属于S ,那么b a *也属于S. (2) 证明:结合律)()(c b a c b a **=**成立. 19.如图,过椭圆)0(12222>>=+b a b y a x 的左焦点F 任作一条与两坐标轴都不垂直的弦AB ,若点M 在x 轴上,且使得MF 为AMB ∆的一条内角平分线,则称点M 为该椭圆的“左特征点”.(1):求椭圆)0(1522>>=+b a y x 的“左特征点”M 的坐标;(2):试根据(1)中的结论猜测:椭圆)0(12222>>=+b a b y a x 的“左特征点”M 是一个怎样的点?并证明你的结论.A B C DD 1+ A 1+ C 1+ B 1+20.关键词:数学作文理论背景:从2000年开始,我国已把“探索型课题学习”列入教学计划,并规定了教学时间。

高中数学教师招考试试题

高中数学教师招考试试题

高中数学教师招考试试题一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x^2 - 4x + 3,下列哪个选项是该函数的顶点坐标?A. (1, 0)B. (2, -1)C. (-1, 6)D. (2, 1)2. 一个圆的半径为5,圆心坐标为(0, 0),那么圆上任意一点到圆心的距离是多少?A. 5B. 10C. √10D. 2√53. 一个等差数列的前三项分别为2, 5, 8,那么这个数列的公差是多少?A. 1B. 2C. 3D. 44. 已知三角形ABC的三边长分别为3, 4, 5,那么这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 不规则三角形5. 函数y = sin(x)的周期是多少?A. 2πB. πC. 4πD. 16. 一个正方体的体积为27立方厘米,那么它的对角线长度是多少?A. 3√3B. 6C. 3√2D. √277. 已知等比数列的第二项为3,第三项为9,那么这个数列的公比是多少?A. 1B. 2C. 3D. 48. 函数y = 2^x的反函数是什么?A. y = log2(x)B. y = log10(x)C. y = √xD. y = x^29. 一个圆的直径为10,那么它的面积是多少?A. 25πB. 50πC. 100πD. 2510. 已知函数f(x) = x^3 - 6x^2 + 9x + 1,那么f(2)的值是多少?A. 1B. -1C. 3D. -3二、填空题(每题4分,共20分)11. 一个圆的周长为44厘米,那么它的半径是______厘米。

12. 已知函数f(x) = x^2 - 4x + 3,求f(-1)的值。

13. 一个等差数列的前四项分别为2, 5, 8, 11,那么这个数列的第五项是多少?14. 已知一个三角形的两边长分别为6和8,夹角为90度,那么第三边的长度是多少?15. 函数y = 3x + 2的图像与x轴交于点(-2/3, 0),求函数的斜率。

教师招聘数学试题及答案

教师招聘数学试题及答案

教师招聘数学试题及答案一、选择题(每题2分,共10分)1. 已知函数f(x) = 2x^2 - 3x + 5,求f(1)的值。

A. 6B. 4C. 8D. 10答案:B2. 计算下列极限:\[\lim_{x \to 0} \frac{e^x - \cos x}{x^2}\]A. 0B. 1C. 2D. 3答案:C3. 集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。

A. {1, 2, 3}B. {2, 3}C. {1, 3, 4}D. {4}答案:B4. 若直线y = 2x + 1与x轴交于点A,与y轴交于点B,则线段AB 的长度为:A. √5B. √10C. √17D. √21答案:A5. 已知等差数列{an}的首项a1 = 3,公差d = 2,求第5项a5。

A. 11B. 13C. 15D. 17答案:A二、填空题(每题3分,共15分)6. 计算定积分∫ from 0 to 1 (3x^2 - 2x + 1) dx的值为______。

答案:17. 已知向量a = (1, -2),向量b = (2, 3),求向量a与向量b的数量积a·b为______。

答案:-18. 计算复数z = 1 + 2i的模|z|为______。

答案:√59. 已知函数f(x) = x^3 - 3x^2 + 2,求导数f'(x)为______。

答案:3x^2 - 6x10. 计算二项式(1 + x)^5的展开式中x^3的系数为______。

答案:10三、解答题(每题10分,共20分)11. 证明:对于任意实数x,不等式x^2 + 2x + 1 ≥ 1成立。

证明:x^2 + 2x + 1 = (x + 1)^2,由于平方的结果总是非负的,即(x + 1)^2 ≥ 0,所以x^2 + 2x + 1 ≥ 0 + 0 + 1 = 1。

因此,不等式x^2 + 2x + 1 ≥ 1对于任意实数x都成立。

高中数学教师招聘考试试题

高中数学教师招聘考试试题

高中数学教师招聘考试试题一、选择题1. 已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求f(1)的值。

A. 0B. 1C. 2D. 32. 若一个等差数列的前三项分别为a-1, a, a+1,求该等差数列的公差。

A. 1B. 2C. 3D. 43. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为:A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)4. 已知一个圆的半径为5,圆心坐标为(3,4),则该圆的方程为:A. (x-3)^2 + (y-4)^2 = 25B. (x-3)^2 + (y+4)^2 = 25C. (x+3)^2 + (y-4)^2 = 25D. (x+3)^2 + (y+4)^2 = 255. 若a, b, c为等比数列,且a=2, c=16,求b的值。

A. 4B. 8C. 16D. 32二、填空题6. 已知函数g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求g(x)的极值点。

7. 一个等比数列的前五项之和为31,首项为2,求该等比数列的公比。

8. 在平面直角坐标系中,直线y=2x+3与圆x^2 + y^2 = 9相交于两点,求这两点的坐标。

9. 证明:若一个三角形的两边长分别为a和b,夹角为θ,则该三角形的面积可以用公式S = 1/2 * a * b * sin(θ)计算。

三、解答题10. 已知一个等差数列的前10项和为110,第5项为8,求该等差数列的首项和公差。

11. 给定一个二次函数y = ax^2 + bx + c,其顶点坐标为(-1, 3),且经过点(2, 5),求该二次函数的表达式。

12. 一个圆的直径为14,圆心坐标为(1, 1),求该圆的标准方程。

13. 证明:在任意一个正方形内,对角线的长度等于边长的根号2倍。

14. 给定一个三次函数y = x^3 + 2x^2 - 5x + 3,求其在x=1处的导数值。

高中数学教师招考试题

高中数学教师招考试题

高中数学教师招考试题(时间90分钟,满分100分)姓名: 联系电话:一.选择题:本大题共8小题,每小题5分,共40分。

1.复数的实部为( )A .B .1C .D .不存在2.长方体的三条棱长分别为) A . B .1C . 2D .3. 已知23tan sin =αα,则αα44cos sin -的值是( )A .-7B .21-C .43D .21 4.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )5.设的展开式的各项系数之和为,二项式系数之和为,若,则展开式中含项的系数为( )A .-150B .150C .-500D .5006.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为,甲、乙分到同一组的概率为,则的值分别为( ) A . , B . ,11ii +-01-4312(5n x -M N 240M N -=3x a p ,a p 105a =521p =105a =421p =C . ,D . ,7.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是( )A .双曲线的一支B .椭圆C .抛物线D .圆8.已知定义域为R 的函数,若关于的方程有3个不同的实根,则等于( )A .13B .C . 5D .二.填空题:本大题共2小题,每小题5分,共10分。

9.已知命题.若命题是假命题, 则实数的取值范围是 .10.给出以下四个命题:① 若,则;②简单随机抽样、系统抽样、分层抽样的共同特点是:抽样过程中每个个体被抽到的机会均等;③正弦函数在第一象限是增函数;④若数列为单调递增数列,则取值范围是;其中正确命题的序号为 .(写出所有你认为正确的序号)三.解答题:本大题共4小题,共50分。

11.(本题满分12分)在中,设的对边分别为,向量,,且. (Ⅰ)求角的大小;(Ⅱ)若,,求的面积.210a =521p =210a =421p =22:1O x y +=22:680C x y x +-+=1(1)1()1(1)x x f x x ⎧≠⎪-=⎨⎪=⎩x 2()()0f x bf x c ++=123,,x x x 222123x x x ++2222b b +2232c c +2:,20p x R x ax a ∃∈++≤p a 0a b ⋅= 00a b ==或sin y x =2()n a n n n N λ+=+∈λ3λ>-ABC ∆,,A B C ,,a b c (cos ,sin )m A A =sin ,cos )n A A =- ||2m n +=A b=c =ABC ∆。

教师招聘数学高中试题

教师招聘数学高中试题

教师招聘数学高中试题### 高中数学教师招聘试题#### 一、选择题(每题4分,共40分)1. 若函数\( f(x) = ax^2 + bx + c \)是奇函数,则下列哪个选项是正确的?A. \( a = 0, b \neq 0, c = 0 \)B. \( a \neq 0, b = 0, c = 0 \)C. \( a = 0, b = 0, c = 0 \)D. \( a = 0, b = 0, c \neq 0 \)2. 已知\( \sin(\alpha) = \frac{1}{2} \),且\( \alpha \)为第二象限角,则\( \cos(\alpha) \)的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)3. 若\( \log_2 3 = m \),则\( 2^{m^2} \)的值为:A. 9B. 81C. 27D. 2434. 函数\( y = \frac{1}{x} \)的图象在点(1,1)处的切线斜率为:A. 0B. 1C. -1D. 无法确定5. 已知等比数列\( \{a_n\} \)的前三项分别为\( a_1, 4a_1, 9a_1 \),则该数列的公比\( q \)为:A. 2B. 3C. 4D. 66. 已知双曲线\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)的离心率为\( \sqrt{2} \),则\( a \)与\( b \)的关系为:A. \( a = b \)B. \( a = 2b \)C. \( b = 2a \)D. \( b = \sqrt{2}a \)7. 函数\( f(x) = x^3 - 3x \)的单调递增区间为:A. \( (-\infty, -1) \)和\( (1, +\infty) \)B. \( (-\infty, 1) \)和\( (1, +\infty) \)C. \( (-1, 1) \)D. \( (-\infty, -1) \)和\( (1, +\infty) \)8. 已知\( \tan(\theta) = 2 \),且\( \theta \)为第一象限角,则\( \sin(\theta) \)的值为:A. \( \frac{2\sqrt{5}}{5} \)B. \( \frac{\sqrt{5}}{5} \)C. \( \frac{2}{\sqrt{5}} \)D. \( \frac{1}{\sqrt{5}} \)9. 若\( \cos(\alpha) = \frac{3}{5} \),且\( \alpha \)为锐角,则\( \sin(\alpha) \)的值为:A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \( \frac{2}{5} \)D. \( \frac{1}{5} \)10. 函数\( y = \ln(x) \)的图象关于:A. 直线\( x = 1 \)对称B. 直线\( y = 1 \)对称C. 原点对称D. 直线\( y = x \)对称#### 二、填空题(每题4分,共20分)1. 若\( \tan(\alpha) = \frac{1}{2} \),且\( \alpha \)为锐角,则\( \sin(\alpha) = \_\_\_\_\_\_\_\。

应聘老师试题及答案高中

应聘老师试题及答案高中

应聘老师试题及答案高中一、单项选择题(每题2分,共20分)1. 以下哪项是高中数学中常见的几何图形?A. 圆B. 椭圆C. 双曲线D. 所有以上选项答案:D2. 化学中,元素周期表的排列依据是什么?A. 原子序数B. 原子质量C. 电子排布D. 所有以上选项答案:A3. 在物理学中,牛顿第一定律描述了什么?A. 物体在没有外力作用下会保持静止或匀速直线运动B. 物体在受到力的作用下会加速C. 物体在受到力的作用下会减速D. 物体在没有外力作用下会改变运动状态答案:A4. 以下哪项是高中生物中细胞的基本结构?A. 细胞壁B. 细胞膜C. 细胞核D. 所有以上选项答案:D5. 英语语法中,以下哪项是正确的主谓一致形式?A. The team are playing soccer.B. The team is playing soccer.C. The teams are playing soccer.D. The teams is playing soccer.答案:B6. 历史学科中,文艺复兴时期开始于哪个世纪?A. 12世纪B. 14世纪C. 16世纪D. 18世纪答案:B7. 地理学中,地球的大气层按照高度可分为几层?A. 2层B. 3层C. 4层D. 5层答案:C8. 在高中语文教学中,以下哪项是诗歌鉴赏的重要内容?A. 诗歌的节奏B. 诗歌的韵律C. 诗歌的主题D. 所有以上选项答案:D9. 以下哪项是高中政治学科中关于经济制度的基本内容?A. 市场经济B. 计划经济C. 混合经济D. 所有以上选项答案:D10. 计算机科学中,二进制数系统中的数字只有哪两个?A. 0和1B. 0和2C. 1和2D. 1和3答案:A二、填空题(每题2分,共20分)1. 在高中物理中,光的折射定律是由_________发现的。

答案:斯涅尔2. 高中化学中,水的化学式是_________。

答案:H2O3. 在高中生物中,细胞分裂过程中,染色体数量加倍的阶段是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

舟山校区高中数学教师招聘测试卷本试卷分选择题和非选择题两部分。

全卷共5页,满分150分,考试时间120分钟。

第I 卷(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式:球的表面积公式 棱柱的体积公式球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高343V R π= 棱台的体积公式其中R 表示球的半径 11221()3V h S S S S =棱锥的体积公式 其中12,S S 分别表示棱台的上、下底面积,13V Sh = h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件,A B 互斥,那么一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A.B. ∅ B. }2{C. }5{D. }5,2{2. 复数226(12)a a a a i --++-为纯虚数的充要条件是( )A.2a =-B.3a =C.32a a ==-或D. 34a a ==-或3. 甲,乙两人分别独立参加某高校自主招生考试,若甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望E ξ是( ) A.43B.119 D.894. 右面的程序框图输出的结果为( )5.已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①//l m αβ⇒⊥;②//l m αβ⊥⇒;③//l m αβ⇒⊥其中假命题的个数为( )6. 已知函数f (x )的图象如右图所示,则f (x )的解析式可能是( )A .()x x x f ln 22-=B .()x x x f ln 2-=C .||ln 2||)(x x x f -=D .||ln ||)(x x x f -=7. 等差数列{}n a 的前n 项和为n S ,且满足548213510S a a -+=,则下列数中恒为常数的是( )(第6题A.8aB. 9SC. 17aD. 17S8. 已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 作双曲线C 的一条渐近线的垂线,垂足为H ,若2F H 的中点M 在双曲线C 上,则双曲线C 的离心率为( )A 2.3C .2 D .39.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则 A.B.()()1212,p p E E ξξ>< B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.11. 设函数21)(xx f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99Λ==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-=Λ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

11. 已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=-12.13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a的取值范围是________.13.一个几何体的三视图如右图所示,则该几何体的表面积为 . 14.函数sin cos ()sin 2x xf x x e+=+的最大值与最小值之差等于 .15. 已知奇函数()f x 是定义在R 上的增函数,数列{}n x 是一个公差为2的等差数列满足891011()()()()0f x f x f x f x +++=,则2011x 的值16. 如图,线段AB 长度为2,点,A B 分别在x 非负半轴和y 非负半轴上滑动,以线段AB 为一边,在第一象限内作矩形ABCD ,1BC =,O 为坐标原点,则OC OD u u u r u u u rg的取值范围是 .17. 设集合A (p ,q )=2{R |0}x x px q ∈++=,当实数,p q 取遍[]1,1-的所有值时,所有集合A (p ,q )的并集为 .三、解答题: 本大题共5小题, 共72分.解答应写出文字说明, 证明过程或演算步骤.18. (本小题14分)已知函数2()2sin ()3cos 21[,]442f x x x x πππ=+--∈(1)求()f x 的单调递增区间;(2)若不等式()2f x m -<在[,]42x ππ∈上恒成立,求实数m 的取值范围.19.(本小题14分) 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,0//,90AD BC ADC ∠=,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2PA PD ==,112BC AD ==,3CD =.(I )求证:平面PQB ⊥平面PAD ;(II )若二面角M BQ C --为30°,设PM tMC =,试确定t 的值20. (本小题14分)已知数列{}n a 的前n 项和是n S (*n N ∈),11a =且1102n n n S S a -⋅+=(1)求数列{}n a 的通项公式;231111(2):*,1111n n N n S S S +∈⋅⋅>+---L 求证对任意的不等式成立.21.(本题满分15分)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P在第一象限.(1)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标; (2)(3) 若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.22.(本小题15分)已知函数2()ln f x ax x=+(a ∈R).(1)当12a =时,求f (x )在区间[]1,e 上的最大值和最小值;(2)如果函数12(),(),()g x f x f x ,在公共定义域D 上,满足)()()(21x f x g x f <<,那么就称)(x g 为)x (f ),x (f 21的“活动函数”.已知函数2221211()()2(1)ln ,()222f x a x ax a x f x x ax =-++-=+.若在区间()1+∞,上,函数()f x 是12(),()f x f x 的“活动函数”,求a 的取值范围;2013年高考模拟试卷数学参考答案及评分标准一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目二、填空题:本大题共7小题,每小题4分,共28分。

第12题答案:31,2⎡⎤⎢⎥⎣⎦,上面那个不是18. (本小题14分)(1) ∵2()2sin ()21[,]442f x x x x πππ=+-∈,在的增区间()2sin(2)5322,,2245,7412f x x k x k k Z x x πππππππππ∴=-⎡⎤-+≤≤+∈∈⎢⎣⎡⎤∴∈⎢⎥⎣⎦Q …………分且…………分(2)()2[,]42f x m x ππ-<∈Q 在上恒成立19. (本小题14分)(I )∵12⊂12⊂(0,0,1)n =r(0,0,0)Q P B (C -(,,)M x y z(,,PM x y z =u u u ur (1,)MC x y z =---u u u u r PM tMC =u u u u r u u u ur (1))(x t x y t y z t z =--⎧⎪=⎨⎪=-⎩)11t x t y t z ⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪⎩QB =u u ur (,,)111t QM t t t =-+++u u u ur )m t =ur cos302n m n m ︒⋅===r u rr u r 3t =(本小题14分)11(1)2n n n n S S S S --=-21. 本题主要考查椭圆的 几何性质、点到直线距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力。

满分15分。

(I )设直线l 的方程为()0y kx m k =+<,由22221y kx mx y a b=+⎧⎪⎨+=⎪⎩,消去y 得,()22222222220ba k x a kmx a m ab +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭,由点P 在第一象限,故点P的坐标为22⎛⎫⎝;(II )由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22222222d b b a a k k =+++,因为22222b a k ab k+≥,所以2222222222222a b b b a abb a a k k ≤=-+++++,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -. 22.(本小题15分)解:(1)当12a =时,21()ln 2f x x x =+Q , 211()x f x x x x+'∴=+=;…………2分对于[]1,x e ∈,有()0f x '>,∴()f x 在区间[1, e]上为增函数,…………3分∴2max ()()12e f x f e ==+,min 1()(1)2f x f ==. …………5分(2)①在区间(1,+∞)上,函数()f x 是12(),()f x f x 的“活动函数”,则12()()()f x f x f x <<令221()()()()2ln 2p x f x f x a x ax x =-=--+<0,对(1,)x ∈+∞恒成立, 且1()()()h x f x f x =+=2212ln 2x ax a x -+-<0对(1,)x ∈+∞恒成立, ∵21(21)21(1)[(21)1]`()(21)2a x ax x a x p x a x a x x x--+---=--+==(*) …………7分 1)若12a >,令`()0p x =,得极值点11x =,2121x a =-, 当211x x >=,即112a <<时,在(2x ,+∞)上有`()0p x >,此时)(x p 在区间(2x ,+∞)上是增函数,并且在该区间上有()p x ∈(2()p x ,+∞),不合题意;…………9分当211x x <=,即1a ≥时,同理可知,)(x p 在区间(1,+∞)上,有)(x p ∈()1(p ,+∞),也不合题意;…………11分2) 若12a ≤,则有210a -≤,此时在区间(1,+∞)上恒有`()0p x <, 从而)(x p 在区间(1,+∞)上是减函数; 要使0)(<x p 在此区间上恒成立,只须满足1(1)02p a =--≤12a ⇒≥-, 所以21-≤a ≤21.…………12分 又因为2()2a h x x a x =-+-=2222()x ax a x a x x-+---=<0, ()h x 在(1, +∞)上为减函数, 1()(1)202h x h a ∴<=-+≤, 14a ∴≤…………14分综合可知a 的范围是11,24⎡⎤-⎢⎥⎣⎦.…………15分。

相关文档
最新文档