实验三两级交流放大电路

合集下载

实验三 负反馈放大电路的测试

实验三  负反馈放大电路的测试

若反馈网络与信号源、基本放大电路并联连接,则称为并联反馈,其反馈信号
i 为 3、f 交,流比负较反式馈为虽然iid降低ii 了 i放f 大电,路此的时放信大号倍源数内,阻但越可大稳,定反放馈大效倍果数越、好减。小非线性
失真、展宽通频带。电压负反馈能减小输出电阻、稳定输出电压,从而提高带负载能
力;电流负反馈能增大输出电阻、稳定输出电流。串联负反馈能增大输入电阻,并联
负反馈的输出电阻很大。在深度负反馈放大电路中,xi x f ,即 xid 0 ,因此可引
出两个重要概念,即深度负反馈放大电路中基本放大电路的两输入端可以近似看成短
路和断路,称为“虚短”和“虚断”。利用“虚短”和“虚断”可以很方便地求得深
度负反馈放大电路的闭环电压放大倍数。
《模拟电子技术》实验项目
《模拟电子技术》实验项目
实验三 负反馈放大电路的测试 一、实验目的
1、进一步熟悉集成运算放大电路的应用,掌握其基本特性; 2、研究负反馈放大电路的特性,熟悉负反馈对放大电路特性的影响; 3、熟悉负反馈放大电路特性的测试方法。 二、实验原理 1、把输出信号的一部分或全部通过一定的方式引回到输入端的过程称为反馈。反馈 放大电路由基本放大电路和反馈网络组成,其基本关系式为Af=A/(1+AF)。判断一个电 路有无反馈,只要看它有无反馈网络。反馈网络指将输出回路与输入回路联系起来的电 路,构成反馈网络的元件称为反馈元件。反馈有正、负之分,可采用瞬时极性法加以判 断:先假设输入信号的瞬时极性,然后顺着信号传输方向逐步推出有关量的瞬时极性, 最后得到反馈信号的瞬时极性,若反馈信号为削弱净输入信号的,则为负反馈,若为加 强净输入信号的,则为正反馈。反馈还有直流反馈和交流反馈之分。若反馈电路中参与 反馈的各个电量均为直流量,则称为直流反馈,直流负反馈影响放大电路的直流性能, 常用以稳定静态工作点。若参与反馈的各个电量均为交流量,则称为交流反馈,交流负 反馈用来改善放大电路的交流性能。

模拟电路实验指导书

模拟电路实验指导书

目录实验一整流、滤波、稳压电路 (1)实验二单级交流放大器(一) (5)实验三单级交流放大器(二) (7)实验四两级阻容耦合放大电路 (9)实验五负反馈放大电路 (11)实验六射极输出器的测试 (14)实验七 OCL功率放大电路 (16)实验八差动放大器 (18)实验九运算放大器的基本运算电路(一) (20)实验十集成运算放大器的基本运算电路(二) (22)实验十一比较器、方波—三角波发生器 (24)实验十二集成555电路的应用实验 (26)实验十三 RC正弦波振荡器 (30)实验十四集成功率放大器 (32)实验十五函数信号发生器(综合性实验) (34)实验十六积分与微分电路(设计性实验) (36)实验十七有源滤波器(设计性实验) (38)实验十八电压/频率转换电路(设计性实验) (40)实验十九电流/电压转换电路(设计性实验) (41)实验一整流、滤波、稳压电路一、实验目的1、比较半波整流与桥式整流的特点。

2、了解稳压电路的组成和稳压作用。

3、熟悉集成三端可调稳压器的使用。

二、实验设备1、实验箱(台)2、示波器3、数字万用表三、预习要求1、二极管半波整流和全波整流的工作原理及整流输出波形。

2、整流电路分别接电容、稳压管及稳压电路时的工作原理及输出波形。

3、熟悉三端集成稳压器的工作原理。

四、实验内容与步骤首先校准示波器。

1、半波整流与桥式整流:●分别按图1-1和图1-2接线。

●在输入端接入交流14V电压,调节使I O=50mA时,用数字万用表测出V O,同时用示波器的DC档观察输出波形记入表1-1中。

图1-1图1-2Vi(V) V O(V) I O (A) V O波形半波桥式2、加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图1-3接线,比较并测量接C 与不接C两种情况下的输出电压V O及输出电流I O,并用示波器DC档观测输出波形,记入表1-2中。

图1-33上述电路不动,在电容后面加稳压二极管电路(510Ω、VDz),按图1-4接线。

多级放大电路实验报告

多级放大电路实验报告

多级放大电路实验报告多级放大电路实验报告引言:多级放大电路是电子工程中常见的一种电路结构,它可以将输入信号放大到所需的幅度,以便用于各种应用。

本实验旨在通过搭建多级放大电路并进行实际测量,探索其工作原理和性能特点。

一、实验目的本实验的主要目的是:1. 了解多级放大电路的基本原理和结构;2. 学习如何搭建和调试多级放大电路;3. 测量和分析多级放大电路的增益、频率响应等性能指标。

二、实验原理多级放大电路由多个级联的放大器组成,每个放大器都有自己的增益和频率响应特性。

在本实验中,我们将使用两个级联的放大器,每个放大器都由一个晶体管和相关的电路组成。

三、实验器材与装置1. 信号发生器:用于产生待放大的输入信号;2. 电阻、电容等被动元件:用于构建放大电路;3. 两个晶体管:作为放大器的核心元件;4. 示波器:用于测量电路的输入输出信号。

四、实验步骤1. 搭建第一级放大电路:根据实验原理,按照电路图连接电阻、电容和晶体管等元件,确保电路连接正确且无短路或接触不良的情况。

2. 调试第一级放大电路:使用信号发生器产生一个输入信号,将其连接到第一级放大电路的输入端,通过示波器观察输出信号的波形和幅度,调整电路参数,使得输出信号能够得到适当的放大。

3. 搭建第二级放大电路:将第一级放大电路的输出端连接到第二级放大电路的输入端,按照相同的步骤进行搭建和调试。

4. 测量电路性能:使用示波器测量多级放大电路的输入输出信号,并记录其幅度、相位和频率等特性。

通过改变输入信号的频率,观察输出信号的变化,以了解电路的频率响应特性。

5. 分析实验结果:根据测量数据和实验原理,计算并比较多级放大电路的增益、频率响应等指标,分析电路的性能和可能的改进方向。

五、实验结果与讨论通过实验测量和分析,我们得到了多级放大电路的增益和频率响应曲线。

根据实验数据,我们可以看到在一定频率范围内,多级放大电路的增益基本稳定,并且随着频率的增加而略微下降。

实验三三极管放大电路设计

实验三三极管放大电路设计

实验三三极管放大电路设计一、实验目的1.了解三极管的基本工作原理和放大特性。

2.掌握三极管放大电路的设计和调整方法。

二、实验原理三极管放大电路是以三极管为核心元件的放大电路,通过适当的偏置和负反馈,可以实现对输入信号的放大。

三极管放大电路通常由输入端、输出端和三极管组成。

1.BJT三极管BJT三极管的主要结构有NPN型和PNP型两种。

在NPN型三极管中,由两个不掺杂的P型半导体夹着一个高掺杂的N型半导体构成,形成了PN结。

三极管的三个引脚分别为发射极(Emitter),基极(Base)和集电极(Collector)。

在基极与发射极之间加正向偏置电压Ube,使得PN结处于正向偏置状态。

当基极处于正向电压Ube时,使得发射极与集电极间形成一个电流通道。

此时,如果在集电极与发射极间设置一个负电压Uce,集电极的载流子会被集电区的电场吸引,形成集电电流Ic,从而实现了三极管放大器的放大作用。

三极管放大电路分为共发射、共基和共集三种基本结构。

常用的放大电路有共发射放大电路、共射放大电路和共源放大电路。

以下以共发射放大电路为例进行设计。

共发射放大电路的输入端是基极,输出端是集电极。

设计时需要注意以下几个方面:(1)确定输入和输出电阻:输入电阻是指输入端的电压变化引起的输入电流变化的比值,输出电阻是指输出端的电压变化引起的输出电流变化的比值。

一般来说,输入电阻越大越好,输出电阻越小越好。

(2)确定直流工作点:直流工作点是指三极管在放大器工作状态下的工作点。

选择合适的直流工作点,可以使输出信号对输入信号变化进行放大,同时尽量避免饱和和截至现象。

(3)选取合适的偏置电路:偏置电路用于确保三极管正常工作,在选择时需要保证偏置点稳定、温度稳定和电源稳压等。

三、实验步骤1.搭建共发射放大电路,具体电路如下图所示。

其中,三极管型号为2N39042.调节R1、R2和Re使得三极管的基极电压为0.6V左右,可以通过电压表测量。

模电实验报告-实验二两级放大电路实验

模电实验报告-实验二两级放大电路实验

模电实验报告-实验⼆两级放⼤电路实验模电实验报告实验名称:实验时间:第()周,星期(),时段()实验地点:教()楼()室指导教师:学号:班级:姓名:实验三两级放⼤电路⼀、实验⽬的进⼀步掌握交流放⼤器的调试和测量⽅法,了解两级放⼤电路调试中的某些特殊问题;⼆、实验电路实验电路如图5-1所⽰,不加C F ,R F 时是⼀个⽆级间反馈的两级放⼤电路。

在第⼀级电路中,静态⼯作点的计算为3Β11123R V V R R R ≈++, B1BE1E1C156V V I I R R -≈≈+, CE11C1456()V V I R R R =-++ 9B21789R V V R R R ≈++, B2BE2E2C21112V V I I R R -≈≈+, C2CE21101112()V V I R R R =-++图5-1 实验原理图第⼀级电压放⼤倍数14i2V1be115(//)(1)R R A r R ββ=-++其中i2789be2211()////[(1)]R R R R r R β=+++第⼆级电压放⼤倍数21013V2be2211(//)(1)R R A r R ββ=-++总的电压放⼤倍数O1O2O2V V1V2O1ii V V V A A A V V V ===gg gg gg 三、预习思考题1、学习mutisim2001或workbenchEDA5.0C 电⼦仿真软件2、按实际电路参数,估算E1I 、CE1V 、C1I 和E2I 、CE2V 、C2I 的理论值3、按预定静态⼯作点,以β1 =β2 = 416计算两级电压放⼤倍数V A4、拟定Om V g的调试⽅法四、实验内容和步骤1、按图5-1连接电路(三极管选⽤元件库中NPN 中型号National 2N3904)2、调整静态⼯作点调节R 1和R 7分别使E1V =1.7V ,E2V =1.7V 左右,利⽤软件菜单Analysis 中DC OpratingPoint 分析功能或者使⽤软件提供的数字万⽤表(Multimeter )测量各管C V 、E V 、B V 。

放大电路实验报告

放大电路实验报告

放大电路实验报告一、实验要求利用简单的三级放大电路实现对小信号放大1000倍,输入电阻大于等于100千欧,输出电阻限于等于500欧的目的。

二、实验环境Pspice仿真软件。

三、实验过程与分析初步设计:1、初步设计为第一级为共集放大电路,第二、三级为共射放大电路,分两次对信号进行放大。

2、由于输出电阻为500欧,设计第三级R C为500Ω,放大倍数为25倍,射级电阻的目的是保证一定的输入电阻,防止二、三级间损耗过大。

3、第二级放大倍数较大所以设计不带射级电阻,以尽量扩大放大倍数。

但需要考虑到第二级输出电阻不能过大,所以R C不应该过大。

4、第一级应保证足够大的输入电阻,由于共集电路的限制所以暂时没有考虑输出电阻。

5、电源利用正负6V电源。

6、为了使计算方便,三级间的连接方式使用阻容耦合的方式,使其静态工作点不互相影响。

7、利用以上的初步设计计算了电阻,在电阻的选取中主要考虑了各级放大电路的静态工作点,使U CE尽量保持在6V左右,以保证较大的放大幅度。

进行仿真:1、仿真过程中放大倍数没有准确的稳定在1000倍,通过调整了一些电阻的值使其在一定的频率范围内保持了1000(电容的值选取较大)。

2、在输出电阻的测量中没有问题,输出电阻在允许范围内。

3、在测量输入电阻时遇到了较大的问题,比计算中的共集输入电阻小了很多,被这个问题困惑了很久,最终通过仔细分析交流微变等效电路,发现第二级的输入电阻也对第一级的输入电阻产生了很大的影响(相当于负载),由于第二级的Rπ较小,所以极大的影响了第一级的输入电阻。

所以通过进一步的调整第二级的I CQ,来改变第二级的Rπ,使输入电阻达到100KΩ。

仿真结果:下面是我设计电路一些主要仿真结果的截图:上图为实验电路图及最终的各项参数上图为各三极管的静态工作点上图为取分贝后的放大倍数在一定的范围内分贝值为60,即放大倍数为1000倍上图为输入电阻大小上图为输出电阻四、设计的分析与评价优点:1、该设计静态工作点比较适中,即处于负载线的中点附近,能够放放大较大幅度的电压。

三极管两级放大电路实验

三极管两级放大电路实验

三极管两级放大电路实验一、实验目的(1)掌握多级放大电路性能指标的测量及与单级指标之间的关系。

(2)熟悉共集电极电路的特点和作为输出级的作用。

(3)掌握多级放大电路的设计方法。

二、实验原理(1)实验电路。

实验电路如图2.10所示。

第一级为共射放大电路,后级是共集放大电路,级间采用直接耦合,因此要注意前后级静态工作点互相影响的情况。

静态点调试时,可根据具体情祝做适当调整。

图2.10共集电路的特点是增益近似为1,输人电阻高,而输出电阻低,其应用非常广泛,可用作电路的输人级、输出级、中间级。

本电路中作为输出级,可增强放大电路的带负载能力。

(2)性能指标。

①电压增益Aⅴ.两级放大电路的总增益为共射和共集电路增益的乘积。

电压增益为Av =Aⅴ/Av₂= -β1(R lI Rⅰ2)×(1+β2)(Re2 II RL)/r be₁×[r be₂+(1+β2)(Re2 II RL)] (2.23)式中,Rⅰ₂为后级共集放大电路的输人电阻,有Rⅰ2=rbe+(1+β2)(R2||RL) (2.24)②输人电阻Rⅰ。

两级放大电路的输人电阻一般取决于第一级。

输人电阻为Rⅰ=rbe₁II R1 II R2 (2.25)如果第一级为共集放大电路,则输人电阻还与第二级有关。

③输出电阻R。

两级放大电路的输出电阻一般取决于最后一级。

如果末级为共集放大电路,则输出电阻还与倒数第二级有关。

两级放大电路的输出电阻为R₀=Rₑ₂||(Rᴄ+r be₂)/(1+β₂)三、实验设备与器件直流电源、数字万用表、数字示波器、低频波形发生器。

四、实验内容(1)测量静态工作点。

测量前后级的静态电流IcQ。

若静态工作点不合适,可适当调整R1、R2或Re1。

(2)测量交流性能指标。

参照单管共射电路的测量方法,波形发生器输出1kHz、20mVₚₚ正弦信号,接人放大器输人端Vⅰ,用示波器记录两级放大电路的输人和输出波形,测出电路的总增益、输人电阻和输出电阻。

多级放大电路的综合实验ppt课件

多级放大电路的综合实验ppt课件
uL=
.
17
四、实验报告要求
1、计算两级放大电路的开环和闭环的电压 放大倍数、输入电阻和输出电阻,与实验所 测得的数据进行比较,分析误差原因。
2、用实验所测得的数据说明电压串联负反 馈对放大电路性能(fBW、Ri、Ro、fH、 fL )的影响。
3、实验中的收获体会。 4、回答思考题。
.
18
.
5
表3-1
第一级T1
第二级T2
电位 测量值
UB1(V)
UE1(V) UC1(V) 2.2
UB2(V)
UE2(V) UC2(V) 3.2
.
6
2、测量两级放大电路的电压倍数Au、输入 电阻Ri、输出电阻Ro 和通频带BW
⑴ 测量Au、Ri、Ro
在输入端Us处加入1kHz、2mV的正弦信号 (有效值),将G点接地,用示波器监视输 出波形,在波形不失真的条件下,用交流毫 伏表按表3-2进行测量,并计算Au1、Au2 及总Au。
uo(mV)
7.5
5.1
10
10
.
16
5、选做内容:改接成电流并联负反馈(即将Rf、 Cf反馈支路在BD间接入),正弦信号US=10mV、 1kHz,重复实验步骤2的全部内容,填入下表3-7。
表3-7
电位 测量值
us(mV) 10
交流毫伏表测量数据
ui(mV)
uo(mV) RL开路
uo=
uL(mV) RL=5.1K
.
11
表3-3
中频
高频
低频
两级放大电 路(开 环)
fM(KHz) 1
uL(mV) RL=5.1K
fH(KHz)
uL(mV) RL=5.1K

实验报告多级放大电路

实验报告多级放大电路

实验报告多级放大电路引言多级放大电路是电子工程学中非常常见且重要的实验之一。

在本次实验中,我们将设计和搭建一个多级放大电路,然后测试并分析其性能。

多级放大电路在信号处理、音频放大等领域具有广泛的应用。

实验目的1. 学习多级放大电路的基本工作原理。

2. 设计和搭建一个多级放大电路,并测试其信号放大性能。

实验原理多级放大电路是由多个级联的放大器构成的,每个放大器被称为一个放大级。

每个放大级的输出作为下一个放大级的输入,因此输出信号将会经过多次放大。

多级放大电路的基本工作原理如下:1. 输入信号经过第一级放大器放大,得到一级放大信号。

2. 一级放大信号作为输入信号,经过第二级放大器放大,得到二级放大信号。

3. 二级放大信号作为输入信号,经过第三级放大器放大,得到三级放大信号,以此类推。

4. 最后一级的输出信号即为多级放大电路的输出信号。

多级放大电路通常由两种类型的放大器组成:电压放大器和功率放大器。

电压放大器用于放大输入信号的电压大小,而功率放大器用于放大信号的功率。

实验步骤与结果1. 根据实验要求,设计和搭建一个三级放大电路,其中第一级为电压放大器,后两级为功率放大器。

2. 连接实验电路,并检查电路连接是否正确。

3. 输入一个信号,测试多级放大电路的输出信号大小。

4. 使用示波器监测电路的频率、相位等性能指标,并进行记录。

5. 分析实验结果,并与理论计算进行比较。

实验结果显示,多级放大电路能够将输入信号的电压和功率进行相应的放大。

输出信号的大小与输入信号的幅度差异很大,从而实现了对信号的放大处理。

同时,电路的频率和相位表现良好,没有明显的失真或偏移现象。

实验分析与讨论1. 多级放大电路的放大倍数会随着级数的增加而增加,从而达到更大的信号放大效果。

2. 电路中的放大器应具有足够的带宽,以确保输入信号的频率范围能够得到充分的放大。

3. 多级放大电路中放大器的稳定性对于整个电路的性能至关重要,应注意稳定性分析与设计。

实验三 两级运放原理图设计及仿真

实验三 两级运放原理图设计及仿真
.8V|±10%; 工作温度范围 -20~80℃; 工艺:SMIC 0.18um CMOS

输出摆幅≥ ±1V;
失调≤ ±10mV; 噪声≤ 200(1kHz时);
参考电路1:
VDD M3 x iref vin1 M1 Vn Id5 M8 3 M5 M2 vin2 CL M7 y M4 M6
?唐长文菅洪彦通信系统混合信号vlsi设计全差分运算放大器设计课程设计报告设计全差分运算放大器设计课程设计报告
实验三 两级CMOS运放的原理图设计及仿真
实验目的:
掌握采用cadence实现模拟IC原理图设计的方法; 掌握集成运算放大器设计的参数估算方法; 掌握集成运算放大器主要参数的仿真方法;
实验报告: 描述设计仿真过程;
描述参数估算过程; 描述性能参数仿真过程及结果,并进行分析;
• 设计指标要求:
开环增益≥60dB; 单位增益带宽≥50MHz; 摆率(Slew Rate)≥ 5V/us; 相位裕度≥50 ICMR ≥ ±0.8V; CMRR ≥50dB; PSRR ≥50dB;
实验内容 采用传统的集成运放设计参数估算方法设 计运放; 完成原理图设计并仿真验证;
实验步骤:
根据设计指标,选择电路结构; 根据设计指标及电路结构,估算电路参数; 采用cadence进行电路参数仿真; DC仿真,检查电路工作状态; AC仿真考察幅频特性、相频特性等; 瞬态仿真,观察输入输出波形; 调整电路参数。 引入相位补偿网络,提高电路的稳定性; 设计优化。
• 参考过程:
(1)选取电路结构; (2)确定工作点:由功耗、增益等要求选取各支路的工作电流; 如参考电路2:
g m 2 Cox (W / L ) I DS / 2 1 1 ro go I DS

两级放大器实验报告

两级放大器实验报告

两级放大器实验报告两级放大器实验报告引言:放大器是电子电路中常见的重要组成部分,其作用是将输入信号放大到需要的幅度。

在实际应用中,常常需要使用多级放大器来增加信号的增益,以满足不同的需求。

本实验旨在通过搭建两级放大器电路,探究其工作原理和性能特点。

一、实验目的本实验的主要目的有以下几点:1. 了解两级放大器的基本原理和工作方式;2. 掌握放大器电路的搭建和调试方法;3. 测量放大器的电压增益、频率响应等性能参数;4. 分析和比较不同放大器电路的优缺点。

二、实验原理1. 两级放大器的基本原理两级放大器由两个级联的放大器组成,第一级放大器称为前置放大器,负责将输入信号放大到一定程度;第二级放大器称为输出放大器,进一步放大前一级的信号并驱动负载。

两级放大器的总增益等于各级放大器的增益的乘积。

2. 放大器电路的搭建本实验使用常见的共射放大器电路作为前置放大器,以及共射共集放大器电路作为输出放大器。

前置放大器的输入信号通过耦合电容传递给基极,输出信号通过耦合电容和负载电阻传递给输出端;输出放大器的输入信号通过耦合电容传递给基极,输出信号则由集电极输出。

1. 搭建两级放大器电路按照实验原理中给出的电路图,使用电子元器件搭建两级放大器电路。

注意连接的正确性和稳定性。

2. 调试放大器电路通过调整电路中的偏置电压、负反馈电阻等参数,使得放大器电路能够正常工作。

使用示波器观察输入和输出信号的波形,确保信号的放大和失真情况。

3. 测量放大器的性能参数使用信号发生器提供不同频率的输入信号,通过示波器测量输入和输出信号的幅度,并计算出放大器的电压增益。

同时,还可以测量放大器的频率响应、输入阻抗、输出阻抗等参数。

四、实验结果与分析1. 放大器的电压增益根据测量结果,可以得到放大器的电压增益。

通过比较不同频率下的增益值,可以分析放大器的频率响应特性。

2. 放大器的失真情况通过观察示波器上的波形,可以判断放大器是否存在失真现象。

两级交流放大电路实验报告

两级交流放大电路实验报告

两级交流放大电路实验报告两级交流放大电路实验报告引言:交流放大电路是电子学中非常重要的一个概念,它可以将输入信号放大到更大的幅度,从而增强信号的强度和质量。

本实验旨在通过搭建两级交流放大电路并进行实验验证,了解其工作原理和性能。

一、实验目的本实验的主要目的有以下几点:1. 了解交流放大电路的基本原理和工作方式;2. 学习搭建两级交流放大电路的方法;3. 通过实验验证交流放大电路的放大性能。

二、实验原理交流放大电路是通过放大电压信号的幅度来增强信号的强度。

它由输入级和输出级组成,其中输入级负责将输入信号放大到一定幅度,输出级则进一步放大信号并输出。

三、实验器材和元件本实验所需的器材和元件有:1. 信号发生器:用于产生输入信号;2. 两个三极管:作为放大器的核心元件;3. 电阻、电容等辅助元件:用于搭建电路和调整放大性能。

四、实验步骤1. 搭建输入级电路:将信号发生器的输出与第一个三极管的基极相连,通过调整电阻和电容的数值,使得输入信号可以被放大。

2. 搭建输出级电路:将第一个三极管的集电极与第二个三极管的基极相连,通过调整电阻和电容的数值,使得输出信号可以进一步放大并输出。

3. 连接电源:将电源正极与电路的正极相连,负极与电路的负极相连,确保电路可以正常工作。

4. 调整放大性能:通过调整电阻和电容的数值,使得交流放大电路的放大性能达到预期要求。

5. 连接信号源:将信号发生器的输出与输入级电路相连,调整信号发生器的输出幅度和频率,观察输出信号的变化。

五、实验结果与分析通过实验,我们观察到输入信号经过交流放大电路后,输出信号的幅度得到了显著增强。

同时,我们还可以通过调整电阻和电容的数值,来改变交流放大电路的放大倍数和频率响应。

六、实验总结本实验通过搭建两级交流放大电路并进行实验验证,使我们更加深入地了解了交流放大电路的工作原理和性能。

同时,通过调整电路参数,我们可以改变交流放大电路的放大倍数和频率响应,以适应不同的应用需求。

模电仿真实验指导书

模电仿真实验指导书

模拟电子技术基础实验指导书计算机与信息技术学院二O一O年三月目录第一部分上机仿真实验实验一Multisim软件的介绍与仿真实验二单管放大电路仿真分析实验三差动放大电路实验四比例运算放大电路仿真实验五加减运算放大电路实验六积分电路和微分电路实验七LC正弦波振荡电路的研究实验八OTL功率放大器仿真实验九串联型晶体管稳压电路实验十波形发生器电路仿真第二部分实验箱实验实验一单级交流放大电路实验二两级阻容耦合放大电路实验三负反馈放大电路实验四比例运算放大电路实验五加减运算放大电路实验六正弦波振荡器实验七整流滤波电路实验一Multisim软件的介绍与仿真一、实验目的1.初步掌握用multisim软件对电路进行仿真实验。

2.掌握电路的基本参数设置和测试方法。

二、实验内容1.电子仿真软件Multisim8简介:运行Multisim8,电子仿真软件后,先出现启动画面如图1所示,几秒钟后进入他的基本界面如图二所示。

基本界面最上方是菜单栏,共11项;菜单栏下方左边为系统工具栏共11项图1Multisim8启动画面图2Multisim8基本界面中间为设计工具栏共8项;再向右是使用中的元件列表和帮助按钮;右上角为仿真开关。

基本界面的左侧为元件工具栏,其中23个元件库中分别放置同一类的元件,左列从上到下分别是:电源库,基本元件库,二极管库,晶体管库,模拟元件库,TTL器件库,CMOS器件库,各种数字元件库,混合器件库,指示器件库,其他元件库,射频元件库等,右列为与实际元件相对应的现实性仿真元件模型快捷键按钮。

2.元件的放置和连接2.1电阻的放置单击基本界面左侧元件库左列第2个基本元件图表,将出现Select a compinent对话框如图3所示图3在Family栏下单击RESISTOR,在Component栏中选100ohm-5%,注意ohm 表示欧姆,单击OK,再在平台上单击左键即可将电阻R1放置到平台上,继续单击左键可连续放置电阻,单击右键停止放置退出,右击R1,可在下拉菜单中单击90 Cloxkwise,可将R1顺时针转90度竖立放置。

实验三三极管放大电路实验

实验三三极管放大电路实验

实验三三极管放大电路实验一、实验目的1.学习测量和调整放大器的静态工作点;2.学习测量电压放大倍数;3.了解共射极放大器的参数变化对静态工作点、放大倍数及输出波形的影响。

二、实验与原理电路图单管交流放大实验电路如图6-1所示。

图6-1 三极管放大电路实验电路图1.由三极管组成的放大电路为了获得最大不失真输出信号,必须合理设置静态工作点。

如果静态工作点太高或太低,或输入信号过大,都会使输出波形产生非线性失真。

对于小信号放大器,工作点都选择在交流负载线的中点附近,一般采用改变偏置电阻R B的方法来调节静态工作点。

2.电压放大倍数A u是指放大电路正常(即不失真)工作时对输入信号的放大能力,即A u=U o/U i,式中,Uo、Ui为输出和输入电压的有效值,可以用晶体管毫伏表测量。

三、仪器设备1.直流稳压电源2.晶体管毫伏表3.万用表4.信号发生器5.示波器四、实验内容与步骤1.先将直流稳压电源得输出调至+12V(以万用表测量的值为准),然后关掉电源。

用导线将电源输出接到实验电路板上,并按图6-1接好实验电路(R C=2kΩ),检查无误后接通电源。

2.三极管放大电路的静态研究(1)调节R w使放大器的集电极电位U E =2V左右,然后分别测出U B、U C,再计算出U BE、U CE、I C的大小(已知β=90)。

(2)左右调节R w,分别观察表格6-1中各量的变化趋势,并记录。

表6-13.三极管放大电路的动态研究(1)重新调节静态工作点U E =2V左右。

(2)使信号发生器输出1kHz、10mV的正弦波信号,接到放大器的输入端,将放大器的输出(R L=∞)信号接至示波器上观察输出波形,若不失真,测出u i和u o的大小,计算出电压放大倍数,并与估算值相比较。

(3)在输出波形不失真的情况下,按表6-2中给定的条件,测量并记录输出电压u o,计算电压放大倍数。

与预习结果相比较。

表6-2*4.调出放大器的最大输出幅度:在上述条件下,接上2kΩ负载电阻,调节R B使不失真时的输出电压最大(这里是指在Q点可调的情况下,电路所能达到的最大不失真输出幅度)。

两级负反馈放大器实验流程

两级负反馈放大器实验流程

两级负反馈放大器实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、实验目的1. 理解两级负反馈放大器的工作原理。

2. 学习如何设计和搭建两级负反馈放大器电路。

模拟实验三---三极管以及放大电路实验--2014

模拟实验三---三极管以及放大电路实验--2014

模拟实验三三极管及其放大电路实验的参考资料请根据给的资料书写自己的预习报告,完成电路的预设方案、测量值的理论计算部分。

本次主要实验内容之一是:射极偏置CE电路的测量,包括:CS9013的β值测量,电压放大倍数的测量(区分有无Ce两种情况),输入、输出电阻,失真的记录(要求记录当时对应的Q的参数值),幅频特性的测试f H。

本次主要内容之二是:积分电路、微分电路的实验,参看实验二的要求。

以下是参考资料:一.实验目的1.对晶体三极管(3DG6、CS9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。

2.学习用数字万用表、模拟万用表对三极管的三极区分以及β值进行测试的方法。

3.三极管(如: CS9013)的β值的测试。

4.研究静态工作点对放大电路动态性能的影响。

5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。

6. 调节射极偏置CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。

7.用Multisim软件完成对射极偏置CE电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。

二.知识要点1.半导体三极管半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。

半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN 型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。

其功耗大于1W的属于大功率管,小于1W的属于小功率管。

半导体三极管的参数主要有电流放大倍数β、极间反向电流I CEO、极限参数(如最高工作电压V CEM、集电极最大工作电流I CM、最高结温T jM、集电极最大功耗P CM)以及频率特性参数等。

晶体管两级放大电路实验报告

晶体管两级放大电路实验报告

竭诚为您提供优质文档/双击可除晶体管两级放大电路实验报告篇一:实验三晶体管两级放大电路实验报告《模拟电子技术》实验报告篇二:实验四两级放大电路实验报告实验四两级放大电路一、实验目的l、掌握如何合理设置静态工作点。

2、学会放大器频率特性测试方法。

3、了解放大器的失真及消除方法。

二、实验原理1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管bg2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av为:Vo2Vo2Vo2Vo2Vo1VsViVi1Vi2Vi1式中电压均为有效值,且Vo1?Vi2,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。

当忽略信号源内阻Rs和偏流电阻Rb的影响,放大器的中频电压增益为:Vo1Vo1?1R?L1Rc1//rbe2AV11VsVi1rbe1rbe1Vo2Vo2?2R?L2Rc2//RLAV22Vi1Vo1rbe2rbe2Rc1//rbe2Rc2//RLAV?AV1?AV2??1??2rbe1rbe2必须要注意的是AV1、AV2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。

2、在两极放大器中β和Ie的提高,必须全面考虑,是前后级相互影响的关系。

3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。

guo?gu1o?gu2o式中gu?20logAV(db)三、实验仪器l、双踪示波器。

2、数字万用表。

3、信号发生器。

4、毫伏表5、分立元件放大电路模块四、实验内容1、实验电路见图4-1RL3K2、设置静态工作点(l)按图接线,注意接线尽可能短。

(2)静态工作点设置:要求第二级在输出波形不失真的前提下幅值尽量大,第一级为增加信噪比,静态工作点尽可能低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两级交流放大电路
一.实验目的
1. 学习两级交流放大电路静态工作点的调整方法。

2. 学习两级交流放大电路电压放大倍数的测量方法。

3. 学习放大电路频率特性的测量方法。

二.电路原理简述
图3-1
其中:R W1=100k Ω,R W2=10k Ω,R B1=10k Ω,R B21=1k Ω, R'C2=120Ω,R C1=100Ω/2W ,R C2=R E =51Ω,R B22=680Ω,C 1=C 2=C 3=10μF/25V, C E =470μF/25V, C 4=2.2μF/25V
三.实验设备
名称 数量 型号
1. 直流稳压电源 1台 0~30V 可调 2. 低频信号发生器 1台 3. 示波器 1台
4. 电阻 1只 510Ω*1 5. 电位器 1只 1k Ω*1 6. 两级交流放大电路模块 1块 ST2001
7. 短接桥和连接导线 若干 P8-1和50148 8. 实验用9孔插件方板 297mm ×300mm
四. 实验内容与步骤
1. 按电源原理图检查实验电路及外部接线无误后方可合上电源。

2. 调整静态工作点
接通稳压电源,调整R
W1使V
C1
=5V左右,确定第一级静态工作点Q
10
,调节
R W2使第二级静态工作点Q
2
大致在交流负载线的中点(按电路参数,实验前用图
解法求出V
CE2
的数值)
3. 测两级放大电路的放大倍数。

1)加输入信号V
i1
=2mv,f=1kHz.用示波器观察第一,第二的输出电压波形有无失真?若有失真现象,则应加输入信号之后,用示波器观察输出波形有寄生振荡时,首先采取措施消除振荡方可进行实验,消除寄生振荡方法如下:将信号发生器,稳压电源等仪器的接线重新整理一下,应使这些线尽可能
短些。

假如振荡仍不能消除时,可在适当位置(如T
2
的b、c级之间)加一个容量电容(几个到几千皮法)。

具体接入位置和电容数值可由实验确定,此法消振的效果较为显著。

另外由信号发生器至两级放大器输入端的接线要使用屏蔽线,以防止干扰信号进入放大器。

2)在输出不失真的情况下,测量并计入第一,第二输出电压V
02和V
01
分别计算
第一,二级的A
V1,A
V2
和两级放大电路的A
V
,测量并计入第一,二的静态工作点Q
1
(V
B1
和V
C1),Q
2
(V
B2
,V
C2
和V
E2
),填入表格3-1
表3-1
3)接入负载电阻RL,其他条件同上,测量并记录V
01和V
02
,计算A
V1
,A
V2
和A
V
,
与上项结果相比较。

4)将放大电路第一级的输出与第二级的输入断开,此时两级放大电路变成两个彼此独立的单级放大电路,分别测量输入输出电压,并计算每级的放大倍数,填入表3-2中。

此时的静态工作点同前,输出端皆为空载。

表3-2
5)测量两级交流放大电路的频率特性
改变输入信号频率(由低到高),先大致观察在哪一个上限频率在下限频率
时输出幅度下降,然后保持V
i1=2mV测量V
值,记入于表3-3中,特性平直部分,
只测几点就可以了,而在特性弯曲部分应多测几个点。

表3-3
五.分析与讨论
1.总结两级放大静态工作点对放大倍数及输出波形的影响。

2.总结两级放大电路级与级之间的相互影响。

3.列表整理实验数据,画出两级放大电路的幅频特性曲线(用对数或半对数坐标纸)
4.各级静态工作点应如何选择?每一级的静态工作点在连成两级放大电路时,是否会发生变化。

5.要求增大输出幅度应该怎么办?
6.要想提高放大倍数应采取什么措施?
7.如何提高上限频率?影响上限频率的主要环节是哪个?如何降低下限频率?影响下限频率的主要环节是哪个?。

相关文档
最新文档