中考复习之与圆有关的角

合集下载

2006年中考复习之与圆有关的角

2006年中考复习之与圆有关的角

一、选择题1. 6-的相反数是( )A . 6-B . 61-C . 61 D . 6 2. 1.4的算术平方根是( ) A .2±B .2C .2±D .23. 下列运算正确的是( )A .224236x x x =·B .22231x x -=-C .2222233x x x ÷= D .224235x x x +=4. 8的立方根是( )A .2B .2-C .±2D .22 5. 17-的绝对值是( ) A .17B .17-C .7D .7-6. 计算2)3(-的结果是( ).A .-6B .9C .-9D .67. 在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <0 8. 21-的绝对值是( ) A . 2- B . 2 C . 21-D . 21 9. 下列根式中不是最简二次根式的是( ).A .2B .6C .8D .1010. 计算: 30sin 2)13(332012+-+⨯---11. 下列各数中,最大的数是( )A .1-B .0C .1D .212. 4的算术平方根是( ) A .2 B .2- C .2±D .16 13. 计算()23的结果是( ) A .9 B .9- C .3 D .3-14. 在实数0,2,13-,0.74,π中,无理数有( ) A .1个 B .2个C .3个D .4个 15. 用计算器求32值时,需相继按“2”,“∧”,“3”,“=”键,若小红相继按“”,“2”,“∧”,“4”,“=”键,则输出结果是( )A .4B .5C .6D .1616. 在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .417. 使二次根式2x -有意义的x 的取值范围是( )A .2x ≠B .2x >C .x ≤2D .2x ≥ 18. 27的立方根是( )A .3B .3-C .9D .9- 19. 3(3)-等于( )A .9-B .9C .27-D .2720. 8的立方根为( )A .2B .2±C .4D .4±21. 实数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( ) A .1a a -<<- B .1a a -<-< C .1a a <-<- D .1a a <-<-22. 下列根式中,不是..最简二次根式的是( ) A .7 B .3 C .12 D .223. |-9|的平方根是( )A .81B .±3C .3D .-324. -7的相反数是( )A .7B .-7C .71 D .71- 25. 有理数12的相反数是( ) a 1- 0 (图)A .12-B .12C .2-D .226. 不等式2x ≥的解集在数轴上表示为( )27. 二次根式2(3)-的值是( )A .3-B .3或3-C .9D .328. A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( )A .3-B .3C .1D .1或3-29. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab >B .0a b +<C .1a b< D .0a b -<30. 计算1123-的结果是( ) A .733-B .3323-C .3D .533-1 1- 023 A .1 1- 023 B .1 1- 023 C .1 1- 023 D .ab 0。

中考考点突破之圆的专题复习

中考考点突破之圆的专题复习

中考考点突破之圆的专题复习考点精讲1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;2.探索并证明垂径定理;3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;考点解读考点1:垂径定理及其运用①与圆有关的概念和性质:(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.②垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)延伸:根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧AD; ②弧B D=弧C B;③C E=D E; ④AB⊥CD; ⑤AB是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.考点2:圆周角定理及其运用①圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.②圆周角定理及其推论:(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A =1/2∠O .图a 图b 图c( 2 )推论:① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A =∠C .② 直径所对的圆周角是直角.如图c ,∠C =90°.圆内接四边形的对角互补.如图a ,∠A +∠C =180°,∠ABC +∠ADC =180°.考点3:点与圆的位置关系①点与圆的位置关系:设点到圆心的距离为d .(1)d <r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d >r ⇔点在⊙O 外.考点4:切线性质及其证明①切线的判定:(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.②切线的性质:(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径考点5:正多边形与圆①正多边形的有关概念:边长(a )、中心(O )、中心角(∠AOB )、半径(R ))、边心距(r ),如图所示①. 222⎪⎭⎫ ⎝⎛-=a R r 边心距n ︒=360中心角②内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.考点6:与圆有关的计算①弧长和扇形面积的计算:扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr②圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:2180n R l r ππ==, S 侧=12lR =πrl考点突破1.(2021秋•德城区校级期中)在平面直角坐标系中,⊙C 的圆心坐标为(1,0),半径为1,AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(﹣a ﹣1,﹣b )B .(﹣a +1,﹣b )C .(﹣a +2,﹣b )D .(﹣a ﹣2,﹣b )2.(2021秋•普兰店区期末)如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A.6 B.8 C.10 D.123.(2021秋•禹州市期中)如图拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,这些钢索中最长的一根的长度为25m,那么其正下方的路面AB的长度为()A.100m B.130m C.150m D.180m4.(2020秋•永城市期末)如图,点A,B,C,D均在以点O为圆心的圆O上,连接AB,AC 及顺次连接O,B,C,D得到四边形OBCD,若OD=BC,OB=CD,则∠A的度数为()A.20°B.25°C.30°D.35°5.(2021秋•郾城区期末)如图,在⊙O中,=,直径CD⊥AB于点N,P是上一点,则∠BPD的度数是()A.30°B.45°C.60°D.15°6.(2022•泗洪县一模)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,∠D 的度数为()A.60°B.80°C.100°D.120°7.(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC 于点Q.若QP=QO,则的值为()A.B.C.D.8.(2021秋•舞阳县期末)⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上9.(2021秋•丛台区校级期中)下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.同一平面内,过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在10.(2021秋•射阳县校级期末)下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等11.(2021秋•禹州市期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.12.(2021•五通桥区模拟)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC =4,CD的长为.13.(2021秋•甘州区校级期末)在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.(2021秋•西峡县期末)如图,ABCD是⊙O的内接四边形,AD=CD,点E在AD的延长线上,∠CDE=52°,则∠AOD=.15.(2021秋•郾城区期末)如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,AB=6,则BD=.16.(2021•内乡县二模)婆罗摩笈多(公元598﹣660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,圆O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在圆O的内部,AB⊥CD,垂足为E,.求证:.17.(2021秋•长垣市期末)豫东北机场待建在即,国道515围机场绕道而行.如图是公路转弯处的一段圆弧,点O是这段圆弧的圆心.直径CD⊥AB于点F.BE平分∠ABC交CD 于点E,AB=3km,DF=450m.(1)求圆的半径;(2)请判断A、B、E三点是否在以点D为圆心DE为半径的圆上?并说明理由.18.(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)=;(2)AE=CE.19.(2021秋•内乡县期末)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=3,CE=4,求AC的长.20.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.。

中考数学-圆讲义及练习

中考数学-圆讲义及练习

第3讲圆知识点1 圆周角定理1. 圆的有关概念(1)圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

以点O 为圆心的圆记作“⊙O”,读作“圆O”.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;圆是以圆心为对称中心的中心对称图形.(2)弦:连接圆上任意两点的线段叫做弦.(3)直径:经过圆心的弦叫做直径.(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”.大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示).2. 圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”.3. 圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.典例剖析例(1)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°(例(1)图)(例(2)图)(2)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.跟踪训练1.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.50°C.40°D.30°(第1题图)(第2题图)(第3题图)2.如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.3.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.过关精练1.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°(第1题图)(第2题图)(第3题图)(第4题图)2.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60°B.50°C.40°D.30°3.如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为()A.30°B.45°C.60°D.90°4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°(第5题图)(第6题图)(第7题图)(第8题图)6.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°7.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.如图,AB为⊙O的直径,点C、D在⊙O上,若∠CBA=70°,则∠D的度数是.9.如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为.(第9题图)(第10题图)10.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.知识点2 垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.典例剖析例(1)如图⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2(例(1)图)(例(2)图)(2)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.跟踪训练1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1(第1题图)(第2题图)2.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.3.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm(第1题图)(第2题图)(第3题图)2.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.83.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD =20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在直径为10cm的⊙O中,BC是弦,半径OA⊥BC于点D,AD=2cm,则BC的长为cm.6.如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=.7.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.知识点3 切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线性质的运用见切点,连半径,见垂直.例(1)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°(例(1)图)(例(2)图)(2)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2B.C.D.跟踪训练1.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°(第1题图)(第2题图)2.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.5过关精练1.如图AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A.60°B.50°C.40°D.30°(第1题图)(第2题图)2.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB 的度数为()A.40°B.50°C.65°D.75°(第3题图)(第4题图)(第5题图)4.如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°5.如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.如图,P是⊙O外一点,P A是⊙O的切线,PO=26cm,P A=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm(第6题图)(第7题图)7.如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.8.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.(第8题图)(第9题图)9.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.410.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.(第10题图)(第11题图)(第12题图)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=.12.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.13.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC =.(第13题图)(第14题图)(第15题图)14.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=度.15.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=度.16.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=.(第16题图)(第17题图)17.已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=.知识点4 扇形面积的计算(1)圆面积公式:S=πr2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.例(1)如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是.(2)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).跟踪训练1.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.(第1题图)(第2题图)(第3题图)2.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π3.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).1.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π(第1题图)(第2题图)(第3题图)2.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+3.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣24.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1B.4﹣πC.D.2(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣6.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4B.C.π﹣2D.8.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4(第8题图)(第8 题图)(第10题图)9.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣10.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)11.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).(第11题图)(第12题图)(第13题图)12.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是(结果保留π).13.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为第 11 页 共 12 页半径作弧,交AB 于点D ,则图中阴影部分的面积是 .(结果保留π)15.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)(第14题图) (第15题图)16.如图,一个圆心角为90°的扇形,半径OA =2,那么图中阴影部分的面积为 (结果保留π).(第16题图) (第17题图) (第18题图)17.如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为 .18.如图,在扇形OAB 中,∠AOB =90°.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的▱ODCE 的顶点C 在上.若OD =8,OE =6,则阴影部分图形的面积是 (结果保留π).19.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为 .(第19题图) (第20题图)20.如图,在矩形ABCD 中,CD =2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E 为AB 中点,则图中阴影部分的面积为 .21.如图,在▱ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).22.如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB.为半径画弧,交AC于点D,则阴影部分的面积是第12 页共12 页。

中考数学考点知识与题型专题讲解28---与圆有关的角

中考数学考点知识与题型专题讲解28---与圆有关的角

如答图,连接 DO, ∵DO=CO,∴∠1=∠2 . ∵DM=CM,∴∠4=∠3. ∵∠2+∠4=90°,∴∠1+∠3=90°. ∴直线 DM 与⊙O 相切.
【答案】(1)证明见解析;(2)当 MC=MD(或点 M 是 BC 的中点)时,直线 DM 与⊙O 相切,理由见解析. 【解析】
∵∠ACB=90°,∴∠DCB+∠ACD=90°. ∴∠DCB=∠A. (2)当 MC=MD(或点 M 是 BC 的中点)时,直线 DM 与⊙O 相切,理由如下:
7 / 18
中考数学考点知识与题型专题讲解 专题 28 与圆有关的角
聚焦考点☆温习理解 一、弧、弦、弦心距、圆心角之间的关系定理 1、圆心角 顶点在圆心的角叫做圆心角。 2、弧、弦、弦心距、圆心角之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相 等。 推论:在同圆 或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中 有一组量相等,那么它们所对应的其余各组量都分别相等。 3、圆周角 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 4、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半。 推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论 3:如果 三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
OD
∴ r − 2 = 1 ,解得 r =4, r2
∴OE=4-2=2, ∴ DE = OD2 − OE2 = 42 − 22 = 2 3 . ∴CD=2DE= 4 3 .
考点典例三 圆周角与切线之间的关系 【例 3】(2016 海南省第 12 题)如图,AB 是⊙O 的直径,直线 PA 与⊙O 相切于点 A, PO 交⊙O 于点 C,连接 BC.若∠P=40°,则∠ABC 的度数为( ) A.20° B.25° C.40° D.50°

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

圆中有关的角

圆中有关的角

年 级 初三 学 科 数学 编稿老师 田一鹏 课程标题 圆中有关的角一校 张琦锋二校林卉审核孙永涛一、考点突破1. 掌握和圆有关的角:圆心角、圆周角、圆内角、圆外角、弦切角的定义及其度量。

2. 掌握圆内接四边形的性质定理。

3. 了解弧、弦、圆心角、圆周角之间的关系,并能运用这些关系解决有关问题。

二、重难点提示重点:弧、弦、圆心角、圆周角之间的关系。

难点:圆周角定理的应用和分类讨论的思想在解题中的应用。

一、圆中有关的角⎧⎪⎪⎪⎨⎪⎪⎪⎩圆心角圆周角圆中有关的角圆内角圆外角弦切角1. 圆心角:顶点在圆心的角叫做圆心角。

OCB把整个圆周等分成360份,每一等份弧是1°的弧,圆心角的度数和它所对的弧的度数相等。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们相对应的其余各组量都相等。

2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

OBCA一条弧所对的圆周角等于它所对的圆心角的一半,同弧或等弧所对的圆周角相等;反之也成立。

直径所对的圆周角是直角。

BCAO3. 圆内角:顶点在圆内(两边自然和圆相交)的角叫圆内角。

P OBA圆内角的度数等于它所对的弧的度数与它的对顶角所对的弧的度数的和的一半。

DPB COA4. 圆外角:顶点在圆外,并且两边都和圆相交(或相切)的角叫圆外角。

DPBCAO圆外角的度数等于它所夹的两弧度数的差(较大弧的度数减去较小弧的度数)的一半。

5. 弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

弦切角等于它所夹的弧对的圆周角。

推论①弦切角等于它所夹的弧所对的圆心角的一半。

推论②如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

二、圆的内接四边形如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

中考复习——圆的有关概念及性质

中考复习——圆的有关概念及性质

圆的有关概念及性质复习【课标要求】:1.理解圆的定义和圆的有关概念;2.理解圆心角、弧、弦、弦心距之间的关系,并能运用它们之间的关系解决有关问题;3.掌握垂径定理及其应用【复习目标】:1.知道圆、弧、弦、圆心角、圆周角等基本概念;认识圆的对称性;了解圆锥的侧面展开图是扇形。

2.能用垂径定理,圆心角、弧、弦之间关系定理,圆周角定理及推论,等进行简单的运算和推理;会通过作图的方法理解确定圆的条件。

3.会用折叠、旋转、圆的对称性及分类讨论的思想方法探索图形的有关性质,能将有关弦长、半径的实际计算问题转化成解直角三角形问题解决。

【知识梳理】:考点导航1.与圆有关的概念(1)圆的定义_________________________________图形叫做圆.(2)弦:连结圆上___________的线段叫做弦.(3)直径:___________的弦叫做直径.(4)弧:圆上任意两点间的部分叫做___________.(5)优弧:___________叫做优弧.(6)劣弧:___________叫做劣弧.(7)同心圆:圆心相同、半径不相等的圆的叫做同心圆.(8)等圆:___________叫做等圆.(9)等弧:在同圆或等圆中,___________的弧叫做等弧.2.过三点的圆(1)经过___________三点不能作圆.(2)不在同一直线上的三点确定___________个圆.3.垂径定理及推论(1)垂径定理垂直于弦的直径___________,并且___________.(2)推论平分弦(不是直径)的直线___________,并且___________.弦的垂直平分线____________________________________________________.平分弦所对的一条弧的直径,______________________________________.4.圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,相等的圆心角所对的弧___________,所对的弦___________,所对的弦的弦心距___________.5.圆周角定理及推论(1)定理:在___________或___________中,同弧或等弧所对的圆周角___________,都等于这条弧所对___________的一半.(2)推论:___________(或___________)所对的圆周角是___________,90°的圆周角所对的弦是___________.6.圆内接四边形圆内接四边形的对角___________,一个外角等于它的___________.考点点拨1.注意相关概念的区分(1)弧与半圆:半圆是弧,但弧不一定是半圆.(2)弦与直径:直径是弦,但弦不一定是直径,直径是圆中最长的弦.(3)等弧与长度相等的弧:等弧的长度一定相等,但长度相等的弧不一定是等弧.(4)等圆和同心圆:等圆是半径相等圆心不同的圆,而同心圆是半径不等圆心相同的圆.2.常用的辅助线(1)作半径,利用同圆的半径相等;(2)作弦心距,利用垂径定理进行计算或推理,或利用圆心角、弧、弦、弦心距之间的关系进行证明;(3)作半径和弦心距,构造直角三角形进行计算;(4)构造直径所对的圆周角——直角;(5)构造同弧或等弧所对的圆周角;(6)遇到三角形的外心常连结外心和三角形各顶点.3.分类讨论解“圆”题,防止漏解如:一条弦所对的圆周角有两种,所以在同圆或等圆中,等弦所对的圆周角相等或互补.圆内两条平行弦与圆心的位置关系有两种等.【考题研究】考点 1 圆的概念和性质例1 下列命题中,假命题是( )A .两条弧的长度相等,它们是等弧B .等弧所对的圆周角相等C .直径所对的圆周角是直角D .一条弧所对的圆心角等于它所对的圆周角的两倍意图:本题是考查圆的基本概念和性质,要结合图形深刻理解和熟练记忆.考点 2 圆的弦、半径、弦心距的计算例2 如图1-9-1,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,若大圆半径为10 cm ,小圆半径为6 cm ,则弦AB 的长为___________.意图:在一个圆中,若已知圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+2a 2⎛⎫ ⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.考点 3 圆心角、弧、弦之间的关系例3 (2011·河南)如图1-9-3所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于___________.意图:相同弧所对的周围角相等.考点 4 圆心角与圆周角的关系及应用例4 (2011·芜湖)如图1-9-5,已知点E是圆O上的点,B、C分别是劣弧AD的三等分点,∠BOC=46°,则∠AED的度数为___________.意图:本题主要考查秀点,一是在同圆或等圆中,等弧所对圆心角相等,二是同弧所对圆周角等于圆心解的一半.【中考链接】1.(2011浙江绍兴,4,4分)如图,AB为圆O的直径,点C在圆O上,若16∠=︒,C则B O C∠的度数是()A.74︒B. 48︒C. 32︒D. 16︒2.(2011浙江绍兴,6,4分)一条排水管的截面如图所示.已知排水管的截面圆半径10O B=,截面圆圆心O到水面的距离O C是6,则水面宽AB是()A.16B.10C.8D.63.(2011四川凉山州,9,4分)如图,100上,且点C不与A、∠= ,点C在OAOBB重合,则A C B∠的度数为()A.50 B.80 或50 C.130 D.50 或1304.(2011湖北荆州,12,4分)如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是.5.(2011浙江杭州,14,4)如图,点A,B,C,D都在⊙O上,的度数等于84°,CA 是∠OCD的平分线,则∠ABD十∠CAO= °6. (2011四川乐山6,3分)如图(3),CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=( )A.40°B.60°C.70°D.80°7. (2011江西,21,8分)如图,已知⊙O的半径为2,弦BC的长为,点A为弦BC 所对优弧上任意一点(B,C两点除外)。

中考复习--圆专题所有知识点和题型汇总,全

中考复习--圆专题所有知识点和题型汇总,全

"圆"题型分类资料一. 圆的有关概念:1.以下说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧,正确的命题有〔 〕A . 1个B .2个C .3个D .4个2.以下命题是假命题的是〔 〕A .直径是圆最长的弦B .长度相等的弧是等弧C .在同圆或等圆中,相等的圆心角所对的弧也相等D .如果三角形一边的中线等于这条边的一半,则这个三角形是直角三角形。

3.以下命题正确的选项是 〔 〕 A .三点确定一个圆 B .长度相等的两条弧是等弧C .一个三角形有且只有一个外接圆D .一个圆只有一个外接三角形4.以下说确的是( )A .相等的圆周角所对的弧相等B .圆周角等于圆心角的一半C .长度相等的弧所对的圆周角相等D .直径所对的圆周角等于90°5.下面四个图中的角,为圆心角的是( )A .B .C .D .二.和圆有关的角:1. 如图1,点O 是△ABC 的心,∠A =50︒,则∠BOC =_________图1 图22.如图2,假设AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为( )A .116°B .64°C . 58°D .32°3. 如图3,点O 为优弧AB 所在圆的圆心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D 的度数为图3 图44. 如图4,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,∠BAC =80°,则∠BDC =_________度.5. 如图5,在⊙O 中, BC 是直径,弦BA ,CD 的延长线相交于点P ,假设∠P =50°,则∠AOD =.图5 图66. 如图6,A ,B ,C ,是⊙O 上的三个点,假设∠AOC =110°,则∠ABC =°.7.圆的接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。

与圆相关的角

与圆相关的角

与圆相关的角
一、圆心角:顶点在圆心的角.
我们知道,一个周角是360︒. 把圆周分成360份,每一份叫做1︒的弧. 因此,n ︒的圆心角对的弧是n ︒的弧;反之,n ︒的弧所对的圆心角的度数是n ︒. 从而有 圆心角定理 圆心角的度数等于它所对的弧的度数.
如图,在O 中,AOB AB ∠=.
二、圆周角:顶点在圆周上,并且两边都与圆相交的角.
圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半.
如图,在O 中,11
22
CAD COD CD ∠=∠=.
三、圆内角:顶点在圆内的角.
圆内角定理 圆内角的度数等于它及其对顶角所对的弧的度数之和的一半.
如图,在O 中,()
1
2
AEB ADB CAD AB CD ∠=∠+∠=
+. 四、圆外角:顶点在圆外,并且两边都与圆相交的角.
圆外角定理 圆外角的度数等于它所夹的弧的度数之差的一半.
如图,在O 中,()
1
2
AEB ADB CAD AB CD ∠=∠-∠=
-. 五、弦切角:顶点在圆上,一边与圆相交、一边与圆相切的角. 弦切角定理 弦切角等于它所夹的弧所对的圆周角.
如图,在O 中,1
2
CBD BAD BD ∠=∠=。

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。

与圆有关的角(解析版)

与圆有关的角(解析版)

专题08 与圆有关的角知识网络重难突破知识点一圆心角1.圆心角:顶点在圆心的角叫做圆心角.圆心角的度数等于它所对的弧的度数.2.圆心角性质定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各组量都相等.【典例1】(2020•项城市三模)如图,圆O通过五边形OABCD的四个顶点.若=150°,∠A=75°,∠D=60°,则的度数为何?()A.25°B.40°C.50°D.60°【点拨】连接OB,OC,由半径相等得到△OAB,△OBC,△OCD都为等腰三角形,根据∠A=75°,∠D=60°,求出∠1与∠2的度数,根据的度数确定出∠AOD度数,进而求出∠3的度数,即可确定出的度数.【解析】解:连接OB、OC,∵OA=OB=OC=OD,∴△OAB、△OBC、△OCD,皆为等腰三角形,∵∠A=75°,∠D=60°,∴∠1=180°﹣2∠A=180°﹣2×75°=30°,∠2=180°﹣2∠D=180°﹣2×60°=60°,∵=150°,∴∠AOD=150°,∴∠3=∠AOD﹣∠1﹣∠2=150°﹣30°﹣60°=60°,则的度数为60°.故选:D.【点睛】此题考查了圆心角、弧、弦的关系,多边形内角与外角,弄清圆心角、弧、弦的关系是解本题的关键.【变式训练】1.(2019秋•鹿城区月考)一个圆的内接正多边形中,一边所对的圆心角为72°,则该正多边形的边数是()A.6 B.5 C.4 D.3【点拨】根据正多边形的中心角=计算即可.【解析】解:设正多边形的边数为n.由题意=72°,∴n=5,故选:B.【点睛】本题考查正多边形的有关知识,解题的关键是记住正多边形的中心角=.2.(2019秋•余杭区期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α【点拨】连接OD,求得∠DCE=α,得到∠BCD=90°﹣α,根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:连接OD,∵的度数为α,∴∠DCE=α,∵∠ACB=90°,∴∠BCD=90°﹣α,∵BC=DC,∴∠B=(180°﹣∠BCD)=(180°﹣90°+α)=45°+α,∴∠A=90°﹣∠B=45°﹣α,故选:A.【点睛】本题考查了圆心角,弧,弦,直角三角形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.3.(2019秋•鄞州区期末)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10 B.13 C.15 D.16【点拨】连接OF,首先证明AC=DF=12,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解析】解:如图,连接OF.∵DE⊥AB,∴DE=EF,=,∵点D是弧AC的中点,∴=,∴=,∴AC=DF=12,∴EF=DF=6,设OA=OF=x,在Rt△OEF中,则有x2=62+(x﹣3)2,解得x=,∴AB=2x=15,故选:C.【点睛】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4.(2019春•西湖区校级月考)如图,AB是⊙O的直径,M、N分别是AO,BO的中点,CM⊥AB,DN⊥AB,则的度数60°.【点拨】根据圆心角、弧、弦的关系和含30°的直角三角形的性质解答.【解析】解:∵AB是⊙O的直径,M、N分别是AO,BO的中点,∴2OM=OC,2ON=OD,∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°,∴∠MCO=∠NDO=30°,∴∠MOC=∠NOD=60°,∴∠COD=180°﹣60°﹣60°=60°,∴的度数是60°,故答案为:60°【点睛】此题考查圆心角、弧、弦,关键是根据圆心角、弧、弦的关系和含30°的直角三角形的性质解答.5.(2018秋•丽水期中)如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.【点拨】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【解析】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,又∵OA=OB,M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,,∴△MOC≌△NOC(SAS),∴MC=NC.【点睛】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.知识点二圆周角1.圆周角:顶点在圆上,两边分别和圆相交的角叫做圆周角.圆周角的度数等于它所对弧上的圆心角度数的一半.2.圆周角性质定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【典例2】(2019秋•义乌市期末)如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.【点拨】(1)利用圆周角定理得到∠C=∠ADB=90°,则根据互余计算出∠CAB=62°,再根据角平分线的定义得到∠CAD=∠CAB=31°,然后根据圆周角定理得到∠CBD的度数;(2)连接OD交BC于E,如图,先利用勾股定理计算出BC=4,由∠CAD=∠BAD得到=,根据垂径定理得到OD⊥BC,BE=CE=BC=2,则OE=1,然后根据勾股定理计算出BD,接着计算出AD.【解析】解:(1)∵AB是⊙O的直径,∴∠C=∠ADB=90°,∴∠CAB=90°﹣28°=62°,∵AD平分∠BAC,∴∠CAD=∠CAB=31°,∴∠CBD=∠CAD=31°;(2)连接OD交BC于E,如图,在Rt△ACB中,BC==4,∵AD平分∠BAC,∴∠CAD=∠BAD,∴=,∴OD⊥BC,∴BE=CE=BC=2,∴OE=AC=×2=1,∴DE=OD﹣OE=3﹣1=2,在Rt△BDE中,BD==2,在Rt△ABD中,AD==2.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【变式训练】1.(2019秋•海曙区期末)如图,点A,B,C,D在⊙O上,AC是⊙O的直径,若∠CAD=25°,则∠ABD 的度数为()A.25°B.50°C.65°D.75°【点拨】先根据圆周角定理得到∠ADC=90°,∠ABD=∠ACD,然后利用互余计算出∠ACD,从而得到∠ABD的度数.【解析】解:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ACD=90°﹣∠CAD=90°﹣25°=65°,∴∠ABD=∠ACD=65°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.2.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°【点拨】首先连接BE,由圆周角定理即可得∠BEC的度数,继而求得∠BED的度数,然后由圆周角定理,求得∠BOD的度数.【解析】解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.【点睛】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.3. (2020•温州一模)如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为60°.【点拨】根据圆周角定理得到∠AOC=2∠D,根据题意得到∠B=2∠D,根据圆内接四边形的对角互补列式计算,得到答案.【解析】解:由圆周角定理得,∠AOC=2∠D,∵∠AOC=∠B,∴∠B=2∠D,∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∴∠D+2∠D=180°,解得,∠D=60°,故答案为:60.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.4.(2019春•西湖区校级月考)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E连接EB、DE,EC=2,BC=6,则⊙O的半径为 4.5.【点拨】连接BE,AD,求出CD,根据圆周角定理求出∠CAD=∠CBE,证△CAD∽△CBE,得出比例式,求出AC,即可得出答案.【解析】解:连接BE,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵BC=6,AB=AC,∴CD=BD=3,∵由圆周角定理得:∠CAD=∠CBE,∵∠C=∠C,∴△CDA∽△CEB,∴=,∴=,解得:AC=9,∵AB=AC,∴AB=9,∴⊙O的半径为=4.5,故答案为:4.5.【点睛】本题考查了等腰三角形的性质,圆周角定理,相似三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.5.(2019秋•温州期末)如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:=.【点拨】由于AC平分∠BAD则∠BAC=∠DAC,再利用平行线的性质得∠BAC=∠ACE,所以∠DAC =∠ACE,然后根据圆周角定理得到结论.【解析】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵AB∥CE,∴∠BAC=∠ACE,∴∠DAC=∠ACE,∴=.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(2018秋•西湖区校级期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若∠B=75°,求弧DE的度数;(3)若BD=3,BE=4,求AC的长.【点拨】(1)连结AE,如图,由圆周角定理得∠AEC=90°,而AB=AC,则根据等腰三角形的性质即可判断BE=CE;(2)连结OD、OE,如图,在Rt△ABE中,利用互余计算出∠BAE=15°,再根据圆周角定理得∠DOE =2∠DAE=30°,然后根据圆心角的度数等于它所对的弧的度数即可得到弧DE的度数为30°;(3)连结CD,如图,BC=2BE=8,设AC=x,则AD=x﹣3,由圆周角定理得∠ADC=90°,在Rt △BCD中,利用勾股定理得CD2=55,然后在Rt△ADC中再利用勾股定理得到(x﹣3)2+55=x2,接着解方程求出x即可.【解析】解:(1)证明:连结AE,如图,∵AC为直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:连结OD、OE,如图,在Rt△ABE中,∠BAE=90°﹣∠B=90°﹣75°=15°,∴∠DOE=2∠DAE=30°,∴弧DE的度数为30°;(3)解:连结CD,如图,BC=2BE=8,设AC=x,则AD=x﹣3,∵AC为直径,∴∠ADC=90°,在Rt△BCD中,CD2=BC2﹣BD2=82﹣32=55,在Rt△ADC中,∵AD2+CD2=AC2,∴(x﹣3)2+55=x2,解得x=,即AC的长为.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的判定与性质.知识点三圆内接四边形1.圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.2. 圆内接四边形的性质:圆的内接四边形的对角互补.【典例3】(2018秋•崇川区校级月考)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F,求证:∠ADC=∠ABC;(2)若∠E=∠F=40°,求∠A的度数;(3)若∠E=30°,∠F=40°,求∠A的度数.【点拨】(1)根据外角的性质即可得到结论;(2)根据圆内接四边形的性质和等量代换即可求得结果;(3)连结EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2,然后根据三角形内角和定理有∠A+∠1+∠2+∠E+∠F=180°,解方程即可.【解析】解:(1)∠E=∠F,∵∠DCE=∠BCF,∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,∴∠ADC=∠ABC;(2)由(1)知∠ADC=∠ABC,∵∠EDC=∠ABC,∴∠EDC=∠ADC,∴∠ADC=90°,∴∠A=90°﹣40°=50°;(3)连结EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∵∠A+∠1+∠2+∠E+∠F=180°,∴2∠A+30°+40°=180°,∴∠A=90°﹣=55°.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.【变式训练】1.(2019秋•越城区期末)如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°【点拨】根据圆内接四边形对角互补可得∠C=180°×=105°.【解析】解:∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故选:C.【点睛】此题主要考查了圆内接四边形,关键是掌握圆内接四边形对角互补.2.(2020•仙居县模拟)如图,四边形ABCD是⊙O的内接四边形,若∠BCD=143°,则∠BOD的度数是()A.77°B.74°C.37°D.43°【点拨】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答即可.【解析】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=143°,∴∠A=180°﹣∠BCD=37°,由圆周角定理得,∠BOD=2∠A=74°,故选:B.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3..如图,已知ABCD是一个以AD为直径的圆内接四边形,分别延长AB和DC,它们相交于P,若∠APD =60°,AB=5,PC=4,则⊙O的面积为()A.25πB.16πC.15πD.13π【点拨】连接AC,由圆周角定理可得出∠ACD=90°,再由圆内接四边形的性质及三角形内角和定理可求出∠P AC=30°,由直角三角形的性质可求出AP、AC的长,由相似三角形的判定定理及性质可得出CD的长,再根据勾股定理接可求出AD的长,进而求出该圆的面积.【解析】解:连接AC,∵AD是⊙O的直径,∴∠ACD=90°,∵∠APD=60°,∴∠P AC=30°,∴AP=2PC=2×4=8,∵AB=5,∴PB=8﹣5=3,∵四边形ABCD是以AD为直径的圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∠APD=∠APD,∴△PCB∽△P AD,∴=,即=,PD=6,∴CD=PD﹣PC=6﹣4=2,∴AC===4,在Rt△ACD中,AD===2.∴OA=AD=,∴⊙O的面积=π×()2=13π.故选:D.【点睛】本题考查的是相似三角形的判定与性质、圆内接四边形的性质、勾股定理,解答此题的关键是作出辅助线,构造出直角三角形求解.4.(2019秋•萧山区期中)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=2.【点拨】连接AC,由圆内接四边形的性质和圆周角定理得到∠BAE=∠CDA,∠ABD=∠ACD,从而得到∠ACD=∠CDA,得出AC=AD=5,然后利用勾股定理计算AE的长.【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠ABE=∠ABD,∵∠ABE=∠CDA,∠ABD=∠ACD,∴∠ACD=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故答案为:2.【点睛】本题考查了圆内接四边形的性质、等腰三角形的判定、圆周角定理、勾股定理、角平分线定义等知识;熟练掌握圆周角定理和圆内接四边形的性质是解题的关键.6.(2019•黄埔区一模)如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.【点拨】(1)根据圆内接四边形的性质得到∠CDE=∠ABC=60°,根据圆周角定理、等边三角形的判定定理证明;(2)在BD上截取PD=AD,证明△APB≌△ADC,根据全等三角形的性质证明结论.【解析】(1)证明:∵∠CDE=∠CDF=60°,∴∠CDE=∠EDF=60°,∵四边形ABCD内接于⊙O,∴∠CDE=∠ABC=60°,由圆周角定理得,∠ACB=∠ADB=∠EDF=60°,∴△ABC是等边三角形;(2)解:DA+DC=DB,理由如下:在BD上截取PD=AD,∵∠ADP=60°,∴△APD为等边三角形,∴AD=AP,∠APD=60°,∴∠APB=120°,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,∴DB=BP+PD=DA+DC.【点睛】本题考查的是圆内接四边形的性质、等边三角形的性质、全等三角形的判定和性质,掌握圆内接四边形的性质是解题的关键.巩固训练1.(2019秋•福田区期末)下图中∠ACB是圆心角的是()A.B.C.D.【点拨】根据圆心角的概念判断.【解析】解:A、∠ACB不是圆心角;B、∠ACB是圆心角;C、∠ACB不是圆心角;D、∠ACB不是圆心角;故选:B.【点睛】本题考查的是圆心角的概念,掌握顶点在圆心的角叫作圆心角是解题的关键.2.(2019秋•诸暨市期末)用直角三角板检查半圆形的工件,下列工件哪个是合格的()A.B.C.D.【点拨】根据90°圆周角所对的弦是直径即可判断.【解析】解:根据90°的圆周角所对的弦是直径得到只有C选项正确,其他均不正确;故选:C.【点睛】本题考查圆周角定理、解题的关键是灵活运用圆周角定理解决问题,属于中考常考题型.3.(2019秋•拱墅区校级期末)下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①②B.②③C.②④D.④【点拨】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断.【解析】解:①在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;②同弧或等弧所对的圆周角相等,本说法正确;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;④圆内接平行四边形一定是矩形,本说法正确;故选:C.【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键.4.(2019春•西湖区校级月考)圆的内接四边形ABCD的四个内角之比∠A:∠B:∠C:∠D的可能的值是()A.1:2:3:4 B.4:2:3:1 C.4:3:1:2 D.4:1:3:2【点拨】因为圆的内接四边形对角互补,则两对角的和应该相等,比值所占份数也相同,据此求解.【解析】解:∵圆的内接四边形对角互补,∴∠A+∠C=∠B+∠D=180°,∴∠A:∠B:∠C:∠D的可能的值是4:3:1:2.故选:C.【点睛】要掌握圆的内接四边形对角互补的特性.5.(2018秋•句容市校级月考)如图,AB,CD是⊙O的直径,弦CE∥AB,弧CE的度数为40°,∠AOC 的度数70°.【点拨】连接OE,由弧CE的度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE=(180°﹣40°)÷2=70°,而弦CE∥AB,即可得到∠AOC=∠OCE=70°.【解析】解:连接OE,如图,∵弧CE的度数为40°,∴∠COE=40°,∵OC=OE,∴∠OCE=∠OEC,∴∠OCE=(180°﹣40°)÷2=70°,∵弦CE∥AB,∴∠AOC=∠OCE=70°.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,等腰三角形的性质和平行的性质以及三角形的内角和定理.6.(2020•浙江自主招生)如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN 的中点,P是直径MN上一动点,则P A+PB的最小值为.【点拨】首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.【解析】解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时P A+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∴弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的度数是30°,则∠AOC=90°,又OA=OC=1,则AC=.【点睛】此题主要考查了确定点P的位置,垂径定理的应用.7.(2019春•西湖区校级月考)如图,在⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,BC=9,∠BAC+∠EAD=180°,则⊙A的直径等于3.【点拨】延长CA,交⊙A于点F,易得∠BAF=∠DAE,由圆心角与弦的关系,可得BF=DE,由圆周角定理可得:∠CBF=90°,然后由勾股定理求得弦CF的长即可.【解析】解:作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴,∴DE=BF=6,∵CF是直径,∴∠CBF=90°,∴CF===3,故答案为:3.【点睛】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.正确作出辅助线是解题的关键.8.(2019秋•香坊区校级期中)如图,AB为 ⊙O的弦,半径OC,OD分别交AB于点E,F.且=.(1)求证:OE=OF;(2)作半径ON⊥AB于点M,若AB=8,MN=2,求OM的长.【点拨】(1)连接OA、OB,证明△AOE≌△BOF(ASA),即可得出结论;(2)连接OA,由垂径定理得出AM=AB=4,设OM=x,则OA=ON=x+2,在Rt△AOM中,由勾股定理得出方程,解方程即可.【解析】(1)证明:连接OA、OB,如图1所示:∵OA=OB,∴∠A=∠B,∵=,∴∠AOE=∠BOF,在△AOE和△OBF中,,∴△AOE≌△BOF(ASA),∴OE=OF;(2)解:连接OA,如图2所示:∵OM⊥AB,∴AM=AB=4,设OM=x,则OA=ON=x+2,在Rt△AOM中,由勾股定理得:42+x2=(x+2)2,解得:x=3,∴OM=3.【点睛】本题考查了圆心角、弧、弦的关系,等腰三角形的性质,全等三角形的判定与性质,垂径定理,勾股定理等知识;熟练掌握圆心角、弧、弦的关系和垂径定理是解题的关键.9.(2019秋•滨江区期中)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC 交于点E.(1)若∠B=70°,求弧CD的度数;(2)若AC=24,DE=8,求半圆O的半径.【点拨】(1)根据直径所对的圆周角是直角求出∠BAC的度数,根据平行线的性质求出∠AOD的度数,然后求出∠DOC的度数可确定弧CD的度数;(2)先证明OE⊥AC得到AE=CE=AC=12,设半径为r,则OE=r﹣8,然后利用勾股定理得到(r ﹣8)2+122=r2,然后解方程即可.【解析】解:(1)连接OC,如图,∵AB是半圆O的直径,∴∠ACB=90°,又∠B=70°,∴∠BAC=20°,∵OD∥BC,∴∠AOD=∠B=70°,又OD=OA,∴∠OAD=55°,∴∠DAC=35°,∴∠DOC=2∠DAC=70°,∴的度数是70°;(2)∵OD∥BC,∴∠OEA=∠ACB=90°,∴OE⊥AC,∴AE=CE=AC=12,设半径为r,则OE=r﹣8,在Rt△AOE中,(r﹣8)2+122=r2,解得r=5,即半圆O的半径为5.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.【点拨】(1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A作AE⊥CD,垂足为点E,过点B作BF⊥AC,垂足为点F.根据S四边形ABCD=S△ABC+S△ACD,分别求出△ABC,△ACD的面积,即可求得四边形ABCD的面积,然后通过证得△EAB≌△DCB(AAS),即可求得△BDE的面积=四边形ABCD的面积=.【解析】(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.【点睛】本题考查圆内接四边形的性质,等边三角形的判定和性质,勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.。

中考圆知识点总结复习

中考圆知识点总结复习

中考圆知识点总结复习只要知道其中一个结论,就能推出其他三个结论。

首先,圆可以看作是到定点的距离等于定长的点的集合。

圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。

另外,圆也可以看作是到定点的距离等于定长的点的轨迹,以定点为圆心、定长为半径的圆。

除了圆,还有其他轨迹形式的概念,如垂直平分线、角的平分线等。

垂直平分线是到线段两端距离相等的点的轨迹,也叫中垂线。

角的平分线是到角两边距离相等的点的轨迹。

还有到直线的距离相等的点的轨迹,是平行于这条直线且到这条直线的距离等于定长的两条直线。

到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。

点与圆的位置关系分为三种情况:点在圆内、点在圆上、点在圆外。

直线与圆的位置关系也有三种情况:相离、相切、相交。

相交时有两个交点,相切时有一个交点,相离时没有交点。

圆与圆的位置关系有五种情况:外离、外切、相交、内切、内含。

垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。

推论包括平分弦的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

以上共四个定理,简称2推3定理。

圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

这个定理也称1推3定理,因为只要知道其中一个结论,就能推出其他三个结论。

例如,圆的两条平行弦所夹的弧相等。

的两部分的几何平均数。

即:在⊙O中,∵AB是弦且与直径OD垂直相交于点PPA PB(OD/2)²2、切线弦定理:圆外一点的切线与这点到圆心的连线所夹的弦相乘等于切点到圆心距离的平方。

即:在⊙O中,∵XXX是切线,OP是半径,且PA与弦AB相交于点PPA PB OP²3、圆幂定理:圆外一点的两条切线所夹的弦的乘积等于这点到圆心距离的平方。

即:在⊙O中,∵XXX、PB是切线,OP是半径PA PB OP²1、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。

中考数学考点29圆的基本性质总复习(解析版)

中考数学考点29圆的基本性质总复习(解析版)

圆的基本性质【命题趋势】圆的基本性质是中考考查的重点.常以选择题.填空题和解答题考查为主;其中选择题和填空题的难度不会太大.对应用、创新、开放探究型题目.会根据当前的政治形势、新闻背景和实际生活去命题.进一步体现数学来源于生活.又应用于生活。

【中考考查重点】一、运用垂径定理及其推论进行计算二、运用圆周角定理及其推论进行计算三、垂径定理雪与圆周角定理结合考点:圆的有关概念圆的定义:在一个平面内.线段OA绕它固定的一个端点O旋转一周.另一个端点A所形成的图形叫圆。

这个固定的端点O叫做圆心.线段OA叫做半径。

圆的表示方法:以O点为圆心的圆记作⊙O.读作圆O。

圆的特点:在一个平面内.所有到一个定点的距离等于定长的点组成的图形。

确定圆的条件:1)圆心;2)半径。

备注:圆心确定圆的位置.半径长度确定圆的大小。

【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同.半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。

圆的对称性:1)圆是轴对称图形.经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。

弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。

直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。

备注:1)直径是同一圆中最长的弦。

2)直径长度等于半径长度的2倍。

⏜.读弧的概念:圆上任意两点间的部分叫做圆弧.简称弧。

以A、B为端点的弧记作AB作圆弧AB或弧AB。

等弧的概念:在同圆或等圆中.能够互相重合的弧叫做等弧。

半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧.每一条弧都叫做半圆。

优弧的概念:在一个圆中大于半圆的弧叫做优弧。

劣弧的概念:小于半圆的弧叫做劣弧。

弦心距概念:从圆心到弦的距离叫做弦心距。

1.(2021秋•顺义区期末)如图.在⊙O中.如果=2.则下列关于弦AB与弦AC之间关系正确的是()A.AB=AC B.AB=2AC C.AB>2AC D.AB<2AC【答案】D【解答】解:如图.取弧AB的中点D.连接AD.BD.则=2=2.∵=2.∴==.∴AD=BD=AC.在△ABD中.AD+BD>AB.∴AC+AC>AB.即AB<2AC.故选:D.2.(2021秋•平原县期末)下列语句.错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦【答案】B【解答】解:直径是弦.A正确.不符合题意;在同圆或等圆中.相等的圆心角所对的弧相等.B错误.符合题意;弦的垂直平分线一定经过圆心.C正确.不符合题意;平分弧的半径垂直于弧所对的弦.D正确.不符合题意;故选:B.3.(2021秋•玉林期末)如图.从A地到B地有两条路可走.一条路是大半圆.另一条路是4个小半圆.有一天.一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走.它不敢与猫同行(怕被猫吃掉).就沿着4个小半圆行走.假设猫和老鼠行走的速度相同.那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【答案】C【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a.b.c.d.则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.考点:垂径定理垂径定理:垂直于弦的直径平分这条弦.并且平分弦所对的两条弧。

中考数学知识点专题复习与圆有关的角

中考数学知识点专题复习与圆有关的角
与圆有关的角
聚焦考点☆温习理解
一、弧、弦、弦心距、圆心角之间的关系定理
1间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆
或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
4、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果
三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

中考数学专题复习 与圆有关的角

中考数学专题复习  与圆有关的角

专题与圆有关的角阅读与思考与圆有关的角主要有圆心角、圆周角、弦切角.特别的,直径所对的圆周角是直角.圆内接四边形提供相等的角、互补的角,在理解与圆有关的角的概念时,要注意角的顶点与圆的位置关系、角的两边与圆的位置关系.角在解题中经常发挥重要的作用,是证明角平分线、两线平行、两线垂直,判定全等三角形、相似三角形的主要条件,而圆的特点又使角的互相转化具备了灵活多变的优越条件,是解题中最活跃的元素.熟悉以下基本图形和以上基本结论.例题与求解【例1】如图,在△ABC中,AB=AC=5,BC=2,以AB为直径的⊙O分别交AC,BC于点D,E,则△CDE的面积为___________.(海南省竞赛题)例1题图例2题图解题思路:作DF⊥BC于F,需求出CE,DF的长.由AB为⊙O的直径作出相关辅助线.»BC的中点,AM交BC于点D,若AD=3,DM=1,则MB 【例2】如图,△ABC内接于⊙O,M是的长是()A.4B.2C.3D.3解题思路:图中隐含许多相等的角,利用比例线段计算.【例3】如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中,∠DCE是直角,点D在线段AC上.(1)证明:B,C,E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=2OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(如图2).若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=2OM1是否成立?若是,请证明;若不是,说明理由.解题思路:对于(2),充分利用条件中的多个中点,探寻线段之间的数量关系与位置关系.图1图2【例4】如图所示,ABCD为⊙O的内接四边形,E是BD上的一点,∠BAE=∠DAC.求证:(1)△ABE∽△ACD;(2)AB·DC+AD·BC=AC·BD.(陕西省竞赛试题)解题思路:由(1)可类比猜想,为(2)非常规问题的证明铺平道路.【例5】如图1,已知⊙M与x轴交于点A,D,与y轴正半轴交于点B,C是⊙M上一点,且A(-2,0),B(0,4),AB=BC.(1)求圆心M的坐标;(2)求四边形ABCD的面积;(3)如图2,过C点作弦CF交BD于点E,当BC=BE时,求CF的长.解题思路:作出基本辅助线(如连接BM或AC),这是解(1)、(2)的基础;对于(3),由BC=BE,得∠BEC=∠BCE,连接AC,将与圆无关的∠BEC转化为与圆有关角,导出CF平分∠ACD,这是解题的关键.【例6】如图,AB,AC,AD是⊙O中的三条弦,点E在AD上,且AB=AC=AE.求证:(1)∠CAD=2∠DBE;(2)AD2-AB2=BD·DC.(浙江省竞赛试题)解题思路:对于(2),AD2-AB2=(AD+AB)(AD-AB)=(AD+AE)(AD-AE)=(AD+AE)·DE,需证(AD+AE)·DE=BD·DC,从构造相似三角形入手.能力训练A级1.如图,AB是⊙O的直径,点C在⊙O上,∠BAC=30°,点P在线段OB上运动.设∠ACP=x,则x的取值范围是________.2.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为________.3.如图,AB,CD是⊙O的两条弦,它们相交于点P.连接AD,BD,已知AD=BD=4,PC=6,那么CD的长为________.BD=1.设AD=x,4.如图,圆内接四边形ABCD中的两条对角线相交于点P,已知AB=BC,CD=12用x的代数式表示PA与PC的积:PA·PC=__________.(宁波市中考试题)5.如图,ADBC是⊙O的内接四边形,AB为直径,BC=8,AC=6,CD平分∠ACB,则AD=()A.50B.32C.52D.42第4题图第5题图第6题图6.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的个数是()A .1个B .2个C .3个D .4个(哈尔滨市中考试题)7.如图,正△ABC 内接于⊙O ,P 是劣弧»BC上任意一点,PA 与BC 交于点E ,有如下结论:①PA =PB +PC ;②111AP PB PC=+;③PA ·PE =PB ·PC .其中正确结论的个数是()(天津市中考试题)A .3个B .2个C .1个D .0个8.如图,四边形ABCD 内接于⊙O ,延长AD ,BC 交于点M ,延长AB ,DC 交于点N ,∠M =20°,∠N =40°,则∠A 的大小为()A .35°B .60°C .65°D .70°第7题图第8题图第9题图9.如图,已知⊙O 的内接四边形ABCD 中,AD =CD ,AC 交BD 于点E .求证:(1)AD DE BD AD=;(2)AD ·CD -AE ·EC =DE 2;(扬州市中考试题)10.如图,已知四边形ABCD 外接圆⊙O 的半径为5,对角线AC 与BD 交于点E ,且AB 2=AE •AC ,BD =8,求△ABD 的面积.(黑龙江省中考试题)11.如图,已知⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC 于D ,AD =3.设⊙O 的半径为y ,AB 的长为x .(1)求y 与x 之间的函数关系式;(2)当AB 的长等于多少时,⊙O 的面积最大?并求出⊙O 的最大面积.(南京市中考试题)12.如图,已知半圆⊙O 的直径AB =4,将一个三角板的直角顶点固定在圆心O 上.当三角板绕着O 点转动时,三角板的两条直角边与半圆周分别交于C ,D 两点,连接AD ,BC 交于点E .(1)求证:△ACE ∽△BDE ;(2)求证:BD =DE ;(3)设BD =x ,求△AEC 的面积y 与x 的函数关系式,并写出自变量x 的取值范围.(广东省中考试题)B 级1.如图,△ABC 内接于直径为d 的圆,设BC =a ,AC =b ,那么△ABC 的高CD =__________.2.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴相交于点A (0,2),∠OCB =60°,∠COB =45°,则OC =__________.第1题图第2题图第3题图3.如图,AB 为⊙O 的直径,CD ⊥AB ,设∠COD =α,则2sin 2AB AD =________.(江苏省竞赛试题)4.如图,已知圆内接四边形ABCD 中,AD ≠AB ,∠DAB =90°,对角线AC 平分∠DAB .若AD =a ,AB =b ,则AC =___________.(“东亚杯”竞赛试题)5.如图,ABCD 是一个以AD 为直径的圆内接四边形,AB =5,PC =4,分别延长AB 和DC ,它们相交于点P ,若∠APD =60°,则⊙O 的面积为()A .25πB .16πC .15πD .13π6.如图,AB =AC =AD ,若∠DAC 是∠CAB 的k 倍(k 为正数),那么∠DBC 是∠BDC 的()A .k 倍B .2k 倍C .3k 倍D .以上答案都不对第4题图第5题图第6题图7.如图,AD 是Rt △ABC 斜边BC 上的高,AB =AC ,过A ,D 两点的圆与AB ,AC 分别相交于E ,F ,弦EF 与AD 相交于点G ,则图中与△GDE 相似的三角形的个数为()A .5个B .4个C .3个D .2个8.如图,AB 为⊙O 的直径,AC 交⊙O 于点E ,BC 交⊙O 于点D ,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③»»AE BE;④CE ·AB =2BD 2.其中正确结论的序号是()A .①②B .②③C .②④D .③④(苏州市中考试题)第7题图第8题图第9题图9.如图,四边形ABCD 内接于⊙O ,BC 为⊙O 的直径,E 为DC 边上一点,若AE ∥BC ,AE =EC =7,AB =6.(1)求AD 的长;(2)求BE 的长.(绍兴市竞赛题)10.如图1,已知M(12,32,以M为圆心,MO为半径的⊙M分别交x轴,y轴于B,A.(1)求A,B两点的坐标;(2)C是»AO上一点,若BC=3,试判断四边形ACOM是何种特殊四边形,并说明理由;(3)如图2,在(2)的条件下,P是»AB上一动点,连接PA,PB,PC.当P在»AB上运动时,求证:PA+POPC的值是定值.11.如图,四边形ABCD为正方形,⊙O过正方形的顶点A和对角线的交点P,分别交AB,AD于点F,E.(1)求证:DE=AF;(2)若⊙O的半径为32,AB=2+1,求AEED的值.(江苏省竞赛题)。

中考数学知识点专题分类复习:第24讲与圆相关的角

中考数学知识点专题分类复习:第24讲与圆相关的角

中考数学知识点专题分类复习:第24讲与圆相关的角【知识巩固】一、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。

2、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

3、圆周角定理及推论(1)定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于⑧这条弧所对的圆心角的一半. 2. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 4、弧、弦、圆周角、弦切角之间的关系(1)定理:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等,所对弦的弦心距也相等.(2)推论(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中⑨有一组量相等,那么其他各组量也分别对应相等.(2)弧的度数等于它所对的圆心角的度数.【典例解析】典例一、圆心角(2016·山东省济宁市·3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.【变式训练】(2016·山东省滨州市·3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.【解答】解:①、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,∴∠AOC≠∠AEC,③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,故选D【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.典例二、圆周角(2017江苏徐州)如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A.28°B.54°C.18°D.36°【考点】M5:圆周角定理.【分析】根据圆周角定理:同弧所对的圆周角等于同弧所对圆心角的一半即可求解.【解答】解:根据圆周角定理可知,∠AOB=2∠ACB=72°,即∠ACB=36°,故选D.【变式训练】(2017江苏盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.【考点】M5:圆周角定理.【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.典例三、圆周角与切线之间的关系(2017贵州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.【变式训练】(2017贵州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.典例四、与圆周角有关的证明(2017哈尔滨)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°【考点】M5:圆周角定理.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.【变式训练】(2017湖北荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是60°或120°.【考点】M6:圆内接四边形的性质;L8:菱形的性质;M5:圆周角定理.【分析】连接OB,则AB=OA=OB故可得出△AOB是等边三角形,所以∠ADC=60°,∠AD′C=120°,据此可得出结论.【解答】解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.典例五、角的综合应用(2017贵州安顺)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【考点】T7:解直角三角形;JA:平行线的性质;M5:圆周角定理.【分析】首先由切线的性质得出OB⊥BC,根据锐角三角函数的定义求出cos∠BOC的值;连接BD,由直径所对的圆周角是直角,得出∠ADB=90°,又由平行线的性质知∠A=∠BOC,则cos∠A=cos∠BOC,在直角△ABD中,由余弦的定义求出AD的长.【解答】解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选B.【变式训练】(2016海南4分)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= 5.5.【考点】圆周角定理;垂径定理.【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AB和DE是⊙O的直径,∴OA=OB=OD=4,∠C=90°,又∵DE⊥AC,∴OP∥BC,∴△AOP∽△ABC,∴,即,∴OP=1.5.∴DP=OP+OP=5.5,故答案为:5.5.【点评】本题主要考查了圆周角定理,平行线的判定,相似三角形的判定和性质,熟练掌握圆周角定理是解决问题的关键.【能力检测】1. (2017宜昌模拟)如图,CD是圆O的直径,AC,BD是弦,C是弧AB的中点,且∠BDC=25°,则∠AOC的度数是()A.25°B.45°C.50°D.60°【考点】M5:圆周角定理.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOC=2∠CDB,进而可得答案.【解答】解:∵C是弧AB的中点,∴=,∴∠AOC=2∠CDB,∵∠BDC=25°,∴∠AOC=50°,故选:C.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2. (2017湖北宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.3.(2017毕节)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30°B.50°C.60°D.70°【考点】M5:圆周角定理.【分析】连接BD,根据直径所对的圆周角是直角,得∠ADB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.【解答】解:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.4.(2016·山东省济宁市·3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.5. (2017山东枣庄)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为π.【考点】MC:切线的性质;L5:平行四边形的性质;MN:弧长的计算.【分析】先连接OE、OF,再求出圆心角∠EOF的度数,然后根据弧长公式即可求出的长.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故答案为:π.6.(2016·青海西宁·2分)⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为75°或15°.【考点】垂径定理;圆周角定理;解直角三角形.【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可.【解答】解:有两种情况:①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE═=,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°;故答案为:75°或15°.7. (2017湖北宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。

中考数学总复习课件之与圆有关的角

中考数学总复习课件之与圆有关的角
(1)判断△ADC的形状
(2)若AB=10,AD=8,求DE的长。
ED C
A
O
B
2020/8/18
8
8.如图P是⊙O外一点,PO交⊙O 于C.D两点,过⊙O上一点A作弦 AB⊥PD,E为垂足,已知PA是 ⊙O的切线,求证:
(1)AC平分∠PAB
(2) PC·PD=PE·PO
B
P
CE O
D
2020/8/18
9
A
9.如图,梯形ABCD内接于⊙O, AD∥BC,过点B引⊙O的切线分别交 DA.CA的延长线于点E.F。
(1)求证:AB2=AE·BC
(2)已知BC=8,CD=5,AF=6,求EF
的长。
F
A
D
E
2020/8/18
O
B
C
10
2020/8/18
O
B
C
A
D
4
4.如图,△ABC中,∠A的平分线 交BC于点D,圆O过点A且与BC相 切于点D,与AB.AC分别相交于点 E.F,AD与EF相交于点G。求证:
AF·FC=GF·DC
A
2020/8/18
E
O
G
F
B
C
5
D
5.如图,⊙O1和⊙O2相交于A,
B,直线PE与⊙O1相切于P,PA
2020/8/18
1
1.如图,⊙O切BT于B, ∠CBT=430,求∠BAC和∠BOC 及弧BC的度数。
A
O C
B
T
2020/8/18
2
2.如图,在RT△ABC中,∠C= RT ,∠AC= 6 ,BC= 2 , 以AB为弦的⊙O与AC相切于点 A,求⊙O的面积。

中考数学复习与圆有关的角[人教版](PPT)4-2

中考数学复习与圆有关的角[人教版](PPT)4-2

4、如图,△ABC中,∠A的平分 线交BC于点D,圆O过点A且与BC 相切于点D,与AB、AC分别相交 于点E、F,AD与EF相交于点G。 求证:AF·FC=GF·DC
A
E B
O
G

F
C D
1、如图,⊙O切BT于B, ∠CBT=430,求∠BAC和∠BOC 及弧BC的度数。
A
O C
B
T
宿者本应得的矿物质和太阳光。大量附生植物的重量可能会折断树干。许多兰花、凤梨科植物、蕨类植物和苔藓通常会是附生植物。凤梨科的附生植物会在 其叶腋和茎顶上累积水份而形成树上水池,一种复杂的水生食物链。少部分植物是食虫植物,如捕蝇草和茅膏菜。它们捕捉及消化小动物以获取矿物质,尤 其是氮。 主要价值编; 聚星:/ ; 辑 成千上万的植物物种被种植用来美化环境、提供绿荫、调整温度、降低风速、减少噪音、提供 隐私和防止水土流失。人们会在室内放置切花、干燥花和室内盆栽,室外则会设置草坪、荫树、观景树、灌木、藤蔓、多年生草本植物和花坛花草植物的意 象通常被使用于美术、建筑、性情、语言、照相、纺织、钱币、邮票、旗帜和臂章上头。活植物的艺术类型包括绿雕、盆景、插花和树墙等。观赏植物有时 会影响到历史,如郁金香狂热。植物是每年有数十亿美元的旅游产业的基本,包括到植物园、历史公园、国家公国、郁金香花田、雨林以及有多彩秋叶的森 林等地的旅行。 食用价值 实际上,所有人类的养分来源大多都直接或间接地依靠着陆生植物。绝大多数的人类的养分依靠谷物,尤其是玉米、小麦和稻米, 或者是其他主食如马铃薯、木薯和荚果等。其他被食用的植物部分还包括水果、蔬菜、坚果、香草、香料和食用花卉等。由植物制成的饮料包括咖啡、茶、 葡萄酒、啤酒等。糖主要是由甘蔗和甜菜中得到的。食用油和植物牛油来自玉米、大豆、芥花籽油、红花、向日葵、橄榄等等。食品添加剂包括阿拉伯树胶、 瓜尔胶、刺槐豆胶、淀粉和果胶等。 [9] 粮食作物 粮食 粮食 粮食指植物可供人类食用的部分。狭义的粮食单指谷物(cereal),即禾本科作物的种子(以及 例外情形的非禾本科的荞麦种子)。广义的粮食还要包括豆科植物的种子,以及马铃薯等植物可供食用的根或茎部。粮食所含营养物质主要为糖类(淀粉为 主),其次是蛋白质。联合国粮食及农业组织对粮食的定义包括三大类谷物,包括麦类、稻谷、粗粮(又称杂粮,即经常被用作动物饲料的粮食,包括大麦、 玉米、黑麦、燕麦、黑小麦、高粱)。中国在先秦即有五谷之说,指稻、黍、稷、麦、菽物种作物,其种子称作稻米、黍米、粟米、麦粒、菽豆。 蔬菜 蔬菜 蔬菜 蔬菜,是指可以做菜、烹饪成为食品的,除了谷物以外的其他植物(多属于草本)。生活中所指的蔬菜,常和“水果”分开讨论。不过也常和水果合称 为“蔬果”。另外,和“野菜”不同的地方,在于蔬菜经过人类长时间的育种,提高了口感、营养价值,甚至抗病力等特征,和原本的野生种已有明显差异, 人

中考数学一轮复习 与圆有关的角

中考数学一轮复习 与圆有关的角

中考数学一轮复习 与圆有关的角知识考点:1、掌握与圆有关的角,如圆心角、圆周角、弦切角等概念;2、掌握圆心角的度数等于它所对弧的度数;3、掌握圆周角定理及其推论;4、掌握弦切角定理及其推论;5、掌握各角之间的转化及其综合运用。

精典例题:【例1】如图,在等腰△ABC 中,AC =BC ,∠C =1000,点P 在△ABC 的外部,并且PC =BC ,求∠APB 的度数。

分析:注意条件AC =BC =PC ,联想到圆的定义,画出以点C 为圆心,AC 为半径的圆,问题则得以解决。

解:∵AC =BC ,PC =BC∴A 、B 、P 三点在以C 为圆心,AC 为半径的圆上 若P 、C 在AB 的同侧,则∠APB =21∠ACB ∵∠ACB =1000,∴∠APB =500若P 、C 在AB 的异侧,则∠APB =1800-50=1300【例2】如图,在△ABC 中,∠B =900,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于E ,与AC 切于点D ,直线ED 交BC 的延长线于F ,若AD ∶AE =2∶1,求cot ∠F 的值。

分析:由AD ∶AE =2∶1和△ADE ∽△ABD 有DE ∶DB =1∶2,而∠F =∠EBD ,则cot ∠F=cot ∠EBD =DEBD,故结论得证。

解:连结BD∵AC 为⊙O 的切线,∴∠1=∠2 ∵∠A =∠A ,∴△ADE ∽△ABD∴DE BD AE AD=,即12=AE AD ∴212==DEDB∵BE 为⊙O 的直径,∴∠BDE =900∴∠2+∠BEF =900,∵∠F +∠BEF =900,∴∠2=∠F ∴cot ∠F =cot ∠2=DEBD=2 【例3】如图,由矩形ABCD 的顶点D 引一条直线分别交BC 及AB 的延长线于F 、G ,连结AF 并延长交△BGF 的外接圆于H ,连结GH 、BH 。

(1)求证:△DFA ∽△HBG ;'•例1图P CBA•例2图21OEFDCBA(2)过A 点引圆的切线AE ,E 为切点,AE =33,CF ∶FB =1∶2,求AB 的长; (3)在(2)的条件下,又知AD =6,求tan ∠HBG 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

______________________________________________________________1中考复习之与圆有关的角知识考点:1、掌握与圆有关的角,如圆心角、圆周角、弦切角等概念;2、掌握圆心角的度数等于它所对弧的度数;3、掌握圆周角定理及其推论;4、掌握弦切角定理及其推论;5、掌握各角之间的转化及其综合运用。

精典例题:【例1】如图,在等腰△ABC 中,AC =BC ,∠C =1000,点P 在△ABC 的外部,并且PC =BC ,求∠APB 的度数。

分析:注意条件AC =BC =PC ,联想到圆的定义,画出以点C 为圆心,AC 为半径的圆,问题则得以解决。

解:∵AC =BC ,PC =BC∴A 、B 、P 三点在以C 为圆心,AC 为半径的圆上 若P 、C 在AB 的同侧,则∠APB =21∠ACB ∵∠ACB =1000,∴∠APB =500 若P 、C 在AB 的异侧,则∠APB =1800-50=1300【例2】如图,在△ABC 中,∠B =900,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于E ,与AC 切于点D ,直线ED 交BC 的延长线于F ,若AD ∶AE =2∶1,求cot ∠F 的值。

分析:由AD ∶AE =2∶1和△ADE ∽△ABD 有DE ∶DB =1∶2,而∠F =∠EBD ,则cot ∠F =cot ∠EBD =DEBD,故结论得证。

解:连结BD∵AC 为⊙O 的切线,∴∠1=∠2 ∵∠A =∠A ,∴△ADE ∽△ABD∴DE BD AE AD =,即12=AE AD ∴212==DE DB ∵BE 为⊙O 的直径,∴∠BDE =900P '∙例1图 P C BA∙例2图21OEFD CBA______________________________________________________________2 ∴∠2+∠BEF =900,∵∠F +∠BEF =900,∴∠2=∠F ∴cot ∠F =cot ∠2=DEBD=2 【例3】如图,由矩形ABCD 的顶点D 引一条直线分别交BC 及AB 的延长线于F 、G ,连结AF 并延长交△BGF 的外接圆于H ,连结GH 、BH 。

(1)求证:△DFA ∽△HBG ;(2)过A 点引圆的切线AE ,E 为切点,AE =33,CF ∶FB =1∶2,求AB 的长; (3)在(2)的条件下,又知AD =6,求tan ∠HBG 的值。

分析:(1)证∠DAF =∠AFB =∠BGH ,∠DFA =∠HFG =∠HBG 即可;(2)由DC ∥AG ,得CF ∶FB =CD ∶BG =1∶2,则AB ∶AG =1∶3,由切割线定理得AB =3;(3)由(2)知AB =3,AG =9,过A 作AQ ⊥DG 于Q 。

由AB AD AQ DG ⋅=⋅2121得131318=AQ 。

所以DF =31DG =13。

由DG DQ AD ⋅=2得131312=DQ ,所以1313=QF 。

故tan ∠HBG =tan ∠HFG =tan ∠QFA =FQ AQ =18。

例3图HGQEFDCBA∙问题一图O PDCBA探索与创新:【问题一】如图,已知,半圆的直径AB =6cm ,CD 是半圆上长为2cm 的弦,问:当弦CD 在半圆上滑动时,AC 和BD 延长线的夹角是定值吗?若是,试求出这个定角的正弦值;若不是,请说明理由。

______________________________________________________________3分析:本题有一定难度,连结BC (或AD )可构成直角三角形,这是遇直径常用的辅助线。

解;连结BC∵CD 为定长,虽CD 滑动,但⋂CD 的度数不变,∴∠PBC 为定值 ∴∠P =∠ACP -∠PBC =900-∠PBC 为定值 ∵∠PCD =∠PBA ,∴△PCD ∽△PBA ∴3162===BA CD PB PC 在Rt △PBC 中,cos ∠P =31=PB PC ,∴sin ∠P =322)31(12=- 评注:本题是在变中寻不变,有一定的难度,但考虑到常用的辅助线――直径,问题便迎刃而解了。

变式:如图,BC 与AD 交于E ,其它条件与上题一致,问∠P 与∠DEB 的大小关系?分析:∵AB 为直径,则∠PCB =∠ADB =900,而cos ∠P =ABCDPB PC =,又∵△CED ∽△AEB ,∴EBDEAB CD ==cos ∠DEB 。

∴cos ∠P =cos ∠DEB ,故∠P 与∠DEB 的大小相等。

∙问题一变式图EOPD CBAP '∙问题二图OPDCBA【问题二】如图,AB 是⊙O 的直径,弦(非直径)CD ⊥AB ,P 是⊙O 上不同于C 、D 的任一点。

(1)当点P 在劣弧CD 上运动时,∠APC 与∠APD 的关系如何?请证明你的结论; (2)当点P 在优弧CD 上运动时,∠APC 与∠APD 的关系如何?并证明你的结论(不讨论P 与A 重合的情形)。

分析:(1)P 在劣弧CD 上运动时,∠APC =∠APD ,利用垂径定理及圆周角定理易______________________________________________________________4 证;(2)P 在优弧CD 上运动时,∠APC +∠APD =1800,∠APC 所对的弧是⋂ADC ,∠APD 所对的弧是⋂AD ,而⋂⋂=AC AD ,⋂⋂+AD ADC 的度数和等于⋂⋂+AC ADC 的度数和,等于3600,由圆周角定理易证明得到结论。

跟踪训练: 一、选择题:1、下列命题中,正确的命题个数是( )①顶点在圆周上的角是圆周角;②圆周角度数等于圆心角度数的一半; ③900的圆周角所对的弦是直径;④圆周角相等,则它们所对的弧也相等。

A 、1个B 、2个C 、3个D 、4个2、已知AB 、AC 与⊙O 相切于B 、C ,∠A =500,点P 是⊙O 上异于B 、C 的一动点,则∠BPC 的度数是( )A 、650B 、1150C 、650或1150D 、1300或500 3、O 为锐角△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,垂足分别为D 、E 、F ,则OD ∶OE ∶OF 为( )A 、a ∶b ∶cB 、a 1∶b 1∶c1 C 、cosA ∶cosB ∶cosC D 、sinA ∶sinB ∶sinC 4、如图,AB 是⊙O 的直径,DB 、DC 分别切⊙O 于B 、C ,若∠ACE =250,则∠D 为( ) A 、500 B 、550 C 、600 D 、650∙第4题图EO CBA1O∙∙第5题图ODCBA70x∙第6题图OD CBA5、如图,⊙O 经过⊙O 1的圆心O 1,∠ADB =α,∠ACD =β,则α与β之间的关系是( )A 、β=αB 、αβ21800-=______________________________________________________________5C 、)90(210αβ-=D 、)180(210αβ-= 二、填空题:6、如图,四边形ABCD 内接于⊙O ,则x = 。

7、如图,A 、B 、C 是⊙O 上的三个点,当BC 平分∠ABO 时,能得出结论 (任写一个)。

8、如图,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠1+∠2= 。

∙第7题图OC BA∙第8题图 21DEOCB A∙第9题图PDOCBA9、如图,PA 切⊙O 于点A ,PO 交⊙O 于C ,延长PO 交⊙O 于点B ,PA =AB ,PD 平分∠APB 交AB 于点D ,则∠ADP = 。

10、如图,已知直径AB ⊥CD 于E ,∠COB =α,则2sin 2αBE AB = 。

11、如图,⊙O 1与⊙O 2为两个等圆,O 1在⊙O 2上,O 2在⊙O 1上,⊙O 1与⊙O 2交于A 、B 两点,过B 的直线交⊙O 1于C ,交⊙O 2于D ,过C 作⊙O 1的切线CE 与过D 作⊙O 2的切线DE 交于E ,则∠E = 。

三、计算题或证明题:12、如图,已知P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,OP 与AB 相交于点M ,C 为⋂AB 上一点。

求证:∠OPC =∠OCM 。

第10题图EDOC BA2O 1O ∙∙第11题图ED CBA∙第12题图OM P C BA______________________________________________________________6 13、如图,⊙O 1与⊙O 2交于A 、B 两点,点O 1在⊙O 2上,⊙O 2的弦O 1C 交AB 、⊙O 1于D 、E 。

求证:(1)C O D O AO 1121⋅=; (2)E 为△ABC 的内心。

2O 1O ∙∙第13题图DECBA∙第14题图OFGDECBA∙第15题图PODCBA14、如图,已知AD 是△ABC 外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连结FB 、FC 。

(1)求证:FB =FC ;(2)FD FA FB ⋅=2;(3)若AB 是△ABC 的外接圆的直径,∠EAC =1200,BC =6cm ,求AD 的长。

15、如图,⊙O 的直径AB =6,P 为AB 上一点,过P 作⊙O 的弦CD ,连结AC 、BC ,设∠BCD =m ∠ACD ,当347+=APBP时,是否存在正实数m ,使弦CD 最短?若存在,请求出m 的值;若不存在,请说明理由。

16、如图,在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于F ,交AE 于点M ,且∠B =∠CAE ,EF ∶FD =4∶3。

(1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积。

______________________________________________________________7∙第16题图FMED C B A跟踪训练参考答案一、选择题:ACCAD 二、填空题:6、1400;7、OC ∥AB 等;8、900;9、450;10、1;11、1200 三、计算题或证明题:12、提示:连结OA ,22OC OP OM OA =⋅=,∴OCOPOM OC =,又∠O 是公共角,△OCM ∽△OPC 。

13、略证:(1)连结,O 1B ,由O 1A =O 1B 可得∠O 1AD =∠O 1CA ,∠AO 1D 是公共角,∴△O 1AD ∽△O 1CA ;(2)连结AE 、BE ,由∠ABE =21∠AO 1C =21∠ABC ,∠BAE =21∠BO 1E =21∠BAC 。

相关文档
最新文档