(完整版)因数和倍数奥数题及标准答案(有难度)
五年级奥数春季实验班第7讲 数论综合之高难度因数与倍数问题
第七讲数论综合之高难度因数与倍数问题模块一、因数与倍数的综合问题例1.对于正整数a 、b ,[a ,b ]表示最小公倍数,(a ,b )表示最大公约数,求解下列关于未知数m ,n 的方程:[,]55 (,)[,](,)70 m n m n m n m n m n m n ⎧++=⎪⎪⎪-=⎨⎪>⎪⎪⎩①②③。
解:设m =ap ,n =bp ,a ,b 互质,则[m ,n ]=abp ,(a ,b )=p ,则5570ab ap bp abp p ++=⎧⎨-=⎩,由p ×(ab −1)=70,所以p |70,70=2×5×7,若p =2,则ab =36,a ≠b ,得a =12,b =3,代入①式矛盾,舍去;若p =7,则ab =11,a ≠b ,得a =11,b =1,代入①式矛盾,舍去;若p =5,则ab =15,a ≠b ,得a =5,b =3,于是m =25,n =15,[m ,n ]=75,(m ,n )=5,所以原方程的解是2515m n =⎧⎨=⎩。
例2.n 为非零自然数,a =8n +7,b =5n +6,且最大公约数(a ,b )=d >1,求d 的值。
解:用辗转相除的方法,(8n +7,5n +6)=(3n +1,5n +6)=(3n +1,2n +5)=(n −4,2n +5)=(n −4,n +9)=(13,n +9), 所以(a ,b )=13.例3.M n 为1、2、3、……、n 的最小公倍数,对于样的正整数n ,M n −1=M n 。
解:如果n 是一个合数,且n 不是某一整数的k 次方,则M n −1=M n 。
因为n 是一个合数,所以n =a ×b ,a ,b 都小于n ,且a 、b 互质,于是a <n −1,b <n −1,所以a |M n −1,b |M n −1,于是(a ×b )|M n −1,所以M n −1=M n 。
五下__第二单元因数和倍数能力提高题和奥数题(附答案)
五下__第⼆单元因数和倍数能⼒提⾼题和奥数题(附答案)第⼆单元因数与倍数提⾼题和奥数题板块⼀因数和倍数例题1.⼀个数在150⾄250之间,且是18的倍数,这个数可能是多少?最⼤是多少?练习1.⼀个数是25的倍数,它位于110⾄160之间,这个数是多少?例题2.有⼀个数,它是40的因数,⼜是5的倍数,这个数可能是多少?练习2.既是7的倍数,⼜是42的因数,这样的数有哪些?例题3.妈妈买来30个苹果,让⼩明把苹果放⼊篮⼦⾥。
不许⼀次拿完,也不许⼀个⼀个地拿,要每次拿的个数相同,拿到最后正好⼀个不剩。
⼩明共有⼏种拿法?每种拿法每次各拿多少个?练习3.五(1)班有学⽣42⼈,把他们平均分成⼏个学习⼩组,每组多于2⼈且少于8⼈。
可以分成⼏个⼩组呢?板块⼆ 2、5、3的倍数的特征例题1.⼀个五位数29ABC(A、B、C是0~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练习1.在17的后⾯添上三个数字组成五位数,使这个五位数既是偶数,⼜同时含有因数3和5。
这个五位数最⼤是多少?最⼩是多少?例题2.5□□0是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最⼩是多少?最⼤是多少?练习2.4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最⼩是多少?最⼤是多少?板块三奇数和偶数例题1.⼀只⼩船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。
已知⼩船最初在南岸。
(1)摆渡15次后,⼩船是在南岸还是在北岸?为什么?(2)⼩明说摆渡2016次后,⼩船在北岸。
他说得对吗?为什么?练习1.傍晚⼩亮开灯做作业,本来拉⼀次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。
你知道来电的时候,灯应该亮着还是不亮呢?例题2.有36个苹果,把它们放在9个盘⼦⾥,每个盘⼦⾥只放奇数个苹果,能做到吗?练习2.(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?(2)有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?例题3.桌⼦上放着5个杯⼦,全部是杯底朝上,如果每次翻动2个杯⼦,称为⼀次翻动,经过多次翻动能使5个杯⼦的杯⼝全部朝上吗?如果每次翻动3个杯⼦呢?练习3.如家宾馆现在有10间客房的灯开着,每次同时拨动4个房间的开关,能不能把这10个房间的灯全部关闭?如果能,⾄少需要⼏次?板块四质数和合数例题1.三个不同质数的和是82,这三个质数的积最⼤是多少?练习1.(1)两个质数的和是⼩于100的奇数,并且是11的倍数,这两个质数可能是什么数?(2)两个质数的和是2001,这两个质数的积是多少?(3)⼀个长⽅形的长和宽都是质数,并且周长是36厘⽶,这个长⽅形的⾯积最⼤是多少?例题2.⽤0、1、4、5这四个数字组成两个质数,每个数字只能⽤⼀次,求这两个质数。
(完整word版)五年级奥数题:因数与倍数.doc
因数与倍数相关习题( 1)一、填空题1 .28 的所有因数之和是 _____. 2. 用 105 个大小相同的正方形拼成一个长方形, 有 _____种不同的拼法 .3. 一个两位数 , 十位数字减个位数字的差是 28 的因数 , 十位数字与个位数字的积是 24. 这个两位数是 _____.4. 李老师带领一班学生去种树 , 学生恰好被平均分成四个小组 , 总共种树 667 棵, 如果师生每人种的棵数一样多 , 那么这个班共有学生 _____人 .5. 两个自然数的和是 50, 它们的最大公因数是 5, 则这两个数的差是 _____.6. 现有梨 36 个, 桔 108 个 , 分给若干个小朋友 , 要求每人所得的梨数 , 桔数相 等 , 最多可分给 _____个小朋友 , 每个小朋友得梨 _____个 , 桔 _____个.7. 一块长 48 厘米、宽 42 厘米的布,不浪费边角料,能剪出最大的正方形布片 _____块 .8. 长 180 厘米 , 宽 45 厘米 , 高 18 厘米的木料 , 能锯成尽可能大的正方体木块 ( 不余料 )_____ 块.9. 张师傅以 1 元钱 3 个苹果的价格买苹果若干个 , 又以 2 元钱 5 个苹果的价格将这些苹果卖出 , 如果他要赚得 10 元钱利润 , 那么他必须卖出苹果 _____个 .10. 含有 6 个因数的两位数有 _____个 .11.写出小于 20 的三个自然数,使它们的最大公因数是 1,但两两均不互 质,请问有多少组这种解?12.和为 1111 的四个自然数,它们的最大公因数最大能够是多少?13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳4 1 米,黄鼠狼每次跳 2 3米, 2 4它们每秒钟都只跳一次 . 比赛途中 , 从起点开始每隔 12 3米设有一个陷井 , 当它们8之中有一个掉进陷井时 , 另一个跳了多少米 ?14. 已知 a 与 b 的最大公因数是 12, a 与 c 的最小公倍数是 300, b 与 c 的最 小公倍数也是 300, 那么满足上述条件的自然数 a, b, c 共有多少组 ?( 例如 : a=12、b=300、c=300,与 a=300、b=12、c=300 是不同的两个自然数 组 )———————————————答 案——————————————————————答 案:1. 5628 的因数有 1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因 105 的因数有105 和 1,35 和 3,21 与1,3,5,7,15,21,35,1055,15 与 7. 所以能拼成能拼成的方形的与分是4 种不同的方形 .3. 64因 28=2 2 7, 所以 28 的因数有 6 个:1,2,4,7,14,28.在数字中,只有 6 与 4 之,或者 8 与 3 之是 24,又 6-4=2,8-3=5.故符合目要求的两位数有64.0,1,2, ⋯,94. 28因667=23 29, 所以班生每人种的棵数只能是667 的因数:1,23,29,667. 然 , 每人种 667 棵是不可能的 .当每人种 29 棵 , 全班人数是 23-1=22, 但 22 不能被 4 整除 , 不可能 .当每人种 23 棵 , 全班人数是29-1=28, 且 28 恰好是 4 的倍数 , 符合目要求 .当每人种 1 棵 , 全班人数是 667-1=666, 但 666 不能被 4 整除 , 不可能 .所以 , 一班共有 28 名学生 .5. 40或20两个自然数的和是50, 最大公因数是35, 它的差分 (45-5=)40,(35-15=)20, 5, 两个自然数可能是所以填 40 或 20.5 和45,15 和[ 注 ] 这里的关键是依最大公因数是 5 的条件, 将50 分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨 36 个、桔子 108 个分若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36 的因数,又要是 108 的因数,即一定是 36 和 108的公因数 . 因要求最多可分多少个小朋友, 可知小朋友的人数是36 和 108 的最大公因数 .36 和 108 的最大公因数是36, 也就是可分 36 个小朋友 .每个小朋友可分得梨 : 3636=1( 只)每个小朋友可分得桔子 : 10836=3( 只)所以 , 最多可分得 36 个小朋友 , 每个小朋友可分得梨 1 只, 桔子 3 只.7. 56剪出的正方形布片的能分整除方形的48 厘米及 42 厘米 , 所以它是 48 与 42 的公因数 , 目又要求剪出的正方形最大, 故正方形的是48 与42 的最大公因数 .因 48=2 2 2 2 3,42=2 3 7, 所以 48 与 42 的最大公因数是 6., 最大正方形的是 6 厘米 . 由此可按如下方法来剪 : 每排剪 8 , 可剪 7, 共可剪 (48 6) (42 6)=8 7=56( ) 正方形布片 .8. 200根据没有余料的条件可知、和高分能被正方体的棱整除, 即正方体的棱是180,45 和 18 的公因数 . 了使正方体木尽可能大 , 正方体的棱是180、45 和 18 的最大公因数 .180,45 和 18 的最大公因数是 9, 所以正方体的棱是 9 厘米 . , 180 厘米可公成 20 段, 45 厘米可分成 5 段, 高 18 厘米可分成 2 段. 根木料共分割成 (180 9)(45 9) (18 9)=200 棱是 9 厘米的正方体 .9. 150根据 3 与 5 的最小公倍数是 15, 老傅以 5 元 15 个苹果 , 又以 6 元出 15 个苹果 , , 他 15 个苹果与出利 1 元. 所以他利 10 元必出 150 个苹果 .10. 16含有 6 个因数的数 , 它的质因数有以下两种情况 : 一是有 5 个相同的质因数连 乘;二是有两个不同的质因数其中一个需连乘两次,如果用 M 表示含有 6 个因 数的数,用 a 和 b 表示 M 的质因数,那么Ma 5 或 Ma 2b因为 M 是两位数,所以 M= a 5 只有一种可能 M=25 ,而 M= a 2 b 就有以下 15 种情况:M 22 3, M 22 5, M 227 ,M22 11, M 22 13, M 2 2 17 , M 22 19, M 22 23, M 32 2 ,M 32 5, M32 7, M32 11 ,M52 2, M52 3, M 7 22 .所以 , 含有 6 个因数的两位数共有 15+1=16(个)11. 三个数都不是质数 , 至少是两个质数的乘积 , 两两之间的最大公因数只能分别是 2,3 和 5, 这种自然数有 6,10,15 和 12,10,15 及 18,10,15 三组 .12. 四个数的最大公因数必须能整除这四个数的和 , 也就是说它们的最大公因数应该是 1111 的因数 . 将 1111 作质因数分解 , 得1111=11 101最大公因数不可能是 1111, 其次最大可能数是 101. 若为 101, 则将这四个数分别除以 101, 所得商的和应为 11. 现有1+2+3+5=11, 即存在着下面四个数101,1012,101 3,101 5,它们的和恰好是101 (1+2+3+5)=101 11=1111, 它们的最大公因数为 101. 所以 101 为所求 .13.黄鼠狼掉进陷井时已跳的行程应该是 2 3 与 12 3 的“最小公倍数”99,4 84即跳了99 11=9 次掉进陷井,狐狸掉进陷井时已跳的行程应该是 4 1 和 12 3的442 8 “最小公倍数”99 ,即跳了999=11 次掉进陷井 .2 2 2经 过 比 较 可 知 , 黄 鼠 狼 先 掉 进 陷 井 , 这 时 狐 狸 已 跳 的 行 程 是419=40.5( 米). 214.先将 12、 300 分别进行质因数分解:12=2 2 32 2300=2 3 5(1)确定 a 的值 . 依题意 a 只能取 12 或 12 5(=60) 或 12 25(=300).(2)确定 b 的值 .当 a=12 时, b 可取 12, 或 12 5, 或 12 25;当a=60,300 时, b 都只能取 12.所以 , 满足条件的 a、b 共有 5 组:a=12 a=12 a=12 a=60 a=300b=12, b=60, b=300, b=12, b=12.(3) 确定 a, b, c 的组数 .对于上面 a、b 的每种取值,依题意, c 均有 6 个不同的值:2 2 2 2 2 2 2 23,即 25,50,100,75,150,300.5 ,5 2,5 2 ,5 3,5 2 3,5 2所以满足条件的自然数 a、b、c 共有 5 6=30(组)因数与倍数相关习题( 2)一、 填空题1 .把 20 个梨和 25 个苹果平均分给小朋友,分完后梨剩下2 个,而苹果还缺 2 个,一共有 _____个小朋友 .2. 幼儿园有糖 115 颗、饼干 148 块、桔子 74 个,平均分给大班小朋友;结果糖多出 7 颗,饼干多出 4 块,桔子多出 2 个 . 这个大班的小朋友最多有 _____ 人 .3. 用长 16 厘米、宽 14 厘米的长方形木板来拼成一个正方形,最少需要用这样的木板 _____块.4. 用长是 9 厘米、宽是 6 厘米、高是 7 厘米的长方体木块叠成一个正方体,至少需要这种长方体木块 _____块.5. 一个公共汽车站 , 发出五路车 , 这五路车分别为每隔 3、5、9、15、 10 分钟发一次,第一次同时发车以后, _____分钟又同时发第二次车 .6. 动物园的饲养员给三群猴子分花生 , 如只分给第一群 , 则每只猴子可得12 粒;如只分给第二群,则每只猴子可得 15 粒;如只分给第三群,则每只猴子可得 20 粒. 那么平均给三群猴子 , 每只可得 _____粒.7. 这样的自然数是有的 : 它加 1 是 2 的倍数 , 加 2 是 3 的倍数 , 加 3 是 4 的倍数 , 加 4 是 5 的倍数 , 加 5 是 6 的倍数 , 加 6 是 7 的倍数 , 在这种自然数中除了 1 以外最小的是 _____.8. 能被 3、7、8、11 四个数同时整除的最大六位数是 _____. 9. 把 26,33,34,35,63,85,91,143 分成若干组 , 要求每一组中任意两个数的最大公因数是 1, 那么至少要分成 _____组.10. 210 与 330 的最小公倍数是最大公因数的 _____倍.二、解答题11.公共汽车总站有三条线路,第一条每 8 分钟发一辆车,第二条每 10 分钟发一辆车,第三条每 16 分钟发一辆车,早上 6:00 三条路线同时发出第一辆车 . 该总站发出最后一辆车是 20:00, 求该总站最后一次三辆车同时发出的时刻 . 12. 甲乙两数的最小公倍数除以它们的最大公因数 , 商是 12. 如果甲乙两数的差是 18, 则甲数是多少 ?乙数是多少 ?13. 用 5 、 15 、 1 1分别去除某一个分数,所得的商都是整数 . 这个分数28 56 20最小是几 ?14. 有 15 位同学 , 每位同学都有编号 , 他们是 1 号到 15 号 ,1 号同学写了一个自然数 ,2 号说:“这个数能被 2 整除”,3 号说:“这个数能被他的编号数整除 .1 号作了检验 : 只有编号连续的二位同学说得不对 , 其余同学都对 , 问 :(1) 说的不对的两位同学 , 他们的编号是哪两个连续自然数 ?(2) 如果告诉你 ,1 号写的数是五位数 , 请找出这个数 .———————————————答案——————————————————————答案:1. 9若梨减少 2 个, 则有 20-2=18( 个); 若将苹果增加 2 个 , 则有 25+2=27(个), 这样都被小朋友刚巧分完 . 由此可知小朋友人数是 18 与 27 的最大公因数 . 所以最多有 9 个小朋友 .2. 36根据题意不难看出 , 这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公因数.所以 , 这个大班的小朋友最多有36 人.3. 56所铺成正方形的木板它的边长必定是长方形木板长和宽的倍数 , 也就是长方形木板的长和宽的公倍数 , 又要求最少需要多少块 , 所以正方形木板的边长应是 14 与16 的最小公倍数 .先求 14 与 16 的最小公倍数 .2 161487故14 与 16 的最小公倍数是 2 8 7=112.因为正方形的边长最小为112 厘米 , 所以最少需要用这样的木板112112=7 8=56(块 )16 144. 5292与上题类似,依题意,正方体的棱长应是9, 6, 7 的最小公倍数, 9,6,7 的最小公倍数是126. 所以 , 至少需要这种长方体木块126 126 126=14 21 18=5292(块 )9 6 7[ 注 ] 上述两题都是利用最小公倍数的概念进行“拼图”的问题,前一题是平面图形,后一题是立体图形,思考方式相同,后者可看作是前者的推广. 将平面问题推广为空间问题是数学家喜欢的研究问题的方式之一. 希望引起小朋友们注意.5. 90依意知 , 从第一次同到第二次同的是 3,5,9,15 和 10 的最小公倍数 .因 3,5,9,15 和 10 的最小公倍数是 90, 所以从第一次同后90 分又同第二次 .6. 5依意得花生粒数 =12 第一群猴子只数=15第二群猴子只数=20第三群猴子只数由此可知 , 花生粒数是 12,15,20 的公倍数 , 其最小公倍数是 60. 花生粒数是60,120,180, ⋯⋯,那么第一群猴子只数是5, 10,15,⋯⋯第二群猴子只数是4, 8, 12,⋯⋯第三群猴子只数是3, 6, 9,⋯⋯所以,三群猴子的只数是 12,24,36,⋯⋯ . 因此 , 平均分三群猴子 , 每只猴子所得花生粒数是 5 粒.7. 421依意知 , 个数比 2、3、4、5、6、7 的最小公倍数大 1,2 、3、4、5、6、 7 的最小公倍数是 420,所以个数是 421.8. 999768由意知 , 最大的六位数是 3,7,8,11 的公倍数 , 而 3,7,8,11 的最小公倍数是1848.因 999999 1848=541⋯⋯ 231,由商数和余数可知符合条件的最大六位数是1848 的 541 倍,或者是 999999 与 231 的差 . 所以 , 符合条件的六位数是999999-231=999768.9. 3根据目要求 , 有相同因数的数不能分在一,26=2 13,91=7 13,143=11 13, 所以 , 所分数不会小于 3. 下面出一种分方案 :(1)26 , 33,35; (2)34 ,91;(3)63 , 85,143.因此 , 至少要分成 3.[ 注 ] 所求组数不一定等于出现次数最多的质因数的出现次数,如15=3 5, 21=3 7,35=5 7, 3, 5,7 各出现两次,而这三个数必须分成三组,而不是两组.除了上述分法之外 , 有多种分法 , 下面再出三种 :(1)26,35 ; 33,85, 91;34,63, 143.(2)85,143,63;26,33,35;34,91.(3)26,85,63;91,34,33;143,35.10. 77根据“甲乙的最小公倍数甲乙的最大公因数 =甲数乙数”,将 210 330 分解因数,再行合有210 330=2 3 5 7 2 3 511=223252711=( 2 3 5)(2 3 5 7 11)因此,它的最小公倍数是最大公因数的 7 11=77(倍) .11.根据意 , 先求出 8,10,16 的最小公倍数是 80, 即从第一次三同出后 , 每隔 80 分又同 .从早上 6:00 至 20:00 共 14 小 , 求出其中包含多少个80 分 .6014 80=10⋯40 分由此可知 ,20:00 前 40 分 , 即 19:20 最后一次三同的刻.12.甲乙两数分除以它的最大公因数 , 所得的两个商是互数 . 而两个互数的乘 , 恰好是甲乙两数的最小公倍数除以它的最大公因数所得的商—— 12. 一的根据是 :( 我以“ ”代表两数的最大公因数,以“倍”代表两数的最小公倍数) 甲数乙数 =倍甲数乙数倍约=,所以:约约约约甲数乙数倍甲数乙数约约=约,约 =12约将 12 成互的两个数的乘:①12=4 3,② 12=1 12先看① , 明甲乙两数:一个是它最大公因数的 4 倍,一个是它最大公因数的 3 倍.甲乙两数的差除以上述互的两数 ( 即 4 和 3) 之差 , 所得的商 , 即甲乙两数的最大公因数 .18(4-3)=18甲乙两数 , 一个是 :18 3=54,另一个是: 18 4=72.7再看② ,18 (12-1)= 1 , 不符合意 , 舍去 .13.依意 , 所求最小分数M,NM 5=a M 15 =b M 11=cN 28 N 56 N 20即M28 =a M 56 =b M 20 =c N 5 N 15 N 21其中 a, b, c 整数 .因M是最小 , 且 a, b, c 是整数 , 所以 M 是 5,15,21 的最小公倍数 , N 是N28,56,20 的最大公因数 , 因此 , 符合条件的最小分数 :M =105= 261N4 414.(1) 根据 2 号~15 号同学所述 ,将合数 4,6,⋯,15 分解因数后,由 1 号同学果,行分析推理得出的 .4=22,6=2 3,8=2 3,9=3 2,10=2 5,12=2 2 3,14=2 7,15=3 5由此不断定得不的两个同学的号是8 与 9 两个自然数 ( 可逐次排除 , 只有 8 与 9 足要求 ).(2)1 号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,1512 个数整除 , 也就是它的公倍数 . 它的最小公倍数是2 25 7 11 13=60060 3因为 60060 是一位五位数 , 而这 12 个数的其他公倍数均不是五位数, 所以 1 号同学写的五位数是60060.。
(完整版)因数和倍数奥数题及标准答案(有难度)
因数和倍数奥数题荟萃总体难度有点大,如果有兴趣可以试试!1、某校举行数学竞赛,共有20道题。
评分标准规定,答对一题给 3 分,不答给1 分。
答错一题倒扣 1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?2、有四个连续奇数的和是2008,则其中最小的一个奇数是 ______ 。
3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得 1 个苹果和 3 个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了 ______ _名小朋友。
4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90 分,第二份训练题得了100 分,那么第三份训练题至少要得________ 分才能使四份训练题的平均成绩达到105 分。
5、三个连续自然数的乘积是210,求这三个数.6、自然数123456789 是质数,还是合数?为什么?7、一个数用3、4、5 除都能整除,这个数最小是多少?8、一个两位数去除251,得到的余数是41. 求这个两位数。
9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13 小时到达,求船在静水中的速度和水流速度。
答案:1、解:以一个学生得分情况为例。
如果他有m 题答对,就得3m 分,有n 题答错,则扣n 分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m- n)分。
所以,这个学生得分总数为:3m-n+(20-m-n)=3m-n+20-m-n=2m-2n+20 =2(m-n+10)不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。
由此可见,不管有多少学生参赛,得分总和一定是偶数。
2、解:499。
2008÷4—3=4993、解:6。
小学五年级数学 因数与倍数 非常完整版题型训练+详细答案
因数与倍数例题讲解板块一:基础题型1.(1)请写出105的所有约数;(2)请写出72的所有约数.答案:(1) 1、3、5、7、15、21、35、105(2)1、2、3、4、6、8、9、12、18、24、36、72分析:1051105335521715=⨯=⨯=⨯=⨯7217223632441861289=⨯=⨯=⨯=⨯=⨯=⨯2.(1) 20000的约数有多少个? (2) 720的约数有多少个?答案:(1)30个 (2) 30个分析:(1) 542000025=⨯, 约数的个数=(51)(41)30+⨯+=个(2) 42720235=⨯⨯,约数的个数=(41)(21)(11)+⨯+⨯+=30个3.计算:(1) (28,72), [28,72]; (2) (28,44,260), [28, 44, 260].答案:(1) 4,504 (2) 4,20020分析:(1) 22827=⨯,327223=⨯,所以()228,7224==;[]3228,72237504=⨯⨯= (2) 22827=⨯,244211=⨯,22602513=⨯⨯,所以()228,44,26024==, []228,44,260257111320020=⨯⨯⨯⨯=4.两个数的差是6,它们的最大公约数可能是多少?答案:1,2,3,6.分析:两个数的最大公因数一定是它们差的因数。
因为这两个数的差是6,则它们的最大公因数一定是6的因数。
即可能为1,2,3,6。
5.(1)求1085和1178的最大公约数和最小公倍数; (2)求3553,3910和1411的最大公约数.答案:(1) 31,41230 (2) 17分析:(1) 10855731=⨯⨯,117821931=⨯⨯,所以,()1085,117831=, []1085,1178257193141230=⨯⨯⨯⨯=(2) 3553111719=⨯⨯,3910251723=⨯⨯⨯,14111783=⨯ []3553,3910,141117=6.教师节到了,校工会买了320个苹果、240个桔子、200个香蕉来慰问退休老职工.请问:用这些水果最多可以分成多少份同样的礼物?在每份礼物中,苹果、桔子、香蕉各有多少个?答案: 40份;苹果8个,桔子6个,香蕉5个。
小学奥数数论(因数与倍数及整数裂项)试题及答案解析
小学奥数——因数与倍数与整数裂项一、选择题(共50小题)1.沿边长为20米的正方形花园四周每隔4米种一棵树,最多可种树()棵A.16B.18C.20D.222.一个挂钟,一点钟敲一下,两点钟敲两下,三点钟敲三下⋯⋯十二点钟敲十二下,每逢半点敲一下.这个挂钟一昼夜共敲()下.A.78B.102C.156D.1803.一根木头长24分米,要锯成4分米长的木棍.若每锯一次要3分钟,锯完一段休息2分钟,则全部锯完需要()分钟.A.23B.25C.28D.304.一块三角形地,三条边分别12米、15米、9米,每3米种一棵树,一共要种()棵树.A.9B.12C.15D.185.一根长2米的木棍,锯成每段长0.4米的木棍需要20分钟,那么锯成每段长0.5米的木棍需要()A.15分钟B.12分钟C.10分钟D.以上都不对6.一根水管锯成两段要2分钟,锯成6段要()分钟.A.6B.10C.12D.247.同学们做早操,81个同学排成一排,每相邻两个同学之间的距离相等,第一个人到最后一个人的距离时120米,相邻两个人的距离是()米.A.1B.约1.5C.1.5D.28.小明家住在9楼,他从底楼走到3楼用了1分钟,那么它从底楼走到9楼要用()分钟.A.4.5B.4C.3.5D.3E.2.59.奶奶出去散步,从第一根电线杆处走到第十根电线杆处共用了18分钟,照这个速度奶奶走了36分钟,她走到了第()根电线杆处.A.18B.19C.20D.2110.时钟3点敲3下,6秒钟敲完;那么7点敲7下,()秒钟敲完.A.10B.12C.14D.1811.在一座长1000米的长江大桥两边挂彩灯,起点和终点都挂,一共挂了202盏(相邻两盏之间的距离相等).则相邻两盏彩灯之间的距离是()米.A.8B.9C.10D.1112.分母小于60,分子不大于6的最简真分数有()个.A.59B.87C.197D.21513.a,b和c是三个非零自然数,在a b c=⨯中,能够成立的说法是()A.b和c是互质数B.b和c都是a的质因数C.b和c都是a的约数D.b一定是c的倍数14.三个不同正整数的和为564,其中一个数除以3余数为1,另一个数除以5的余数为3,第三个数除以7的余数为5,商都相同,则相同的商为()A.15B.21C.35D.3715.商店有三种糖,甲种糖每袋1.5千克,乙种糖每袋2千克,丙种糖每袋2.5千克,为了方便顾客,将大袋改为小袋,把它们全改为0.5千克的小袋,这样奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,原来的甲、乙、丙三种糖的品种依次是()A.酥糖、水果糖、奶糖B.奶糖、水果糖、酥糖C.奶糖、酥糖、水果糖D.水果糖、奶糖、酥糖16.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点的千米数是()A.32B.37C.55D.9017.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3 的倍数又是25 的倍数;(3)这个密码在20000000 到30000000 之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是()A.25526250B.26650350C.27775250D.2887035018.从1~11这11个整数中任意取出6个数,则下面结论正确的共()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.A.3B.2C.1D.019.如果20132013201420142012nm⨯=⨯+(其中m与n为互质的自然数),那么m n+的值是()A.1243B.1343C.4025D.402920.某班有50多人上体育课,他们站成一排,老师让他们按1,2,3,4,5,6,7循环报数,最后一人报的数是4,这个班有()人上体育课.A.51B.50C.53D.5721.两个数的最大公约数是20,最小公倍数是100,下面说法正确的有()个.(1)两个数的乘积是2000.(2)两个数都扩大10倍,最大公约数扩大100倍.(3)两个数都扩大10倍,最小公倍数扩大10倍.(4)两个数都扩大10倍,两个数乘积扩大100倍.A.1B.2C.3D.422.用四个数码1,3,4和6所组成的没有重复数字的所有整数中,是6的倍数的有( )A.1B.2C.3D.423.若干位小朋友排成一行,从左面第一个人开始,每隔2人发一个苹果,从右面第一人开始,每隔4人发一个桔子,结果有10个小朋友苹果和桔子都拿到了,那么这些小朋友最多有()人.A.16B.31C.158D.16624.一个电子钟,每9分钟亮一次灯,每到整点响一次铃,中午12点时,电子钟恰好又亮灯又响铃,问下次既亮灯又响铃是()A.2点B.3点C.4点D.5点25.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么,长度是1厘米的短木棍有()条.A.7B.8C.9D.1026.一根长木棍上刻有三种刻度,第一种刻度将木棍十等分,第二种刻度将木棍十二等分,第三种刻度将木棍十五等分,如果沿每条刻度线将木棍锯开,木棍总共被锯成()A.20段B.24段C.28段D.30段27.某加油站有二位员工,从今年l月1日起规定:员工甲每工作3天后休息1天,员工乙每工作5天后休息2天,当遇到二人都休息时,必须另聘一位临时工,则今年共有()天要聘1个时工.A.26B.28C.30D.2428.一条公路由A经B到C.已知A、B相距280米,B、C相距315米.现要在路边植树,要求相邻两树间的距离相等.并在B点及AB、BC的中点上都要植一棵.那么两树间距离最多有()A.35米B.36米C.17.5米D.18米29.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点是()A.32千米处B.37千米处C.55千米处D.90千米处30.有两个二位数,它们的最大公约数8,最小公倍数是96,这两个数的和是()A.56B.78C.84D.9631.在老区和新区之间一条路上安排公交站点,第一种安排将道路分成十等份;第二种安排将道路分成十二等份;第三种安排将道路分成十五等份.这三种安排分别通过三路不同的公交车实现,则此道路上其有多少个公交站点?(含起点和终点)()A.27B.29C.32D.3732.有两个合数是互质数,它们的最小公倍数是210,这样的数有()对.A.1B.2C.3D.433.如果a、b的最大公因数是21,那么a和b的公因数有()个.A.2B.3C.4D.534.同学们栽树,每行栽5棵,到最后一行只栽了4棵树,那么这些树的棵数是()A.5的倍数B.4的倍数C.5的倍数多4D.4的倍数多535.标有1到200的200张数字卡片,任意抽一张,号码是3的倍数的可能性是()A.33100B.67100C.310D.不确定36.7和8的最小公倍数是()A.1B.56C.11237.一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块?( )A.15B.12C.75D.838.小丽用一排地砖创造了一种跳跃游戏.她将地砖标上l,2,3,4,⋯并沿这一排地砖跳跃,每两块地砖着地一次,第一步落在第2块地砖上,最后停在倒数第2块地砖上.转身后她从倒数第2块地砖开始向回跳跃,这一次是每三块地砖着地一次,最后停在第l块地砖上.最后她又转身从第l块地砖开始跳跃,每五块地砖着地一次.这一次她又停在倒数第2块地砖上.那么这一排地砖共有()块(从下列选项中选出符合条件的答案).A.39B.40C.47D.49E.5339.a、b和c是三个自然数,在a b c=⨯中,不一定成立的是()A.a一定是b的倍数B.a一定能被b整除C.a一定是b和c的最小公倍数D.b一定是a的约数40.一个圆的直径缩小2倍,周长与面积分别缩小()A.2倍与4倍B.2倍与2倍C.4倍与4倍D.4倍与2倍41.下列四组数中,两个数只有公约数1的数是()A.13和91B.21和51C.34和51D.15和2842.五楼的王老师病了,小孙帮王老师送早点,从一楼到二楼用了34分钟,用同样的速度从一楼走到五楼王老师家要用( )分钟.A.154B.3C.203D.以上都不对43.校园内有一圆形花坛,花坛周围一共种了15棵月季花,每两棵月季花的距离都是2米,那么花坛的周长是( )A.30B.3C.28D.1544.奶奶折一个纸鹤用3分钟,每折好一个需要休息1分钟,奶奶从2时30分开始折,她折好第5个纸鹤时已经到了( )A.2时45分B.2时49分C.2时50分D.2时53分45.小明在正方形的边上标出若干个点,每条边上恰有3个,那么所标出的点最少有( )个.A.12B.10C.8D.646.一个木工锯一根长22米的木料,他先把一头损坏的部分锯下来2米,然后锯了4次,锯成同样长的短木条,每根短木条长( )米.A.2B.3C.4D.547.把25分拆成若干个不同正整数的和,其积的最大值设为A ,把26分拆成若干个不同正整数的和,其积的最大值设为B ,则(A B ) A.2526 B.78 C.56 D.1848.把自然数154写成若干个连续自然数之和(最少有两个数),共有( )种不同写法.A.2B.3C.4D.549.如图所示,将15个点排成三角形点阵或者梯形点阵共有3种不同方法(规定:相邻两行的点数均差1).那么将2014个点排成三角形点阵或者梯形点阵(至少两层)共有( )种不同的方法.A.3B.7C.4D.950.式子20141x为整数,则正整数x有()种取值.A.6B.7C.8D.9参考答案与试题解析一、选择题(共50小题)1.沿边长为20米的正方形花园四周每隔4米种一棵树,最多可种树()棵A.16B.18C.20D.22【解析】根据题意得⨯÷2044=÷804=(棵)20故选:C.2.一个挂钟,一点钟敲一下,两点钟敲两下,三点钟敲三下⋯⋯十二点钟敲十二下,每逢半点敲一下.这个挂钟一昼夜共敲()下.A.78B.102C.156D.180【解析】根据题意得+++⋯++⨯(1231212)2=⨯902=(下)180故选:D.3.一根木头长24分米,要锯成4分米长的木棍.若每锯一次要3分钟,锯完一段休息2分钟,则全部锯完需要()分钟.A.23B.25C.28D.30【解析】2446÷=(段)615-=(次)⨯=(分钟)5315⨯-=(分钟)2(51)815823+=(分钟)答:全部锯完需要23分钟.故选:A.4.一块三角形地,三条边分别12米、15米、9米,每3米种一棵树,一共要种()棵树.A.9B.12C.15D.18【解析】根据题意得(12159)3++÷=÷363=(棵)12故选:B.5.一根长2米的木棍,锯成每段长0.4米的木棍需要20分钟,那么锯成每段长0.5米的木棍需要()A.15分钟B.12分钟C.10分钟D.以上都不对【解析】20.45÷=(段)÷-20(51)=÷204=(分)5÷=(段)20.54⨯-5(41)=⨯53=(分钟)15答:需要15分钟.故选:A.6.一根水管锯成两段要2分钟,锯成6段要()分钟.A.6B.10C.12D.24【解析】2(21)(61)÷-⨯-=÷⨯215=(分钟)10答:锯成6段要10分钟;故选:B.7.同学们做早操,81个同学排成一排,每相邻两个同学之间的距离相等,第一个人到最后一个人的距离时120米,相邻两个人的距离是()米.A.1B.约1.5C.1.5D.2【解析】如果把人看做一个点,120(811)÷-=÷120801.5=(米)所以应该是约1.5米,但不是1.5米答:相邻两个人约隔1.5米.故选:B.8.小明家住在9楼,他从底楼走到3楼用了1分钟,那么它从底楼走到9楼要用()分钟.A.4.5B.4C.3.5D.3E.2.5【解析】1(31)(91)÷-⨯-=÷⨯128=(分钟);4答:它从底楼走到9楼要用4分钟.故选:B.9.奶奶出去散步,从第一根电线杆处走到第十根电线杆处共用了18分钟,照这个速度奶奶走了36分钟,她走到了第()根电线杆处.A.18B.19C.20D.21【解析】18(101)2÷-=(分钟)÷+=(根)362119答:奶奶36分钟走到了第19根电线杆处.10.时钟3点敲3下,6秒钟敲完;那么7点敲7下,()秒钟敲完.A.10B.12C.14D.18【解析】根据分析可得,÷-⨯-,6(31)(71)=⨯,3618=(秒);答:7点敲7下,18秒钟敲完.故选:D.11.在一座长1000米的长江大桥两边挂彩灯,起点和终点都挂,一共挂了202盏(相邻两盏之间的距离相等).则相邻两盏彩灯之间的距离是()米.A.8B.9C.10D.11【解析】大桥一边挂彩灯的数量:2022101÷=(盏)灯与灯之间的间隔数:1011100-=(个)相邻2盏彩灯的距离:100010010÷=(米),故选:C.12.分母小于60,分子不大于6的最简真分数有()个.A.59B.87C.197D.215【解析】根据题意可得:①当分子是1时,分母可以从2到59,共58个;②当分子是2、3、5时,因为他们都是质数,因此分母必须大于分子,且不是分子的倍数,当分子是2时,在1到59之间有偶数29个130+=个数不符合条件,所以有593029-=个;当分子是3时,在1到59之间有3的倍数18个321+=个,所以有592138-=个;当分子是5时,在1到59之间是5的倍数的11个415+=个,所以591544-=个;③因为当分子是4时是合数,分母不能为偶数,在1到59之间有偶数29个231+=,所以有593128-=个;④分子是6时,6是合数,分母不能为偶数,在1到59之间有偶数29个231+=个,又不能是3的倍数,1至59之间不是偶数且是3的倍数有10个,则所以共有--=个.59311018所以分子不大于6而分母小于60的不可约真分数有:582938442818215+++++=(个).故选:D.13.a,b和c是三个非零自然数,在a b c=⨯中,能够成立的说法是()A.b和c是互质数B.b和c都是a的质因数C.b和c都是a的约数D.b一定是c的倍数【解析】A、比如1226=⨯,2和6不互质,所以b和c是互质数的说法错误;B、比如4886=⨯,8和6不是48的质因数,所以b和c都是a的质因数的说法错误;C、因为a b c=⨯,所以b和c都是a的因数,所以b和c都是a的约数的说法正确;D、比如4886=⨯,8就不是6的倍数,所以b一定是c的倍数的说法错误;故选:C.14.三个不同正整数的和为564,其中一个数除以3余数为1,另一个数除以5的余数为3,第三个数除以7的余数为5,商都相同,则相同的商为()A.15B.21C.35D.37【解析】---÷++=(564135)(357)37故选:D.15.商店有三种糖,甲种糖每袋1.5千克,乙种糖每袋2千克,丙种糖每袋2.5千克,为了方便顾客,将大袋改为小袋,把它们全改为0.5千克的小袋,这样奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,原来的甲、乙、丙三种糖的品种依次是()A.酥糖、水果糖、奶糖B.奶糖、水果糖、酥糖C.奶糖、酥糖、水果糖D.水果糖、奶糖、酥糖【解析】由题意,甲种糖一袋改3小袋,乙种糖一袋改4小袋,丙种糖一袋改5小袋,因为奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,而126能被3整除,104能被4整除,205能被5整除,所以甲、乙、丙三种糖的品种依次是奶糖、水果糖、酥糖,故选:B.16.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点的千米数是()A.32B.37C.55D.90【解析】同时经过两种设施时的里程数减3后,应是4的倍数,减10以后应是9的倍数.在19千米处第一次同时经过这两种设施,所以从这里开始以后再次经过这两种设施时,行驶的路一定是4和9的最小公倍数,所以第二次同时经过这两种设施时的里程数为194955+⨯=千米.故选:C.17.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3 的倍数又是25 的倍数;(3)这个密码在20000000 到30000000 之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是()A.25526250B.26650350C.27775250D.28870350【解析】(1)四个选项都是8位数;(2)四选项都是25的倍数,C的数字和是35不是3的倍数.排除C;(3)都满足条件;(4)都满足条件;(5)A,D相等不满足条件;(6)B满足条件.故选:B.18.从1~11这11个整数中任意取出6个数,则下面结论正确的共()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.A.3B.2C.1D.0【解析】根据上面的分析可知:从1~11这11个整数中任意取出6个数,①其中必有两个数互质;此说法正确.③其中必有一个数的2倍是其中另一个数的倍数.此说法正确.故选:B.19.如果20132013201420142012n m⨯=⨯+(其中m 与n 为互质的自然数),那么m n +的值是( )A.1243B.1343C.4025D.4029 【解析】2013201320136712014201420122016672n m ⨯===⨯+, 所以671n =,672m =,1343m n +=.故选:B .20.某班有50多人上体育课,他们站成一排,老师让他们按1,2,3,4,5,6,7循环报数,最后一人报的数是4,这个班有( )人上体育课.A.51B.50C.53D.57【解析】接近50的7的倍数有:49和56,49453+=,56460+=不符合题意,所以这个班有53人上体育课.故选:C .21.两个数的最大公约数是20,最小公倍数是100,下面说法正确的有( )个.(1)两个数的乘积是2000.(2)两个数都扩大10倍,最大公约数扩大100倍.(3)两个数都扩大10倍,最小公倍数扩大10倍.(4)两个数都扩大10倍,两个数乘积扩大100倍.A.1B.2C.3D.4【解析】根据题意,可知这两个数分别是20和100;(1)201002000⨯=,所以两个数的乘积是2000,所以原说法正确的;(2)两个数都扩大10倍,最大公约数变为2010200⨯=,是扩大了10倍,所以原说法错误;(3)两个数都扩大10倍,最小公倍数变为100101000⨯=,是扩大了10倍,所以原说法正确;(4)两个数都扩大10倍,变为200和1000,乘积变为200000,也即两个数乘积扩大100倍,所以原说法正确;正确的说法有3个.故选:C .22.用四个数码1,3,4和6所组成的没有重复数字的所有整数中,是6的倍数的有( )A.1B.2C.3D.4【解析】由分析可知,用四个数码1,3,4和6所组成的没有重复数字的所有整数中,是6的倍数的有36和6这两个数.故选:B.23.若干位小朋友排成一行,从左面第一个人开始,每隔2人发一个苹果,从右面第一人开始,每隔4人发一个桔子,结果有10个小朋友苹果和桔子都拿到了,那么这些小朋友最多有()人.A.16B.31C.158D.166【解析】每(21)(41)15+⨯+=人就会有1人拿到两种水果.先让12人拿到两种水果,并且在这一行中,两端的两人都拿到了两种水果,因此共:15111166⨯+=(人);然后从两端去掉最少的人就可以了,要满足左方第一个是苹果,那么左方最少去掉3人,要满足右方第一个拿到橘子,那么右方最少去掉5人;所以最多有:16653158--=(人);答:这些小朋友最多有158人.故选:C.24.一个电子钟,每9分钟亮一次灯,每到整点响一次铃,中午12点时,电子钟恰好又亮灯又响铃,问下次既亮灯又响铃是()A.2点B.3点C.4点D.5点【解析】因为9和60的最小公倍数是180,所以180分后既亮灯又响铃,180分钟3=小时;12时3=时;+时15答:在下午3点既亮灯又响铃.故选:B.25.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么,长度是1厘米的短木棍有()条.A.7B.8C.9D.10【解析】从左往右每隔6厘米染的红点全是6的倍数,从右往左每隔5厘米染红点,100除以5能除尽,说明从左往右和从右往左是一样的,都是5的倍数.只要找出5厘米的倍数和6厘米的倍数就可以.100以内5的倍数是:5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100.100以内6的倍数是:6,12,18,24,30,36,42,48,54,60,66,72,78,84,90,96,5的倍数和6的倍数相差1的是:5和6,24和25,36和35,54和55,65和66,84和85,95和96,所以共有7段长1cm的短木棍.故选:A.26.一根长木棍上刻有三种刻度,第一种刻度将木棍十等分,第二种刻度将木棍十二等分,第三种刻度将木棍十五等分,如果沿每条刻度线将木棍锯开,木棍总共被锯成()A.20段B.24段C.28段D.30段【解析】由于10、12、15的最小公倍数是60,假定这根木棍的长为60.于是,各等分的刻度线的标记处是:十等分:6、12、18、24、30、36、42、48、54、60.十二等分:5、10、15、20、25、30、35、40、45、50、55、60.十五等分:4、8、12、16、20、24、28、32、36、40、44、48、52、56、60.这样,把有三个刻度线标记处重合的(60)去掉,把有两个刻度线标记处的(12、24、36、48、20、30、40)只算一个,然后在4、5、6、8、10、12、15、16、18、20、24、25、28、30、32、35、36、40、42、44、45、48、50、52、54、55、56处将木棍锯断,共锯了27次.根据植树问题的原理可知:这根木棍共锯成27128+=(段).故选:C.27.某加油站有二位员工,从今年l月1日起规定:员工甲每工作3天后休息1天,员工乙每工作5天后休息2天,当遇到二人都休息时,必须另聘一位临时工,则今年共有()天要聘1个时工.A.26B.28C.30D.24【解析】解;甲每到4的倍数就休息,而乙每到7的倍数和比7的倍数少一天都休息.因为4和7的最小公倍数是28,因为今年是平年,所以在28的倍数休息的日子时;÷=⋯(天),36528131而每个28天中,第20天和第28天两人都休息,所以全年共有13226⨯=(天)需要聘请临时工.故选:A.28.一条公路由A经B到C.已知A、B相距280米,B、C相距315米.现要在路边植树,要求相邻两树间的距离相等.并在B点及AB、BC的中点上都要植一棵.那么两树间距离最多有()A.35米B.36米C.17.5米D.18米【解析】因为157.5140117.5÷=⋯,14017.58÷=,所以140和157.5这两个数的最大公约数就是17.5.答:两树间距离最多有17.5米.故选:C.29.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点是()A.32千米处B.37千米处C.55千米处D.90千米处【解析】同时经过两种设施时的里程数减3后,应是4的倍数,减10以后应是9的倍数.在19km处第一次同时经过这两种设施,所以从这里开始以后再次经过这两种设施时,行驶的路一定是4和9的公倍数,所以第二次同时经过这两种设施时的里程数为194955km+⨯=.故选:C.30.有两个二位数,它们的最大公约数8,最小公倍数是96,这两个数的和是()A.56B.78C.84D.96【解析】8222=⨯⨯,=⨯⨯⨯⨯⨯,96222223所以这两个最大公约数8,最小公倍数是96的二位数只能是2222232⨯⨯⨯⨯=和⨯⨯⨯=;222324这两个二位数的和是:322456+=;故选:A.31.在老区和新区之间一条路上安排公交站点,第一种安排将道路分成十等份;第二种安排将道路分成十二等份;第三种安排将道路分成十五等份.这三种安排分别通过三路不同的公交车实现,则此道路上其有多少个公交站点?(含起点和终点)()A.27B.29C.32D.37【解析】第一种安排:10个站点;第二种安排:12个站点;第三种安排:15个站点.其中,三种安排的起点终点是相同的,要减掉4个站点又,第一种安排和第二种安排有一个站点重合,减掉1个站点(因为10和12在100以内只有一个公倍数60)第二种安排和第三种安排有一怠伐糙和孬古茬汰长咯个站点重合,减掉1个站点(因为12和15在100以内只有一个公倍数60)第一种安排和第三种安排有三个站点重合,减掉2个站点(10和15在100以内有三个公倍数30、60、90,其中60已经减过一次)所以总共是29个站点.故选:B.32.有两个合数是互质数,它们的最小公倍数是210,这样的数有()对.A.1B.2C.3D.4【解析】根据题干分析可得:=⨯⨯⨯,2102357符合题意的两个合数为:⨯;23⨯和57⨯;⨯和3725⨯;27⨯和35共有3对.故选:C.33.如果a、b的最大公因数是21,那么a和b的公因数有()个.A.2B.3C.4D.5【解析】a和b的公因数有1、3、7、21,共有4个;故选:C.34.同学们栽树,每行栽5棵,到最后一行只栽了4棵树,那么这些树的棵数是()A.5的倍数B.4的倍数C.5的倍数多4D.4的倍数多5【解析】根据分析可得,树的总棵数5=⨯行数4+,即树的总棵数比5的倍数多4;故选:C.35.标有1到200的200张数字卡片,任意抽一张,号码是3的倍数的可能性是()A.33100B.67100C.310D.不确定【解析】标有1到200的200张数字卡片,是3的倍数的有198366÷=个,可能性为:33 66200100÷=;答:号码是3的倍数的可能性是33 100;故选:A.36.7和8的最小公倍数是()A.1B.56C.112【解析】7和8的最小公倍数是;7856⨯=;故选:B.37.一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块?( )A.15B.12C.75D.8【解析】(7525)(75150)÷⨯÷35=⨯15=(块);答:用这样的红砖拼成一个正方形最少需要15块.故选:A.38.小丽用一排地砖创造了一种跳跃游戏.她将地砖标上l,2,3,4,⋯并沿这一排地砖跳跃,每两块地砖着地一次,第一步落在第2块地砖上,最后停在倒数第2块地砖上.转身后她从倒数第2块地砖开始向回跳跃,这一次是每三块地砖着地一次,最后停在第l块地砖上.最后她又转身从第l块地砖开始跳跃,每五块地砖着地一次.这一次她又停在倒数第2块地砖上.那么这一排地砖共有()块(从下列选项中选出符合条件的答案).A.39B.40C.47D.49E.53【解析】第一次:因为每两块地砖着地一次,第一步落在第2块地砖上,最后停在倒数第2块地砖上,所以地砖数是2的倍数加上1;第二次:因为倒数第2块地砖开始向回跳跃,这一次是每三块地砖着地一次,最后停在第l块地砖上,所以地砖数是3的倍数减去1;第三次:因为从第l块地砖开始跳跃,每五块地砖着地一次.这一次她又停在倒数第2块地砖上,所以地砖数是5的倍数加上2;在答案39,40,47,49,53中,只有47符合要求;故选:C.39.a、b和c是三个自然数,在a b c=⨯中,不一定成立的是()A.a一定是b的倍数B.a一定能被b整除C.a一定是b和c的最小公倍数D.b一定是a的约数【解析】A、因为a b c=⨯,所以a一定是b的倍数,正确;B、因为a b c=⨯,所以a b c÷=,a一定能被b整除,正确;=⨯,a一定是b和c的最小公倍数,不成立;C、a b cD、a b c=⨯,所以a b c÷=,b一定是a的约数.故选:C.40.一个圆的直径缩小2倍,周长与面积分别缩小()A.2倍与4倍B.2倍与2倍C.4倍与4倍D.4倍与2倍【解析】根据圆的周长和面积公式可知,圆的周长和半径成正比例,圆的面积与半径的平方成正比例,所以圆的直径缩小2倍,即圆的半径缩小2倍,则圆的周长缩小2倍,圆的面积就缩小2=倍,24故选:A.41.下列四组数中,两个数只有公约数1的数是()A.13和91B.21和51C.34和51D.15和28【解析】A,13是质数,91713=⨯,它们的最大公因数是13;B,2137=⨯,51317=⨯,它们的最大公因数是3;C,34217=⨯,51317=⨯,它们的最大公因数是17;D,1535=⨯,28227=⨯⨯,它们的公因数只有1.故选:D.42.五楼的王老师病了,小孙帮王老师送早点,从一楼到二楼用了34分钟,用同样的速度从一楼走到五楼王老师家要用()分钟.A.154B.3C.203D.以上都不对【解析】3(51) 4⨯-344=⨯3=(分钟)答:用同样的速度从一楼走到五楼王老师家要用3分钟.故选:B.43.校园内有一圆形花坛,花坛周围一共种了15棵月季花,每两棵月季花的距离都是2米,那么花坛的周长是()A.30B.3C.28D.15【解析】根据题意可知:花坛的周长15230=⨯=(米);故选:A.44.奶奶折一个纸鹤用3分钟,每折好一个需要休息1分钟,奶奶从2时30分开始折,她折好第5个纸鹤时已经到了()A.2时45分B.2时49分C.2时50分D.2时53分【解析】1(51)4⨯-=(分钟)3515⨯=(分钟)2时30分4+分钟15+分钟2=时49分答:她折好第5个纸鹤时已经到了2时49分;故选:B.45.小明在正方形的边上标出若干个点,每条边上恰有3个,那么所标出的点最少有(。
因数与倍数奥数题
因数与倍数1.数360的约数有多少个?这些约数的和是多少?2.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?3.写出从360到630的自然数中有奇数个约数的数.4.今有语文课本42册,数学课本112册,自然课本70册,平均分成假设干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆?5.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?6.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚?7.甲数和乙数的最大公约数是6,最小公倍数是90.那么甲数、乙数是多少?8.A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有l0个约数,那么A,B两数的和等于多少?9.甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?10. a>b>c是3个整数.a,b,c的最大公约数是15;a,b的最大公约数是75;a,b 的最小公倍数是450;b,c的最小公倍数是1050.那么c是多少?11.把一张长1米3分米5厘米、宽1米5厘米的纸裁成同样大小的正方形纸块,而没有剩余,问:能裁成最大的正方形纸块的边长是多少?共可裁成几块?12.一个房间长450厘米,宽330厘米.现方案用方砖铺地,问需要用边长最大为多少厘米的方砖多少块(整块),才能正好把房间地面铺满?13.有336个苹果,252个桔子,210个梨,用这些水果最多可以分成多少份同样的礼物?在每份礼物中,三样水果各多少?14.把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?15.教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工,问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?16.有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?10.两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组?11.3个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少?15.有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?。
五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)
五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)第二单元:因数和倍数提高题和奥数题板块一:因数和倍数例题1:一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练1:一个数是25的倍数,它位于110至160之间,这个数是多少?例题2:有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练2:既是7的倍数,又是42的因数,这样的数有哪些?例题3:妈妈买来30个苹果,让XXX把苹果放入篮子里。
不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。
XXX共有几种拿法?每种拿法每次各拿多少个?练3:五(1)班有学生42人,把他们平均分成几个研究小组,每组多于2人且少于8人。
可以分成几个小组呢?板块二:2、5、3的倍数的特征例题1:一个五位数29ABC(A、B、C是~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练1:在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5.这个五位数最大是多少?最小是多少?例题2:5□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练2:4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三:奇数和偶数例题1:一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。
已知小船最初在南岸。
1)摆渡15次后,小船是在南岸还是在北岸?为什么?2)XXX说摆渡2016次后,小船在北岸。
他说得对吗?为什么?练1:傍晚XXX开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。
你知道来电的时候,灯应该亮着还是不亮呢?例题2:有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练2:(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?可以做到。
五下 第二单元因数和倍数能力提高题和奥数题(附答案)
五下第二单元因数和倍数能力提高题和奥数题(附答案)第二单元《因数和倍数》1. 整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
最小的自然数是02. 因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
例:12÷2=6, 12是6的倍数,6是12的因数。
为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。
数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
一个数的最大因数=最小倍数=它本身3. 2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
①自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数,叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
②最小的奇数是1,最小的偶数是0.③奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数(大减小)奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(984),最小的是(450)②在能被3整除的数中,最大的是(984),最小的是(405)③在能被5整除的数中,最大的是(980),最小的是(405)2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能( 4 )种填法。
4. 质数和合数①质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
【奥数专题】精编人教版小学数学五年级上册 因数与倍数(试题)含答案与解析
经典奥数:因数与倍数(专项试题)一.选择题(共6小题)1.有两根绳子,一根长36厘米,另一根长48厘米,把它们剪成长度相等的小段,且没有剩余,每小段最长()厘米.A.24B.6C.122.红旗小学六年级有男生48人,女生36人.男、女生分别站成若干排,要使每排的人数相同,每排最多有()人.A.4B.6C.12D.163.有一张长方形纸,长70cm,宽50cm.如果要剪成若干同样大小的正方形而没有剩余,剪成的小正方形的边长最大是()厘米.A.5B.10C.15D.204.学校图书室新购进一些图书,如果每24本一包,能够正好包完.如果每16本一包,也能正好包完.图书室至少买了()本图书.A.48B.64C.96D.245.淘气与笑笑同时从环形跑道的起点出发,淘气跑一圈需要4分钟,笑笑跑一圈需要6分钟,至少()分钟后两人还能在起点相遇.A.8B.10C.12D.246.如果把两根长度分别为40厘米和56厘米的塑料管截成长度相等的吸管,并且都没有剩余,每根吸管最长是()厘米.A.1B.2C.4D.8二.填空题(共6小题)7.某条道路上,每隔900米有一个红绿灯,所有的红绿灯都按绿灯30秒黄灯5秒,红灯25秒的时间周期同时重复变换,一辆汽车在第一个路口处遇到绿灯后,要想在所有的红绿灯路口都遇到绿灯,则他最快该以每小时千米的速度行驶.8.暑期,东东和明明到图书馆看书,东东每4天去一次,明明每6天去一次.8月13日两人在图书馆相遇,8月日他们下次相遇.9.六一班有学生48人,六二班有学生54人.如果把两个班的学生分别分成若干小组去大扫除,要使两个班每个小组的人数相同,每组最多人.10.王老师有一盒铅笔,如果平均分给2名同学余1支,如果平均分给3名同学余2支,如果平均分给4名同学余3支,如果平均分给5名同学余4支。
王老师这盒铅笔至少有。
11.有些自然数。
它加1是2的倍数,它的2倍加1是3的倍数,它的3倍加1是5的倍数,那么所有这样的自然数中最小的一个是。
小学奥数题库《数论》因数和倍数-因数和-1星题(含解析)
数论-因数和倍数-因数和-1星题课程目标知识提要因数和•概念因数和:即一个整数的所有因数的和。
因数和公式:a3×b2×c的因数的和为〔1+ a + a2 + a3〕×〔1+ b + b2〕×〔1+ c〕精选例题因数和1. 大于0的自然数,如果满足所有因数之和等于它们自身的2倍,那么这样的数称为完美数或完全数.比方,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数,是否有无限多个完美的数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为.【答案】121【分析】81的所有因数为:1,3,9,27,81,所以因数之和为1+3+9+27+81=121.2. 计算以下数的约数和:108、144.【答案】〔1〕280;〔2〕403【分析】详解:〔1〕108=22×32,它的所有约数之和是(1+2+4)×(1+3+9+27)= 280.〔2〕144=24×32,它的所有约数之和是(1+2+4+8+16)×(1+3+9)=403.3. 数360的因数有多少个?这些因数的和是多少?【答案】24个;1170【分析】360分解质因数:360=2×2×2×3×3×5=23×32×5;360的因数可以且只能是2a×3b×5c,〔其中a,b,c均是整数,且a为0~3,b为0~2,c为0~1〕.因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,因数的个数为(3+1)×(2+1)×(1+1)= 24.我们先只改动关于质因数3的因数,可以是1,3,32,它们的和为(1+3+32),所以所有360因数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的因数,可以是1,2,22,23,它们的和为(1+2+22+23),所以所有360因数的和为(1+3+32)×(1+2+22+ 23)×5w;最后确定关于质因数5的因数,可以是1,5,它们的和为(1+5),所以所有360的因数的和为(1+3+32)×(1+2+22+23)×(1+5).于是,我们计算出值:13×15×6= 1170.所以,360所有因数的和为1170.4. 因数和是指一个数所有因数的和,例如“6”的因数和是1+2+3+6=12.〔1〕24的因数和是多少?〔2〕一个自然数有5个因数,求因数和最小是多少?〔3〕一个数的因数和是78,求这个数是多少?【答案】〔1〕60;〔2〕31;〔3〕45【分析】〔1〕24=23×3⇒(1+2+4+8)×(1+3)=60;〔2〕拥有5个自然数形如a4,最小为24,所以因数和最小为1+2+4+8+16=31;〔3〕78=6×13⇒(1+5)×(1+3+9)=45.。
小学因数与倍数奥数题100道及答案(完整版)
小学因数与倍数奥数题100道及答案(完整版)题目1:一个数既是12 的倍数,又是48 的因数,这个数可能是多少?答案:这个数可能是12、24 或48。
题目2:两个数的最大公因数是6,最小公倍数是36,其中一个数是12,另一个数是多少?答案:另一个数是18。
因为最小公倍数乘以最大公因数等于两个数的乘积,所以另一个数为36×6÷12 = 18 。
题目3:有一个自然数,除以5 余3,除以7 余4,这个数最小是多少?答案:23 。
从除以7 余4 的数中找除以5 余3 的数,最小为23 。
题目4:已知A = 2×3×5,B = 2×5×7,A 和 B 的最大公因数和最小公倍数分别是多少?答案:最大公因数是10,最小公倍数是210 。
题目5:一个数在80 到100 之间,既是6 的倍数,又是9 的倍数,这个数是多少?答案:90 。
6 和9 的最小公倍数是18 ,在80 到100 之间18 的倍数是90 。
题目6:两个自然数的积是360,最小公倍数是120,这两个数分别是多少?答案:3 和120 或15 和24 。
题目7:有一个数,它的最大因数和最小倍数之和是60,这个数是多少?答案:30 。
一个数的最大因数和最小倍数都是它本身,所以这个数是30 。
题目8:把48 块糖和38 块巧克力分别分给同一组同学,结果糖剩3 块,巧克力少了2 块,这个组最多有几名同学?答案:5 名。
48 - 3 = 45 ,38 + 2 = 40 ,45 和40 的最大公因数是5 。
题目9:一个数除以4 余1,除以5 余2,除以6 余3,这个数最小是多少?答案:57 。
这个数加上3 就能被4、5、6 整除,4、5、6 的最小公倍数是60 ,所以这个数最小是57 。
题目10:甲、乙两数的最大公因数是8,最小公倍数是48,甲数是24,乙数是多少?答案:16 。
乙数= 8×48÷24 = 16 。
因数和倍数奥数题及标准答案(有难度)
因数和倍数奥数题荟萃总体难度有点大,如果有兴趣可以试试!1、某校举行数学竞赛,共有20道题。
评分标准规定,答对一题给3分,不答给1分。
答错一题倒扣1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?2、有四个连续奇数的和是2008,则其中最小的一个奇数是_________。
3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了________ _名小朋友。
4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得_________分才能使四份训练题的平均成绩达到105分。
5、三个连续自然数的乘积是210,求这三个数.6、自然数123456789是质数,还是合数?为什么?7、一个数用3、4、5除都能整除,这个数最小是多少?8、一个两位数去除251,得到的余数是41.求这个两位数。
9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
答案:1、解:以一个学生得分情况为例。
如果他有m 题答对,就得3m 分,有n题答错,则扣n分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m-n)分。
所以,这个学生得分总数为:3m-n+(20-m-n)=3m-n+20-m-n=2m-2n+20 =2(m-n+10)不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。
由此可见,不管有多少学生参赛,得分总和一定是偶数。
2、解:499。
2008÷4—3=4993、解:6。
12÷(3—1)=6(名)。
小学数学奥数题100题(附答案)拔高题有点难
小学数学奥数题100题(附答案)拔高题有点难1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
因数和倍数奥数题及标准答案(有难度)
因数和倍数奥数题荟萃总体难度有点大,如果有兴趣可以试试!1、某校举行数学竞赛,共有20道题。
评分标准规定,答对一题给3分,不答给1分。
答错一题倒扣1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?2、有四个连续奇数的和是2008,则其中最小的一个奇数是_________。
3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了________ _名小朋友。
4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得_________分才能使四份训练题的平均成绩达到105分。
5、三个连续自然数的乘积是210,求这三个数.6、自然数123456789是质数,还是合数?为什么?7、一个数用3、4、5除都能整除,这个数最小是多少?8、一个两位数去除251,得到的余数是41.求这个两位数。
9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
答案:1、解:以一个学生得分情况为例。
如果他有m 题答对,就得3m 分,有n题答错,则扣n分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m-n)分。
所以,这个学生得分总数为:3m-n+(20-m-n)=3m-n+20-m-n=2m-2n+20 =2(m-n+10)不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。
由此可见,不管有多少学生参赛,得分总和一定是偶数。
2、解:499。
2008÷4—3=4993、解:6。
12÷(3—1)=6(名)。
五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)
第二单元因数与倍数提高题和奥数题板块一因数和倍数例题1.一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练习1.一个数是25的倍数,它位于110至160之间,这个数是多少?例题2.有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练习2.既是7的倍数,又是42的因数,这样的数有哪些?例题3.妈妈买来30个苹果,让小明把苹果放入篮子里。
不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。
小明共有几种拿法?每种拿法每次各拿多少个?练习3.五(1)班有学生42人,把他们平均分成几个学习小组,每组多于2人且少于8人。
可以分成几个小组呢?板块二 2、5、3的倍数的特征例题1.一个五位数29ABC(A、B、C是0~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练习1.在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5。
这个五位数最大是多少?最小是多少?例题2.5□□0是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练习2.4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三奇数和偶数例题1.一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。
已知小船最初在南岸。
(1)摆渡15次后,小船是在南岸还是在北岸?为什么?(2)小明说摆渡2016次后,小船在北岸。
他说得对吗?为什么?练习1.傍晚小亮开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。
你知道来电的时候,灯应该亮着还是不亮呢?例题2.有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练习2.(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?(2)有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?例题3.桌子上放着5个杯子,全部是杯底朝上,如果每次翻动2个杯子,称为一次翻动,经过多次翻动能使5个杯子的杯口全部朝上吗?如果每次翻动3个杯子呢?练习3.如家宾馆现在有10间客房的灯开着,每次同时拨动4个房间的开关,能不能把这10个房间的灯全部关闭?如果能,至少需要几次?板块四质数和合数例题1.三个不同质数的和是82,这三个质数的积最大是多少?练习1.(1)两个质数的和是小于100的奇数,并且是11的倍数,这两个质数可能是什么数?(2)两个质数的和是2001,这两个质数的积是多少?(3)一个长方形的长和宽都是质数,并且周长是36厘米,这个长方形的面积最大是多少?例题2.用0、1、4、5这四个数字组成两个质数,每个数字只能用一次,求这两个质数。
【机构秘籍】小学奥数题库《数论》因数和倍数-因数和-4星题(含解析)全国通用版
数论-因数和倍数-因数和-4星题课程目标知识提要因数和•概念因数和:即一个整数的所有因数的和。
因数和公式:a3×b2×c的因数的和为(1+ a + a2 + a3)×(1+ b + b2)×(1+ c)精选例题因数和1. 2010的全部约数有个,这些约数的和数是.【答案】16;4896【分析】详解:2010=2×3×5×67,约数有(1+1)×(1+1)×(1+1)×(1+1)=16个,约数之和是(1+2)×(1+3)×(1+5)×(1+67)=4896.2. 36的所有约数的和多少?90的所有约数的和是多少?【答案】91;234【分析】简答:提示,牢记求约数和的公式,并能准确分解质因数.3. 10000的所有因数的和为多少?所有因数的积为多少?【答案】24211;1000012×100【分析】10000=24×54,因数和:(20+21+22+23+24)×(50+51+52+53+54)=24211因数积为(1002)n×100,其中n=[(4+1)×(4+1)−1]÷2=12所以因数的积为1000012×1004. 求出所有恰好含有10个因数的两位数,并求出每个数的所有因数之和.【答案】124或186【分析】10=9+1=2×5,表达式为a9或者ab4,29>100,2×34>100,只可能是24×3=48或24×5=80.48的因数之和:(20+21+22+23+24)×(30+31)=124,80的因数之和:(20+21+ 22+23+24)×(50+51)=186.5. 360的所有因数的和为多少?所有因数的积为多少?【答案】1170、36012【分析】360=23×32×5,因数和:(20+21+22+23)×(30+31+32)×(50+51)=1170因数积:360n,n=(3+1)×(2+1)×(1+1)÷2=12所以因数的积为36012.6. 360共有多少个奇约数?所有这些奇约数的和是多少?【答案】6、78【分析】360=23×32×5,奇约数有:(2+1)×(1+1)=6(个),奇约数的和是:(30+ 31+32)×(50+51)=78.7. 2000的所有因数的和为多少?所有因数的积为多少?【答案】4836、200010。
因数倍数提升奥数练习题
A
个位上是( )的数,都能被2整除;个位上是( )的数,都能被5整除。
B
同时是2和5倍数的数,最小两位数是( ),最大两位数是( )。
C
最小的自然数是( ),最小的质数是( )最小的合数是( )。
D
三个连续奇数的和是45,这三个奇数分别是( )、( )和( )。
因数、倍数概念:
如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都b是c的因数c是a的倍数也是b的倍数。倍数和因数是相互依存的。 一个数的因数个数是有限的,最小因数是1,最大因数是它本身。一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。
单击此处可添加副标题
( )1、任何自然数,它的最大因数和最小倍数都 是它本身。 ( )2、一个数的倍数一定大于这个数的因数。 ( )3、个位上是0的数都是2和5的倍数。 ( )4、一个数的因数的个数是有限的,一个数的 倍数的个数是无限的。 ( )5、5是因数,10是倍数。 ( )6、36的全部因数是2、3、4、6、9、12和18, 共有7个。 ( )7、因为18÷9=2,所以18是倍数,9是因数。 ( )9、任何一个自然数最少有两个因数。 ( )10、一个数如果是24的倍数,则这个数一定 是4和8的倍数。
9、一个数分别与另外两个相邻奇数相乘,所得的 两个积相差150,这个数是多少?
解法1:∵相邻两个奇数相差2, ∴150是这个要求数的2倍。 ∴这个数是150÷2=75 解法2:设这个数为x,设相邻的两个奇数为2a+1,2a-1 (a≥1).则有 (2a+1)x-(2a-1)x=150, 2ax+x-2ax+x=150, 2x=150, x=75。 ∴这个要求的数是75。
499。 2008÷4—3=499
五年级奥数题:因数与倍数
因数与倍数相关习题(1)一、填空题1.28的所有因数之和是_____.2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.3. 一个两位数,十位数字减个位数字的差是28的因数,十位数字与个位数字的积是24.这个两位数是_____.4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.5. 两个自然数的和是50,它们的最大公因数是5,则这两个数的差是_____.6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.10. 含有6个因数的两位数有_____个.11.写出小于20的三个自然数,使它们的最大公因数是1,但两两均不互质,请问有多少组这种解?12.和为1111的四个自然数,它们的最大公因数最大能够是多少?13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?14. 已知a 与b 的最大公因数是12,a 与c 的最小公倍数是300,b 与c 的最小公倍数也是300,那么满足上述条件的自然数a ,b ,c 共有多少组?(例如:a =12、b =300、c =300,与a =300、b =12、c =300是不同的两个自然数组)———————————————答 案——————————————————————答 案:1. 5628的因数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的因数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2⨯2⨯7,所以28的因数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23⨯29,所以这班师生每人种的棵数只能是667的因数:1,23,29,667.显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.所以,一班共有28名学生.5. 40或20两个自然数的和是50,最大公因数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.[注]这里的关键是依最大公因数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的因数,又要是108的因数,即一定是36和108的公因数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公因数.36和108的最大公因数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36÷36=1(只)每个小朋友可分得桔子: 108÷36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公因数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公因数.因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公因数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公因数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公因数.180,45和18的最大公因数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个因数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个因数的数,用a 和b 表示M 的质因数,那么5a M =或b a M ⨯=2因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:72,52,32222⨯=⨯=⨯=M M M ,172,132,112222⨯=⨯=⨯=M M M ,23,232,192222⨯=⨯=⨯=M M M ,113,73,53222⨯=⨯=⨯=M M M ,27,35,25222⨯=⨯=⨯=M M M .所以,含有6个因数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公因数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公因数必须能整除这四个数的和,也就是说它们的最大公因数应该是1111的因数.将1111作质因数分解,得1111=11⨯101最大公因数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101⨯2,101⨯3,101⨯5,它们的和恰好是101⨯(1+2+3+5)=101⨯11=1111,它们的最大公因数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”499,即跳了499411÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了299÷29=11次掉进陷井. 经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是214⨯9=40.5(米). 14. 先将12、300分别进行质因数分解:12=22⨯3300=22⨯3⨯52(1)确定a的值.依题意a只能取12或12⨯5(=60)或12⨯25(=300).(2)确定b的值.当a=12时,b可取12,或12⨯5,或12⨯25;当a=60,300时,b都只能取12.所以,满足条件的a、b共有5组:a=12 a=12 a=12 a=60 a=300b=12, b=60, b=300, b=12, b=12.(3)确定a,b,c的组数.对于上面a、b的每种取值,依题意,c均有6个不同的值:52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a、b、c共有5⨯6=30(组)因数与倍数相关习题(2)一、 填空题1.把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_____个小朋友.2. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有_____人.3. 用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____块.4. 用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____块.5. 一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,_____分钟又同时发第二次车.6. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得_____粒.7. 这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.8. 能被3、7、8、11四个数同时整除的最大六位数是_____.9. 把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公因数是1, 那么至少要分成_____组.10. 210与330的最小公倍数是最大公因数的_____倍.二、解答题11.公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6:00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.12. 甲乙两数的最小公倍数除以它们的最大公因数,商是12.如果甲乙两数的差是18,则甲数是多少?乙数是多少?13. 用285、5615、2011分别去除某一个分数,所得的商都是整数.这个分数最小是几?14. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:(1)说的不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请找出这个数.———————————————答 案——————————————————————答 案:1. 9若梨减少2个,则有20-2=18(个);若将苹果增加2个,则有25+2=27(个),这样都被小朋友刚巧分完.由此可知小朋友人数是18与27的最大公因数.所以最多有9个小朋友.2. 36根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公因数.所以,这个大班的小朋友最多有36人.3. 56所铺成正方形的木板它的边长必定是长方形木板长和宽的倍数,也就是长方形木板的长和宽的公倍数,又要求最少需要多少块,所以正方形木板的边长应是14与16的最小公倍数.先求14与16的最小公倍数. 2 16 148 7故14与16的最小公倍数是2⨯8⨯7=112.因为正方形的边长最小为112厘米,所以最少需要用这样的木板1416112112⨯⨯=7⨯8=56(块) 4. 5292与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块769126126126⨯⨯⨯⨯=14⨯21⨯18=5292(块) [注]上述两题都是利用最小公倍数的概念进行“拼图”的问题,前一题是平面图形,后一题是立体图形,思考方式相同,后者可看作是前者的推广.将平面问题推广为空间问题是数学家喜欢的研究问题的方式之一.希望引起小朋友们注意.5. 90依题意知,从第一次同时发车到第二次同时发车的时间是3,5,9,15和10的最小公倍数.因为3,5,9,15和10的最小公倍数是90,所以从第一次同时发车后90分钟又同时发第二次车.6. 5依题意得花生总粒数=12⨯第一群猴子只数=15⨯第二群猴子只数=20⨯第三群猴子只数由此可知,花生总粒数是12,15,20的公倍数,其最小公倍数是60.花生总粒数是60,120,180,……,那么第一群猴子只数是5,10,15,……第二群猴子只数是4,8,12,……第三群猴子只数是3,6,9,……所以,三群猴子的总只数是12,24,36,…….因此,平均分给三群猴子,每只猴子所得花生粒数总是5粒.7. 421依题意知,这个数比2、3、4、5、6、7的最小公倍数大1,2、3、4、5、6、7的最小公倍数是420,所以这个数是421.8. 999768由题意知,最大的六位数是3,7,8,11的公倍数,而3,7,8,11的最小公倍数是1848.因为999999÷1848=541……231,由商数和余数可知符合条件的最大六位数是1848的541倍,或者是999999与231的差.所以,符合条件的六位数是999999-231=999768.9. 3根据题目要求,有相同质因数的数不能分在一组,26=2⨯13,91=7⨯13,143=11⨯13,所以,所分组数不会小于3.下面给出一种分组方案:(1)26,33,35;(2)34,91;(3)63,85,143.因此,至少要分成3组.[注]所求组数不一定等于出现次数最多的质因数的出现次数,如15=3⨯5,21=3⨯7,35=5⨯7,3,5,7各出现两次,而这三个数必须分成三组,而不是两组.除了上述分法之外,还有多种分组法,下面再给出三种:(1)26,35;33,85,91;34,63,143.(2)85,143,63;26,33,35;34,91.(3)26,85,63;91,34,33;143,35.10. 77根据“甲乙的最小公倍数⨯甲乙的最大公因数=甲数⨯乙数”,将210⨯330分解质因数,再进行组合有210⨯330=2⨯3⨯5⨯7⨯2⨯3⨯5⨯11=22⨯32⨯52⨯7⨯11=(2⨯3⨯5)⨯(2⨯3⨯5⨯7⨯11)因此,它们的最小公倍数是最大公因数的7⨯11=77(倍).11. 根据题意,先求出8,10,16的最小公倍数是80,即从第一次三车同时发出后,每隔80分钟又同时发车.从早上6:00至20:00共14小时,求出其中包含多少个80分钟.60⨯14÷80=10…40分钟由此可知,20:00前40分钟,即19:20为最后一次三车同时发车的时刻.12. 甲乙两数分别除以它们的最大公因数,所得的两个商是互质数.而这两个互质数的乘积,恰好是甲乙两数的最小公倍数除以它们的最大公因数所得的商——12.这一结论的根据是:(我们以“约”代表两数的最大公因数,以“倍”代表两数的最小公倍数) 甲数⨯乙数=倍⨯约约约乙数甲数⨯⨯=约约约倍⨯⨯,所以:约乙数约甲数⨯=约倍,约乙数约甲数⨯=12 将12变成互质的两个数的乘积:①12=4⨯3,②12=1⨯12先看①,说明甲乙两数:一个是它们最大公因数的4倍,一个是它们最大公因数的3倍.甲乙两数的差除以上述互质的两数(即4和3)之差,所得的商,即甲乙两数的最大公因数.18÷(4-3)=18甲乙两数,一个是:18⨯3=54,另一个是:18⨯4=72.再看②,18÷(12-1)=1171,不符合题意,舍去. 13. 依题意,设所求最小分数为N M ,则 285÷N M =a 5615÷N M =b 2011÷N M =c 即528⨯N M =a 1556⨯N M =b 2120⨯N M =c 其中a ,b ,c 为整数. 因为NM 是最小值,且a ,b ,c 是整数,所以M 是5,15,21的最小公倍数,N 是28,56,20的最大公因数,因此,符合条件的最小分数: N M =4105=4126 14. (1)根据2号~15号同学所述结论,将合数4,6,…,15分解质因数后,由1号同学验证结果,进行分析推理得出问题的结论.4=22,6=2⨯3,8=23,9=32,10=2⨯5,12=22⨯3,14=2⨯7,15=3⨯5由此不难断定说得不对的两个同学的编号是8与9两个连续自然数(可逐次排除,只有8与9满足要求).(2)1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是22⨯3⨯5⨯7⨯11⨯13=60060因为60060是一位五位数,而这12个数的其他公倍数均不是五位数,所以1号同学写的五位数是60060.。
因数倍数提升奥数练习题
排除法
在解决实际问题时,可以通过排 除一些不可能的选项,缩小问题
的范围,提高解题效率。
构造法
在解决实际问题时,可以构造一 些特殊的数字或模型,使问题简
化。
05 因数和倍数的奥数题目
奥数题目解析
题目1解析
此题考查了因数和倍数的概念。根据因数和倍数的定义, 如果整数a能被整数b整除,那么a就是b的倍数,b就是a 的因数。
因数倍数提升奥数练习题
目录
• 因数和倍数的概念 • 因数和倍数的性质 • 因数和倍数的练习题 • 因数和倍数的解题技巧 • 因数和倍数的奥数题目
01 因数和倍数的概念
因数的定义
总结词
因数是能够整除给定数的整数。
详细描述
因数是数学中的一个基本概念,它表示一个数可以被另一个数整除,没有余数。 例如,在数字12中,因数有1、2、3、4、6和12。
通过给定的两个或多个数字,找出它们的最因数和倍数在日常生活中的应用,如分数的约分、最小公
倍数的应用等。
因数和倍数的规律
03
探索因数和倍数的规律,如因数的个数、最小倍数的计算等。
挑战练习题
1 2
复杂因数和倍数的判断
判断一个数字是否是另一个数字的因数或倍数, 特别是当数字较大时。
倍数的定义
总结词
倍数是给定数的整数倍。
详细描述
倍数也是一个数学中的基本概念,它表示一个数是另一个数的整数倍。例如,20 是4的5倍,因此20是4的倍数。
因数和倍数的关系
总结词
因数和倍数之间存在密切关系。
详细描述
一个数的因数和倍数之间存在一定的关系。一个数的因数和倍数都是相对于另一个数而言的。一个数是另一个数 的因数,那么这个数也是另一个数的倍数。例如,如果10是20的因数,那么10也是20的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因数和倍数奥数题荟萃
总体难度有点大,如果有兴趣可以试试!
1、某校举行数学竞赛,共有20道题。
评分标准规定,答对一题给 3 分,不答给1 分。
答错一题倒扣 1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?
2、有四个连续奇数的和是2008,则其中最小的一个奇数是 ______ 。
3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得 1 个苹果和 3 个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了 ______ _名小朋友。
4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题
(每份训练题满分为120分)。
他第一份训练题得了90 分,第二份训练题得了100 分,那么第三份训练题至少要得________ 分才能使四份训练题的平均成绩达到105 分。
5、三个连续自然数的乘积是210,求这三个数.
6、自然数123456789 是质数,还是合数?为什么?
7、一个数用3、4、5 除都能整除,这个数最小是多少?
8、一个两位数去除251,得到的余数是41. 求这个两位数。
9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?
10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13 小时到达,求船在静水中的速度和水流速度。
答案:
1、解:以一个学生得分情况为例。
如果他有m 题答对,就得3m 分,有n 题答错,则扣n 分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m- n)分。
所以,这个学生得分总数为:
3m-n+(20-m-n)
=3m-n+20-m-n
=2m-2n+20 =2(m-n+10)
不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。
由此可见,不管有多少学生参赛,得分总和一定是偶数。
2、解:499。
2008÷4—3=499
3、解:6。
12÷(3 —1)=6(名)。
4、解:110。
当第四份训练题得满分即120 分时,对第三份训练题的得分要求最低,所以第三份训
练题至少要得105×4一(90+100+120)=110(分)。
5、解:∵ 210=2×3×5×7
∴可知这三个数是5、6和7。
6、解:123456789是合数。
因为它除了有约数 1 和它本身外,至少还有约数3,所以它是一个合数。
7、分析由题意可知,要求的数是3、4、5 的公倍数,且是最小的公倍数。
解:∵[ 3,4,5] =3× 4× 5=60,
∴用3、4、5 除都能整除的最小的数是60。
8、分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。
解:∵被除数÷除数=商⋯余数,
即被除数=除数×商+余数,
∴251=除数×商+41,
251-41=除数×商,
∴210=除数×商。
∵210=2×3×5×7,
∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70 大于余数41.所以除数是42或70.即要求的两位数是42或70。
9、解法1:∵相邻两个奇数相差2,
∴150是这个要求数的 2 倍。
∴这个数是150÷2=75
解法2:设这个数为x,设相邻的两个奇数为2a+1,2a-1(a≥1). 则有
(2a+1)x- (2a-1)x=150,
2ax+x-2ax+x=150,
2x=150,
x=75。
∴这个要求的数是75。
10、分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:顺水速度:208÷8=26(千米/ 小时)
逆水速度:208÷13=16(千米/ 小时)
船速:(26+16)÷2=21(千米/小时)
水速:(26-16)÷2=5(千米/小时)
答:船在静水中的速度为每小时21千米,水流速度每小时 5 千米
习题五
1•有100个自然数,它们的和是偶数•在这100个自餓数中,奇数的个数比偶数的个数多•问:这些数中至多有多少个偶数?
2•有一串数,最前面的四个数依次是1、9、%、7•从第五个数起,每一个数都是它前面相邻四个数之和的个位数字•问;在这一串数中,会依次岀现X 9、8、8这四个数吗?
3•求证‘四个连续奇数的和一定杲8的倍数。
4.把任意6个整数分别填入右图屮的6个小力格内,试说明一定有一个矩形,它的四个角上四个水方格中的四个数之和为偶数。
5.如果两个人通一次电话,每人都记通话一次,在24小时以内,全世界通话次数是奇数的那些人的总数为—O
(A)必为奇数,(B)必为偶数,(C)可能是奇数,也可能是偶数。
6.-次宴会上,客人们相互握手•问握手次数是奇数的那些人的总人数是奇数还是偶数。
7.有12张卡片,其中有3张上面写着1,有3张上面与着3,有3张上面写着5,有3张上面写着7•你能否从中选出五张,使它们上面的数字和为20?为什么?
8.有10只杯子全部口朝下放在盘子里.你能否每次翻那只杯子,经过若干次翻动后将杯子全部翻成口朝上?
9.电影厅每排有19个座位,共23排,要求每一视介都仅和它邻近(即前、后、左、右)一人交换位置•问:这种交换方袪是否可行?
10•由14个大小相同的方格组成下列图形(石图),请证明;不论怎样剪法,总不能把它剪成7个由两个相邻方格组成的长方形.
习题五解答
1.偶数至多有48个。
2.提示:先按规律写岀一些数来,再找其奇、偶性的擀列规律,便可得到答秦=不会依次岀现L、9、& 8这四个数。
3.设四个连续奇数是2n+ 1, 2n+3, 2n+ 5, 2n+7, n为整数,则它们的和是
C2n+1) + (2n+3) + (2n+ 5)+(2n + 7)
= 2n×4+16 = 8n+16=8 (n+2)。
所以,四个连续奇数的和是2的倍数。
4.证明2设填入数分别为①、S a r a r屯、*有
假设要证明的结论不成立,则有=
Y偶数工奇数,•••假设不成立,命题得证。
5.应选择CB).参考例3。
6.是偶数.参考例3。
了.不能.因为5个奇数的和为奇数,不可能等于20。
8. ⅛g.例如
第一次78910
第二次3456
第三次2345
第四次13 45
9.这种交换方法是帀可行的•参考例12。
10•利用黑白相间染色方袪可以证明;不可能剪成由7个相邻两个方格组成的檢方形,因为图形中一种颜色有8卷另一神颜色有6枱而每个相邻两个方格组成的长方形是一黑格一白怖7个这样的长方形知黑格7白格.与图形相才盾.。