第 15 课时 直线与平面垂直的判定

合集下载

线面垂直、面面垂直的性质与判定定理

线面垂直、面面垂直的性质与判定定理

转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则CDE是二面角 - AB 的平面角
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
8
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
β
a l
A α
符号语言:
α
Aa
β
a⊥β
B
12
例3 , a , a ,判断a与位置关系
证明:设 I l
α a //
在α内作直线b⊥l
b
a
l
β
I bbll Nhomakorabeab 又a
线面垂直
a // b 性质
b
a //
a
面面垂直性质 13
变式:
思考:已知平面,,直线a,且 , AB, a //, a AB,试判断直线a与平面的位置关系。
2、会利用“转化思想”解决垂直问题
面面关系
线面关系
线线关系
空间问题平面化 面面平行
线面平行
线线平行
面面垂直
线面垂直
线线垂直
16
线l在平面α内,那么直线l与平面β的位
置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
6
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
α
β
7
证明问题:
已知: , AB,CD ,且CD AB. 求证:CD

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:一条直线与一个平面内的两条相交直线都则该直线与此垂直于同一个平面的 ⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理一个平面过另一个平则这两个两个平面垂直,则一个平面内垂直于交线的直线与另一个平面[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P-ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB ∩AE =A ,∴PD ⊥平面ABE . [解题技法] 证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A -BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED ,∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A -BCB 1=V B 1-ABC =13S △ABC ·BB 1=13×12×1=16. 2.如图,S 是Rt △ABC 所在平面外一点,且SA =SB =SC ,D 为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .[解题技法] 证明面面垂直的2种方法[题组训练]1.(2019·武汉调研)如图,三棱锥P -ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形,所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P -ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG ,∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线,∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PEC .(2)∵P A =AD ,F 为PD 中点,∴AF ⊥PD , ∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD ,又∵CD ⊥AD ,AD ∩P A =A , ∴CD ⊥平面P AD , ∵AF ⊂平面P AD , ∴CD ⊥AF . 又PD ∩CD =D , ∴AF ⊥平面PCD . 由(1)知EG ∥AF , ∴EG ⊥平面PCD , 又EG ⊂平面PEC , ∴平面PEC ⊥平面PCD .[课时跟踪检测]A 级1.设a ,b 是两条不同的直线,α,β是两个不同的平面,则能得出a ⊥b 的是( ) A .a ⊥α,b ∥β,α⊥β B .a ⊥α,b ⊥β,α∥β C .a ⊂α,b ⊥β,α∥βD .a ⊂α,b ∥β,α⊥β解析:选C 对于C 项,由α∥β,a ⊂α可得a ∥β,又b ⊥β,得a ⊥b ,故选C. 2.(2019·湘东五校联考)已知直线m ,l ,平面α,β,且m ⊥α,l ⊂β,给出下列命题: ①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ; ③若m ⊥l ,则α⊥β;④若m ∥l ,则α⊥β. 其中正确的命题是( )A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:3 17.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC-A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥P-NBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC⊥平面PNB.又PM=2MC,∴V P-NBM=V M-PNB=23V C-PNB=23×13×32×2=23.10.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,AC∥A1C1,在△ABC中,因为D,E分别为AB,BC的中点.所以DE∥AC,于是DE∥A1C1,又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以AA1⊥A1C1,又因为A1C1⊥A1B1,A1B1∩AA1=A1,AA1⊂平面ABB1A1,A1B1⊂平面ABB1A1,所以A1C1⊥平面ABB1A1,因为B1D⊂平面ABB1A1,所以A1C1⊥B1D,又因为B1D⊥A1F,A1C1∩A1F=A1,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,所以B1D⊥平面A1C1F,因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.B级1.(2018·全国卷Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H ,又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A ,∴CD⊥平面P AD,∴CD⊥PD,∵E,F分别是CD,PC的中点,∴PD∥EF,∴CD⊥EF,又EF∩BE=E,∴CD⊥平面BEF,∵CD⊂平面PCD,∴平面BEF⊥平面PCD.第六节 直线、平面平行与垂直的综合问题 考点一 立体几何中的探索性问题[典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧»CD所在平面垂直,M 是»CD上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .因为DM ⊂平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O .因为四边形ABCD 为矩形, 所以O 为AC 的中点.连接OP ,因为P 为AM 的中点, 所以MC ∥OP .又MC ⊄平面PBD ,OP ⊂平面PBD , 所以MC ∥平面PBD . [题组训练]1.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PMMC 的值.解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高,又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC .因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ⊂平面MBN , 所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥BC .(2)连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG .证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG ,所以P A ∥平面MEG .因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.考点二 平面图形的翻折问题[典例] (2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =23DA ,求三棱锥Q -ABP的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =23DA ,所以BP =2 2.如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 綊13DC .由已知及(1)可得,DC ⊥平面ABC , 所以Q E ⊥平面ABC ,Q E =1.因此,三棱锥Q -ABP 的体积为V Q -ABP =13×S △ABP×Q E =13×12×3×22sin 45°×1=1.[题组训练]1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,得到如图2所示的几何体D -ABC .(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积. 解:(1)证明:∵AC =AD 2+CD 2=22, ∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC , ∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,几何体F -BCE 的体积V F -BCE =V B -CEF=13×S △CEF ×BC , S △CEF =14S △ACD =14×12×2×2=12,∴V F -BCE =13×12×22=23. 2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到如图2所示的四棱锥P -ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面P AB 与平面PCE 相交于直线l ,求证:AB ∥l .证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE = (7)2+(7)2-2×7×7×57=2.连接AC ,∵AE =2,∠AEC =60°, ∴AC =2. 又AP =3,∴在△P AE 中,AP 2+AE 2=PE 2, 即AP ⊥AE . 同理,AP ⊥AC .∵AC ∩AE =A ,AC ⊂平面ABCE ,AE ⊂平面ABCE , ∴AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE , ∴AB ∥平面PCE .又平面P AB ∩平面PCE =l ,∴AB ∥l .[课时跟踪检测]1.如图,四棱锥P -ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且P A ⊥平面ABCD .(1)当BD 是圆W 的直径时,P A =BD =2,AD =CD =3,求四棱锥P -ABCD 的体积.(2)在(1)的条件下,判断在棱P A 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)因为BD 是圆W 的直径,所以BA ⊥AD , 因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为P A ⊥平面ABCD ,P A =2,所以四棱锥P -ABCD 的体积V =13S 四边形ABCD ·P A =233.(2)存在,A Q =23.理由如下.延长AB ,DC 交于点E ,连接PE ,则平面P AB 与平面PCD 的交线是PE . 假设在棱P A 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q P A =ABAE.经计算可得BE =2,所以AE =AB +BE =3,所以A Q =23.故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =23.2.如图,侧棱与底面垂直的四棱柱ABCD -A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.已知点E 是直线CD 上的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由; (2)求三棱锥M -BC 1E 的体积.解:(1)点E 在线段CD 上且EC =1,理由如下:在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 綊A 1D 1綊AD .所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ⊄平面BC 1E ,EC 1⊂平面BC 1E , 所以AM ∥平面BC 1E . 故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,所以V M -BC 1E =V A -BC 1E =V C 1-ABE =13×⎝⎛⎭⎫12×3×3×4=6. 3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1-ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE , ∴BE ⊥平面D 1AE . (2)当AM AB =14时,MF ∥平面D 1AE ,理由如下: 取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB ,∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =14.4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1-BCD ,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.解:(1)证明:∵D,M分别为AC,FC的中点,∴DM∥EF,又∵EF⊂平面A1EF,DM⊄平面A1EF,∴DM∥平面A1EF.(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,A1E⊂平面A1EF,EF⊂平面A1EF,∴BD⊥平面A1EF,又A1F⊂平面A1EF,∴BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面BCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.解:(1)证明:在梯形ABCD中,因为AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACFE.(2)当EM =33a 时,AM ∥平面BDF ,理由如下:如图,在梯形ABCD 中,设AC ∩BD =N ,连接FN .由(1)知四边形ABCD 为等腰梯形,且∠ABC =60°,所以AB =2DC ,则CN ∶NA =1∶2.易知EF =AC =3a ,所以AN =233a .因为EM =33a , 所以MF =23EF =233a ,所以MF 綊AN ,所以四边形ANFM 是平行四边形,所以AM ∥NF ,又NF ⊂平面BDF ,AM ⊄平面BDF , 所以AM ∥平面BDF .6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;(2)求三棱锥G -ECD 的体积.解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下. 取点H 为AD 的中点,连接GH , 因为点G 为AC 的中点,所以在△ACD 中,由三角形中位线定理可知GH ∥CD ,又GH ⊄平面BCD ,CD ⊂平面BCD , 所以GH ∥平面BCD .(2)因为AD ∥CF ,AD ⊂平面ADEB ,CF ⊄平面ADEB , 所以CF ∥平面ADEB ,因为CF ⊂平面CFEB ,平面CFEB ∩平面ADEB =BE , 所以CF ∥BE ,又CF ⊂平面ACFD ,BE ⊄平面ACFD , 所以BE ∥平面ACFD ,所以V G -ECD =V E -GCD =V B -GCD .因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°, 又CA =CB =CF =1,所以CD =3,CG =12,又BC ⊥平面ACFD ,所以V B -GCD =13×12CG ×CD ×BC =13×12×12×3×1=312. 所以三棱锥G -ECD 的体积为312.第七节 空间角考点一 异面直线所成的角[典例] (1)(2018·全国卷Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( )A.22 B.32 C.52D.72(2)(2019·成都检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A.12 B .-12C.32D .-32[解析] (1)如图,连接BE ,因为AB ∥CD ,所以AE 与CD 所成的角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52. (2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.[答案] (1)C (2)A [题组训练]1.在正三棱柱ABC -A 1B 1C 1中,AB =2BB 1,则AB 1与BC 1所成角的大小为( ) A .30° B .60° C .75°D .90°解析:选D 将正三棱柱ABC -A 1B 1C 1补为四棱柱ABCD -A 1B 1C 1D 1,连接C 1D ,BD ,则C 1D ∥B 1A ,∠BC 1D 为所求角或其补角.设BB 1=2,则BC =CD =2,∠BCD =120°,BD =23,又因为BC 1=C 1D =6,所以∠BC 1D =90°.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,(1)求AC 与A 1D 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小. 解:(1)如图所示,连接B 1C ,AB 1,由ABCD -A 1B 1C 1D 1是正方体,易知A 1D ∥B 1C ,从而B 1C 与AC 所成的角就是AC 与A 1D 所成的角.∵AB 1=AC =B 1C , ∴∠B 1CA =60°.即A 1D 与AC 所成的角为60°.(2)连接BD ,在正方体ABCD -A 1B 1C 1D 1中, AC ⊥BD ,AC ∥A 1C 1,∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD ,∴EF ⊥AC .∴EF ⊥A 1C 1. 即A 1C 1与EF 所成的角为90°.考点二 直线与平面所成的角[典例] (1)(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3(2)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为________.[解析] (1)如图,连接AC 1,BC 1,AC . ∵AB ⊥平面BB 1C 1C ,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角,∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中,AC 1=2sin 30°=4.在Rt △ACC 1中,CC 1=AC 21-AC 2=42-(22+22)=22,∴V 长方体=AB ×BC ×CC 1=2×2×22=8 2.(2)如图所示,设O 为△ABC 的中心,连接PO ,AO ,易知PO ⊥平面ABC ,则∠P AO 为P A 与平面ABC 所成的角.S △ABC =12×3×3× sin60°=334,∴V ABC -A 1B 1C 1=S △ABC ·OP =334×OP =94,∴OP = 3. 又OA =3×32×23=1,∴tan ∠OAP =OPOA=3,∴∠OAP =60°. 故P A 与平面ABC 所成角为60°. [答案] (1)C (2)60° [题组训练]1.在正三棱柱ABC -A 1B 1C 1中,AB =1,点D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为( )A.104 B.64 C.105D.65解析:选B 如图,取AC ,A 1C 1的中点分别为M ,M 1,连接MM 1,BM ,过点D 作DN ∥BM 交MM 1于点N ,则易证DN ⊥平面AA 1C 1C ,连接AN ,则∠DAN 为AD 与平面AA 1C 1C 所成的角.在Rt △DNA 中,sin ∠DAN =DN AD =322=64.2.(2019·青海模拟)如图,正四棱锥P -ABCD 的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面P AC 所成的角为( )A .60°B .30°C .45°D .90°解析:选A 如图,在正四棱锥P -ABCD 中, 根据底面积为6可得,BC = 6.连接BD 交AC 于点O ,连接PO ,则PO 为正四棱锥P -ABCD 的高,根据体积公式可得,PO =1.因为PO ⊥底面ABCD ,所以PO ⊥BD ,又BD ⊥AC ,PO ∩AC =O ,所以BD ⊥平面P AC ,连接EO ,则∠BEO为直线BE 与平面P AC 所成的角.在Rt △POA 中,因为PO =1,OA =3,所以P A =2,OE =12P A =1,在Rt △BOE 中,因为BO =3,所以tan ∠BEO =BOOE=3,即∠BEO =60°.故直线BE 与平面P AC 所成角为60°.考点三 二面角[典例] (1)已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角的平面角为________.(2)已知△ABC 中,∠C =90°,tan A =2,M 为AB 的中点,现将△ACM沿CM 折起,得到三棱锥P -CBM ,如图所示.则当二面角P -CM -B 的大小为60°时,ABPB=________. [解析] (1)如图,O 为正方形ABCD 的中心,M 为BC 的中点,连接PO ,PM ,OM ,∠PMO 即为侧面与底面所成二面角的平面角.设底面边长为a ,则2a 2=(26)2,∴a =23,∴OM = 3.又四棱锥的体积V =13×(23)2×PO =12,∴PO =3,∴tan ∠PMO =33=3,∴∠PMO =60°.故所求二面角为60°. (2)如图,取BC 的中点E ,连接AE ,EM ,PE ,设AE ∩CM =O ,连接PO ,再设AC =2,由∠C =90°,tan A =2,可得BC =2 2. 在Rt △MEC 中,可得tan ∠CME =2, 在Rt △ECA 中,可得tan ∠AEC =2, ∴∠CME +∠AEM =90°,∴AE ⊥CM ,∴PO ⊥CM ,EO ⊥CM ,∠POE 即为二面角P -CM -B 的平面角,∴∠POE =60°. ∵AE =22+(2)2=6,OE =1×sin ∠CME =63,∴PO =AO =263. 在△POE 中,由余弦定理可得, PE =⎝⎛⎭⎫2632+⎝⎛⎭⎫632-2×263×63×12=2,∴PE 2+CE 2=PC 2,即PE ⊥BC . 又∵E 为BC 的中点,∴PB =PC =2. 在Rt △ACB 中,易得AB =23,∴ABPB = 3.[答案] (1)60° (2) 3[题组训练]1.已知二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .120°D .60°解析:选D 如图,AC ⊥AB ,BD ⊥AB ,过A 在平面ABD 内作AE∥BD ,过D 作DE ∥AB ,连接CE ,所以DE =AB 且DE ⊥平面AEC ,∠CAE 即二面角的平面角.在Rt △DEC 中,CD =217,DE =4,则CE =213,在△ACE 中,由余弦定理可得cos ∠CAE =CA 2+AE 2-CE 22CA ×AE =12,所以∠CAE =60°,即所求二面角的大小为60°. 2.如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB =2,P A =BC =3,则二面角A -BC -P 的大小为________.解析:因为AB 为⊙O 的直径,所以AC ⊥BC ,又因为P A ⊥平面ABC ,所以P A ⊥BC ,因为AC ∩P A =A ,所以BC ⊥平面P AC ,所以BC ⊥PC ,所以∠PCA 为二面角A -BC -P 的平面角.因为∠ACB =90°,AB =2,P A =BC =3,所以AC =1,所以在Rt △P AC 中,tan ∠PCA =P A AC= 3.所以∠PCA =60°.即所求二面角的大小为60°.答案:60°[课时跟踪检测]1.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AB ,C 1D 1的中点,则A 1B 1与平面A 1EF 所成角的正切值为( )A .2 B. 2 C .1D. 3解析:选B A 1B 1与平面A 1EF 所成的角就是∠B 1A 1C ,tan ∠B 1A 1C =B 1C A 1B 1= 2.2.在矩形ABCD 中,AB =3,AD =4,P A ⊥平面ABCD ,P A =435,那么二面角A -BD -P的大小为( )A .30°B .45°C .60°D .75°解析:选A 作AO ⊥BD 交BD 于点O ,∵P A ⊥平面ABCD ,∴P A ⊥BD . ∵P A ∩AO =A ,∴BD ⊥平面P AO ,∴PO ⊥BD ,∴∠AOP 即为所求二面角A -BD -P 的大小. ∵AO =AB ·AD BD =125,∴tan ∠AOP =AP AO =33,故二面角A -BD -P 的大小为30°.3.如图,空间四边形ABCD 的对角线AC =8,BD =6,M ,N 分别为AB ,CD 的中点,且异面直线AC 与BD 所成的角为90°,则MN 的长度为( )A .5B .6C .8D .10 解析:选A 如图,取AD 的中点P ,连接PM ,PN ,则PM ∥BD ,PN ∥AC ,PN =12AC =4,PM =12BD =3,∴∠MPN 即为异面直线AC 与BD 所成的角, ∴∠MPN =90°,∴MN =5.故选A.4.已知AB ∥平面α,AC ⊥平面α于点C ,BD 是平面α的斜线,D 是斜足,若AC =9,BD =63,则BD 与平面α所成的角的大小为________.解析:如图,过B 作BE ⊥平面α,垂足为E ,则BE =9.连接DE ,则∠BDE 为BD 与平面α所成的角.在Rt △BED 中,sin ∠BDE =BEBD =32,所以∠BDE =60°. 答案:60°5.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图,∵SA 与圆锥底面所成角为45°, ∴△SAO 为等腰直角三角形.则SO =r ,SA =SB =2r . 在△SAB 中,cos ∠ASB =78,∴sin ∠ASB =158, ∴S △SAB =12SA ·SB ·sin ∠ASB=12×(2r )2×158=515, 解得r =210,∴SA =2r =45,即母线长l =45, ∴S 圆锥侧=πrl =π×210×45=402π. 答案:402π6.已知边长为2的正方形ABCD 的四个顶点在球O 的球面上,球O 的体积V 球=1605π3,则OA 与平面ABCD 所成的角的余弦值为________.解析:如图,过点O 作OM ⊥平面ABCD ,垂足为点M ,则点M 为正方形ABCD 的中心.∵正方形ABCD 的边长为2, ∴AC =22,∴AM = 2.∵V 球=43πr 3=1605π3,∴球O 的半径OA=r =25,∴OA 与平面ABCD 所成的角的余弦值为 cos ∠OAM =AM OA =225=1010.答案:10107.(2018·天津高考)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.解:(1)证明:因为平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,AD ⊂平面ABD ,所以AD ⊥平面ABC . 因为BC ⊂平面ABC ,(2)取棱AC 的中点N ,连接MN ,ND . 又因为M 为棱AB 的中点, 所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AD =23,AM =1, 所以DM =AD 2+AM 2=13. 因为AD ⊥平面ABC ,所以AD ⊥AC . 在Rt △DAN 中,AN =1, 所以DN =AD 2+AN 2=13. 在等腰三角形DMN 中,MN =1, 可得cos ∠DMN =12MN DM =1326.所以异面直线BC 与MD 所成角的余弦值为1326. (3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点, 所以CM ⊥AB ,CM = 3.因为平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,CM ⊂平面ABC , 所以CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角. 在Rt △CAD 中,CD =AC 2+AD 2=4. 在Rt △CMD 中,sin ∠CDM =CM CD =34.所以直线CD 与平面ABD 所成角的正弦值为34. 8.(2019·湖北八校联考)如图,在Rt △ABC 中,AB =BC =3,点E ,F 分别在线段AB ,AC 上,且EF ∥BC ,将△AEF 沿EF 折起到△PEF 的位置,使得二面角P -EF -B 的大小为60°.(1)求证:EF ⊥PB ;(2)当点E 为线段AB 的靠近B 点的三等分点时,求四棱锥P-EBCF 的侧面积.解:(1)证明:在Rt △ABC 中,∵AB =BC =3,∴BC ⊥AB .∵EF ∥BC ,∴EF ⊥AB ,翻折后垂直关系没变,仍有EF ⊥PE ,EF ⊥BE , 又PE ∩BE =E ,∴EF ⊥平面PBE ,∴EF ⊥PB . (2)∵EF ⊥PE ,EF ⊥BE ,∴∠PEB 是二面角P -EF -B 的平面角, ∴∠PEB =60°,又PE =2,BE =1,由余弦定理得PB =3,∴PB 2+BE 2=PE 2,∴PB ⊥BE ,∴PB ,BC ,BE 两两垂直, ∴△PBE ,△PBC ,△PEF 均为直角三角形. 由△AEF ∽△ABC 可得,EF =23BC =2,S △PBC =12BC ·PB =332,S △PBE =12PB ·BE =32,S △PEF =12EF ·PE =2.在四边形BCFE 中,过点F 作BC 的垂线,垂足为H , 则FC 2=FH 2+HC 2=BE 2+(BC -EF )2=2,∴FC = 2.在△PFC 中,FC =2,PC =BC 2+PB 2=23,PF =PE 2+EF 2=22, 由余弦定理可得cos ∠PFC =PF 2+FC 2-PC 22PF ·FC =-14,则sin ∠PFC =154,S △PFC =12PF ·FC sin ∠PFC =152. ∴四棱锥P -EBCF 的侧面积为S △PBC +S △PBE +S △PEF +S △PFC =2+23+152.。

线面垂直的判断定理

线面垂直的判断定理

A
C
BC平面PAC PC 平面PAC
BCPC
PBC是直角三角形
故故共共有有四四个个直直角角三角三形角形
补充例题
P
如图,PA 园O所在平 A
面,AB是园O的直径,C是
O
B
园周上一点,那末,图中
C
有几个直角三角形?
若直线AD垂直于PC于
D,求证:AD垂直平面
PBC
补充练习
如图,点P是平行四边形ABCD所在平面外一点, O是对角线AC与BD的交点,且PA=PC,PB=PD。
线面垂直的判定
高一数学备课组
直线与平面有那些位置关系?
c a
O
b
a/ / b c =O
«立体几何»
直线和平面垂直 的判定
直线a与平面 相交,a与平面 内的直线有几种位置关系?
a
c
ob
d
a与c是异面直线 a b O 存在直线b与a垂直吗?
如果平面内的直线d 平行于b,那么d与a 垂直
若直线d不在平面 内,上述结论还成立吗?仍成立
1。 将菱形ABCD
沿对角线AC折叠成空间
四边形,O为线段AC的
中点观察直线AC与平面
BOD的位置关系。
B
2。 在不同的角度
折叠下,直线AC与平面
BOD的位置关系发生变
化吗?
A
O D
C
证明:在平面OBD中任取直线g,则有且只有三种情况:
1. g与OB或OD重合,此时显然有AC g 成立。
2. g过点O但不与OB和OD重合。
假设aAC, aBC.求证aAB a
A
C B
实际上,这为证明“线线垂直”提供了一种方法

直线与平面垂直的判定教案

直线与平面垂直的判定教案

直线与平面垂直的判定教案一、教学目标:1. 让学生理解直线与平面垂直的概念。

2. 让学生掌握直线与平面垂直的判定方法。

3. 培养学生运用几何知识解决实际问题的能力。

二、教学内容:1. 直线与平面垂直的定义。

2. 直线与平面垂直的判定方法。

3. 直线与平面垂直的性质。

三、教学重点与难点:1. 教学重点:直线与平面垂直的判定方法。

2. 教学难点:如何运用判定方法判断直线与平面是否垂直。

四、教学方法:1. 采用讲授法,讲解直线与平面垂直的定义、判定方法和性质。

2. 利用几何模型和实物道具,直观展示直线与平面垂直的关系。

3. 开展小组讨论,让学生互相交流、合作解决问题。

4. 布置适量练习题,巩固所学知识。

五、教学过程:1. 导入新课:通过提问方式引导学生回顾直线、平面垂直的相关概念。

2. 讲解直线与平面垂直的定义:直线与平面垂直是指直线在平面上的投影为一点。

3. 讲解直线与平面垂直的判定方法:(1)利用垂直线段判定法:若直线与平面内一条线段垂直,则该直线与平面垂直。

(2)利用垂线判定法:若直线与平面内任意一条直线都垂直,则该直线与平面垂直。

4. 讲解直线与平面垂直的性质:(1)直线与平面垂直的线段长度相等。

(2)直线与平面垂直的线段构成的角为直角。

5. 课堂练习:让学生运用判定方法判断给出的直线与平面是否垂直。

6. 总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生的学习兴趣。

7. 布置作业:布置一些有关直线与平面垂直的练习题,让学生巩固所学知识。

六、教学评价:1. 通过课堂讲解、练习和作业,评价学生对直线与平面垂直的定义、判定方法和性质的理解程度。

2. 观察学生在解决问题时是否能灵活运用所学知识,判断其运用能力。

3. 鼓励学生参与课堂讨论,评价其合作与交流能力。

七、教学反馈:1. 收集学生作业,分析其对直线与平面垂直知识的掌握情况。

2. 听取学生对教学内容的建议和意见,不断调整教学方法。

数学线面垂直的知识点总结归纳

数学线面垂直的知识点总结归纳

数学线面垂直的知识点总结归纳数学是一座高山,哪怕是高考数学这样的小山丘,也让无数学子望其背而心戚戚,更有人混淆知识点。

下面是小编为大家整理的关于数学线面垂直的知识点,希望对您有所帮助!数学直线与平面平行、垂直知识点直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.注:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.注:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上高中数学线面垂直知识点1)直线垂直于平面内两条非平行的线,则直线垂直于该平面2)直线的两条不平行的垂线与平面平行,则直线垂直于该平面3)有A、B两个面都与C平面垂直,则A、B两个面的交线也垂直于C平面4)直线垂直于与A平面平行的B平面,则直线垂直于A平面5)直线任意点在平面上的投影都重合,则直线垂直于该平面6)直线上任意点到平面的距离,都等于这一点到线面交点的距离,则直线垂直于该平面线面垂直性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

2:经过空间内一点,有且只有一条直线垂直已知平面。

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质

直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直.我们就说直线与平面互相垂直.记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。

要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”.这与“无数条直线”不同.注意区别。

(2)直线和平面垂直是直线和平面相交的一种特殊形式。

(3)若.则。

2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直.则该直线与此平面垂直。

符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语.不可忽视。

(2)要判定一条已知直线和一个平面是否垂直.取决于在这个平面内能否找出两条相交直线和已知直线垂直.至于这两条相交直线是否和已知直线有公共点.则无关紧要。

知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交.但不和这个平面垂直.这条直线叫做这个平面的斜线。

过斜线上斜足外的一点向平面引垂线.过垂足和斜足的直线叫做斜线在这个平面内的射影。

平面的一条斜线和它在平面上的射影所成的锐角.叫做这条直线和这个平面所成的角。

要点诠释:(1)直线与平面相交但不垂直.直线在平面的射影是一条直线。

(2)直线与平面垂直射影是点。

(3)斜线任一点在平面内的射影一定在斜线的射影上。

(4)一条直线垂直于平面.它们所成的角是直角;一条直线和平面平行或在平面内.它们所成的角是0°的角。

知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分.这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱.这两个半平面叫做二面角的面。

表示方法:棱为、面分别为的二面角记作二面角.有时为了方便.也可在内(棱以外的半平面部分)分别取点.将这个二面角记作二面角.如果棱记作.那么这个二面角记作二面角或。

直线与平面垂直的判定说课稿(原创)

直线与平面垂直的判定说课稿(原创)

《直线与平面垂直的判定》说课稿(一)教材内容教材选自:人教版《普通高中课程标准实验教科书•数学(A版)》必修2,第二章第三节的第一课时。

本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。

直线与平面垂直的是直线与平面相交中的一种特殊情况,它既是空间中线线垂直位置关系的拓展,又是后面学习面面垂直的根底,是连接线线垂直和面面垂直的纽带!因此线面垂直是空间垂直位置关系间转化的重心,在教材中起到了承上启下的作用。

(二)学情分析在本节课之前学生已学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质,具备了学习本节课所需的知识。

同时已经有了“通过观察、操作等数学活动抽象概括出数学结论”的体会,参与意识、自主探究能力有所提高,对空间概念建立有一定根底。

但是,对于我们广平一中的学生而言,他们的抽象概括能力、空间想象力还有待提而。

(三)教学重、难点重点:直线与平面垂直的定义和判定定理的探究。

难点:操作确认并概括出直线与平面垂直的定义和判定定理。

二、教学目标《课程标准》把本节课学习目标概括为:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题。

我将本节课的教学目标确立为,知识与技能:(1)经历对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;(2)通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;过程与方法:(1)在探索直线与平面垂直判定定理的过程中开展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限''等化归的数学思想∙(2)尝试用数学语言(文字、符号、图形语言)对定义和定理进行准确表述和合理转换.情感、态度与价值观:经历线面垂直的定义和定理的探索过程,提高严谨与求实的学习作风,形成锲而不舍的钻研精神和科学态度.三、 说教法、学法采用“启发一探究”的教学方法。

15《空间直线、平面的垂直》立体几何初步 PPT教学课件 (直线与直线垂直)

15《空间直线、平面的垂直》立体几何初步 PPT教学课件 (直线与直线垂直)

必修第二册·人教数学A版
返回导航 上页 下页
探究三 直线与平面垂直的判定 [例 3] 如图,直角三角形 ABC 所在平面外有一点 S,且 SA=SB =SC,点 D 为斜边 AC 的中点. (1)求证:SD⊥平面 ABC; (2)若 AB=BC,求证:BD⊥平面 SAC.
必修第二册·人教数学A版
返回导航 上页 下页
必修第二册·人教数学A版
返回导航 上页 下页
求两异面直线所成的角的一般步骤 (1)作角:根据两异面直线所成角的定义,用平移法作出异面直线所成的角; (2)证明:证明作出的角就是要求的角,即证明所作角的两边分别与两异面直线平行; (3)计算:求角的值,常在三角形中求解; (4)结论. 也可用“一作”“二证”“三求解”来概括.
证明:如图,连接 AC,所以 AC⊥BD. 又∵BD⊥A1A,AC∩AA1=A,AC,A1A⊂平面 A1AC, ∴BD⊥平面 A1AC. ∵A1C⊂平面 A1AC, ∴BD⊥A1C. 同理可证 BC1⊥A1C. 又∵BD∩BC1=B,BD,BC1⊂平面 BC1D, ∴A1C⊥平面 BC1D.
必修第二册·人教数学A版
[提示] 事实上,随着时间的变化,尽管影子 BC 的位置在不断地变化,但是旗杆 AB 所在直线始终与影子 BC 所在直线垂直,也就是说,旗杆 AB 所在直线与地面上 任意一条过点 B 的直线垂直.
必修第二册·人教数学A版
返回导航 上页 下页
知识梳理 (1)定义: ①文字叙述:如果直线 l 与平面 α 内的 任意一条 直线都 垂直 ,就说直线 l 与平面 α 互相垂直,记作 l⊥α .直线 l 叫做平面 α 的 垂线 ,平面 α 叫做直线 l 的 垂面 .直 线与平面垂直时,它们唯一的公共点 P 叫做 垂足 . ②图形语言:如图.

直线与平面垂直的判定及其性质

直线与平面垂直的判定及其性质

课题 直线与平面垂直的判定及其性质知识点一:直线与平面垂直的判定与性质1.直线与平面垂直的判定定理和性质定理2.直线与平面所成的角(线面所成的角关键:过斜线上一点作平面的垂线)(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫作这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.(2)线面角θ的取值范围:0°≤θ≤90°.规律总结1. 过一点有且只有一条直线与已知平面垂直.2.过一点有且只有一个平面与已知直线垂直.知识点二:平面与平面垂直的判定与性质1.平面与平面垂直的判定定理与性质定理2. 二面角 平面与平面垂直的定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面 二面角的平面角:.AOB l αβ∠--即为二面角的平面角 题型一:线面垂直的判定与性质证明直线与平面垂直的方法:(1)利用判定定理(a ⊥b,a ⊥c,b ∩c=M,b ⊂α,c ⊂α⇒a ⊥α);(2)利用面面平行的性质(a ⊥α,α∥β⇒a ⊥β);(3)利用面面垂直的性质定理(α⊥β,α∩β=l,a ⊥l,a ⊂β⇒a ⊥α);(4)利用面面垂直的性质(α∩β=l,α⊥γ,β⊥γ⇒l ⊥γ).例1:如图,已知P 是菱形ABCD 所在平面外一点,且PA =PC ,求证:AC ⊥平面PBD .【证明】 设AC ∩BD =O ,由题意知O 为AC 的中点,连接PO ,因为PA =PC ,所以PO ⊥AC ,又因为ABCD 是菱形,所以BD ⊥AC ,而PO ∩BD =O ,PO ⊂平面PBD ,BD ⊂平面PBD ,所以AC ⊥平面PBD .变式1:题型二:面面垂直的判定与性质证明面面垂直的思路(1)利用面面垂直的定义(作出两平面构成的二面角的平面角,计算平面角为90°);(2)利用面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).2.空间垂直关系之间的转化例2:如图,在直三棱柱111-ABC A B C 中,1111=A B AC ,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且⊥AD DE F ,为11B C 的中点.求证:平面⊥ADE 平面11BCC B .证明:因为111ABC -A B C 是直三棱柱,所以1CC ⊥平面ABC .又因为⊂AD 平面ABC ,所以1⊥CC AD .又因为⊂1AD⊥DE,CC ,DE 平面111BCC B ,CC ∩DE =E ,所以AD⊥平面11BCC B . 又因为⊂AD 平面ADE ,所以平面⊥ADE 平面11BCC B . 变式2:如图,在四面体ABCD 中,平面BAD ⊥平面CAD,∠BAD=90°.M,N,Q 分别为棱AD,BD,AC 的中点.(1)求证:CD ∥平面MNQ; (2)求证:平面MNQ ⊥平面CAD.一、选择题1.在正方体ABCD ­A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC如图,∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1, ∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE ,又CE ∩B 1C =C ,∴BC 1⊥平面CEA 1B 1.又A 1E 平面CEA 1B 1,∴A 1E ⊥BC 1)∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.故选C.]1 2 3 42.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个空间图形,使B 、C 、D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF[根据折叠前、后AH ⊥HE ,AH ⊥HF 不变,∴AH ⊥平面EFH ,B 正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF平面AEF,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;由条件证不出HG⊥平面AEF,∴D不正确.故选B.]3.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线是________;与AP垂直的直线是________.答案:AB,BC,AC;AB[∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥AP,故与AP垂直的直线是AB.]4.如图7­4­12所示,在四棱锥P­ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M 满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)DM⊥PC(或BM⊥PC) [连接AC,BD,则AC⊥BD,∵PA⊥底面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.5.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β. ②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,mα,那么m∥β. ④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)②③④[对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线lα,n∥l,又m⊥α,所以m⊥l,所以m⊥n,故正确.对于③,因为α∥β,所以α,β没有公共点.又mα,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n 与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.]6.如图7­4­16,在三棱柱ABC­A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.a或2a[∵B1D⊥平面A1ACC1,∴CF⊥B1D.为了使CF⊥平面B1DF,只要使CF⊥DF(或CF⊥B1F).设AF=x,则CD2=DF2+FC2,∴x2-3ax+2a2=0,∴x=a或x=2a.]7.如图7­4­13,在三棱锥P­ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD; (2)求证:平面BDE⊥平面PAC; (3)当PA∥平面BDE时,求三棱锥E­BCD的体积.[解] (1)证明:因为PA ⊥AB ,PA ⊥BC ,所以PA ⊥平面ABC .又因为BD 平面ABC ,所以PA ⊥BD .(2)证明:因为AB =BC ,D 为AC 的中点,所以BD ⊥AC .由(1)知,PA ⊥BD ,所以BD ⊥平面PAC ,所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE .因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2. 由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC ,所以三棱锥E ­BCD 的体积V =16BD ·DC ·DE =13.] 8.如图7­4­14,在三棱锥A ­BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊆/平面ABC ,AB 平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC 平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD . 因为AD 平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB 平面ABC ,BC 平面ABC ,所以AD ⊥平面ABC .又因为AC 平面ABC ,所以AD ⊥AC .9. 如图,三棱柱ABC -A1B1C1中,侧棱垂直于底面,∠ACB=90°,AC=BC= AA1,D 是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC.(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.。

直线与平面垂直的判定教案

直线与平面垂直的判定教案

直线与平面垂直的判定教案引言在几何学中,直线和平面是基本的图形概念,它们的关系十分重要。

本教案将详细介绍如何判定一条直线与一个平面是否垂直。

什么是直线与平面的垂直关系在三维空间中,直线与平面垂直表示直线与平面之间的夹角为90度。

垂直的直线和平面在几何学中非常常见,因此掌握判定的方法具有重要意义。

判定直线与平面垂直的方法判定直线与平面垂直的方法有以下几种:方法一:判断直线是否平行于平面上的两条相交直线1.确定平面上的两条相交直线,记为L1和L2;2.判断给定的直线是否和L1和L2都平行;3.如果给定的直线和L1、L2都平行,则直线与平面垂直。

方法二:判断直线上的一点是否在平面上1.确定直线上的一点P;2.判断点P是否在平面上;3.如果点P在平面上,则直线与平面垂直。

方法三:使用向量判断1.确定直线上的向量v和平面的法向量n;2.计算向量v和n的点积;3.如果点积为0,则直线与平面垂直。

具体计算步骤与示例下面通过具体计算步骤和示例来说明判定直线与平面垂直的方法。

方法一示例假设有直线L:x = y = z 和平面P:2x + 2y + 2z = 6。

1. 平面上的两条相交直线可以选取为L1:x = 0,L2:y = 1; 2. 直线L的方向向量为(1, 1, 1),和L1、L2都平行; 3. 因此直线L与平面P垂直。

方法二示例假设直线L过点P(1, 2, 3),平面P的一般方程为2x + y - z = 4。

1. 点P(1, 2, 3)代入平面的一般方程,得到2(1) + 2 - 3 = 1,点P在平面上; 2. 因此直线L与平面P垂直。

方法三示例假设直线L的方向向量为(2, 1, -1),平面P的法向量为(1, 2, 3)。

1. 向量v 和n的点积为2(1) + 1(2) + (-1)(3) = 1 + 2 - 3 = 0; 2. 点积为0,因此直线L与平面P垂直。

总结本教案介绍了三种判定直线与平面垂直关系的方法,包括判断直线是否平行于平面上的两条相交直线、判断直线上的一点是否在平面上,以及使用向量计算点积。

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质

题组三 易错排查 4.若 l,m 为两条不同的直线,α 为平面,且 l⊥α,则“m∥α”是“m⊥l”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:由 l⊥α 且 m∥α 能推出 m⊥l,充分性成立; 若 l⊥α 且 m⊥l,则 m∥α 或者 m⊂α,必要性不成立, 因此“m∥α”是“m⊥l”的充分不必要条件,故选 A.
解析:(1)如图 1,连接 OA,OB,OC,OP, 在 Rt△POA,Rt△POB 和 Rt△POC 中,PA=PC=PB, 所以 OA=OB=OC,即 O 为△ABC 的外心.
(2)如图 2,延长 AO,BO,CO 分别交 BC,AC,AB 于点 H,D,G. ∵PC⊥PA,PB⊥PC,PA∩PB=P,PA,PB⊂平面 PAB, ∴PC⊥平面 PAB,又 AB⊂平面 PAB,∴PC⊥AB, ∵AB⊥PO,PO∩PC=P,PO,PC⊂平面 PGC, ∴AB⊥平面 PGC,又 CG⊂平面 PGC, ∴AB⊥CG,即 CG 为△ABC 边 AB 上的高. 同理可证 BD,AH 分别为△ABC 边 AC,BC 上的高, 即 O 为△ABC 的垂心. 答案:(1)外 (2)垂
题组二 教材改编 2.下列命题中错误的是( ) A.如果平面 α⊥平面 β,那么平面 α 内一定存在直线平行于平面 β B.如果平面 α 不垂直于平面 β,那么平面 α 内一定不存在直线垂直于平面 β C.如果平面 α⊥平面 γ,平面 β⊥平面 γ,α∩β=l,那么 l⊥平面 γ D.如果平面 α⊥平面 β,那么平面 α 内所有直线都垂直于平面 β
跟踪训练 1 (2020·贵阳模拟)如图,在三棱锥 ABCD 中,AB⊥AD,BC⊥BD,平 面 ABD⊥平面 BCD,点 E,F(E 与 A,D 不重合)分别在棱 AD,BD 上,且 EF⊥ AD.

直线与平面垂直的判定教案

直线与平面垂直的判定教案

直线与平面垂直的判定教案一、教案概要1.教学目标:了解直线与平面垂直的定义和性质,掌握判定直线与平面垂直的方法。

2.教学重点:掌握垂直的概念和性质。

3.教学难点:掌握判定直线与平面垂直的方法。

4.教学方法:讲解法、示范法、练习法。

5.教学工具:黑板、彩色粉笔、投影仪、多媒体教学课件。

二、教学内容1.直线与平面垂直的定义和性质。

2.判定直线与平面垂直的方法。

三、教学过程1.导入(10分钟)通过展示一些与平面垂直的事物,引出直线与平面垂直的概念,让学生了解直线与平面垂直的概念和性质。

2.讲解与示范(20分钟)通过黑板、投影仪或多媒体教学课件展示直线与平面垂直的定义和性质,让学生了解直线与平面垂直的特点和性质。

3.判定直线与平面垂直的方法(30分钟)(1)垂直的定义:直线与平面相交的角为90度。

(2)判定方法:根据两个性质来判定直线与平面垂直。

性质1:过直线一点且垂直于直线的直线与这个平面垂直。

性质2:过直线与平面有2点的直线与这个平面垂直。

通过讲解与示范,让学生理解垂直的定义和两个判定方法。

4.练习与巩固(30分钟)根据教师提供的习题和案例,让学生进行练习和巩固,检验学生对判定直线与平面垂直方法的掌握情况。

五、总结(10分钟)对本节课的重点和难点进行总结,并强调直线与平面垂直的概念和性质在几何学中的重要性。

六、布置作业(5分钟)布置作业,要求学生进一步巩固判定直线与平面垂直的方法,掌握几何图形的性质。

七、教学反思通过本节课的教学,学生对直线与平面垂直的定义和性质有了初步的了解,并且掌握了判定直线与平面垂直的方法。

通过练习和巩固,学生的理解和运用能力也得到了提高。

但是在教学过程中,应该注重激发学生的学习兴趣,增加互动性,让学生更加主动参与到教学中。

线面垂直的判定与性质

线面垂直的判定与性质

线面垂直线面垂直●知识点1.直线和平面垂直定义直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面. 判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面. 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行. 3.三垂线定理和它的逆定理. 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直. 逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直. ●题型示例【例1】 如图所示,已知点S 是平面ABC 外一点,外一点, ∠ABC =90°,SA ⊥平面ABC ,点A 在直线SB 和SC 上的上的 射影分别为点E 、F ,求证:EF ⊥SC . 【解前点津】 用分析法寻找解决问题的途径,假设用分析法寻找解决问题的途径,假设 EF ⊥SC 成立,结合AF ⊥SC 可推证SC ⊥平面AEF ,这样,这样 SC ⊥AE ,结合AE ⊥SB ,可推证AE ⊥平面SBC ,因此证明,因此证明 AE ⊥平面SBC 是解决本题的关键环节.由题设SA ⊥平面ABC , ∠ABC =90°,可以推证BC ⊥AE ,结合AE ⊥SB 完成AE ⊥平⊥平 面SBC 的证明. 【规范解答】【解后归纳】 题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键. 例1题图题图【例2】 已知:M ∩N =AB ,PQ ⊥M 于Q ,PO ⊥N 于O ,OR ⊥M 于R ,求证:QR ⊥AB . 【解前点津】 由求证想判定,欲证线线垂直,方法有(1)a ∥b ,a ⊥c Þb ⊥c ;(2)a ⊥α,b ÌαÞa ⊥b ;(3)三垂线定理及其逆定理. 由已知想性质,知线面垂直,可推出线线垂直或线线平行. 【解后归纳】 处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”. 所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上. 所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线. 【例3】 已知如图(1)所示,矩形纸片AA ′A ′1A 1,B 、C 、B 1、C 1 分别为AA ′,A 1A ′的三等分点,将矩形纸片沿BB 1,CC 1折成如图(2)形状(正三棱柱),若面对角线AB 1⊥BC 1,求证:A 1C ⊥AB 1. 【解前点津】 题设主要条件是AB 1⊥BC ,而结论是AB 1⊥A 1C ,题设,题断有对答性,可在ABB 1A 1上作文章,只要取A 1B 1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A 1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理自然想到题断AB 1与A 1C垂直用同法(对称原理)例3题图解(1) 转换到同一平面,取AB 中点D 即可,只要证得A 1D 垂直于AB 1,事实上DBD 1A 1,为平行四边形,解题路子清楚了. 【解后归纳】 证线线垂直主要途径是:证线线垂直主要途径是: (1)三垂线正逆定理,(2)线面,线线垂直互相转化. 利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务. 证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法. 【例4】 空间三条线段AB ,BC ,CD ,AB ⊥BC ,BC ⊥CD ,已知AB =3,BC =4,CD =6,则AD 的取值范围是 . 【解前点津】 如图,在直角梯形ABCD 1中,CD 1=6, AD 1的长是AD 的最小值,其中AH ⊥CD 1,AH =BC =4,HD 1=3, ∴AD 1=5;在直角△AHD 2中,CD 2=6,AD 2是AD 的最大值为的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论. 例4题图题图●对应训练 分阶提升 一、基础夯实1.设M 表示平面,a 、b 表示直线,给出下列四个命题:表示直线,给出下列四个命题:①M b M a b a ^Þþýü^// ②b a M b M a //Þþýü^^ ③Þþýü^^b a M a b ∥M ④Þþýü^b a M a //b ⊥M . 其中正确的命题是其中正确的命题是 ( ) A.①②①② B.①②③①②③ C.②③④②③④ D.①②④①②④ 2.下列命题中正确的是下列命题中正确的是 ( ) A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( ) A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF 4.设a 、b 是异面直线,下列命题正确的是是异面直线,下列命题正确的是 ( ) A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直都垂直C.过a 一定可以作一个平面与b 垂直垂直D.过a 一定可以作一个平面与b 平行平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m Ìα和m ⊥γ,那么必有那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m ∥β且l ⊥m D.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为的距离为 ( ) A.1 B.2 C.552 D.553 7.有三个命题:有三个命题:①垂直于同一个平面的两条直线平行;①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直都不垂直 其中正确命题的个数为其中正确命题的个数为 ( ) A.0 B.1 C.2 D.3 8.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是,则下面正确的结论是 ( ) 第3题图题图A.α与β必相交且交线m∥d 或m 与d 重合重合 B.α与β必相交且交线m ∥d 但m 与d 不重合不重合 C.α与β必相交且交线m 与d 一定不平行一定不平行 D.α与β不一定相交不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是的序号是 ( ) A.①②③①②③ B.①②④①②④ C.②③④②③④ D.①③④①③④ 10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是其中正确的命题是 ( ) A.③与④③与④B.①与③①与③C.②与④②与④D.①与②①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是′的面积是 . 12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件满足条件时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形) 13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可) 三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高. (1)求证:VC ⊥AB ; (2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC 所成角的大小. 第11题图题图第12题图题图第13题图题图第14题图题图15.如图所示,P A ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面P AD . (2)求证:MN ⊥CD . (3)若∠PDA =45°,求证:MN ⊥平面PCD . 16.如图所示,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,∠BAD =60°,AB =4,AD =2,侧棱PB =15,PD =3. (1)求证:BD ⊥平面P AD . (2)若PD 与底面ABCD 成60°的角,试求二面角P —BC —A 的大小. 17.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,求证:AB 1⊥A 1M .18.如图所示,正方体ABCD —A ′B ′C ′D ′的棱长为a ,M 是AD 的中点,N 是BD ′上一点,且D ′N ∶NB =1∶2,MC 与BD 交于P . 第15题图题图第16题图题图522+BC AC 52×5354122++CD PC 333定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB . 14.(1)证明:∵H 为△VBC 的垂心, ∴VC ⊥BE ,又AH ⊥平面VBC , ∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC . (2)解:由(1)知VC ⊥AB ,VC ⊥BE , ∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC , ∴AB ⊥面DEC . ∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,的平面角, ∴∠EDC =30°,∵AB ⊥平面VCD , ∴VC 在底面ABC 上的射影为CD . ∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE , ∴VC ⊥面ABE ,∴VC ⊥DE , ∴∠CED =90°,故∠ECD=60°, ∴VC 与面ABC 所成角为60°. 15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE . ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD . (2)∵P A ⊥平面ABCD , ∴P A ⊥AB . 又AD ⊥AB ,∴AB ⊥平面P AD . ∴AB ⊥AE ,即AB ⊥MN . 又CD ∥AB ,∴MN ⊥CD . (3)∵P A ⊥平面ABCD ,∴P A ⊥AD . 又∠PDA =45°,E 为PD 的中点. ∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD , ∴MN ⊥平面PCD . 16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,°, 故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12. 又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,°,即AD ⊥BD 在△PDB 中,PD =3,PB =15,BD =12, ∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D , ∴BD ⊥平面P AD . (2)由BD ⊥平面P AD,BD 平面ABCD . ∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E , 又PE 平面P AD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD所成的角. 第15题图解题图解第16题图解题图解∴∠PDE =60°,∴PE =PD sin60°=23233=´. 作EF ⊥BC 于F ,连PF ,则PF ⊥BF , ∴∠PFE 是二面角P —BC —A 的平面角. 又EF =BD =12,在Rt △PEF 中,中,tan ∠PFE =433223==EF PE . 故二面角P —BC —A 的大小为arctan 43. 17.连结AC 1,∵11112263A C CC MC AC===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°. ∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M . 由三垂线定理知AB 1⊥A 1M . 点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,中,∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2. 又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD , ∴NP ⊥平面ABCD . (2)∵NP ∥DD ′∥CC ′,′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM , ∴∠MCD 为该二面角的平面角. 在Rt △MCD 中可知中可知∠MCD =arctan21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高. ∵三棱锥D ′—BCM 体积为h S D D S 213131=¢×,6 1。

直线与平面垂直的判定

直线与平面垂直的判定

直线与平面垂直的判定
一、直线和平面垂直的定义
如果一条直线l和平面α内的任意一条直线都垂直,我们就说直线l和平面α互相垂直.可记作l⊥α,其中
直线l叫平面α的垂线.
平面α叫直线l的垂面.

“任意一条直线”,说明直线l必须和平面内的所有直线都具有垂直关系.不能理解成无数条线,必须是全部.
若l∥α或lα,则l此时不会和α内任意一条直线垂直,由此,当l与α具有l⊥α关系时,直线l一定和α相交.
直线和平面垂直时,它们惟一的公共点,即交点叫垂足.
画直线与水平平面垂直时,要把直线画成和表示平面的平行四边形的横边垂直,l⊥α 点P是垂足。

观察以下四个图形,能得出什么结论?

图(1)、(2)说明经过空间一点P作α的垂线只有一条,图(3)、(4)说明,经过空间一点P作l的垂面只有一个.
二、直线和平面垂直的判定
求证:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.
1、已知:a∥b,a⊥α
求证:b⊥α
分析:要证b⊥α,需证b与α内任意一条直线m垂直,运用等价转化思想证明与b平行的线a垂直于m,则需依题设直线m存在.进而运用线垂直于面,线垂直于面内线完成证明.
证明:设m是α内的任意一条直线

直线和平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.。

直线与平面垂直的判定

直线与平面垂直的判定
A

B D C
B D
C
直线与平面垂直的判定
A

B D
l
m
C
α
O
n
直线与平面垂直的判定
直线与平面垂直的判定定理:
一条直线和一个平面内的两条相交直线都垂直, 则这条直线垂直于这个平面.
m n mn P l α l m l n 线线垂直
l
m
n
P
线面垂直 关键:线不在多,相交则行
直线与平面垂直的判定
例1 如果两条平行直线中的一条垂直于 一个平面,那么另一条也垂直于同一个 平面。
已知:a∥b,a ⊥α
a b
求证:b⊥α
α
结束教学
直线与平面垂直的判定
已知:a∥b,a ⊥α 求证:b⊥α
证明:在平面 内作 两条相交直线m,n. 因为直线 a , 根据直线与平面垂直的定义 知 a m, a n. 又因为 b // a 所以 b m, b n.
2.3.1 直线与平面垂直的判定
12级C班 124080217 任瑞
直线与平面垂直的判定
直线与平面垂直的判定
直线与平面垂直的判定
直线与平面垂直的判定
A
B
直线与平面垂直的判定
A
B
直线与平面垂直的判定AB 直线与平面垂直的判定A
B
直线与平面垂直的判定
A
B
直线与平面垂直的判定
A
B
直线与平面垂直的判定
A
B
直线与平面垂直的判定
A
B
直线与平面垂直的判定
AB所在直线 ⊥ 地面内任意一条直线
A
B
B1
C1 C

直线和平面垂直的判定定理的证明

直线和平面垂直的判定定理的证明

直线和平面垂直的判定定理的证明说到直线和平面垂直的判定定理,那可是一个看似简单却又不容小觑的概念。

你想,生活中有多少事物都遵循着“垂直”的规律啊。

比如,你在画个十字的时候,横竖两条线要是不能互相垂直,那就不好看了。

而在几何的世界里,这种“垂直”关系也非常重要,关系到好多定理的成立。

今天就来聊聊怎么判断直线是否与平面垂直。

相信我,过程一点也不难,简单易懂,还能让你觉得挺有趣。

我们得明白一个基本概念。

什么是“垂直”呢?简单来说,直线和平面垂直,就是这条直线完全“站”在这个平面上,像一根笔直的旗杆立在地面上一样。

不偏不倚,直接垂直地穿过平面。

这听起来很抽象?别急,听我慢慢解释。

我们常常在物理或者建筑中看到垂直的例子,比如一根电线杆就得跟地面垂直。

可问题来了,怎么判断呢?难道拿着直尺、量角器去测量?那也太麻烦了吧!所以,我们用一种简单的方式——通过法向量来判断。

你可能会问,法向量是什么鬼?别担心,这个名字听起来很高大上,但其实不复杂。

平面上总是有一条“方向线”,我们叫它法向量。

它的特点就是,它是垂直于这个平面的,站在这个平面上的任何直线都会和它形成一定的角度,除非这条直线与法向量平行,或者刚好垂直。

现在,假设我们有一个平面和一条直线。

我们只要找出平面上的法向量,再看看直线的方向向量是否与法向量垂直。

如果两者的点积为零,那就说明这条直线和这个平面是垂直的,换句话说,这个直线“顶”到了这个平面,正好垂直。

这种方法其实很简洁。

为了让大家更容易理解,我们可以举个例子。

比如,平面给定的方程是 ( ax + by + cz = d ),这个平面的法向量就是 ( (a, b, c) ),假设直线的方向向量是 ( (l, m, n) )。

要判断直线是否和这个平面垂直,只需要看法向量和方向向量的点积是不是零。

也就是说,计算 ( a cdot l + b cdot m + c cdot n ),如果结果是零,那直线就和这个平面垂直。

直线与平面垂直的判定

直线与平面垂直的判定

练习
1、如果一条直线垂直于平面内的一条直线, 能否判断这条直线和这个平面垂直?
2、如果一条直线垂直于平面内的两条直线, 能否判断这条直线和这个平面垂直? 3、如果一条直线垂直于平面内的无数条直 线,能否判断这条直线和这个平面垂直?
练习
4、如果三条直线共点、且两两垂直,其中 任一条直线是否垂直于另两条直线确定的 平面?为什么? 5、如果一条直线垂直于一个三角形的两边, 能否断定这条直线和三角形的第三条边垂 直?为什么?
l
AE=A’E
B m
α
g
n D
C
E
A’
A
l
AE=A’E AB=A’B
B m
α
g
n D
C
E
A’
A
l
AE=A’E AB=A’B
B g
α
E
A’
A
l
AE=A’E AB=A ’B
B
l ⊥g
E
α
g
A’
直线和平面垂直的判定定理
如果一条直线和一个平面 内的两条相交直线都垂直,那 么这条直线垂直于这个平面。
注:m α nα m∩n=B l⊥m l⊥n

l ⊥α
小结
这个定理还说明这样一个事实,的确 存在着和一个平面内一切直线都垂直的直 线,从而得证了直线和平面垂直的合理性。 这个定理不仅提供了判定直线和平面 垂值得一种方法,而且还是证明直线和直 线互相垂直的一种常用的方法,即要想证 明a⊥b,只需证a与b所在平面内的两条相 交直线垂直(或证b与a所在平面内的两条 相交直线垂直)。
2.3.1 直线与平面垂直的判定
一、直线与平面垂直的定义
• 如果一条直线 l 和一个平面α内的任意一 条直线都垂直,我们就说直线 l 和平面α 互相垂直,记作 l ⊥α。(如图) • 直线 l 叫做平面α的垂线。 • 平面α叫做直线 l 的垂面。 • 直线 l 和平面α的交点叫做垂足。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

`第 15 课时 直线与平面垂直的判定基础知识知识点1、直线与平面垂直的定义:定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足.(线线垂直→线面垂直)知识点2、直线与平面垂直的判定:判定定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形语言→符号语言:若l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α,则l ⊥α →辨析(讨论正确性):A.若一条直线垂直于平面内的两条直线,则这条直线垂直于这个平面;B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面;C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线;D.若一条直线垂直于一个平面,则垂直于这条直线的另一直线必垂直于这个平面.知识点3、 线面角1.一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足.斜线上一点与斜足间的线段叫做这个点到平面的斜线段.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影. 2.直线和平面所成角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.特别地:(1)如果一条直线垂直于平面,我们说它们所成的角为直角;(2)一条直线和平面平行或在平面内,我们说它们所成的角为0°.即线面所成角的范围为[0°,90°].3.最小角定理:斜线和平面所成的角,是斜线和它在平面内的射影所成的锐角,它是这条斜线和平面内经过斜足的一切直线所成角中最小的角.学法指导1、 线线平行中线面垂直的证明例1、已知:a ∥b,a ⊥α求证:b ⊥α证明:设m 是α内的任意一条直线αααα⊥⇒⎭⎬⎫⊂⊥⇒⎭⎬⎫⊥⇒⎭⎬⎫⊂⊥b m m b b a m a m a //2、 面面平行中线面垂直的证明例2、求证:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.已知:βα//,α⊥l . 求证:β⊥l .分析:要证β⊥l ,只要证明l 垂直于β内的任意一条直线或某两条相交直线.证明:设A l =α ,在平面β内任取一条直线b .因为点A 不在β内,所lαβA baγmb aα以点A 与直线b 可确定平面γ.设a =αγ .}b l a l a l b a b a ⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⇒⊂⊥⇒⎪⎭⎪⎬⎫==ααγβγαβα//// 由于直线b 是平面β的任意一条直线,所以β⊥l .3、 射影问题例3、 如图,已知∠BAC 在平面α内,P α∉,∠P AB =∠P AC .求证:点P 在平面α上的射影在∠BAC 的平分线上.证明:作PO ⊥α,PE ⊥AB ,PF ⊥AC ,垂足分别为O ,E ,F ,连结OE ,OF ,OA .AF AE PAF Rt PAE Rt PA PA PAF PAE AC PF AB PE =⇒∆≅∆⇒⎪⎭⎪⎬⎫=∠=∠⊥⊥,.}⊥⇒⎪⎭⎪⎬⎫⊥⊥⇒⊂⊥AB PE AB PO AB AB PO αα平面PEO OE AB ⊥⇒.同理,AC ⊥OF 在Rt △AOE 和Rt △AOF中,AE = AF ,OA = OA ,所以Rt △AOE ≌Rt △AOF .于是∠EAO =∠F AO ,即点P 在α上的射影O 在∠BAC 的平分线上.4、线面角的求法例4、如图,已知正方形ABCD 的边长为1,线段EF ∥平面ABCD ,点E ,F 在平面ABCD的正投影分别为A ,B ,且EF 到平面ABCD 的距离为36.求(1)EA 与FD 所成的角;(2)FD 与平面ABCD 所成的角.解:(1)连结BD ,由已知,有EA ⊥平面ABCD ,FB ⊥平面ABCD ,∴EA ∥FB . ∴∠BFD 就是EA 与FD 所成的角或其补角.由题意,得36=FB ,2=BD ,FB ⊥BD ,∴FB DF 2362==,∴在Rt △FBD 中,∠BFD = 60,∴EA 与FD 所成的角为 60.(2)由(1)知,∠BDF 就是FD 与平面ABCD 所成的角,∵∠BDF = 30,∴FD 与平面ABCD 所成的角为 30.5、综合问题例5、如图,已知四棱锥S —ABCD 的底面ABCD 是正方形,SA ⊥平面ABCD ,SA = AB ,M ,N 分别为SB ,SD 的中点.(1)求SB ,SC 与底面ABCD 所成角的正切值;(2)若SA = a ,求直线AD 到平面SBC 的距离;(3)求证:SC ⊥平面AMN . 解:(1)因为SA ⊥平面ABCD ,∴∠SBA 就是SB 与平面ABCD 所成的角.∵SA = AB ,∴∠SBA = 45°.∴tan ∠SBA = 1.连AC ,由SA ⊥平面ABCD ,∴∠SCA 就是SC 与平面ABCD 所成的角.∵SA AC 2=, ∴22tan =∠SCA .A PB C E F O α AS BCDMNA B CDEF(2)SBC AM B BC SB SB AM AM BC SAB AM SAB BC A SA AB AB BC ABCD BC ABCD SA BC SA 面面面面面⊥⇒⎪⎭⎪⎬⎫=⊥⊥⇒⎭⎬⎫⊂⊥⇒⎪⎭⎪⎬⎫=⊥⇒⎭⎬⎫⊂⊥⊥ . ∴AM 就是AD 到面SBC 的距离.∵a AM 22=,∴直线AD 到平面SBC 的距离为a 22.(3)∵AM ⊥面SBC ,SC ⊂面SBC ,∴AM ⊥SC .同理可证:AN ⊥面SDC ,∴AN ⊥SC .又∵AM ∩AN = A ,∴SC ⊥平面AMN .三、基础训练1、 如果一条直线l 与平面α的一条垂线垂直,那么直线l 与平面α的位置关系是( D )A 、l ⊂αB 、l ⊥αC 、l ∥αD 、l ⊂α或l ∥α2、若两直线a ⊥b ,且a ⊥平面α,则b 与α的位置关系是 ( D )A 、相交B 、b ∥αC 、b ⊂αD 、b ∥α,或b ⊂α3、已知a ,b ,c 是直线,α,β是平面,下列条件中,能得出直线a ⊥平面α的是( D )A 、a ⊥c,a ⊥b ,其中b ⊂α,c ⊂αB 、a ⊥b,b ∥αC 、α⊥β,a ∥βD 、a ∥b,b ⊥α4、如图2.3.1-2,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个空间图形,使B 、C 、D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有[ A ]A 、AH ⊥△EFH 所在平面B 、AD ⊥△EFH 所在平面C 、HF ⊥△AEF 所在平面D 、HD ⊥△AEF 所在平面 (B 、D 两个选项不怎么好)5、过直线外一点作直线的垂线有 条;垂面有 个;平行线有 条;平行平面有 个. 无数,一,一,无数6. 已知α∥β且α与β间的距离为d ,直线a 与α相交于点A 与β相交于B ,若23||3AB d =,则直线a 与α所成的角=___________. 60°,构建直角三角形。

7、从点O 出发的不共面的3条射线OA 、OB 、OC 中,如果∠AOB =∠AOC ,则OA在平面BOC 上的射影落在∠BOC 的________.平分线上8、如图,已知AC ,AB 分别是平面α的垂线和斜线,C ,B 分别是垂足和斜足,a α⊂,a BC ⊥.求证:a AB ⊥.证明:∵AC α⊥,a α⊂,∴a A C ⊥.又a B C ⊥,AC BC C = ,∴a ⊥平面ABC .又AB ⊂平面ABC ,∴a AB ⊥.9、有一根旗杆AB 高8m ,它的顶端A 挂两条长10m 的绳子,拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一直线上),C D ,如果这两点都和旗杆脚B 的距离是6m ,那么旗杆就和地面垂直,为什么?解:在ABC ∆和ABD ∆中,∵8,6,10AB m BC BD m AC AD m ===== ∴2222226810AB BC AC +=+==2222226810AB BD AD +=+==∴90ABC ABD ∠=∠=即,AB BC AB BD ⊥⊥ 又∵,,B C D 不共线∴AB ⊥平面BCD ,即旗杆和地面垂直;四、创新思维1、探索性问题如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2, D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.(1)证明:如图,∵ ABC —A 1B 1C 1 是直三棱柱, ∴ A 1C 1 =B 1C 1 =1,且∠A 1C 1B 1 =90°. 又 D 是A 1B 1 的中点,∴ C 1D ⊥A 1B 1 .∵ AA 1 ⊥平面A 1B 1C 1 ,C 1D ⊂平面A 1B 1C 1 , ∴ AA 1 ⊥C 1D ,∴ C 1D ⊥平面AA 1B 1B .(2)解:作DE ⊥AB 1 交AB 1 于E ,延长DE 交BB 1 于F ,连结C 1F ,则AB 1 ⊥平面C 1DF ,点F 为BB 1的中点即为所求.事实上,∵ C 1D ⊥平面AA 1BB ,AB 1 ⊂平面AA 1B 1B , ∴ C 1D ⊥AB 1 .又AB 1 ⊥DF ,DF C 1D =D ,ABC aαCB DA α∴AB1⊥平面C1DF.〔规律总结〕第一问,线面垂直的证明是用面面垂直的性质定理;第二问线面垂直的证明线线垂直的到线面垂直,首先只有AB1垂直于一条直线C1D,要AB1垂直于另一条过D点的直线,必须做DF 垂直于AB1,这样得到点F为BB1的中点。

探索性问题也要讲究步骤,讲究推理的依据;当然也可以先猜想,后证明。

第 16 课时 平面与平面垂直的判定基础知识知识点1、 二面角的定义:①定义:从一条直线出发的两个半平面所组成的图形叫二面角. 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)②二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;范围:000180θ<<.知识点2、 平面与平面垂直的判定:①.平面角是直角的二面角叫做直二面角.一般地,如果两个平面所成的二面角是直二面角,我们就说这两个平面垂直.平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号表示为:若α⊥l ,βαβ⊥⇒⊂l . (线面垂直→面面垂直)知识点3、确定二面角的平面角的方法.(1)定义法:在二面角的棱上找一特殊点,在两个半平面内分别作垂直于棱的射线(特殊两字的作用,在于平面角的大小易于求出);(2)垂线法:由其中一个半平面内异于棱上的一点A 向另一个半平面作垂线,垂足为B ,再由点B 向二面角的棱作垂线,垂足为C ,连结AC ,则∠ACB 为二面角的平面角;(3)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条射线所成的角,即为二面角的平面角.学法指导1、 点面距离问题例1、已知点A 、B 到平面α的距离分别为d 与3d ,则A 、B 的中点到平面α的距离为________. 〔思维方法〕:(1)d 或2d 。

相关文档
最新文档