三角函数与平面向量阶段性单元测试(解析版)最全
数学北师大版高中必修4解三角形与平面向量检测题
------解三角形与平面向量检测题一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1、下列命题中,正确的是( B )A 、||||||a b a b ⋅=⋅B 、若()a b c ⊥-,则a b a c ⋅=⋅C 、2a ≥||aD 、()()a b c a b c ⋅⋅=⋅⋅2、在四边形ABCD 中,0=⋅,BC AD =,则四边形ABCD 是( C )A 、直角梯形B 、菱形C 、矩形D 、正方形3、已知m n ,是夹角为o 60的单位向量,则2a m n =+和32b m n=-+的夹角是( D )A 、o 30B 、o 60C 、o 90D 、o 1204、已知平面上有三点A (1,1),B (-2,4),C (-1,2),P 在直线AB 上,使||31||AB AP =,连结PC ,Q 是PC 的中点,则点Q 的坐标是 ( C )A 、(21-,2)B 、(21,1)C 、(21-,2)或 (21,1) D 、(21-,2)或(-1,2) 5、若||||1a b ==,a b ⊥且(23)a b +⊥(k4a b -),则实数k 的值为( B )A 、-6B 、6C 、3D 、-36、若a =(2,-3), b =(1,-2),向量c 满足c ⊥a ,b ∙c =1,则c的坐标是 ( C )A 、(3,-2)B 、(3,2)C 、(-3,-2)D 、(-3,2)7、设1l ,2l 是基底向量,已知向量AB =1l k -2l ,CB 2=1l +2l ,3CD =1l -2l ,若D B A ,,三点共线,则k 的值是 ( A )A 、2B 、3C 、-2D 、-38、已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=a ,=b ,则AC 是(A )A 、4233a b + B 、2433a b + C 、4233a b - D 、2433a b - 二、填写题:本大题共4小题,每小题5分,共20分。
高考数学《三角函数与平面向量》专项训练及答案解析
高考数学《三角函数与平面向量》专项训练一、单选题1.已知()1,2a =r ,()1,0b =r ,则2a b +=r r ( ) A .5 B .7 C .5 D .25 2.若3sin 122πα⎛⎫-= ⎪⎝⎭,则2sin 23πα⎛⎫-= ⎪⎝⎭( ) A .12 B .12-C .32D .3- 3.已知平面向量()()2,1,2,4a b ==r r ,则向量a r 与b r 的夹角的余弦值为( ) A .35 B .45 C .35- D .45- 4.若4sin 3cos 0αα-=,则2sin 22cos αα+=( )A .4825B .5625C .85D .43 5.将函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,再向上平移1个单位,得到()g x 的图象.若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,则12x x -的最大值为( )A .πB .2πC .3πD .4π 6.已知042a ππβ<<<<,且5sin cos 5αα-=,4sin 45πβ⎛⎫+= ⎪⎝⎭则sin()αβ+=( ) A .31010- B .155- C .155 D .310 7.如图,已知ABC ∆中,D 为AB 的中点,13AE AC =uu u r uuu r ,若DE AB BC λμ=+u u u r u u u r u u u r ,则λμ+=( )A .56-B .16-C .16D .568.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若cos cos a B b A =,则ABC ∆形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形 9.如图,在ABC V 中,1cos 4BAC ∠=,点D 在线段BC 上,且3BD DC =,15AD =,则ABC V 的面积的最大值为( )A .32B .4C 15D .2310.在ABC △中,角A B C ,,的对边分别为a b c ,,,已知25c =2sin cos sin sin a C B a A b B =-+5sin C ,点O 满足0OA OB OC ++=uu v uu u v uuu v ,3cos 8CAO ∠=,则ABC △的面积为( )A 55B .35C .52D 55二、填空题11.sin 613cos1063tan 30︒︒︒++的值为________.12.函数()21sin f x x =+的最小正周期是__________. 13.如图所示,正八边形12345678A A A A A A A A 的边长为2,若P 为该正八边形上的动点,则131A A A P⋅u u u u r u u u r 的取值范围________.14.将函数()3)13f x x π=+-的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则函数()g x 具有性质__________.(填入所有正确性质的序号) 33x π=-对称; ②图象关于y 轴对称;③最小正周期为π; ④图象关于点(,0)4π对称; ⑤在(0,)3π上单调递减 三、解答题15.若向量(3,0)(cos ,sin )(0)m x n x x ωωωω==->r r ,在函数()()f x m m n t =⋅++r r r 的图象中,对称中心到对称轴的最小距离为,4π且当[0,],()3x f x π∈时的最大值为1. (I )求函数()f x 的解析式;(II )求函数()f x 的单调递增区间.16.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin 32B m ⎛= ⎝u r ,cos ,cos 2B n B ⎛⎫= ⎪⎝⎭r ,且m n ⊥u r r .(Ⅰ)求角B 的大小;(Ⅱ)如果1a =,3b =,求ABC ∆的面积.17.如图所示,在ABC V 中,,A ∠,B ∠C ∠的对边分别为a ,b ,c ,已知2sin cos sin 0,b A B a B +=1a =,2c =.(1)求b 和sin C ;(2)如图,设D 为AC 边上一点,37BD CD =ABD △的面积.参考答案1.C【解析】【分析】求出向量2a b +r r 的坐标,然后利用向量模的坐标表示可求出2a b +r r 的值.【详解】()()()221,21,03,4a b +=+=r r Q,因此,25a b +==r r .故选:C.【点睛】本题考查向量模的坐标运算,考查计算能力,属于基础题.2.A【解析】【分析】 根据条件和二倍角公式,先计算出cos 26πα⎛⎫- ⎪⎝⎭的值,再将所要求的2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,根据诱导公式进行化简,得到答案.【详解】因为sin 122πα⎛⎫-= ⎪⎝⎭,所以2cos 21262πα⎛⎫⎛⎫-=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭12=- 2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ cos 26πα⎛⎫=-- ⎪⎝⎭ cos 26πα⎛⎫=-- ⎪⎝⎭ 12=.【点睛】本题考查三角函数中的给值求值,二倍角公式,诱导公式化简,属于中档题.3.B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r,得a b ==r r .设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.4.B【解析】【分析】由4sin 3cos 0αα-=,求得3tan 4α=,再由222tan 2sin 22cos tan 1αααα++=+,即可求出. 【详解】由4sin 3cos 0αα-=,求得sin 3tan cos 4ααα==, 而222222sin cos 2cos 2tan 2sin 22cos sin cos tan 1ααααααααα+++==++, 所以22322564sin 22cos 25314αα⨯++==⎛⎫+ ⎪⎝⎭. 故选:B .【点睛】本题主要考查已知正切值,齐次式求值问题的解法以及二倍角公式的应用,意在考查学生的数学运算能力,属于5.C【解析】【分析】首先利用函数图象的平移变换的应用求出新函数的关系式,进一步利用函数的最值的应用求出结果.【详解】解:函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,得到226y sin x π⎛⎫=+ ⎪⎝⎭的图象,再向上平移1个单位,得到()2216g x sin x π⎛⎫=++ ⎪⎝⎭的图象, 由于若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,所以函数在1x x =和2x 时,函数()2216g x sin x π⎛⎫=++ ⎪⎝⎭都取得最大值. 所以()12262x k k Z πππ+=+∈,解得16x k ππ=+, 由于且1x ,[]22,2x ππ∈-,所以176x π=,同理2116x π=-,所以711366πππ+=. 故选:C .【点睛】 本题考查的知识要点:三角函数关系式的恒等变换,函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于中等题.6.D【解析】【分析】首先根据sin cos 5αα-=,求得sin 410πα⎛⎫-= ⎪⎝⎭,结合角的范围,利用平方关系,求得cos 410πα⎛⎫-= ⎪⎝⎭,利用题的条件,求得3cos 45πβ⎛⎫+= ⎪⎝⎭,之后将角进行配凑,使得()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用正弦的和角公式求得结果. 【详解】因为sin cos αα-=sin 4πα⎛⎫-= ⎪⎝⎭因为42a ππ<<,所以cos 410πα⎛⎫-= ⎪⎝⎭. 因为04πβ<<,4sin 45πβ⎛⎫+= ⎪⎝⎭,所以3cos 45πβ⎛⎫+= ⎪⎝⎭,所以()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 3455=+= 故选D.【点睛】 该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.7.C【解析】【分析】利用向量的线性运算将DE u u u r 用,AB AC u u u r u u u r表示,由此即可得到,λμ的值,从而可求λμ+的值.【详解】 因为1123DE DA AE BA AC =+=+u u u r u u u r u u u r u u u r u u u r ()111111236363BA BC BA BA BC AB BC =+-=+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以16λ=-,13μ=.故16λμ+=. 故选:C.【点睛】 本题考查向量的线性运算以及数乘运算在几何中的应用,难度一般.向量在几何中的应用可通过基底的表示形式进行分析.8.D【解析】【分析】 由cos cos a B b A=,利用正弦定理化简可得sin2A =sin2B ,由此可得结论. 【详解】∵cos cos a B b A=, ∴由正弦定理可得sin cos sin cos A B B A =, ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∴2A =2B 或2A +2B =π,∴A =B 或A +B =2π, ∴△ABC 的形状是等腰三角形或直角三角形故选:D .【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.9.C【解析】【分析】设BAD θ∠=,则0BAC θ<<∠,根据三角形的面积公式求出AC ,AB ,然后由1sin 2ABC S AB AC BAC ∆=⋅∠()4213sin θϕ⎡⎤=+-⎣⎦,根据三角函数的性质求出面积的最大值. 【详解】解:设BAD θ∠=,则0BAC θ<<∠.3BD DC =Q ,AD =,34ABD ABC S S ∴=V V ,131242AB ADsin AB ACsin BAC θ∴⋅=⋅⋅∠, 83AC sin θ∴=,同理()8AB sin BAC θ=∠-,()1124ABC S AB ACsin BAC sin BAC sin θθθθθ⎫∴=⋅∠=∠-=-⎪⎪⎝⎭V()421(sin θϕ⎤=+-⎦其中tan ϕ=,0BAC θ<<∠Q ,∴当22πθϕ+=时,sin(2)1max θϕ+=,()ABC max S ∴=V故选:C .【点睛】本题考查了余弦定理和三角恒等变换,以及三角形的面积公式,考查了运算能力和转化能力,属于中档题.10.D【解析】【分析】运用正弦定理和余弦定理将角统一成边,再利用向量的数量积运算和三角形的面积公式结合求解.【详解】由2sin cos sin sin sin a C B a A b B C =-+,可得2222222a c b ac a b ac +-⨯=-+,即c =.又c =,所以4b =. 因为0OA OB OC ++=u u u v u u u v u u u v v ,所以点O 为ABC △的重心,所以3AB AC AO +=u u u v u u u v u u u v ,所以3AB AO AC =-u u u v u u u v u u u v, 两边平方得22|9|6cos AB AO AO AC CAO =-∠u u u v u u u v u u u v u u u v 2||AC +u u u v . 因为3cos 8CAO ∠=,所以2223|9|6||8AB AO AO AC AC =-⨯+u u u v u u u v u u u v u u u v u u u v , 于是29||AO -u u u v 940AO -=u u u v ,所以43AO =u u u v ,AOC △的面积为114sin 4223AO AC CAO ⨯⨯⨯∠=⨯⨯⨯u u u v u u u v =.因为ABC △的面积是AOC △面积的3倍.故ABC △【点睛】本题关键在于运用向量的平方可以转化到向量的夹角的关系,再与三角形的面积公式相结合求解,属于难度题.11【解析】【分析】根据诱导公式,进行化简,从而得到答案.【详解】sin 613cos1063tan 30︒︒︒++()sin 253cos 17tan30︒︒︒=+-+()sin 73cos 17tan30︒︒︒=-+-+=cos17cos17tan 30︒︒︒-++=故答案为:3【点睛】 本题考查诱导公式化简,特殊角三角函数值,属于简单题.12.π【解析】【分析】利用二倍角公式化简函数的解析式,再利用余弦型函数的周期公式,即可求得函数的最小正周期.【详解】因为()21cos 2311sin 1cos 2222x f x x x -=+=+=-, 所以函数的最小正周期为22T ππ==. 故答案为:π.【点睛】本题主要考查二倍角公式的应用以及余弦型函数的周期公式的应用,属于基础题.13.⎡-+⎣【解析】【分析】由题意可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r 最小,当P 与4A 重合时,131A A A P⋅u u u u r u u u r 最大,求出即可. 【详解】由题意,正八边形12345678A A A A A A A A 的每一个内角均为135o ,且边长12182A A A A ==u u u u r u u u u r ,1317A A A A ==u u u u r u u u u r , 由正弦函数的单调性及值域可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r最小,且最小值为2cos112.5⎛⨯==-⎝⎭o当P与4A重合时,1318A A A P⋅==+u u u u r u u u r因此,131A A A P⋅u u u u r u u u r的取值范围是⎡-+⎣.故答案为:⎡-+⎣.【点睛】本题考查平面向量数量积的运算以及数形结合思想的应用,解题的关键就是找出临界位置进行分析,考查计算能力,属于中等题.14.②③④【解析】将函数()213f x xπ⎛⎫=+-⎪⎝⎭的图象向左平移3π个单位长度,得到2133y xππ⎡⎤⎛⎫=++-⎪⎢⎥⎝⎭⎣⎦()211x xπ=+-=-的图象向上平移1个单位长度,得到函数()g x x=的图象,对于函数()g x,由于当3xπ=-时,()g x=故()g x图象不关于直线3xπ=-对称,故排除①;由于该函数为偶函数,故它的图象关于y轴对称,故②正确;它的最小周期为22ππ=,故③正确;当4xπ=时,()0g x=,故函数的图象关于点,04π⎛⎫⎪⎝⎭对称,故正④确;在0,3π⎛⎫⎪⎝⎭上,()220,,3x g xπ⎛⎫∈ ⎪⎝⎭不是单调函数,故排除⑤,故答案为②③④.【方法点晴】本题主要考查三角函数的单调性、三角函数的周期性及奇偶性,属于难题.三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.15.3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分 【解析】解:(I )由题意得()()f x m m n t =⋅++r r r 2m m n =+⋅r r r23sin cos 33cos 222223)432x x x tx x t x t ωωωωωπω=⋅+=-++=-++L L L L 分 ∵对称中心到对称轴的最小距离为4π ()f x ∴的最小正周期为T π=2,12ππωω∴=∴=………………6分3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时 2,()333x x f x πππ∴-==即时取得最大值3t +)max (1,31,21()).832x f t t f x x π=∴+=∴=-∴=--n Q L L L L L L 分 (II )222,232k x k k Z πππππ-≤-≤+∈………………10分55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分16.(Ⅰ)23π;. 【解析】【分析】 (Ⅰ)由m n ⊥u r r 得出0m n ⋅=u r r ,利用平面向量数量积的坐标运算、二倍角公式以及同角商数关系可求得tan B =,结合B 的范围可得出角B 的值;(Ⅱ)利用余弦定理求出c 的值,然后利用三角形的面积公式即可求出ABC ∆的面积.【详解】(Ⅰ)m n ⊥u r r Q ,2sin cos sin 022B B m n B B B ∴⋅==+=u r r .化简得:tan B =,又0B Q π<<,23B π∴=;(Ⅱ)由余弦定理2222cos b a c ac B =+-得,2221122c c ⎛⎫=+-- ⎪⎝⎭,整理得220c c +-=,解之得:1c =,11sin 1122ABC S ac B ∆∴==⨯⨯=. 【点睛】 本题考查利用余弦定理解三角形、三角形面积的计算,涉及平面向量垂直的坐标表示,考查计算能力,属于基础题.17.(1)b =7;【解析】【分析】(1)通过正弦定理边化角,整理化简得到cos B 的值,再利用余弦定理,求出b ,根据正弦定理,求出sin C ;(2)根据正弦定理得到sin 1CBD ∠=,即2CBD π∠=,根据勾股定理得到BD =,根据三角形面积公式,求出ABD △的面积.【详解】(1)因为2sin cos sin 0b A B a B +=,所以在ABC V 中,由正弦定理sin sin sin a b c A B C ==,得2sin sin cos sin sin 0B A B A B +=,因为sin sin 0A B ≠,所以2cos 10B +=, 所以1cos 2B =-, 又0B π<<,所以23B π=, 由余弦定理得,2222cos b a c ac B =+-1142122⎛⎫=+-⨯⨯⨯- ⎪⎝⎭7=,所以b =,在ABC V 中,由正弦定理sin sin c b C B =, 所以sin sin c BC b=22sin π=7=; (2)在ABD △中,由正弦定理得,sin sin BD C CD CBD =∠,因为BD CD =sin sin C CBD =∠因为sin 7C =,所以sin 1CBD ∠=, 而()0,CBD π∠∈ 所以2CBD π∠=,由BD CD =,BD=CD =,所以222)1)+=,所以12t =,所以2BD =, 因为ABD ABC DBC ∠=∠-∠232ππ=-6π=,所以1sin 2ABD S AB BD ABD =⨯⨯∠V 11222=⨯4=. 【点睛】 本题考查正弦定理边角互化,正弦定理、余弦定理解三角形,属于简单题.。
专题03 三角函数与平面向量综合问题(答题指导)(解析版)
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
高中数学必修一第五章三角函数单元测试(1)(含答案解析)
⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。
高中数学三角函数测试卷(答案解析版)
高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。
答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。
答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。
答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。
由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。
因此,AB =10×sin0°/sin30° = 0/0 = 0。
高中数学三角函数与向量试题及详细答案
高中数学三角函数与向量试题及详细答案一.解答题(共30小题)1.设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.2.设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.3.已知函数,(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)设,若,求α的大小.4.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.5.已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x﹣).(1)当m=0时,求f(x)在区间上的取值范围;(2)当tana=2时,,求m的值.6.已知tanα=a,(a>1),求的值.7.已知函数f(x)=cosx(sinx+cosx),x∈R.(1)请指出函数f(x)的奇偶性,并给予证明;(2)当时,求f(x)的取值范围.8.已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.9.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点.(Ⅰ)求sin2α﹣tanα的值;(Ⅱ)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数的最大值及对应的x的值.10.已知函数.(1)设ω>0为常数,若上是增函数,求ω的取值范围;(2)设集合,若A⊂B恒成立,求实数m的取值范围.11.已知函数f(x)=(Ⅰ)把f(x)解析式化为f(x)=Asin(ωx+ϕ)+b的形式,并用五点法作出函数f(x)在一个周期上的简图;(Ⅱ)计算f(1)+f(2)+…+f(2012)的值.12.已知α为锐角,且,函数,数列{a n}的首项.(1)求函数f(x)的表达式;(2)求证:a n+1>a n;(3)求证:.13.已知tan2θ=﹣,且3π<2θ<4π.求:(1)tanθ;(2).14.在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值.15.已知,①若向量.且∥,求f(x)的值;②在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.16.已知O是线段AB外一点,若,.(1)设点A1、A2是线段AB的三等分点,△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,试用向量、表示;(2)如果在线段AB上有若干个等分点,你能得到什么结论?请证明你的结论.17.已知向量=(1,2),=(cosα,sinα),设=+t(t为实数).(1)若,求当||取最小值时实数t的值;(2)若⊥,问:是否存在实数t,使得向量﹣和向量的夹角为,若存在,请求出t;若不存在,请说明理由.18.经过A(2,0),以(2cosθ﹣2,sinθ)为方向向量的直线与经过B(﹣2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.(I)求点M(x,y)的轨迹方程;(II)设(I)中轨迹为曲线C,,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求的取值范围.19.已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.20.已知向量=(mcosα,msinα)(m≠0),=(﹣sinβ,cosβ.其中O为坐标原点.(I)若且m>0,求向量与的夹角;(II)当实数α,β变化时,求实数的最大值.21.已知中心在原点,长轴在x轴上的椭圆的一个顶点是点(0,),离心率为,左、右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积的最大值;(3)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由.22.已知△OFQ的面积为,且.(1)当时,求向量与的夹角θ的取值范围;(2)设,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当取得最小值时,求此双曲线的方程.23.在平行四边形ABCD中,设边AB、BC、CD的中点分别为E、F、G,设DF与AG、EG的交点分别为H、K,设=,=,试用、表示、.24.正方形ABCD的边长为1,记=(1)求作,(2)求|,|25.如图,平面内有三个向量,,,其中与的夹角为120°,与的夹角为30°.且||=1,||=1,||=2,若+,求λ+μ的值.26.例3.已知27.设动点M的坐标为(x,y)(x、y∈R),向量=(x﹣2,y),=(x+2,y),且|a|+|b|=8,(I)求动点M(x,y)的轨迹C的方程;(Ⅱ)过点N(0,2)作直线l与曲线C交于A、B两点,若(O为坐标原点),是否存在直线l,使得四边形OAPB为矩形,若存在,求出直线l的方程,若不存在,请说明理由.28.在福建省第14届运动会(2010•莆田)开幕式上,主会场中央有一块边长为a米的正方形地面全彩LED显示屏如图所示,点E、F分虽为BC、CD边上异于点C的动点,现在顶点A处有视角∠EAF设置为45°的摄像机,正录制形如△ECF的移动区域内表演的某个文艺节目,设DF=x米,BE=y米.(Ⅰ)试将y表示为x的函数;(Ⅱ)求证:△ECF周长p为定值;(Ⅲ)求△ECF面积S的最大值.29.如图所示,ABCD是一块边长为7米的正方形铁皮,其中A TN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮PQCR,其中P是上一点.设∠TAP=θ,长方形PQCR的面积为S平方米.(1)求S关于θ的函数解析式;(2)设sinθ+cosθ=t,求S关于t的表达式以及S的最大值.30.如图,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数y=Asinωx(A>0,ω>0,x∈[0,8]的图象,且图象的最高点为S(6,4).赛道的后一段为折线段MNP,为保证参赛队员的安全,限定∠MNP=120°.(1)求实数A和ω的值以及M、P两点之间的距离;(2)连接MP,设∠NPM=θ,y=MN+NP,试求出用θ表示y的解析式;(3)(理科)应如何设计,才能使折线段MNP最长?(文科)求函数y的最大值.参考答案与试题解析一.解答题(共30小题)1.设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.考点:三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换;三角函数的最值.专题:计算题;综合题.分析:(I)先利用诱导公式,二倍角公式与和角公式将函数解析式化简整理,然后利用周期公式可求得函数的最小正周期.(II)由(I)得函数y=f(x),利用函数图象的变换可得函数y=g(x)的解析式,通过探讨角的范围,即可的函数g(x)的最大值.解答:解:(I)∵f(x)=sinxcosx﹣cos(x+π)cosx=sinxcosx+cosxcosx=sin2x+cos2x+=sin(2x+)+∴f(x)的最小正周期T==π(II)∵函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,∴g(x)=sin(2x+﹣)++=sin(2x﹣)+∵0<x≤∴<2x﹣≤,∴y=g(x)在(0,]上的最大值为:.点评:本题考查了三角函数的周期及其求法,函数图象的变换及三角函数的最值,各公式的熟练应用是解决问题的根本,体现了整体意识,是个中档题.2.设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.专题:计算题.分析:利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x ﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.解答:解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;点评:本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.3.已知函数,(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)设,若,求α的大小.考点:正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.专题:计算题.分析:(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.解答:解:(Ⅰ)由2x+≠+kπ,k∈Z.所以x≠,k∈Z.所以f(x)的定义域为:f (x)的最小正周期为:.(Ⅱ)由得tan()=2cos2α,整理得因为α∈(0,),所以sinα+cosα≠0 因此(cosα﹣sinα)2=即sin2α=因为α∈(0,),所以α=点评:本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.4.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.考点:任意角的三角函数的定义;二元一次不等式(组)与平面区域;三角函数的最值.专题:综合题;压轴题;转化思想.分析:(I)由已知中函数f(θ)=,我们将点P的坐标代入函数解析式,即可求出结果.(II)画出满足约束条件的平面区域,数形结合易判断出θ角的取值范围,结合正弦型函数的性质我们即可求出函数f(θ)的最小值和最大值.解答:解(I)由点P的坐标和三角函数的定义可得:于是f(θ)===2(II)作出平面区域Ω(即感触区域ABC)如图所示其中A(1,0),B(1,1),C(0,1)于是0≤θ≤∴f(θ)==且故当,即时,f(θ)取得最大值2当,即θ=0时,f(θ)取得最小值1点评:本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.5.已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x﹣).(1)当m=0时,求f(x)在区间上的取值范围;(2)当tana=2时,,求m的值.考点:弦切互化;同角三角函数间的基本关系.专题:综合题.分析:(1)把m=0代入到f(x)中,然后分别利用同角三角函数间的基本关系、二倍角的正弦、余弦函数公式以及特殊角的三角函数值把f(x)化为一个角的正弦函数,利用x的范围求出此正弦函数角的范围,根据角的范围,利用正弦函数的图象即可得到f(x)的值域;(2)把f(x)的解析式利用二倍角的正弦、余弦函数公式及积化和差公式化简得到关于sin2x和cos2x的式子,把x换成α,根据tanα的值,利用同角三角函数间的基本关系以及二倍角的正弦函数公式化简求出sin2α和cos2α的值,把sin2α和cos2α的值代入到f(α)=中得到关于m的方程,求出m的值即可.解答:解:(1)当m=0时,=,由已知,得sin(2x﹣)∈[﹣,1],从而得:f(x)的值域为.(2)因为=sin2x+sinxcosx+=+﹣=所以=①当tanα=2,得:,,代入①式,解得m=﹣2.点评:考查三角函数的化简、三角函数的图象和性质、已知三角函数值求值问题.依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中档题.6.已知tanα=a,(a>1),求的值.考点:两角和与差的正弦函数;弦切互化;二倍角的正切.专题:计算题.分析:利用两角和与差的正弦函数,以及二倍角的正切,化简,代入tanα=a,求出结果即可.解答:解:原式===.即:=.点评:本题是基础题,考查弦切互化,二倍角的正切,考查计算能力,常考题型.7.已知函数f(x)=cosx(sinx+cosx),x∈R.(1)请指出函数f(x)的奇偶性,并给予证明;(2)当时,求f(x)的取值范围.考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)先化简函数得出的表达式,通过f(﹣)≠±f(﹣),直接证明即可.(2)先得出,然后根据正弦函数的单调性求出取值范围.解答:解:(3分)(1)∵,∴f(x)是非奇非偶函数.(3分)注:本题可分别证明非奇或非偶函数,如∵f(0)=1≠0,∴f(x)不是奇函数.(2)由,得,.(4分)所以.即.(2分)点评:本题考查三角函数中的恒等变换应用,正弦函数的奇偶性的判断,考查计算能力.8.已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.考点:二倍角的余弦;两角和与差的正弦函数;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(I)由,代入f(x)中即可求出a的值,然后把求出a的值代入然后把求出a的值代入f(x)中,然后利用二倍角的余弦函数公式及两角差的正弦函数公式和特殊角的三角函数值化为一个角的正弦函数,根据公式求出结果.(II)根据x的范围求出2x﹣的范围,根据正弦函数的图象求出sin(2x﹣)的值域即可得到f(x)的最值.解答:解:(Ⅰ)由已知得即,所以a=﹣2所以f(x)=sin2x﹣2cos2x=sin2x﹣cos2x﹣1=所以函数f(x)的最小正周期为π(Ⅱ)由,得则所以所以函数y=f(x)的最大值为;最小值为点评:本题三角函数周期的求法,又考查学生会求正弦函数的在某一范围内的最值以及会求正弦函数的值域.是一道综合题.9.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点.(Ⅰ)求sin2α﹣tanα的值;(Ⅱ)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数的最大值及对应的x的值.考点:两角和与差的正弦函数;任意角的三角函数的定义;同角三角函数间的基本关系.专题:三角函数的图像与性质.分析:(I)利用三角函数的定义求出sinα、cosα和tanα的值,利用两角和与差正弦公式化简sin2α﹣tanα并求出其值.(II)首先化简函数f(x),然后利用诱导公式以及两角和与差公式得出y=2sin(2x﹣)﹣1,进而求正弦函数的特点求出结果.解答:解:(Ⅰ)因为角α终边经过点,所以,,…(3分)(Ⅱ)∵f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα=cosx,x∈R…(7分)∴y max=2﹣1=1,…(12分)此时,即…(13分)点评:此题考查了二倍角的正弦、三角函数定义、同角三角函数间的基本关系、诱导公式,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键.10.已知函数.(1)设ω>0为常数,若上是增函数,求ω的取值范围;(2)设集合,若A⊂B恒成立,求实数m的取值范围.考点:二倍角的余弦;集合关系中的参数取值问题;二次函数的性质;正弦函数的单调性.专题:计算题.分析:(1)利用三角函数的降幂公式将化为f(x)=2sinx,从而f (ωx)=2sinωx,利用f(ωx)在[,]是增函数,可得到,从而可求ω的取值范围;(2)由于f(x)=2sinx,将化为sin2x﹣2msinx+m2+m﹣1>0,令sinx=t,则t2﹣2mt+m2+m﹣1>0,t∈[,1],记f(t)=t2﹣2mt+m2+m﹣1,问题转化为上式在t∈[,1]上恒成立问题,根据区间[,1]在对称轴t=m的左侧,右侧,对称轴穿过区间[,1]三种情况结合二次函数的单调性即可解决.解答:(本小题满分14分)解:(1)=2sinx(1+sinx)﹣2sin2x=2sinx.∵是增函数,∴,∴(2)=sin2x﹣2msinx+m2+m﹣1>0因为,设sinx=t,则t∈[,1]上式化为t2﹣2mt+m2+m﹣1>0由题意,上式在t∈[,1]上恒成立.记f(t)=t2﹣2mt+m2+m﹣1,这是一条开口向上抛物线,则或或解得:.点评:本题考查二倍角的余弦,二次函数的性质,难点在于转化与构造函数,利用f(t)=t2﹣2mt+m2+m﹣1>0恒成立,t∈[,1]来解决,属于难题.11.已知函数f(x)=(Ⅰ)把f(x)解析式化为f(x)=Asin(ωx+ϕ)+b的形式,并用五点法作出函数f(x)在一个周期上的简图;(Ⅱ)计算f(1)+f(2)+…+f(2012)的值.考点:二倍角的余弦;五点法作函数y=Asin(ωx+φ)的图象.专题:综合题.分析:(Ⅰ)利用倍角公式和诱导公式对函数解析式进行化简,再利用正弦函数的五个关键点进行列表、描点、连线;(Ⅱ)根据函数解析式先求出周期,再求出一个周期内的函数值的和,进而判断出2012与周期的关系,再求出式子和的值.解答:解:(Ⅰ)由题意知,列表:x 0 1 2 3 40 π2π1 2 1 0 1描点画图,如图所示:(Ⅱ)∵f(1)+f(2)+f(3)+f(4)=2+1+0+1=4,而y=f(x)的周期为4,且2012=4×503,∴f(1)+f(2)+…+f(2012)=4×503=2012.点评:本题是关于三角函数的综合题,涉及了倍角公式、诱导公式的应用,“五点作图法”的步骤,函数周期性的应用求式子的值,考查了分析、解决问题能力和作图能力.12.已知α为锐角,且,函数,数列{a n}的首项.(1)求函数f(x)的表达式;(2)求证:a n+1>a n;(3)求证:.考点:二倍角的正切;不等式比较大小;不等式的证明.专题:综合题.分析:(1)根据二倍角的正切函数公式,由tanα的值求出tan2α的值,根据特殊角的三角函数值以及α的范围即可求出2α的值,即可求出sin(2α+)的值,把求出的tan2α和sin2α的值代入f(x)中即可确定出f(x);(2)a n+1=f(a n),把a n代入(1)中求出的f(x)的解析式,移项后,根据a n2大于0,即可得证;(3)把a n代入(1)中求出的f(x)的解析式中化简后,求出,然后把等号右边的式子利用拆项相减的方法,得到,移项后得到,然后从n=1列举到n,抵消后得到所要证明的式子等于2﹣,根据题意分别求出a2和a3的值,根据(2)所证明的结论即可得证.解答:解:(1),又∵α为锐角,所以2α=,∴,则f(x)=x2+x;(2)∵a n+1=f(a n)=a n2+a n,∴a n+1﹣a n=a n2>0,∴a n+1>a n;(3)∵,且a1=,∴,则=,∵,,又n≥2时,∴a n+1>a n,∴a n+1≥a3>1,∴,∴.点评:此题考查学生灵活运用二倍角的正切函数公式化简求值,会利用不等式比较大小以及会进行不等式的证明,是一道综合题.13.已知tan2θ=﹣,且3π<2θ<4π.求:(1)tanθ;(2).考点:二倍角的正切.专题:计算题.分析:(1)由题意,可先判断角θ的取值范围,得出其是第四象限角从而确定出角的正切值的符号,再由正切的二倍角公式得到角的正切的方程,解此方程求出正切值;(2)由题意,先化简,再将tanθ=代入计算出答案.解答:解:(1)由题意3π<2θ<4π,得<θ<2π是第四象限角又tan2θ=﹣,∴=﹣,解得tanθ=(2)由题,将tanθ=代入得=点评:本题考查二倍角的正切,二倍角的余弦,同角三角函数的基本关系等,解题的关键是利用公式灵活变形,计算求值,本题中有一易错点,即没有判断角所在的象限,导致解出的正切值有两个答案,切记!三角函数化简求值题,公式较多,要注意选择公式使得解题的过程简捷.本题考查了利用公式变形计算的能力.14.在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值.考点:向量在几何中的应用;直线与圆锥曲线的综合问题.专题:计算题;综合题;函数思想;整体思想.分析:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,,=•,即可求得M 点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.解答:解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.点评:此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.15.已知,①若向量.且∥,求f(x)的值;②在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.考点:平面向量的综合题.专题:计算题.分析:①利用向量共线的充要条件,可求x的值,从而可求f(x)的值;②利用余弦定理求出B的值,确定出<A+<π,然后求出函数f(A)的取值范围.解答:解:①由∥,得,∴或,∴x=2kπ+π或,∴②∵(2a﹣c)cosB=bcosC,由正弦定理得(2sinA﹣sinC)cosB=sinBcosC.∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴cosB=,B=,∴0<A<.∴<A+<π,0<sin(A+)≤1.又∵,∴故函数f(A)的取值范围是(0,2].点评:本题是中档题,考查三角函数的化简求值,考查向量共线的充要条件.16.已知O是线段AB外一点,若,.(1)设点A1、A2是线段AB的三等分点,△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,试用向量、表示;(2)如果在线段AB上有若干个等分点,你能得到什么结论?请证明你的结论.考点:向量在几何中的应用.专题:计算题.分析:(1)由题意画出图形由于点A1、A2是线段AB的三等分点,又由于△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,利用重心的性质及向量的三角形法则求得用向量、表示;(2)由题意若在线段AB上有若干个等分点,有(1)的证明过程及结论可以逐渐得到结论,并且利用向量的加法及减法得到证明过程.解答:解:(1)如图:点A1、A2是线段AB的三等分点,,同理可得:,,则==(2)层次1:设A1是AB的二等分点,则;;设A1、A2、A3是AB的四等分点,则;或设A1,A2,,A n﹣1是AB的n等分点,则,层次2:设A1,A2,,A n﹣1是AB的n等分点,,层次3:设A1,A2,,A n﹣1是AB的n等分点,则;证:===点评:此题考查了三角形重心的定义,向量的加法和减法,还考查了学生对于新问题逐渐分析并合理联想的能力.17.已知向量=(1,2),=(cosα,sinα),设=+t(t为实数).(1)若,求当||取最小值时实数t的值;(2)若⊥,问:是否存在实数t,使得向量﹣和向量的夹角为,若存在,请求出t;若不存在,请说明理由.考点:数量积表示两个向量的夹角;向量的模.专题:计算题.分析:(1)先把a=代入求出向量的坐标,再把转化为=,把所求结论以及已知条件代入得到关于实数t的二次函数,利用配方法求出的最小值以及实数t的值;(2)先利用向量垂直求出以及和()(),代入cos45°=,可得关于实数t的方程,解方程即可求出实数t.解答:解:(1)因为a=,所以=(),,则====所以当时,取到最小值,最小值为.(7分)(2)由条件得cos45°=,又因为==,==,()()=5﹣t,则有=,且t<5,整理得t2+5t﹣5=0,所以存在t=满足条件.(14分)点评:本题主要考查数量积表示两个向量的夹角以及向量的模.本题的易错点在于()()=5﹣t中的t<5,因为两个向量的夹角为锐角,所以向量的数量积为正得t<5.18.经过A(2,0),以(2cosθ﹣2,sinθ)为方向向量的直线与经过B(﹣2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.(I)求点M(x,y)的轨迹方程;(II)设(I)中轨迹为曲线C,,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求的取值范围.考点:向量在几何中的应用;数列与解析几何的综合.专题:计算题.分析:(I)根据题意知,∥(2cosθ﹣2,sinθ),根据共线向量定理可得⇒(x﹣2)sinθ=y (2cosθ﹣2),同理(x+2)sinθ=y(2cosθ+2),两式相乘,即可得到点M(x,y)的轨迹方程;(II)设p(x0,y0)在曲线C内,得,再由|PF1|、|OP|、|PF2|成等比数列可得并代入求得,即可求得结果.解答:解:(I),(2﹣x)sinθ+y(2cosθ﹣2)=0⇒(x﹣2)sinθ=y(2cosθ﹣2)①同理(﹣2﹣x)sinθ+y(2cosθ+2)=0⇒(x+2)sinθ=y(2cosθ+2)②①×②得x2﹣4=﹣4y2即;(II)设p(x0,y0),则③化简得:④④代入③得点评:此题是个中档题.考查向量在几何中的应用,以及数列与解析几何的综合.同时考查学生灵活应用知识分析解决问题的能力.19.已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.考点:数量积表示两个向量的夹角;数量积的坐标表达式;平面向量数量积的运算.专题:计算题;综合题.分析:(1)当时,求出向量、,利用数量积的坐标运算求出向量•,从而求出向量、的夹角θ;(2)向量,,代入函数,利用三角函数的诱导公式进行化简,转化为三角函数在定区间上的最值,即可求得结果.解答:解:(1)当时,,所以,因而;(2),,因为,所以,当λ>0时,,即,当λ<0时,,即,所以.点评:此题是个中档题.考查向量的数量积的坐标运算以及向量的夹角,和三角函数的诱导公式和三角函数在定区间上的最值等基础知识,同时也考查了学生灵活应用知识分析解决问题的能力.20.已知向量=(mcosα,msinα)(m≠0),=(﹣sinβ,cosβ.其中O为坐标原点.(I)若且m>0,求向量与的夹角;(II)当实数α,β变化时,求实数的最大值.考点:数量积表示两个向量的夹角;向量的模.专题:计算题;综合题.分析:(Ⅰ)设它们的夹角为θ,利用向量的数量积公式表示出cosθ,将已知条件代入,利用特殊角的三角函数值求出两个向量的夹角.(II)先将利用向量模的计算公式表示成,再利用三角函数的值域求出它的最大值即可.解答:解:(I)设它们的夹角为θ,则:=,故…(6分)(II)=…(10分)所以当m>0时,原式的最大值是m﹣1;当m<0时,原式的最大值是﹣m﹣1…(12分)点评:求向量的夹角问题,一般利用向量的数量积公式来解决;解决向量的模的最值问题,一般转化为函数的最值来解决.21.已知中心在原点,长轴在x轴上的椭圆的一个顶点是点(0,),离心率为,左、右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积的最大值;(3)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由.考点:向量在几何中的应用;椭圆的标准方程;椭圆的简单性质.专题:综合题;存在型;反证法.分析:(1)由题意设出椭圆标准方程,根据顶点的坐标和离心率得,根据a2=b2+c2求出a的值,即求出椭圆标准方程;(2)根据(1)求出的椭圆标准方程,求出点M纵坐标的范围,即求出三角形面积的最大值;(3)先假设存在点P满足条件,根据向量的数量积得,根据椭圆的焦距和椭圆的定义列出两个方程,求出的值,结合(2)中三角形面积的最大值,判断出是否存在点P.解答:解:(1)由题意设椭圆标准方程为.由已知得,.(2分)则,∴.解得a2=6(4分)∴所求椭圆方程为(5分)(2)令M(x1,y1),则(7分)∵点M在椭圆上,∴,故|y 1|的最大值为(8分)∴当时,的最大值为.(9分)(3)假设存在一点P,使,∵,∴,(10分)∴△PF1F2为直角三角形,∴|PF1|2+|PF2|2=|F1F2|2=4 ①(11分)又∵②(12分)∴②2﹣①,得2|PF1|•|PF2|=20,∴,(13分)即=5,由(1)得最大值为,故矛盾,∴不存在一点P,使.(14分)点评:本题考查了椭圆方程的求法以及椭圆的性质、向量数量积的几何意义,利用a、b、c、e几何意义和a2=b2+c2求出a和b的值,根据椭圆上点的坐标范围求出相应三角形的面积最值,即根据此范围判断点P是否存在,此题综合性强,涉及的知识多,考查了分析问题和解决问题的能力.22.已知△OFQ的面积为,且.(1)当时,求向量与的夹角θ的取值范围;(2)设,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当取得最小值时,求此双曲线的方程.考点:数量积表示两个向量的夹角;双曲线的标准方程.专题:计算题.分析:(1)利用两个向量的数量积的定义和三角形面积公式,推出tanθ的解析式,再根据m的范围,求得tanθ的范围,进而求得θ的取值范围.(2)设出双曲线的标准方程和点Q的坐标,有三角形的面积公式求出点Q的横坐标和纵坐标(用半焦距表示),用基本不等式求出||最小时点Q的坐标,从而得到双曲线方程中的待定系数.解答:解:(1)由已知得,∴tanθ=,∵<m<4,∴1<tanθ<4,∴<θ<arctan4.(2)设双曲线方程为﹣=1,(a>0,b>0),不妨设点Q的坐标为(m,n),n>0,则=(m﹣c,n),∵△OFQ的面积为||•n=2,∴n=.又由•=(c,0)•(m﹣c,n)=c(m﹣c)=(﹣1)c2,∴m=,||==≥,当且仅当c=4时,||有最小值,此时,点Q的坐标为(,),由此可得,解得,故所求的方程为:=1.点评:本题考查两个向量的数量积的定义,三角形的面积公式以及基本不等式的应用,用待定系数法求双曲线的方程.。
新高考 三角函数与平面向量单元测试卷+详细分析与解答
新高考 三角函数与平面向量单元测试卷+详细分析与解答一、单选题(共8小题,满分40分,每小题5分) 1、)sin 225︒=()A .12-B .2-C .D .1-2、已知向量(1,1),a =(1,3),b =-(2,1)c =,且()//a b c λ-,则λ=() A .3B .-3C .17D .17-3、已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=()A .10 B .10C .2D .104、已知向量a ,b 满足1a =,2b =,()()313a b a b -⋅+=-,则a 与b 的夹角为() A .6π B .3π C .23π D .56π 5、如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =()A .3155AB AC + B .2155AB AC + C .481515AB AC + D .841515AB AC + 6、为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象() A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位7、若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭().A .78-B .14-C .14D .788、泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为() A .50 mB .100 mC .120 mD .150 m二、多选题(共4小题,满分20分,每小题5分,少选的3分,多选不得分) 9、关于平面向量,,a b c ,下列说法中不正确...的是() A .若//a b 且//b c ,则//a cB .()a b c a c b c +⋅=⋅+⋅ C .若a b a c ⋅=⋅,且0a ≠,则b c =D .()()a b c a b c ⋅⋅=⋅⋅10、若函数f (x )=sin(2x -π3)与g (x )=cos(x +π4)都在区间(a ,b )(0<a <b <π)上单调递减,则b -a 的可能取值为( )A .π6B .π3C .π2D .5π1211、己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是() A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增12、在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是() A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、已知向量→a =(2,-6),→b =(3,m ),若|→a +→b |=|→a -→b |,则m =▲________. 14、已知tan 3α=,则sin cos sin cos αααα-+的值为______.15、若非零向量a 、b ,满足a b =,()2a b b +⊥,则a 与b 的夹角为___________. 16、在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________.SinB=四、解答题(共6小题,满分70分,第17题10分,其它12分)17、现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.18、已知平面向量()()1,2,2,a b m =-= (1)若a b ⊥,求2a b +;(2)若0m =,求a b +与a b -夹角的余弦值.19、在边长为2的等边AOB ∆中,以O 为圆心、OA 为半径作弧AB ,点P 为弧AB 上一动点.求()OP OA OB ⋅+的取值范围.20、在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.21、ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=. (I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.22、已知02πα<<,2πβπ<<,4tan 23α=-,sin β=(1)求tan α的值; (2)求()cos 2αβ-的值.新高考 三角函数与平面向量单元测试卷+详细分析与解答一、单选题(共8小题,满分40分,每小题5分) 1、(2020届山东省潍坊市高三上期中)sin 225︒=()A .12-B .2-C .D .1-【答案】B【解析】因为2sin 225sin(18045)sin 452=+=-=-. 故选:B.2、(2020届山东省枣庄、滕州市高三上期末)已知向量(1,1),a =(1,3),b =-(2,1)c =,且()//a b c λ-,则λ=()A .3B .-3C .17D .17-【答案】C【解析】由题意(1,13)a b λλλ-=+-,∵()//a b c λ-,∴2(13)1λλ-=+,解得17λ=. 故选:C.3、(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=()A .10B .10C .2 D .10【答案】A 【解析】0,2πα⎛⎫∈ ⎪⎝⎭,,444πππα⎛⎫-∈- ⎪⎝⎭4cos 45πα⎛⎫-== ⎪⎝⎭,cos cos cos cos sin sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43525210=⨯-⨯=. 故选:A4、(2020届山东省德州市高三上期末)已知向量a ,b 满足1a =,2b =,()()313a b a b -⋅+=-,则a 与b 的夹角为() A .6πB .3π C .23π D .56π 【答案】C 【解析】()()2232313a b a b a a b b -⋅+=+⋅-=-,即21113a b ⋅-=-,得1a b ⋅=-,则1cos 2a b a bθ⋅==-⋅,0θπ≤≤,23πθ∴=. 故选:C.5、(2020·河南高三期末(文))如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =()A .3155AB AC + B .2155AB AC + C .481515AB AC +D .841515AB AC +【答案】D【解析】设6BC =,则2AB AC BD DE EC =====,AD AE ===,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =. 因为()1133AD AB BC AB AC AB =+=+-2133AB AC =+, 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭. 故选:D6、(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象() A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位【答案】A【解析】不妨设函数2y sin x =的图象沿横轴所在直线平移ϕ个单位后得到函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象.于是,函数2y sin x =平移ϕ个单位后得到函数,sin 2()y x ϕ=+,即sin(22)y x ϕ=+, 所以有223k πϕπ=+,6k πϕπ=+,取0k =,6π=ϕ.答案为A .7、(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭().A .78-B .14-C .14 D .78【答案】A 【解析】2π2π2πππcos 2cos π2cos 2cos 22sin 133333ααααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=--=--=--=-- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1721168=⨯-=-. 故选A .8、(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为() A .50 m B .100 mC .120 mD .150 m【答案】A【解析】如图,CD 为“泉标”高度,设高为h 米,由题意,CD ⊥平面ABD ,100AB =米,60BAD ︒∠=,,4530CAD CBD ︒∠=∠=.在CBD 中,BD 3h =,在CAD 中,AD h =,在ABD △中,3,BD h AD h ==,,100AB =,60BAD ︒∠=,由余弦定理可得223100002100cos 60(50)(100)0h h h h h ︒=+-⨯∴-+=, 解得50h =或100h =- (舍去), 故选:B.二、多选题(共4小题,满分20分,每小题5分,少选的3分,多选不得分)9、(2020届山东实验中学高三上期中)关于平面向量,,a b c ,下列说法中不正确...的是() A .若//a b 且//b c ,则//a cB .()a b c a c b c +⋅=⋅+⋅ C .若a b a c ⋅=⋅,且0a ≠,则b c = D .()()a b c a b c ⋅⋅=⋅⋅【答案】ACD【解析】对于A ,若0b =,因为0与任意向量平行,所以a 不一定与c 平行,故A 错; 对于B ,向量数量积满足分配律,故B 对; 对于C ,向量数量积不满足消去率,故C 错;对于D ,()a b c ⋅⋅是以c 为方向的向量,()a b c ⋅⋅是以a 为方向的相量,故D 错. 故选:ACD .10、(2021年江苏金陵中学学情调研)若函数f (x )=sin(2x -π3)与g (x )=cos(x +π4)都在区间(a ,b )(0<a <b <π)上单调递减,则b -a 的可能取值为( )A .π6B .π3C .π2D .5π12【答案】AB【解析】考虑f (x )与g (x )在(0,π)上的单调性,可得函数f (x )=sin(2x -π3)在(5π12,11π12)上单调递减,g (x )=cos(x +π4)在(0,3π4)上单调递减,所以这两个函数在区间(5π12,3π4)上单调递减,因此b -a ≤3π4-5π12=π3. 11、(2020届山东实验中学高三上期中)己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是() A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增【答案】CD 【解析】6x π=为()f x 图象的一条对称轴,3π-为()f x 的一个零点,()()sin f x x ωϕ=+ 62k ππωϕπ∴⨯+=+,且()3k πωπ⨯-=,k Z ∈,21k ω∴=+,k Z ∈,()f x 在(0,)π上有且仅有7个零点, 78πωπϕπ∴+<,即131522ω, 7ω∴=,762k ππϕπ∴⨯+=+,又02πϕ<<,所以3πϕ=,()sin 73f x x π⎛⎫∴=+ ⎪⎝⎭令7232x k πππ+=+,()k Z ∈解得7224k x ππ=+,()k Z ∈ 当20742k πππ<+<解得1411212k -<<,因为k Z ∈,所以0,1,2,3k = 故()()0,f x π在上有且仅有4个极大值点, 由272232k x k πππππ-+++得,522427427k k xππππ-++, 即()f x 在522,427427k k ππππ⎡⎤-++⎢⎥⎣⎦上单调递增, ()f x ∴在0,42π⎛⎫⎪⎝⎭上单调递增,综上,AB 错误,CD 正确, 故选:CD .12、(2020届山东省潍坊市高三上学期统考)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是() A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列 【答案】ABD【解析】ABC 中,内角,,A B C 所对的边分别为,,a b c ,若1tan A ,1tan B ,1tan C依次成等差数列,则:211tan tan tan B A C=+,利用sin tan cos ααα=, 整理得:2cos cos cos sin sin sin B C A B C A =+, 利用正弦和余弦定理得:2222222222222a c b a b c b c a abc abc abc+-+-+-⋅=+, 整理得:2222b a c =+,即:222,,a b c 依次成等差数列.此时对等差数列222,,a b c 的每一项取相同的运算得到数列a ,b ,c 3a ,3b ,3c ,这些数列一般都不可能是等差数列,除非a b c ==,但题目没有说ABC 是等边三角形,故选:ABD.三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、(2021年江苏金陵中学学情调研)已知向量→a =(2,-6),→b =(3,m ),若|→a +→b |=|→a -→b |,则m =______..【答案】:1【解析】若|→a +→b |=|→a -→b |,则→a ·→b =0,即2×3-6m =0,则m =1. 14、(2020届山东省日照市高三上期末联考)已知tan 3α=,则sin cos sin cos αααα-+的值为______. 【答案】12【解析】因为tan 3α=,所以sin cos tan 11sin cos tan 12αααααα--==++. 故答案为:1215、(2020·山东省淄博实验中学高三上期末)若非零向量a 、b ,满足a b =,()2a b b +⊥,则a 与b 的夹角为___________. 【答案】120【解析】设a 与b 的夹角为θ,由题意a b =,()2a b b +⊥,, 可得2(2)2cos 0a b b a b b θ+⋅=+=,所以1cos 2θ=-, 再由0180θ≤≤可得,120θ=,故答案是120.16、(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________.SinB=【答案】(1) 4 (2)54 【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =, 故答案为4.四、解答题(共6小题,满分70分,第17题10分,其它12分)17、(2021年江苏金陵中学学情调研)现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________.(1)求A ;(2)若a =3-1,求△ABC 周长的最大值.【解析】若选择条件①2c -3b =2a cos B .(1)由余弦定理可得2c -3b =2a cos B =2a ·a 2+c 2-b 22ac ,整理得c 2+b 2-a 2=3bc ,………2分可得cos A =b 2+c 2-a 22bc =3bc 2bc =32.…………………………………………………3分因为A ∈(0,π),所以A =π6.…………………………………………………………5分(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得(3-1)2=b 2+c 2-2bc ·32,………6分 即4-23=b 2+c 2-3bc =(b +c )2-(2+3)bc ,亦即(2+3)bc =(b +c )2-(4-23),因为bc ≤(b +c )24,当且仅当b =c 时取等号,所以(b +c )2-(4-23)≤(2+3)×(b +c )24,解得b +c ≤22,…………………………………………………………8分当且仅当b =c =2时取等号.所以a +b +c ≤22+3-1,即△ABC 周长的最大值为22+3-1.…………………………………………………10分 若选择条件②(2b -3c )cos A =3a cos C .(1)由条件得2b cos A =3a cos C +3c cos A ,由正弦定理得2sin B cos A =3(sin A cos C +sin C cos A )=3sin(A +C )=3sin B .………2分因为sin B ≠0,所以cos A =32,…………………………………………………3分因为A ∈(0,π),所以A =π6.(2)同上18、(2020届山东省枣庄市高三上学期统考)已知平面向量()()1,2,2,a b m =-=(1)若a b ⊥,求2a b +;(2)若0m =,求a b +与a b -夹角的余弦值.【答案】(1)25a b +=(2 【解析】因为a b ⊥,()()1,2,2,a b m =-=所以0a b ⋅=,即220m -+=解得1m =所以()()()21,24,23,4a b +=-+= 22345a b +=+=(2)若0m =,则()2,0b =所以(1,2)a b +=,-(3,2)a b =-5,a b +=,-13a b =,341a b ⋅=-+=所以cos 5-a ba b a b θ⋅===⋅+19、(2020届江苏省南通市海门中学高三上学期10月检测)在边长为2的等边AOB ∆中,以O 为圆心、OA 为半径作弧AB ,点P 为弧AB 上一动点.求()OP OA OB ⋅+的取值范围.【解析】设AB 的中点为C ,则2OA OB OC +=,设OP 与OC 的夹角为θ,则06πθ≤≤,所以()22cos 22OP OA OB OP OC OP OC θθθ⋅+=⋅=⋅=⨯=,因为06πθ≤≤cos 1θ≤≤,所以6θ≤≤()OP OA OB ⋅+的取值范围为6,⎡⎣.20、(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.【解析】解:方案一:选条件①由题意可知,22T ππω==,1ω∴= ()()1sin 22f x x ϕ∴=+,()1sin 226g x x πϕ⎛⎫∴=+- ⎪⎝⎭, 又函数()g x 图象关于原点对称,,6k k Z πϕπ∴=+∈,2πϕ<,6πϕ∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤, ∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.方案二:选条件② ()113sin ,cos 2,cos ,24m x x n x ωωω⎛⎫== ⎪⎝⎭, ()f x mn ∴=⋅31sin cos cos 224x x x ωωω=+112cos 2222x x ωω⎛⎫=+ ⎪ ⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭, (1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤, ∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 方案三:选条件③()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭1cos sin cos cos sin 664x x x ππωωω⎛⎫=+- ⎪⎝⎭ 211cos cos 24x xx ωω=+-12cos 24x x ωω=+ 11sin 2cos 2222x x ωω⎛⎫=+ ⎪ ⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭, (1)0,sin 22πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π=4=; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤.∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 21、(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.【答案】(Ⅰ)23B π= (Ⅱ) 4ABC S =△ 【解析】(Ⅰ)()2cos cos 0a c B b A ++=,()sin 2sin cos sin cos 0A C B B A ∴++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,()sin 2cos sin 0A B B C ++=,()sin sin A B C +=.1cos 2B ∴=-, 20,3B B ππ<<∴=. (Ⅱ)由余弦定理得221922a c ac ⎛⎫=+-⨯- ⎪⎝⎭, ()2229,9a c ac a c ac ++=∴+-=,33,a b c b a c ++=+=∴+=3ac ∴=,11sin 322ABCS ac B ∴==⨯=. 22、(2020届江苏省南通市海门中学高三上学期10月检测)已知02πα<<,2πβπ<<,4tan 23α=-,sin β=. (1)求tan α的值;(2)求()cos 2αβ-的值.【解析】(1)因为4tan 23α=-所以22tan 41tan 3αα=--, 即22tan 3tan 20αα--=,解得tan 2α=或1tan 2α=-, 因为02πα<<,所以tan 2α=.(2)由(1)tan 2α=,所以sin 2cos αα=,又22sin cos 1αα+=,02πα<<,所以sin 5α=,cos 5α=,因为sin β=2πβπ<<,所以cos β== 所以4sin 22sin cos 5βββ==-,223cos 2cos sin 5βββ=-=,所以()cos 2cos cos 2sin sin 25αβαβαβ-=+=-.。
三角函数和向量测试试卷(含答案)
三角函数和向量测试试卷(含答案)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.02120sin 等于( ) A .23±B .23C .23- D .212.若角0600的终边上有一点()a ,4-,则a 的值是( )A .34B .34-C .34±D .3 3.sin163sin 223sin 253sin313+=( )A .12-B .12 C.2- D.24.若,24παπ<<则( )A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>5.函数)652cos(3π-=x y 的最小正周期是( )A .52π B .25π C .π2 D .π5 6.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b =,(2)若0a b ⋅= ,则0a = 或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .37.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈ 8.已知,a b 均为单位向量,它们的夹角为060,那么3a b += ( )A .7B .10C .13D .49.已知3sin(),45x π-=则sin 2x 的值为( ) A .1925 B .1625 C .1425 D .72510.向量(2,3)a = ,(1,2)b =-,若ma b + 与2a b - 平行,则m 等于A .2-B .2C .21D .12-11.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0 12.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是( )二、填空题:本大题共4小题,每小题4分,共16分.把答案填在横线上13.若(2,2)a =-,则与a 垂直的单位向量的坐标为__________。
13三角函数平面向量经典版测试题(含解析)
高一数学周末测试(十八周)一、选择题1. 若向量 a ⃗ =(x +1,2) 和向量 b ⃗ =(1,−1) 平行,则 ∣a ⃗ +b ⃗ ∣=( ) A. √10 B. √102 C. √2 D. √222. 已知点 A (1,3),B (4,−1),则与向量 AB ⃗⃗⃗⃗⃗⃗ 同方向的单位向量是 ( ) A. (35,−45) B. (45,−35) C. (−35,45) D. (−45,35)3. 已知函数 f (x )=cos 4x −sin 4x ,下列结论中错误的是 ( ) A. f (x )=cos2x B. 函数 f (x ) 的图象关于直线 x =0 对称 C. f (x ) 的最小正周期为 π D. f (x ) 的值域为 [−√2,√2]4. 要得到函数 y =2sin (2x +π5) 的图象,应该把函数 y =cos (x −215π)−√3sin (x −2π15) 的图象做如下变换 ( )A. 将图象上的每一点横坐标缩短到原来的 12 而纵坐标不变B. 沿 x 轴向左平移 π2 个单位,再把得图象上的每一点横坐标伸长到原来的 2 倍而纵坐标不变C. 先把图象上的每一点横坐标缩短到原来的 12 而纵坐标不变,再将所得图象沿 x 轴向右平移 π4 个单位D. 先把图象上的每一点横坐标缩短到原来的 12 而纵坐标不变,再将所得图象沿 x 轴向左平移 π2 个单位5. 3−sin70∘2−cos 210∘= ( )A. 12 B. √22 C. 2 D. √326. cos10∘sin70∘−cos80∘sin20∘= ( ) A. 12B. √32C. −12D. −√327. 已知 sin ( π4−x)=35,则 cos ( π2−2x) 的值为 ( ) A. 1925 B. 1625 C. 1425 D. 7258. 设 α∈(0,π2),β∈(0,π2),且 sinαcosα=cosβ1−sinβ,则 ( )A. 2α+β=π2 B. 2α−β=π2C. α+2β=π2D. α−2β=π29. 在 △ABC 中,AB =3,AC =2,BD ⃗⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗⃗ ,则 AD ⃗⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ 的值为 ( ) A. 52 B. −52 C. 54 D. −5410. △ABC 中, CB ⃗⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ , ∣a ⃗ ∣=2,∣∣b ⃗ ∣∣=1,a ⃗ ⋅b ⃗ =−1,则 ∣∣AB ⃗⃗⃗⃗⃗⃗ ∣∣= ( ) A. 1 B. √2 C. √3 D. 211. 函数 f (x )=2cos 2x +sin2x −1,给出下列四个命题中正确的是 ( ) A 函数在区间 [π8,5π8] 上是减函数;B 直线 x =π8 是函数图象的一条对称轴;C 函数 f (x ) 的图象可由函数 y =√2sin2x 的图象向左平移 π4 而得到; D 若 x ∈[0,π2],则 f (x ) 的值域是 [0,√2]; 12. 已知下列四个命题正确的是 . A 对任意两向量 a ⃗ ,b ⃗ ,均有 ∣∣a ⃗ −b ⃗ ∣∣<∣a ⃗ ∣+∣∣b ⃗ ∣∣;B 若在 △ABC 中,AD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则 D 是线段 BC 的中点;C 在四边形中,若 (AB ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )+(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗⃗ )=0⃗ ,则 ABCD 为平行四边形; D 若 ∣∣AB ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ∣∣=∣∣AB ⃗⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ ∣∣,则 ∣∣AB ⃗⃗⃗⃗⃗⃗ ∣∣=∣∣AD ⃗⃗⃗⃗⃗⃗ ∣∣. 13.下列命题中错误的是( ).A 存在实数 α,β,使等式 sin (α+β)=sinα+sinβ 成立.( )B 在锐角 △ABC 中,sinAsinB 和 cosAcosB 大小不确定.( ) C 若 α+β=45∘,则 tanα+tanβ=1−tanαtanβ.( )D y =3sinx +4cosx 的最大值是 7.( )E 对任意角 α 都有 1+sinα=(sin α2+cos α2)2.( )F 在非直角三角形中,tanA +tanB +tanC =tanAtanBtanC .( )二、填空题14. 若单位向量 e 1⃗⃗⃗⃗ ,e 2⃗⃗⃗⃗ 的夹角为 π3,则向量 e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ 与向量 e 1⃗⃗⃗⃗ 的夹角为 .15. 如图,在直角梯形 ABCD 中,AD ∥BC ,∠ADC =90∘,AD =2,BC =CD =1,P 是 AB 的中点,则 DP ⃗⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗⃗ = .16. 定义运算 ∣∣∣a b c d ∣∣∣=ad −bc ,若 cosα=17,∣∣∣sinαsinβcosαcosβ∣∣∣=3√314,0<β<α<π2,则 β= .17. 已知平面向量 a ⃗ ,b ⃗ 的夹角为 π3,且满足 ∣a ⃗ ∣=2,∣∣b ⃗ ∣∣=1,则 a ⃗ ⋅b ⃗ = , ∣∣a ⃗ +2b ⃗ ∣∣= . 三、解答题18. ∣a ⃗ ∣=4,∣b ⃗ ∣=3,(2a ⃗ −3b ⃗ )⋅(2a ⃗ +b ⃗ )=61. (1)求 a ⃗ 与 b ⃗ 的夹角 θ; (2)求 ∣a ⃗ +b⃗ ∣.19. 向量 a ⃗ =(cosα,sinα),b⃗ =(cosx,sinx ),c ⃗ =(sinx +2sinα,cosx +2cosα),其中 0<α<x <π.(1)若 α=π4,求函数 f (x )=b ⃗ ⋅c ⃗ 的最小值及相应 x 的值; (2)若 a ⃗ 与 b⃗ 的夹角为 π3,且 a ⃗ ⊥c ⃗ ,求 tan2α 的值.20. 函数 f (x )=2cos 2x +2√3sinxcosx +a ,且当 x ∈[0,π2] 时,f (x ) 的最小值为 2,(1)求 a 的值,并求 f (x ) 的单调递增区间; (2)先将函数 y =f (x ) 的图象上的点纵坐标不变,横坐标缩小到原来的 12,再将所得的图象向右平移 π12 个单位,得到函数 y =g (x ) 的图象,求方程 g (x )=4 在区间 [0,π2] 上所有根之和.21. 在平面直角坐标系 xOy 中,已知点 P (12,√32),将向量 OP⃗⃗⃗⃗⃗⃗ 绕原点 O 按逆时针方向旋转 x 弧度得到向量 OQ ⃗⃗⃗⃗⃗⃗ . (1)若 x =π4,求点 Q 的坐标;(2)已知函数 f (x )=OP ⃗⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ ,令 g (x )=f (x )⋅f (x +π3),求函数 g (x ) 的值域.22. 已知函数 f (x )=2sin 2x +cos (2x −π3).(1)求 f (x ) 的最小正周期;(2)求 f (x ) 在 (0,π2) 上的单调递增区间.23. 如图,某市准备在道路 EF 的一侧修建一条运动赛道,赛道的前一部分为曲线段FBC ,该曲线段是函数 y =Asin (ωx +2π3)(A >0,ω>0),x ∈[−4,0] 的图象,且图象的最高点为 B (−1,2);赛道的中间部分为直线跑道 CD ,且 CD =√3,CD ∥EF ;赛道的后一部分是以 O 为圆心的一段圆弧 DE .(1)求 ω 的值和 ∠DOE 的大小;(2)若要在圆弧赛道所对应的扇形 ODE 区域内建一个矩形草坪,矩形的一边在道路OE 上,一个顶点在半径 OD 上,另外一个顶点 P 在圆弧 DE 上,且 ∠POE =θ,求当矩形草坪的面积取最大值时 θ 的值.参考答案(十八周)第一部分 1. C【解析】依题意得,−(x +1)−2×1=0,得 x =−3, 又 a ⃗ +b ⃗ =(−2,2)+(1,−1)=(−1,1), 所以 ∣a ⃗ +b ⃗ ∣=√2. 2. A【解析】已知点 A (1,3),B (4,−1),则 AB⃗⃗⃗⃗⃗⃗ =(3,−4),故与其同方向的单位向量为 15(3,−4)=(35,−45).3. D4. C 【解析】函数y =cos (x −215π)−√3sin (x −2π15)=2cos [(x −2π15)+π3]=2cos (x +π5)=2sin (π2+x +π5)=2sin (x +7π10)轴的图象,先把图象上的每一点横坐标缩短到原来的 12 而纵坐标不变,可得 y =2sin (2x +7π10) 的图象,再将所得图象沿 x 向右平移 π4 个单位,可得 y =2sin (2x −π2+7π10)=2sin (2x +π5) 的图象.5. C【解析】3−sin70∘2−cos 210∘=3−sin70∘2−1+cos20∘2=2(3−sin70∘)3−cos20∘=2 .6. B7. D【解析】因为 sin ( π4−x)=35,所以 cos (π2−2x)=cos2( π4−x)=1−2sin 2( π4−x)=725. 8. B【解析】由 sinαcosα=cosβ1−sinβ ,可得:sinα−sinαsinβ=cosαcosβ. 所以 sinα=cosαcosβ+sinαsinβ=cos (α−β), 因为 α∈(0,π2),β∈(0,π2), 所以 cos (α−β)>0, 所以 α+α−β=π2, 即 2α−β=π2. 9. C 10. C 11. A B【解析】提示:f (x )=cos2x +sin2x =√2sin (2x +π4),A B 对. 12. B C【解析】若两向量 a ⃗ ,b ⃗ 方向相反,则A 不对; 由向量平行四边形法则可知B 对;C 中向量等式化简后为 CB ⃗⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗⃗ ,说明 CB ∥AD ,CB =AD ,所以C 对; 由向量平行四边形法则可知D 不对. 13. B D第二部分 14. π2.【解析】因为 (e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ )⋅e 1⃗⃗⃗⃗ =e 1⃗⃗⃗⃗ 2−2e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ =1−2×12=0; 所以 (e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ )⊥e 1⃗⃗⃗⃗ ;所以向量 e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ 与向量 e 1⃗⃗⃗⃗ 的夹角为 π2. 15. −1【解析】在直角梯形 ABCD 中,AD ∥BC ,∠ADC =90∘,AD =2,BC =CD =1,可得 △BCD 为等腰直角三角形,则 BD =√2,且 P 是 AB 的中点,可得 DP ⃗⃗⃗⃗⃗⃗ =12(DB ⃗⃗⃗⃗⃗⃗ +DA⃗⃗⃗⃗⃗⃗ ),DP ⃗⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗⃗ =12(DB ⃗⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗⃗ )⋅(DB ⃗⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗⃗ )=12(DB ⃗⃗⃗⃗⃗⃗ 2−DA⃗⃗⃗⃗⃗⃗ 2)=12[(√2)2−22]=−1.16. π3【解析】由 0<β<α<π2,cosα=17,得 sinα=4√37;又由 ∣∣∣sinαsinβcosαcosβ∣∣∣=3√314,得 sinαcosβ−cosαsinβ=sin (α−β)=3√314,cos (α−β)=1314,所以 cosβ=cos [(α−β)−α]=cos (α−β)cosα+sin (α−β)sinα=12,则 β=π3. 17. 1,2√3【解析】a ⃗ ⋅b ⃗ =∣a ⃗ ∣∣∣b ⃗ ∣∣cos⟨a ⃗ ,b ⃗ ⟩=2×1×12=1;∣∣a ⃗ +2b ⃗ ∣∣=√(a ⃗ +2b ⃗ )2=√∣a ⃗ ∣2+4a ⃗ ⋅b ⃗ +4∣∣b ⃗ ∣∣2=√4+4×1+4×1=2√3.第三部分18. (1) 由 (2a ⃗ −3b ⃗ )⋅(2a ⃗ +b ⃗ )=61, 得 4∣a ⃗ ∣2−4a ⃗ ⋅b ⃗ −3∣b⃗ ∣2=61. 因为 ∣a ⃗ ∣=4,∣b ⃗ ∣=3, 所以 a ⃗ ⋅b ⃗ =−6, 所以 cosθ=a ⃗ ⋅b ⃗ ∣a⃗ ∣∣b ⃗ ∣=−64×3=−12.又 θ∈[0,π], 所以 θ=23π.(2) 因为 ∣a ⃗ +b ⃗ ∣2=(a ⃗ +b ⃗ )2=∣a ⃗ ∣2+2a ⃗ ⋅b ⃗ +∣b ⃗ ∣2=42+2×(−6)+32=13, 所以 ∣a ⃗ +b⃗ ∣=√13. 19. (1) 因为 b⃗ =(cosx,sinx ),c ⃗ =(sinx +2sinα,cosx +2cosα),α=π4, 所以 f (x )=b ⃗ ⋅c ⃗ =cosxsinx +2cosxsinα+sinxcosx +2sinxcosα =2sinxcosx +√2(sinx +cosx ).令 t =sinx +cosx (0<x <π),则 2sinxcosx =t 2−1,且 −1<t ≤√2. 则 y =g (t )=t 2+√2t −1=(t +√22)2−32,−1<t ≤√2.所以 t =−√22时,y 取得最小值,且 y min =−32,此时 sinx +cosx =−√22.1)sin(x )442ππ+=∴+=-由于 0<x <π,5444x πππ<+< 746x ππ∴+= 故 x =11π12. 所以函数 f (x ) 的最小值为 −32,相应 x 的值为 11π12. (2) 因为 a ⃗ 与 b⃗ 的夹角为 π3, 所以 cos π3=a ⃗ ⋅b ⃗ ∣a⃗ ∣⋅∣b ⃗ ∣=cosαcosx +sinαsinx =cos (x −α).因为 0<α<x <π,所以 0<x −α<π.所以 x −α=π3. 因为 a⃗ ⊥c ⃗ , 所以 cosα(sinx +2sinα)+sinα(cosx +2cosα)=0. 所以 sin (x +α)+2sin2α=0,sin (2α+π3)+2sin2α=0. 所以 52sin2α+√32cos2α=0.所以 tan2α=−√35. 20. (1) 函数 f (x )=cos2x +1+√3sin2x +a =2sin (2x +π6)+a +1, 因为 x ∈[0,π2],所以 2x +π6∈[π6,7π6],f (x )min =−1+a +1=2,得 a =2,即 f (x )=2sin (2x +π6)+3.令 2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z , 得 kπ−π3≤x ≤kπ+π6,k ∈Z ,所以函数 f (x ) 的单调递增区间为 [kπ−π3,kπ+π6],k ∈Z .(2) 由(1)得 f (x )=2sin (2x +π6)+3,所以 g (x )=2sin (4(x −π12)+π6)+3=2sin (4x −π6)+3,又因为g(x)=4.所以sin(4x−π6)=12,解得4x−π6=2kπ+π6或2kπ+5π6,即x=kπ2+π12或kπ2+π4(k∈Z).因为x∈[0,π2],所以x=π12或π4,故所有根之和为π12+π4=π3.21. (1)由题意可得P(cosπ3,sinπ3),cos(π3+π4)=12×√22−√32×√22=√2−√64,sin(π3+π4)=√32×√22+12×√22=√2+√64,所以点Q的坐标为(√2−√64,√2+√64).(2)f(x)=12cos(π3+x)+√32sin(π3+x)=14cosx−√34sinx+34cosx+√34sinx =cosx,所以g(x)=cosx⋅cos(x+π3)=12cos2x−√32sinxcosx=1+cos2x4−√34sin2x=14−12sin(2x−π6).因−1≤sin(2x−π6)≤1,故g(x)的值域为[−14,34].22. (1)因为cos2x=1−2sin2x,所以f(x)=2sin2x+cos(2x−π3)=1−cos2x+12cos2x+√32sin2x=1+sin(2x−π6).故f(x)的最小正周期为π.(2)由2kπ−π2≤2x−π6≤2kπ+π2,k∈Z,得kπ−π6≤x≤kπ+π3,k∈Z.故f(x)在(0,π2)上的单调递增区间为(0,π3).23. (1)由条件得A=2,T4=3.∵T=2πω,∴ω=π6,∴曲线段FBC的解析式为y=2sin(π6x+2π3)(−4≤x≤0).当x=0时,y=OC=√3.又CD=√3,∴∠COD=π4,∴∠DOE=π4.(2)由(1)可知OD=√6.又点P在圆弧DE上,OP=√6.又∠POE=θ,0<θ<π4,∴矩形草坪的面积为S=√6sinθ(√6cosθ−√6sinθ)=6(sinθcosθ−sin2θ)=6(12sin2θ+12cos2θ−12)=3√2sin(2θ+π)−3.∵0<θ<π4,∴π4<2θ+π4<3π4,∴当2θ+π4=π2,即θ=π8时,S取得最大值.。
高中数学新人教A版:三角恒等和平面向量单元测试卷(含答案)
三角函数和平面向量单元测试卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( )A.57B.61 C .57D .61解析:由题意可得a·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a·b =16+81-36=61. 答案:B2.已知角α的终边经过点P (4,-3),则2sin α+cos α的值等于( ) A .-35B .45C .25D .-25解析:因为α的终边过点P (4,-3), 所以x =4,y =-3,r =|OP |=5, 所以sin α=y r =-35,cos α=45,所以2sin α+cos α=2×⎝⎛⎭⎫-35+45=-25. 答案:D3.下列各向量中,与a =(3,2)垂直的是( ) A .(3,-2) B .(2,3) C .(-4,6)D .(-3,2)解析:因为(3,2)·(-4,6)=3×(-4)+2×6=0. 答案:C4.为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin 2x 的图象上所有的点( ) A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度解析:因为y =sin ⎝⎛⎭⎫2x -π3=sin 2⎝⎛⎭⎫x -π6, 所以将函数y =sin 2x 的图象向右平行移动π6个单位长度,可得y =sin ⎝⎛⎭⎫2x -π3的图象. 答案:D5.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于( ) A .30° B .60° C .120°D .90°解析:设a ,b 的夹角为θ,由c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a ·b =0⇒a ·b =-1⇒cos θ=a ·b |a ||b |=-12且0°≤θ≤180°⇒θ⇒120°.故选C. 答案:C6.(2015·广东卷)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +sin 2x B .y =x 2-cos x C .y =2x +12xD .y =x 2+sin x解析:A 项,定义域为R ,f (-x )=-x -sin 2x =-f (x ),为奇函数,故不符合题意;B 项,定义域为R ,f (-x )=x 2-cos x =f (x ),为偶函数,故不符合题意;C 项,定义域为R ,f (-x )=2-x +12-x =2x +12x =f (x ),为偶函数,故不符合题意;D 项,定义域为R ,f (-x )=x 2-sin x ,-f (x )=-x 2-sin x ,因为f (-x )≠-f (x ),且f (-x )≠f (x ),故为非奇非偶函数.答案:D7.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:因为点P 位于第三象限,所以⎩⎪⎨⎪⎧sin θcos θ<0,2cos θ<0,所以⎩⎪⎨⎪⎧cos θ<0,sin θ >0,所以θ在第二象限. 答案:B8.若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z) B .x =k π2+π6(k ∈Z) C .x =k π2-π12(k ∈Z) D .x =k π2+π12(k ∈Z)解析:将函数y =2sin 2x 的图象向左平移π12个单位长度,得到函数y =2sin 2⎝⎛⎭⎫x +π12=2sin ⎝⎛⎭⎫2x +π6的图象.由2x +π6=k π+π2(k ∈Z),得x =k π2+π6(k ∈Z),即平移后图象的对称轴为x =k π2+π6(k ∈Z).答案:B9.(2015·课标全国Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析:由图象知,周期T =2⎝⎛⎭⎫54-14=2, 所以2πω=2,所以ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,所以f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,所以f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z. 答案:D10.将函数y =sin ⎝⎛⎭⎫2x -π3图象上的点P ⎝⎛⎭⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12, s 的最小值为π6B .t =32, s 的最小值为π6C .t =12, s 的最小值为π3D .t =32, s 的最小值为π3解析:因为点P ⎝⎛⎭⎫π4,t 在函数y =sin ⎝⎛⎭⎫2x -π3的图象上,所以t =sin ⎝⎛⎭⎫2×π4-π3=sin π6=12.所以P ⎝⎛⎭⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝⎛⎭⎫π4-s ,12. 因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝⎛⎭⎫π4-s =12,即cos 2s =12,所以2s =2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z),所以s 的最小值为π6. 答案:A11.函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递增区间是( ) A.⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z) B.⎣⎡⎦⎤π2+2k π,3π2+2k π(k ∈Z) C.⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z) D.⎣⎡⎦⎤-π12+k π,5π12+k π(k ∈Z) 解析:由题意可得y =-3sin ⎝⎛⎭⎫2x -π3,由π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,得5π12+k π≤x ≤11π12+k π,k ∈Z ,所以原函数的单调递增区间是⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z). 答案:C12.化简cos 2⎝⎛⎭⎫x 2-7π8-cos 2⎝⎛⎭⎫x 2+7π8=( ) A .-22sin x B.22sin x C .-22cos x D.22cos x 解析:cos 2⎝⎛⎭⎫x 2-7π8-cos 2⎝⎛⎭⎫x 2+7π8= ⎣⎡⎦⎤cos ⎝⎛⎭⎫x 2-7π8+cos ⎝⎛⎭⎫x 2+7π8.⎣⎡⎦⎤cos ⎝⎛⎭⎫x 2-7π8-cos ⎝⎛⎭⎫x 2+7π8= ⎝⎛⎭⎫2cos x 2cos 7π8·⎝⎛⎭⎫2sin x 2sin 7π8=⎝⎛⎭⎫2sin 7π8cos 7π8·⎝⎛⎭⎫2sin x 2cos x 2=sin7π4·sin x =sin ⎝⎛⎭⎫2π-π4·sin x = -sin π4·sin x =-22sin x .答案:A二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 解析:因为sin 2α=-sin α,所以2sin αcos α=-sin α. 因为α∈⎝⎛⎭⎫π2,π,sin α≠0, 所以cos α=-12.又因为α∈⎝⎛⎭⎫π2,π,所以α=23π, 所以tan 2α=tan 43π=tan ⎝⎛⎭⎫π+π3=tan π3= 3. 答案:314.(2014·陕西卷)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.解析:因为a ∥b ,所以sin 2θ×1-cos 2θ=0,所以2sin θcos θ-cos 2θ=0,因为0<θ<π2,所以cos θ >0,所以2sin θ=cos θ,所以tan θ=12. 答案:1215.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________.解析:如图,由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形,所以|AC →|=|AB →|=1,∠BAC =60°, 所以BC →·AF →=34-18-12=18.答案:1816.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R.若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z.又ω-(-ω)≤2πω2,即ω2≤π2,所以ω2=π4,所以ω=π2.答案:π2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a·b ; (2)若a -b 与a 垂直,求θ.解:(1)因为a ∥b ,所以θ=0°或180°, 所以a·b =|a ||b |cos θ=±2. (2)因为a -b 与a 垂直,所以(a -b )·a =0,即|a |2-a·b =1-2cos θ=0, 所以cos θ=22. 又0°≤θ ≤180°,所以θ=45°.18.(本小题满分12分)已知角α的终边过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求式子sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值.解:(1)因为|OP |=⎝⎛⎭⎫452+⎝⎛⎭⎫-352=1,所以点P 在单位圆上, 由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由(1)得sin α=-35,P 在单位圆上,所以由已知条件得cos α=45.所以原式=54.19.(本小题满分12分)如图所示,在平面直角坐标系中,锐角α和钝角 β的终边分别与单位圆交于A ,B 两点.(1)若A ,B 两点的纵坐标分别为45,1213,求cos( β-α)的值;(2)已知点C 是单位圆上的一点,且OC →=OA →+OB →,求OA →和OB →的夹角θ.解:(1)设A ⎝⎛⎭⎫x 1,45,B ⎝⎛⎭⎫x 2,1213,则x 21+⎝⎛⎭⎫452=1,又x 1>0,所以x 1=35,所以A ⎝⎛⎭⎫35,45. x 22+⎝⎛⎭⎫12132=1,又x 2<0,所以x 2=-513,所以B ⎝⎛⎭⎫-513,1213. 所以sin α=45,cos α=35,sin β=1213,cos β=-513,所以cos( β-α)=cos βcos α+sin βsin α=⎝⎛⎭⎫-513×35+1213×45=3365.(2)根据题意知|OA →|=1,|OB →|=1,|OC →|=1,又OC →=OA →+OB →, 所以四边形CAOB 是平行四边形. 又|OA →|=|OB →|,所以▱CAOB 是菱形,又|OA →|=|OB →|=|OC →|,所以△AOC 是等边三角形, 所以∠AOC =60°,所以∠AOB =120°, 即OA →与OB →的夹角θ为120°.20.(本小题满分12分)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 解:(1)f (x )=23sin (π-x )sin x -(sin x -cos x )2 =23sin2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎫2x -π3+3-1, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z),所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z)⎣⎡⎦⎤或⎝⎛⎭⎫k π-π12>k π+5π12(k ∈Z ). (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象,再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1, 所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 21.(本小题满分12分)(2015·广东卷)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m ⊥n ,则m·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, 所以tan x =1.(2)因为m 与n 的夹角为π3,所以m·n =|m |·|n |cos π3,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎫x -π4=12. 又因为x ∈⎝⎛⎭⎫0,π2,所以x -π4∈⎝⎛⎭⎫-π4,π4, 所以x -π4=π6,即x =5π12.22.(2015·重庆卷)(本小题满分12分)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象.当x ∈⎣⎡⎦⎤π2,π时,求g (x )的值域. 解:(1)f (x )=12sin 2x -3cos 2x =12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最小值为-2+32.(2)由条件可知g (x )=sin ⎝⎛⎭⎫x -π3-32. 当x ∈⎣⎡⎦⎤π2,π时,有x -π3∈⎣⎡⎦⎤π6,2π3, 从而y =sin ⎝⎛⎭⎫x -π3的值域为⎣⎡⎦⎤12,1, 那么y =sin ⎝⎛⎭⎫x -π3-32的值域为⎣⎢⎡⎦⎥⎤1-32,2-32. 故g (x )在区间⎣⎡⎦⎤π2,π上的值域是⎣⎢⎡⎦⎥⎤1-32,2-32.。
高考数学单元测试三三角函数解三角形与平面向量文含解析
单元质量测试(三)时间:120分钟满分:150分第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .πC .π2 D .4π答案 A解析 f (x )=1-2sin 2x2=cos x ,最小正周期T =2π,故选A .2.已知sin θ<0,tan θ>0,则 1-sin 2θ 化简的结果为( ) A .cos θ B .-cos θ C .±cos θ D .以上都不对 答案 B解析 由已知可判断出θ是第三象限角,所以1-sin 2θ=|cos θ|=-cos θ.故选B . 3.(2018·福建4月质检)已知向量AB →=(1,1),AC →=(2,3),则下列向量与BC →垂直的是( ) A .a =(3,6) B .b =(8,-6) C .c =(6,8) D .d =(-6,3) 答案 D解析 BC →=AC →-AB →=(1,2),因为(1,2)·(-6,3)=1×(-6)+2×3=0.故选D .4.(2018·长沙统考)已知a ,b 为单位向量,且a ⊥(a +2b ),则向量a 与b 的夹角为( ) A .30° B.60° C.120° D.150° 答案 C解析 由题意,a ·(a +2b )=a 2+2a ·b =|a |2+2|a ||b |·cos〈a ,b 〉=1+2cos 〈a ,b 〉=0,所以cos 〈a ,b 〉=-12,又0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=120°.故选C .5.(2018·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C -2c cos B =a ,且B =2C ,则△ABC 的形状是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 答案 B解析 ∵2b cos C -2c cos B =a ,∴2sin B cos C -2sin C cos B =sin A =sin(B +C ),即sin B cos C =3cos B sin C ,∴tan B =3tan C ,又B =2C ,∴2tan C 1-tan 2C =3tan C ,得tan C =33,C =π6,B =2C =π3,A =π2,故△ABC 为直角三角形.故选B .6.(2018·广东广州调研)如图所示,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为()A .911B .511 C .311 D .211 答案 B解析 因为N ,P ,B 三点共线,所以AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1⇒m =511.故选B .7.(2018·湖南长郡中学调研)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则ab等于( )A .2B .3C . 2D . 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理,得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴a b=2.故选A .8.(2018·江西九校联考)已知5sin2α=6cos α,α∈⎝ ⎛⎭⎪⎫0,π2,则tan α2=( )A .-23B .13C .35D .23答案 B解析 由题意知10sin αcos α=6cos α,又α∈⎝⎛⎭⎪⎫0,π2,∴sin α=35,cos α=45,tan α2=sinα2cosα2=2sin2α22sin α2cosα2=1-cos αsin α=1-4535=13.9.(2018·东北三省四市二联)将函数f (x )=sin(2x +φ)|φ|<π2的图象向右平移π12个单位,所得到的图象关于y 轴对称,则函数f (x )在0,π2上的最小值为( )A .32 B .12 C .-12 D .-32答案 D解析 f (x )=sin(2x +φ)向右平移π12个单位得到函数g (x )=sin2x -π12+φ=sin2x -π6+φ,此函数图象关于y 轴对称,即函数g (x )为偶函数,则-π6+φ=π2+k π,k ∈Z ,由|φ|<π2,可得φ=-π3,所以f (x )=sin2x -π3,因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以f (x )的最小值为sin -π3=-32.故选D .10.(2018·湖北宜昌二模)已知△ABC 中,∠A =120°,且AB =3,AC =4,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( )A .2215B .103C .6D .127 答案 A解析 因为AP →=λAB →+AC →,且AP →⊥BC →,所以有AP →·BC →=(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AB →·AC →=(λ-1)AB →·AC →-λAB →2+AC →2=0,整理可得(λ-1)×3×4×cos120°-9λ+16=0,解得λ=2215,故选A . 11.(2018·河北石家庄一模)已知三个向量a ,b ,c 共面,且均为单位向量,a ·b =0,则|a +b -c |的取值范围是( )A .[2-1,2+1]B .[1,2]C .[2,3]D .[2-1,1] 答案 A解析 由题意不妨设a =(1,0),b =(0,1),c =(cos θ,sin θ)(0≤θ<2π).则a +b -c =(1-cos θ,1-sin θ), |a +b -c |=(1-cos θ)2+(1-sin θ)2=3-22sin θ+π4,令t =3-22sin θ+π4,则3-22≤t ≤3+22, 故|a +b -c |∈[2-1,2+1].12.(2018·湖南长沙长郡中学摸底)已知函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的最小正周期为π,且其图象向左平移π3个单位长度后得到函数g (x )=cos ωx 的图象,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点π12,0对称D .关于点5π12,0对称答案 C解析 由题意T =2πω=π,得ω=2,把g (x )=cos2x 的图象向右平移π3个单位长度得f (x )=cos2x-π3=cos2x -2π3=sin π2-2x +2π3=sin -2x +7π6=sin2x -π6的图象,f π12=0,f 5π12=32,因此函数f (x )的图象关于点π12,0对称.故选C .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2018·合肥质检一)已知平面向量a ,b 满足|a |=1,|b |=2,|a +b |=3,则a 在b 方向上的投影等于________.答案 -12解析 依题意,有|a +b |2=(a +b )2=a 2+2a ·b +b 2=1+2×1×2cos 〈a ,b 〉+4=3,解得cos 〈a ,b 〉=-12,则a 在b 方向上的投影等于|a |cos 〈a ,b 〉=-12.14.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.答案 75°解析 由正弦定理得3sin60°=6sin B ,∴sin B =22.又∵c >b ,∴B =45°,∴A =75°.15.(2018·河北石家庄质检)已知AB →与AC →的夹角为90°,|AB →|=2,|AC →|=1,AM →=λAB →+μAC →(λ,μ∈R ),且AM →·BC →=0,则λμ的值为________.答案 14解析根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB →=(0,2),AC →=(1,0),BC →=(1,-2).设M (x ,y ),则AM →=(x ,y ),所以AM →·BC →=(x ,y )·(1,-2)=x -2y =0,即x =2y ,又AM→=λAB →+μAC →,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14.16.(2018·广州调研) 如图所示,某炮兵阵地位于地面A 处,两观察所分别位于地面C 处和D 处,已知CD =6000 m ,∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°,则炮兵阵地到目标的距离是________ m .(结果保留根号)答案 100042解析 在△ACD 中,∵∠ACD =45°,∠ADC =75°, ∴∠CAD =60°,由正弦定理可得AD sin45°=CDsin60°,∴AD =6000×2232=20006(m).在△BCD 中,由正弦定理得BD sin30°=CDsin135°,∴BD =12×600022=30002(m),在Rt △ABD 中,由勾股定理可得AB 2=BD 2+AD 2, ∴AB = (30002)2+(20006)2=100042(m).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知α∈⎝⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值.解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin2α=2sin αcos α =2×55×⎝ ⎛⎭⎪⎫-255=-45, cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α =⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.18.(2018·浙江温州统考)(本小题满分12分)已知函数f (x )=12sin ωx +32cos ωx (ω>0)的最小正周期为π.(1)求ω的值,并在下面提供的直角坐标系中画出函数y =f (x )在区间[0,π]上的图象;(2)函数y =f (x )的图象可由函数y =sin x 的图象经过怎样的变换得到? 解 (1)函数可化为f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3,因为T =π,所以2πω=π,即ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 列表如下:画出图象如图所示:(2)将函数y =sin x (x ∈R )图象上的所有点向左平移π3个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )的图象,再将所得图象上的所有点的横坐标缩短到原来的12(纵坐标不变),可得函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R )的图象.19.(2018·河南洛阳二模)(本小题满分12分)如图,已知扇形的圆心角∠AOB =2π3,半径为42,若点C 是AB 上的一动点(不与点A ,B 重合).(1)若弦BC =4(3-1),求BC 的长; (2)求四边形OACB 面积的最大值.解 (1)在△OBC 中,BC =4(3-1),OB =OC =42, 所以由余弦定理得cos ∠BOC =OB 2+OC 2-BC 22OB ·OC =32,所以∠BOC =π6,于是BC 的长为π6×42=22π3.(2)设∠AOC =θ,θ∈0,2π3,则∠BOC =2π3-θ,S 四边形OACB =S △AOC +S △BOC=12×42×42sin θ+12×42×42sin 2π3-θ=24sin θ+83cos θ=163sin θ+π6, 由于θ∈0,2π3,所以θ+π6∈π6,5π6,当θ=π3时,四边形OACB 的面积取得最大值163.20.(2018·河南濮阳三模)(本小题满分12分)△ABC 内接于半径为R 的圆,a ,b ,c 分别是内角A ,B ,C 的对边,且2R (sin 2B -sin 2A )=(b -c )sin C ,c =3.(1)求角A 的大小;(2)若AD 是BC 边上的中线,AD =192,求△ABC 的面积. 解 (1)因为2R (sin 2B -sin 2A )=(b -c )sin C , 所以2R sinB sin B -2R sin A sin A =(b -c )sinC , 所以b sin B -a sin A =b sin C -c sin C , 即b 2-a 2=bc -c 2,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,A =60°.(2)以AB ,AC 为邻边作平行四边形ABEC , 在△ABE 中,∠ABE =120°,AE =19, 由余弦定理得AE 2=AB 2+BE 2-2AB ·BE cos120°, 即19=9+BE 2-2×3×BE ×-12,解得BE =2(负值舍去),所以AC =2. 故S △ABC =12AB ·AC sin ∠BAC=12×3×2×32=332. 21.(2018·荆门调研)(本小题满分12分)已知向量m =(3sin x ,cos x ),n =(-cos x ,3cos x ),f (x )=m ·n -32. (1)求函数f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2上有两个不同的实数根,求实数a 的取值范围.解 (1)f (x )=m ·n -32=-3sin x cos x +3cos 2x -32=-32sin2x +32(1+cos2x )-32=-32sin2x +32cos2x =3sin ⎝⎛⎭⎪⎫2x +5π6.当2x +5π6=2k π+π2,k ∈Z ,即x =k π-π6,k ∈Z 时,函数f (x )取得最大值3.(2)由于x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +5π6∈⎣⎢⎡⎦⎥⎤5π6,11π6.而函数g (x )=3sin x 在区间⎣⎢⎡⎦⎥⎤5π6,3π2上单调递减,在区间⎣⎢⎡⎦⎥⎤3π2,11π6上单调递增.又g ⎝⎛⎭⎪⎫11π6=-32,g ⎝ ⎛⎭⎪⎫3π2=-3,g ⎝ ⎛⎭⎪⎫5π6=32.结合图象(如图),所以方程f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2上有两个不同的实数根时,a ∈⎝⎛⎦⎥⎤-3,-32.22.(2018·广东茂名二模)(本小题满分12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin A =2sin C,2b =3c .(1)求cos C ;(2)若∠ABC 的平分线交AC 于点D ,且△ABC 的面积为3154,求BD 的长. 解 (1)∵sin A =2sin C ,∴a =2c .于是,cos C =a 2+b 2-c 22ab =(2c )2+32c 2-c22×2c ×32c=78.(2)由(1)知cos C =78,∴sin C =158.∵S △ABC =12·2c ·32c ·158=3154,∴c 2=4,c =2,则a =4,b =3. ∵BD 为∠ABC 的平分线, ∴a c =CD AD=2,∴CD =2AD . 又CD +AD =3,∴CD =2,AD =1.在△BCD 中,由余弦定理可得BD 2=42+22-2×4×2×78=6,∴BD =6.。
数学高三复习三角函数与平面向量专题检测
数学高三复习三角函数与平面向量专题检测三角函数是数学中罕见的一类关于角度的函数,以下是三角函数与平面向量专题检测,希望考生仔细练习。
圈套清点1 三角函数的定义了解不清致误三角函数值是比值,是一个实数,这个实数的大小和点P(x,y)在终边上的位置有关,只由角的终边位置决议.[回扣效果1]角的终边经过点P(3,-4),那么sin +cos 的值为________.圈套清点2 求y=Asin(x+)与y=Acos (x+)的单调区间,无视符号致错0时,应先应用诱导公式将x的系数转化为正数后再求解;在书写单调区间时,不能弧度和角度混用,需加2k时,不要忘掉kZ,所求区间普通为闭区间.[回扣效果2]函数y=sin的递减区间是________.圈套清点3 求三角函数值效果,无视隐含条件对角的范围的制约招致增解[回扣效果3]已cos =,sin(+)=,0,那么cos =________. 圈套清点4 关于三角函数性质看法缺乏致误(1)三角函数图象的对称轴、对称中心不独一.①函数y=sin x的对称中心为(k,0)(kZ),对称轴为x=k+(kZ).②函数y=cos x的对称中心为(kZ),对称轴为x=kZ).③函数y=tan x的对称中心为(kZ),没有对称轴.(2)求y=Asin(x+),y=Acos (x+)的最小正周期易无视的符号. [回扣效果4]设函数f(x)=Asin(x+)的图象关于x=对称,且最小正周期为,那么y=f(x)的对称中心为________.圈套清点5 无视解三角形中的细节效果致误应用正弦定了解三角形时,留意在△ABC中,Asin Asin B. [回扣效果5]△ABC的内角A,B,C所对的边区分为a,b,c 假定B=,a=1,b=,那么c=________.圈套清点6 无视零向量与向量的运算律致误当ab=0时,不一定失掉ab,当ab 时,aab=cb,不能失掉a=c,消去律不成立;(ab)c与a(bc)不一定相等,(ab)c与c 平行,而a(bc)与a平行.[回扣效果6]以下各命题:①假定ab=0,那么a、b中至少有一个为0;②假定a0,ab=ac,那么b=c;③对恣意向量a、b、c,有(ab)ca(b④对任一向量a,有a2=|a|2.其中正确命题是________(填序号).圈套清点7 向量夹角范围不清解题失误设两个非零向量a,b,其夹角为,那么:ab0是为锐角的必要非充沛条件;当为钝角时,ab0,且a,b 不反向;ab0是为钝角的必要非充沛条件.[回扣效果7]a=(,2),b=(3,2),假设a与b的夹角为锐角,那么的取值范围是________.圈套清点8①++=0P为△ABC的重心;②==P为△ABC的垂心;③向量(0)所在直线过△ABC的内心;④||=||=||P为△ABC的外心.[回扣效果8]假定O是△ABC所|-|=|+-2|,那么△ABC的外形为________.回扣三三角函数与平面向量1.- [由|OP|=5,得sin =-,cos =,sin +cos =-.]2.,kZ [y=sin=-sin.由2k2x-+,得kx+,kZ.y=sin的单调减区间为,kZ.]3. [∵0且cos =+,又sin(+,.cos(+)=-=-,sin ==.cos =cos[(+)-]=cos(+)cos +sin(+)sin =.]4.(kZ) [由T==,得=2,所以f(x)=Asin(2x+).∵y=f(x)的图象关于x=对称,+,且-,那么=,f(x)=Asin 令2x+=k,x=-,kZ,因此y=f(x)的对称中心为(kZ).]5.2 [由正弦定理,=,sin A==.又a6.④7. [由ab=(,2)(3,2)=32+40,得0或-.又a=kb,得=,因此〈a,b〉为锐角,应有-或0且.]8.直角三角形三角函数与平面向量专题检测及答案的一切内容就是这些,查字典数学网预祝考生可以取得更好的效果。
高一数学三角函数与平面向量单元测试题
高一数学三角函数与平面向量单元测试题姓名: 班级: 学号一、选择题: 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若),1,3(),2,1(-==b a 则=-b a 2 ( )A 、)3,5( B 、 )1,5( C 、 )3,1(- D 、 )3,5(--2.在单位圆中,面积为1的扇形所对的圆心角为( )弧度。
A 、 1 B 、 2 C 、3 D. 43、如图是函数f (x)sin(x )=+ϕ一个周期内的图像,则ϕ可能等于 ( )A 、56π B 、 2πC 、 6π-D 、6π4.化简00sin15得到的结果是 ( )A B 、 C 、- D +5、 已知函数f (x)sin(x )cos(x )=+ϕ++ϕ为奇函数,则ϕ的一个取值为( ) A 、0 B 、2π C 、4π- D 、π 6.把函数742++=x x y的图像按向量a 经过一次平移以后得到2x y =的图像,则a 是( ) A 、)3,2(- B 、 )3,2(- C 、 )3,2(-- D 、 )3,2(7.设),6,2(),3,4(21--P P 且P 在21P P =则点P 的坐标是 ( )A 、)15,8(-B 、 (0,3)C 、)415,21(-D 、)23,1( 8.函数44f (x)sin(x)sin(x)ππ=+-是( )A 、周期为2π的奇函数B 、周期为2π的偶函数C 、周期为π的奇函数D 、周期为π的偶函数9. 若为则ABC AB BC AB ∆=+•,02( )A 、直角三角形B 、钝角三角形C 、锐角三角形D 、等腰直角三角形10.稳定房价是我国今年实施宏观调控的重点,国家最近出台的一系列政策已对各地的房地产市场产生了影响,温州市某房地产介绍所对本市一楼群在今年的房价作了统计与预测:发现每个季度的平均单价y (每平方面积的价格,单位为元)与第x 季度之间近似满足:y 500sin(x )9500(0)=ω+ϕ+ω>,已知第一、二季度平均单价如右表所示:则此楼群在第三季度的平均单价大约是( )元A 、 10000B 、 9500C 、9000D 、8500二、填空题:本大题共6小题,每小题4分,满分24分.把答案填在题中横线上. 11、已知113a (,2sin ),b (cos ,),a 322=α=α且∥b ,则锐角α的值为 ; 12、m,n a 2m a n,|a |=⊥=设是两个单位向量,向量-n ,则 ; 13、函数y cos 2x 4cos x,x [,]32ππ=-∈-的值域是 ; 14、在三角形ABC 中,设a =AB ,b =AC ,点D 在线段BC 上,且DC BD 3=,则AD 用b ,a 表示为 ;15、已知偶函数f (x)2sin(x )(0,0)=ω+ϕω><ϕ<π的最小正周期是π,则f(x)的单调递减区间为 ; 16、下列命题:①若c a c b b a =⋅=⋅,则 ②若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量:-=+,则0=⋅b a ④若a 与b 是单位向量,则1=⋅b a其中真命题的序号为 。
三角函数与平面向量(解析版)
+2kπ,+2kπ⎥[-1,1]2kπ增⎢减⎢+2kπ,+2kπ⎥π23π2减[2kπ,2kπ+π](kπ+(x≠kπ+π⎝2⎭奇函数⎛kπ+kπ,+kπ⎪,0⎪⎝2⎭无R kπ增 -πy=f(x)图象各点把横坐标变为原来ω倍得y=f(1三角函数与平面向量一.知识汇总*经典提炼基定义任意角α的终边与单位圆交于点P(x,y)时,sinα=y,cosα=x,tanα=yx.本问题三同角三角函数关系诱导公式sin2α+cos2α=1,sinα=tanα。
cosα360︒±α,180︒±α,-α,90︒±α,270︒±α,“奇变偶不变,符号看象限”.值域周期单调区间奇偶性对称中心对称轴三角角函函数y=sin x(x∈R)⎡π⎤-⎣2⎦⎡π⎤⎣2⎦奇函数(kπ,0)x=kπ+π2数的的性图质y=cos x(x∈R)[-1,1]增[-π+2kπ,2kπ]2kπ偶函数π2,0)x=kπ象与与图性象质y=tan x2)平移变换上下平移⎛π⎫⎫2y=f(x)图象平移k得y=f(x)+k图象,k>0向上,k<0向下。
图象变伸缩变换左右平移x轴方向y=f(x)图象平移ϕ得y=f(x+ϕ)图象,ϕ>0向左,ϕ<0向右。
ωx)的图象。
换y轴方向y=f(x)图象各点纵坐标变为原来的A倍得y=Af(x)的图象。
对称变换中心对称y=f(x)图象关于点(a,b)对称图象的解析式是y=2b-f(2a-x)=sinαcosβ±cosαsinβsin2α=2sinαcosαsin2α= cos2α=cos2α-sin2α=±β)定理a=b=cS=111222222轴对称y=f(x)图象关于直线x=a对称图象的解析式是y=f(2a-x)。
和差角公式倍角公式正弦sin(α±β)2tanα1+tan2α变换公式余弦cos(ααcosβm sinαsinβ1-tan2αcos2α=1+tan2α=2cos2α-1=1-2sin2αsin2α=1-cos2α2正切1+cos2αtanα±tanβ2tanαcos2α=tan(α±β)=tan2α=2 1m tanαtanβ1-tan2αsin A sin B sin C。
高考数学二轮复习 专题03 三角函数与平面向量(测)(含解析)理
专题三 三角函数与平面向量总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.【2018届陕西省宝鸡市金台区高三上期中】已知()()1,1,,3AB BC x ==-,若AC AB ⊥,则x = ( )A. 3B. 1C. 3-或2D. 4-或1 【答案】B【解析】AC = ()()()1,1,31,2x x +-=+-,由AC AB ⊥得120,1x x +-== ,选B. 2.已知3sin 5α=,且α为第二象限角,则tan 24πα⎛⎫+ ⎪⎝⎭=( ) A. 195-B. 519-C. 3117-D. 1731- 【答案】D3.在ABC ∆中, ()223b c a bc -=-,则角A 等于( ) A.56π B. 23π C. 3π D. 6π 【答案】B【解析】()223b c a bc -=-即22223b bc c a bc -+=- 所以()22212cos 0,23b c a bc A A A ππ+-=-∴=-∈∴=故选B.4.【2018 届四川省凉山州高三毕业班第一次诊断】已知锐角α满足cos cos24παα⎛⎫-= ⎪⎝⎭,则sin cos αα等于( )A.14 B. 14-【答案】A【解析】由cos (α﹣4π)=cos2α,得22cos cossin sincos sin 44ππαααα+=-)()()sin cos sin cos cos sin αααααα+=+-, 0,2πα⎛⎫∈ ⎪⎝⎭∴sin α+cos α>0,则cos α﹣sin α. 两边平方得: 112sin cos 2αα-= , ∴1sin cos 4αα=. 故答案为:A. 5.cos 26x y π⎛⎫=-⎪⎝⎭()x ππ-≤≤的值域为( ) A. 11,22⎡⎤-⎢⎥⎣⎦ B. [-1,1]C. 1,12⎡⎤-⎢⎥⎣⎦ D. 12⎡-⎢⎣ 【答案】C【解析】由-π≤x ≤π,可知-2π≤2x ≤2π,- 23π≤2x -6π≤3π,函数y =cosx 在区间2[3π-,0]内单调递增,在区间[0, ]3π内单调递减,且cos 23π⎛⎫- ⎪⎝⎭=-12,cos 3π=12,cos 0=1,因此所求值域为1,12⎡⎤-⎢⎥⎣⎦,故选C. 6.函数()sin y A x ωϕ=+ (0,)2πωϕ>≤的部分图象如图所示,则函数的一个表达式为A. 4sin 84y x ππ⎛⎫=-+⎪⎝⎭ B. 4sin 84y x ππ⎛⎫=-⎪⎝⎭C. 4sin 84y x ππ⎛⎫=-- ⎪⎝⎭D. 4sin 84y x ππ⎛⎫=+ ⎪⎝⎭【答案】A点睛:本题主要考查利用()sin y A x ωφ=+的图象特征,由函数()sin y A x ωφ=+的部分图象求解析式,理解解析式中,,A ωφ的意义是正确解题的关键,属于中档题. A 为振幅,有其控制最大、最小值, ω控制周期,即2T πω=,通常通过图象我们可得2T 和4T, φ称为初象,通常解出A , ω之后,通过特殊点代入可得,用到最多的是最高点或最低点. 7.【2018届江西省新余四中高三上学期第一次段考】为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图像,可以将函数sin2y x =的图像( ) A. 向右平移6π个单位长度 B. 向左平移12π个单位长度 C. 向左平移6π个单位长度 D. 向右平移12π个单位长度【答案】D8.在ABC ∆中,若30a b A ===︒,则边c 的长度等于( )A. 以上都不对 【答案】C【解析】∵∴由余弦定理a 2=b 2+c 2﹣2bccosA 得:5=15+c 2﹣,即c 2﹣,解得:则. 故答案为:C.9.【2018届广西玉林市陆川中学高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( )A. 1-B. 0C. 1D. 2 【答案】C【解析】()()()21,01,11a b a +⋅=-=, 故选:C.10.设函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( ) A. ()f x 的一个周期为2π B. ()f x 的图形关于直线8x π=对称 C. ()f x 的一个零点为8x π=-D. ()f x 在区间0,4π⎛⎫⎪⎝⎭上单调递减 【答案】D【解析】逐一考查所给的选项: 函数()f x 的最小正周期为22T ππ==,则函数的周期为: ()*T k k N π=∈,取2k =可得函数的一个周期为2π; 函数图象的对称轴满足: ()242x k k Z πππ+=+∈,则: ()28k x k Z ππ=+∈,令0k =可得函数的一条对称轴为8x π=;函数的零点满足: ()24x k k Z ππ+=∈,则: ()28k x k Z ππ=-∈, 令0k =可得函数的一个零点为8x π=-;若0,4x π⎛⎫∈ ⎪⎝⎭,则32,444x πππ⎛⎫+∈ ⎪⎝⎭,则函数在0,4π⎛⎫⎪⎝⎭上不具有单调性; 本题选择D 选项.11.若2,4a b ==,且()a b a +⊥,则a 与b 的夹角为( ) A.23π B. 3π C. 43π D. 23π- 【答案】A【解析】()a b a +⊥ ()204a b a a a b a b ⇒+⋅=+⋅=⇒⋅=-,412cos ,,,2423a b a b a b a b π⋅-===-∴=⨯, 故选:A .12.如图,在直角坐标系xoy 中,其中A(0,0),B(2,0),C(1,1),D(0,1),图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP λAB μBC =+,其中λ,μR ∈,则4λμ- 的取值范围是( )] 【答案】B【解析】以A为坐标原点,AB为x轴,DA为y轴建立平面直角坐标系则A(0,0),D(0,1),C(1,1),B(2,0)直线BD的方程为x+2y﹣2=0,C到BD的距离;∴以点C为圆心,以12为半径的圆方程为(x﹣1)2+(y﹣1)2=14,设P(m,n)则AP=(m,n),AB=(2,0),BC=(﹣1,1);∴(m,n)=(2x﹣y,y)∴m=2x﹣y,n=y,∵P在圆内或圆上∴(2x﹣y﹣1)2+(y﹣1)2≤14,设4x﹣y=t,则y=4x﹣t,代入上式整理得80x2﹣(48t+16)x+8t2+7≤0,设f(x)=80x2﹣(48t+16)x+8t2+7,x∈[12,32],则12{32ff⎛⎫≤⎪⎝⎭⎛⎫≤⎪⎝⎭,解得2≤t ≤∴4x ﹣y 的取值范围是[2,. 故选:B .二、填空题(4*5=20分)13.【2018届山东省济宁市高三上学期期末】 已知cos 4πα⎛⎫+= ⎪⎝⎭,则sin2α=________.【答案】1125-14.已知向量()()1,2,2,a b m ==-, a b +与a b -垂直,则m =__________. 【答案】1±【解析】向量()()1,2,2,a b m ==-, a b +与a b -垂直,故()()2222·0,a b a b a b a b +-=-=∴=1.m =⇒=±故答案为: 1±.15.【2018届四省名校(南宁二中等)高三上第一次大联考】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且sin cos c B C =, 45A =︒,则B =__________. 【答案】75°【解析】由题意结合正弦定理有: sin sin cos C B B C =,sin 0,tan 60B C C ≠∴==,三角形内角和为180,则180456075B =--=. 16.如图所示, 23BAC π∠=,圆M 与,AB AC 分别相切于点,D E , 1AD =,点P 是圆M 及其内部任意一点,且(),AP xAD y AE x y R =+∈,则x y +的取值范围是__________.【答案】44⎡-+⎣【解析】三、解答题(共6道小题,共70分)17. 在△ABC 中,内角A,B,C 所对应的边分别为a,b,c ,且bsin A a sin 2B =. (1)求角B 的大小;(2)若,求△ABC 的面积的最大值.【答案】(1) πB 3=;(2【解析】试题分析:(1)利用正弦定理边化角结合三角函数的性质可得1cos B 2=,则πB 3= . (2)利用(1)的结论和余弦定理、均值不等式可得ac 7≤ ,结合面积公式可知ABC S的最大试题解析:(1)∵bsin A a sin 2B =,由正弦定理得: sin Bsin A sin A?2sin Bcos B = ∵0A π<<, 0B π<< ∴sin A 0>,sin B 0> ∴1cos B 2= ∴πB 3=.18.【2018届江西省新余四中高三上学期第一次段考】已知函数f (x )=sin 2x –cos 2x –sin x cos x (x ∈R ). (1)求f (2π3)的值. (2)求f (x )的最小正周期及单调递减区间. 【答案】(Ⅰ)2;(Ⅱ)π, ,,36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【解析】试题分析:(1)直接利用二倍角的正弦公式、二倍角的余弦公式及辅助角公式,把函数的关系式变形为-2sin 26x π⎛⎫+⎪⎝⎭,进一步求出函数的值;(2)利用(1)的结论,直接根据周期公式可得f (x )的最小正周期为π,令222262k x k k Z πππππ-≤+≤+∈,,解不等式可求出函数的单调减区间.19.【2018届西藏拉萨市高三第一次模拟】已知a , b , c 分别为ABC ∆的三个内角A ,B ,C sin 2cos C c c A =+.(1)求角A ;(2)若a =, ABC ∆b , c . 【答案】(1) 23A π=;(2) 2b c ==. 【解析】试题分析:(1)利用正弦定理边转角,消去sin C 后,利用辅助角公式化为关于角A 的三角方程,根据角的范围求出角A ;(2)利用余弦定理得出关于b,c 关系式,再利用三角形面积公式得出b,c 关系,联立方程组解出b 和c. 试题解析:(1sin 2cos C c c A =+及正弦定理,sin 2sin sin cos A C C C A =+,由于sin 0C ≠2cos A A =+,即sin 16A π⎛⎫-= ⎪⎝⎭. 又0A π<<,所以5666A πππ-<-<,所以62A ππ-=,故23A π=.(2)ABC ∆的面积1sin 2S bc A ==,故4bc =,① 由余弦定理2222cos a b c bc A =+-,故()22312120b c a bc -=-=-=,故b c =,②由①②解得2b c ==.20.【2018届江西省南昌市高三第一轮】已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且cos sin 0a C C b c +--=.(Ⅰ)求A ;(Ⅱ)若AD 为BC 边上的中线, 1cos 7B =, AD =,求ABC ∆的面积.【答案】(Ⅰ)060A =(Ⅱ)ABC S ∆=【解析】试题分析: (1)由正弦定理化简已知的式子,由内角和定理、诱导公式、两角和差的正弦公式化简后,由内角的范围和特殊角的三角函数值求出A ;(2)由题意和平方关系求出sinB ,由内角和定理、诱导公式、两角和的正弦公式求出sinC ,由正弦定理求出a 和c 关系,根据题意和余弦定理列出方程,代入数据求出a 、c ,由三角形的面积公式求出答案. 解析:(Ⅰ)∵cos sin 0a C C b c +--=,由正弦定理得:sin cos sin sin sin A C A C B C =+,即()sin cos sin sin sinC A C A C A C =++,化简得:cos 1A A -=,∴()01sin 302A -=.在ABC ∆中, 000180A <<,∴003030A -=,得060A =.(Ⅱ)在ABC ∆中, 1cos 7B =,得sin B =,则()11sin sin 72C A B =+=+=sin 7sin 5a A c C ==. 设7,5a x c x ==,在ABD ∆中,由余弦定理得: 2222?cos AD AB BD AB BD B =+-, 则2212911125492574427x x x x =+⨯-⨯⨯⨯⨯,解得1x =,即7,5a c ==,故1sin 2ABC S ac B ∆== 点睛: 本题考查了正弦定理、余弦定理,三角形的面积公式,以及两角和差的正弦公式等,注意内角的范围,考查化简、变形、计算能力.注意当已知三角形的一个边和两个角时,用正弦定理.已知两角一对边时,用正弦定理,已知两边和对角时用正弦较多.21.【2018届山东省师大附中高三第三次模拟】已知()()32sin πsin π2f x x x x ⎛⎫=++- ⎪⎝⎭. (1)求函数()f x 最小正周期及其图象的对称轴方程;(2)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,且()3f A a ==,求ABC ∆周长的最大值.【答案】(1) π, 对称轴方程为()ππ212k x k =-∈Z (2) ΔABC 周长的最大值为9 【解析】试题分析:(1) ()f x = π2cos 26x ⎛⎫+ ⎪⎝⎭,再利用正弦定理的性质求解即可;(2)由()f A =可得π3A =,再利用余弦定理2222cos a b c bc A =+-,结合基本不等式可得26b c a +≤=,则可得结论. 试题解析:(1) ()f x ()32sin πsin π2x x x ⎛⎫++- ⎪⎝⎭2cos sin x x x -=sin2x x -=π2cos 26x ⎛⎫+ ⎪⎝⎭所以2ππ2T ==, 令()π2π6x k k +=∈Z ,解得()ππ212k x k =-∈Z , 所以函数()f x 图象的对称轴方程为()ππ212k x k =-∈Z .22.已知向量()1,sin a x =, (cos b x =,⑴ 若a b ⊥,求tan2x 的值;⑵ 令()f x a b =⋅,把函数()f x 的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),再把所得图象沿x 轴向左平移π12个单位,得到函数()y g x =的图象,求函数()y g x =的单调递增区间.【答案】(1) ()5πππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦. 【解析】试题分析: ()1由条件a b ⊥可得向量数量积,得出cos x 、sin x 的数量关系,即可求出tan x ,就可以求出结果;(2)根据三角函数的图象平移,按照条件给出的横坐标都缩小为原来的一半,再把所得图象沿x 轴向左平移π12个单位,得出三角函数的图象.试题解析:⑴ , ()(1,sin cos cos 0x x x x ∴=⋅==,tanx ∴= 22tan tan21tan x x x ∴==-.⑵()(π1,sin cos cos 2sin 6x x x x x ⎛⎫=⋅=+=+ ⎪⎝⎭, ()π2sin 6f x x ⎛⎫∴=+ ⎪⎝⎭,把函数()f x 的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),得到π2sin 26y x ⎛⎫=+ ⎪⎝⎭,再把所得图象沿x 轴向左平移π12个单位,得到()π2sin 23g x x ⎛⎫=+ ⎪⎝⎭,由πππ2π22π232k x k -≤+≤+得()5ππππZ 1212k x k k -≤≤+∈, ()g x ∴的单调增区间是()5πππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数平面向量阶段性测试(解析版)一、选择题(本大题共15小题,每小题5分,共60分.每小题中只有一项符合题目要求)1、若sin 0α<且tan 0α>是,则α是( )A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角【答案】C【解析】由sin 0α<知α在三、四象限,又tan 0α>,α在一、三象限,综合得α在第三象限。
2、“2()6k k Z παπ=+∈”是“1cos 22α=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A 【解析】当)(k 2k 6Z ∈+=ππα时,213cos 34cos 2cos ==⎪⎭⎫ ⎝⎛+=πππαk , 反之,当212cos =α时,有()Z ∈+=⇒+=k k k 6322ππαππα, 或()Z ∈=⇒=k k k 6-3-22ππαππα,故应选A3、设3(,sin )2a α= ,1(cos ,)3b α= ,且//a b,则锐角α为( )A .030 B .060 C .075 D .045 【答案】D 【解析】0031sin cos ,sin 21,290,4523ααααα⨯==== 4、P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心【答案】D【解析】∵⋅=⋅=⋅,则由⋅=⋅得 ()0,PB PC PA ⋅-=即PB AC ⋅=0,∴PB ⊥AC ,同理AB PC BC PA ⊥⊥,,即P 是垂心。
5、如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-17D.17【答案】A【解析】由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1∴k =-3,故选A.6、在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b【答案】B【解析】AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa +⎝⎛⎭⎫1-12λb ,∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b .7、设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量运算a ⊕b =(a 1,a 2)⊕(b 1,b 2)=(a 1b 1,a 2b 2).已知m =⎝⎛⎭⎫2,12,n =⎝⎛⎭⎫π3,0,点P (x ,y )在y =sin x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊕OP →+n (其中O 为坐标原点),则y =f (x )的最大值及最小正周期分别为( )A .2;πB .2;4πC .12;4πD .12;π【答案】C【解析】设点Q (x ′,y ′),则OQ →=(x ′,y ′),由新定义的运算法则可得:(x ′,y ′)=⎝⎛⎭⎫2,12⊕(x ,y )+⎝⎛⎭⎫π3,0=⎝⎛⎭⎫2x +π3,12y , 得⎩⎨⎧x ′=2x +π3y ′=12y,∴⎩⎪⎨⎪⎧x =12x ′-π6y =2y ′,代入y =sin x ,得y ′=12sin ⎝⎛⎭⎫12x ′-π6,则f (x )=12sin ⎝⎛⎭⎫12x -π6,故选C. 8、把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A.(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C.(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=0【答案】C【解析】将原方程整理为:y =xcos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.9、把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则( )A .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π12【答案】B【解析】函数y =sin(ωx +φ)经过上述变换得到函数y =sin x ,把函数y =sin x 的图象经过上述变换的逆变换即可得到函数y =sin(ωx +φ)的图象.把y =sin x 图象上所有点的横坐标缩小到原来的12倍得到的函数解析式是y =sin2x ,再把这个函数图象向右平移π6个单位,得到的函数图象的解析式是y =sin2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3,与已知函数比较得ω=2,φ=-π3.10、设两个向量22(2,cos )a λλα=+- 和(,sin ),2m b m α=+ 其中,,m λα为实数.若2,a b = 则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【解析】由22(2,cos )a λλα=+- ,(,sin ),2m b m α=+ 2,a b = 可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A11、已知向量(4,6),(3,5),OA OB == 且,//,OC OA AC OB ⊥则向量OC 等于(A )⎪⎭⎫ ⎝⎛-72,73(B )⎪⎭⎫⎝⎛-214,72(C )⎪⎭⎫ ⎝⎛-72,73(D )⎪⎭⎫ ⎝⎛-214,72【答案】D【解析】设(,),460,C x y OC OA x y ⊥⇒+=//5(4)3(6)0,AC OB x y ⇒---= 联立解得32(,).77C -12、黑板上有一道解答正确的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a =2,……,解得b = 6.根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知条件....( ) A .A =30°,B =45° B .c =1,cos C =13C .B =60°,c =3D .C =75°,A =45°【答案】D【解析】∵2sin30°≠6sin45°,∴A 错;∵cos C =a 2+b 2-c 22ab =4+6-146≠13,∴B 错;∵a 2+c 2-b 22ac =4+9-612=712≠cos60°,∴C 错,故选D.13、已知函数y =A sin(ωx +φ)+b 的一部分图象如图所示,如图A >0,ω>0,|φ|<π2,则( )A .φ=-π6B .φ=-π3C .φ=π3D .φ=π6【答案】D【解析】由图可知⎩⎪⎨⎪⎧ A +b =4-A +b =0,∴⎩⎪⎨⎪⎧A =2b =2,又T 4=5π12-π6=π4,∴T =π,∴ω=2,∴y =2sin(2x +φ)+2,将⎝⎛⎭⎪⎫5π12,2代入得sin ⎝ ⎛⎭⎪⎫5π6+φ=0,结合选项知选D.14、函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如右图所表示,A 、B 分别为最高与最低点,并且两点间的距离为22,则该函数的一条对称轴为( )A .x =2πB .x =π2C .x =1D .x =2【答案】C【解析】 ∵函数y =cos(ωx +φ)为奇函数,0<φ<π,∴φ=π2,∴函数为y =-sin ωx ,又ω>0,相邻的最高点与最低点A 、B 之间距离为22,∴ω=π2,∴y =-sin π2x ,其对称轴方程为π2x =k π+π2,即x =2k +1(k∈Z ),令k =0得x =1,故选C.15、如图是函数y =sin(ωx +φ)的图象的一部分,A ,B 是图象上的一个最高点和一个最低点,O 为坐标原点,则OA →·OB →的值为( )A.12πB.19π2+1C.19π2-1D.13π2-1B ACD【答案】C【解析】由图知T 4=5π12-π6=π4,∴T =π,∴ω=2,∴y =sin(2x +φ),将点⎝⎛⎭⎫-π12,0的坐标代入得sin ⎝⎛⎭⎫-π6+φ=0, ∴φ=π6, ∴A ⎝⎛⎭⎫π6,1,B ⎝ ⎛⎭⎪⎫2π3,-1,∴OA →·OB →=π29-1,故选C. 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)16、在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =________.[答案] π4[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.17、已知f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________. [答案] [-1,2][解析] f (x )在[0,π2]上有两个不同零点,即方程f (x )=0在[0,π2]上有两个不同实数解,∴y =2sin ⎝⎛⎭⎫2x -π6,x ∈[0,π2]与y =m 有两个不同交点, ∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin(2x -π6)≤1,∴-1≤y ≤2,∴-1≤m ≤2.18、如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD =则=∙BC AD __________.[答案]83-[解析]由余弦定理得222222cos 22AB AC BC AB AD BD B AB AC AB BD +-+-==⨯⨯⨯⨯可得BC=,AD =又,AD BC 夹角大小为ADB ∠,22232cos 29BD AD AB ADB BD AD +-∠==-⨯=⨯⨯所以AD BC = 8cos 3AD BC ADB ⨯⨯∠=-.19、已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为 . [答案] 等腰非等边三角形[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.20、对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出下列命题:①f (x )的最小正周期为2π;②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上).[答案] ②③[解析] f (x )=cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期T =π;由2k π+π2≤2x +π4≤2k π+3π2(k ∈Z )得k π+π8≤x ≤k π+5π8,故f (x )在区间[π2,5π8]上是减函数;当x =π8时,2x +π4=π2,∴x =π8是f (x )的图象的一条对轴称;y =2sin2x 的图象向左平移π4个单位得到的图象对应函数为y =2sin2⎝⎛⎭⎫x +π4,即y =2sin ⎝⎛⎭⎫2x +π2,因此只有②③正确.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)21、已知4||=,2||=,且a 与b 夹角为120°求:⑴)()2(b a b a +∙-; ⑵|2|b a -; ⑶a 与b a +的夹角。