下高一数学期中试题答案
2024年大连二十四中高一下学期5月期中数学试题答案
大连市第二十四中学2023-2024学年高一下学期5月期中考试数学科试卷参考答案1-8.ABADB CBD 9-11 AD AC BCD 12. 13.14. 15. (1)因为,,所以,即,则,则,即与夹角的余弦值(2)因为与的夹角为锐角,所以且与不共线,由,得,即,解得,当与共线时,有,即,由(1)知与不共线,所以,解得,所以当与不共线时,,所以且,即实数的取值范围为16. (1),1725-34±6π1a b == ()()223a b a b +⋅-=- 22223a ab b +⋅-=- 2123a b +⋅-=- 13a b ⋅= 1cos ,3a b a b a b ⋅==a b 13ka b + 3a b +()()30ka b a b +⋅+> ka b + 3a b +()()30ka b a b +⋅+> ()223130ka k a b b ++⋅+> ()131303k k ++⨯+>53k >-ka b + 3a b + ()3ka b a b λ+=+ 3k a b a b λλ+=+a b 13k λλ=⎧⎨=⎩13k =ka b + 3a b + 13≠k 53k >-13≠k k 511,,333⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭ ()()()()π3πcos sin sin cos cos 22sin 3πsin πsin sin sin x x x x x f x x x x x x⎛⎫⎛⎫+- ⎪ ⎪-⋅⎝⎭⎝⎭===-+--⋅-由已知,,得,所以.(2),,得,由,得,. . ..而,...17.(1)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,,此时.若选①,则函数的一条对称轴,则,得,,当时,,此时,;若选②,则函数的一个对称中心,则,得,,当时,,此时,;cos 1()sin 2f ααα=-=tan 2α=-222222sin cos 2sin tan 2tan 286sin cos 2sin sin cos tan 1415ααααααααααα++-++====+++()3f α=- cos 3sin αα∴-=-1tan 3α=()2f αβ-=-1tan()2αβ-=∴tan()tan tan(2)tan[()]11tan()tan αβααβαβααβα-+-=-+==-- π,π2β⎛⎫∈⎪⎝⎭π0,2α⎛⎫∈ ⎪⎝⎭π0αβ∴-<-<1tan()02αβ-=>∴ππ2αβ-<-<-2(π,0)αβ∴-∈-∴3π24αβ-=-()y f x =2π22T ππ=⨯=222T ππωπ∴===()()2sin 21f x x ϕ=++()y f x =3x π=-()232k k Z ππϕπ-+=+∈()76k k Z πϕπ=+∈22ππϕ-<< 1k =-6πϕ=()2sin 216f x x π⎛⎫=++ ⎪⎝⎭()y f x =5,112π⎛⎫⎪⎝⎭()56k k Z πϕπ+=∈()56k k Z πϕπ=-∈22ππϕ-<< 1k =6πϕ=()2sin 216f x x π⎛⎫=++ ⎪⎝⎭若选③,则函数的图象过点,则,得,,,,解得,此时,.综上所述,;(2)令,,,,当或时,即当或时,线段的长取到最大值18. (1)由图象可知则,则,又,所以,所以,又,所以,所以的解析式为;(2),令,由可得,令,由对称性可知,两式相加可得,,所以;()y f x =5,06π⎛⎫⎪⎝⎭552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭51sin 32πϕ⎛⎫+=- ⎪⎝⎭22ππϕ-<< 7513636πππϕ∴<+<51136ππϕ∴+=6πϕ=()2sin 216f x x π⎛⎫=++ ⎪⎝⎭()2sin 216f x x π⎛⎫=++ ⎪⎝⎭()()()2sin 21cos 6h x f x g x x x xπ⎛⎫=-=++- ⎪⎝⎭122cos 212cos 2102x x x x ⎫=++=+≥⎪⎪⎭()cos 21P Q h t t ∴==+[]0,t π∈ []20,2t π∴∈20t =22t π=0=t t π=PQ 22π7πππ2,441234T A ω===-=2ω=()()2sin 2f x x ϕ=+7π7π2sin 2126f ϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭7πsin 16ϕ⎛⎫+=- ⎪⎝⎭7π3π2π,Z 62k k ϕ+=+∈π||2ϕ<π3ϕ=()f x π()2sin 23f x x ⎛⎫=+⎪⎝⎭π()2sin 3h x x ⎛⎫=+ ⎪⎝⎭π3π,,π32m x m ⎡⎫=+∈-⎪⎢⎣⎭π4()2sin 33h x x ⎛⎫=+= ⎪⎝⎭2sin 3m =1232sin sin sin 3m m m ===1223π,πm m m m +=-+=12320m m m ++=1234π23x x x ∴++=-()1234π1cos 2cos 32x x x ⎛⎫++=-=- ⎪⎝⎭(3),令,则,因为对于任意,当时,都有成立,所以对于任意,当时,都有成立,即对于任意,当时,都有成立,所以函数在上单调递增,由,得,所以,解得,所以的最大值为19.(1)依题意,得,所以,所以或,当时,,则,又,所以,当,则又,所以或,所以,所以方程在上的解集为πππ()2sin 22cos 2233g x x x ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭()()()F x f x g x =-ππ()2sin 22cos 233F x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ππ234x ⎛⎫=+- ⎪⎝⎭π212x ⎛⎫=+ ⎪⎝⎭12,[0,]x x t ∈12x x <()()()()1212f x f x g x g x -<-12,[0,]x x t ∈12x x <()()()()1122f x g x f x g x -<-12,[0,]x x t ∈12x x <()()12F x F x <()F x []0,t []0,x t ∈πππ2,2121212x t ⎡⎤+∈+⎢⎥⎣⎦ππ2122t +≤5π024t <≤t 5π2422sin cos cos 2cos sin ααααα-==-()()cos sin sin cos 10αααα-++=cos sin 0αα-=sin cos 1αα+=-cos sin 0αα-=cos 0α≠tan 1α=[]0,2πα∈π5π,44α=sin cos 1αα+=-πsin 4α⎛⎫+=-⎪⎝⎭[]ππ9π0,2π,,444αα⎡⎤∈∴+∈⎢⎥⎣⎦π5π44α+=7π43ππ,2α=()co s 2f x α=[]0,2ππ5π3π,π,,442⎧⎫⎨⎬⎩⎭(2)①设,当时,则,此时在上单调递增,在上也单调递增,所以在上单调递增,,所以在区间上有且只有一个零点;②记函数的零点为,所以,且,所以,所以,令,因为,所以,又,则,所以,则.()πsin cos 2ln 2ln 4F x x x x x x ⎛⎫=-+=-+ ⎪⎝⎭,42x ππ⎛⎫∈ ⎪⎝⎭ππ0,44x ⎛⎫-∈ ⎪⎝⎭π4y x ⎛⎫=- ⎪⎝⎭ππ,42⎛⎫ ⎪⎝⎭2ln y x =ππ,42⎛⎫⎪⎝⎭()F x ππ,42⎛⎫⎪⎝⎭πππππ2ln 0,2ln 044242F F ⎛⎫⎛⎫=<=+> ⎪ ⎪⎝⎭⎝⎭()y Fx =ππ,42⎛⎫⎪⎝⎭()y Fx =0x 000sin cos 2ln 0x x x -+=0x ∈ππ,42⎛⎫⎪⎝⎭()0001ln cos sin 2x x x =-()000000111ln sin 2cos sin sin cos 422x x x x x x +=-+000πcos sin 4t x x x ⎛⎫=-=+ ⎪⎝⎭0ππ,42x ⎛⎫∈ ⎪⎝⎭()1,0t ∈-20012sin cos t x x =-2001sin cos 2t x x -=()2220011111111111ln sin 21,42224244224t x x t t t t -⎛⎫+=+⨯=-++=--+∈- ⎪⎝⎭00111ln sin 2244x x -<+<。
2022-2023学年四川省绵阳市高一下学期期中数学试题【含答案】
2022-2023学年四川省绵阳市高一下学期期中数学试题一、单选题1.设复数(1)z i i =⋅-,则z 的虚部是()A .1B .iC .-1D .-i【答案】C【分析】结合复数的四则运算,计算z ,得到虚部,即可.【详解】1i z =--,所以z 的虚部为-1,故选C .【点睛】本道题考查了复数的运算,关键化简复数z ,难度较容易.2.平面向量()1,2a =- ,()2,b x =- ,若//a b,则x 等于()A .4B .2C .1-D .4-【答案】A【分析】根据向量共线列方程,从而求得x .【详解】由于//a b,所以()()1224x x ⋅=-⋅-⇒=.故选:A3.若函数()()sin f x x ϕ=+是奇函数,则ϕ可取的一个值为()A .π-B .2π-C .4πD .3π【答案】A【分析】sin x 的图象左右平移π,k k Z ∈仍为奇函数,即可求得ϕ.【详解】sin x 的图象左右平移π,k Z k ∈仍为奇函数,则π,k k Z ϕ=∈.故选:A.4.在ABC 中,若cos a B c =,则ABC 的形状是()A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【答案】B【分析】首先根据正弦定理边化角得到()sin cos sin sin A B C A B ==+,再结合三角函数恒等变换得到cos 0A =,即可得到答案.【详解】因为cos a B c =,所以()sin cos sin sin sin cos cos sin A B C A B A B A B ==+=+,所以cos sin 0=A B .因为sin 0B >,所以cos 0A =.又因为00A <<18 ,所以90A = ,ABC 为直角三角形.故选:B5.已知3cos 123πθ⎛⎫-= ⎪⎝⎭,则sin 23πθ⎛⎫+= ⎪⎝⎭()A .29-B .13-C .29D .13【答案】B 【分析】由223122πππθθ⎛⎫+=-+ ⎪⎝⎭,结合诱导公式和二倍角公式求解即可.【详解】由题,因为223122πππθθ⎛⎫+=-+ ⎪⎝⎭,所以2231sin 2sin 2cos 22cos 1213122121233πππππθθθθ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭,故选:B6.关于函数()tan f x x =的性质,下列叙述不正确的是()A .()f x 的最小正周期为2πB .()f x 是偶函数C .()f x 的图像关于直线()2k x k Z π=∈对称D .()f x 在每一个区间,,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭内单调递增【答案】A【分析】由周期函数和奇偶性的定义,以及正切函数的对称轴和正切函数的单调性可逐项进项判定.【详解】因为1tan ()22tan f x x f x x ππ⎛⎫⎛⎫+=+=≠ ⎪ ⎪⎝⎭⎝⎭,所以A 错;()|tan()||tan |()f x x x f x -=-==,所以函数()f x 是偶函数,B 正确;由()|tan |f x x =的图像可知,C 、D 均正确,故选:A.【点睛】本题考查三角函数的性质,熟练掌握正切函数的奇偶性、单调性、对称轴和对称中心是解题的关键,属于中档题.7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是()A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A【分析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅ 等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB ⋅的取值范围是()2,6-,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.8.已知函数()sin 3f x x πω⎛⎫=+⎪⎝⎭,(0ω>)在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[0,]π上恰好取得一次最大值1,则ω的取值范围是()A .10,5⎛⎤⎥⎝⎦B .13,25⎡⎤⎢⎥⎣⎦C .11,65⎡⎤⎢⎥⎣⎦D .15,22⎡⎫⎪⎢⎣⎭【答案】C【解析】解法一:(复合函数法)令3X x πω=+,根据2536x ππ-≤≤,得出253363X πωππωπ-+≤≤+.再根据sin y X =的单调性得出25,,336322πωππωπππ⎡⎤⎡⎤-++⊆-⎢⎥⎢⎥⎣⎦⎣⎦,解得15ω≤.又因为0x π≤≤时,33X πππω≤≤+,函数在区间,33πππω⎡⎤+⎢⎥⎣⎦恰好取一次最大值1,可得5232ππππω≤+<,即可解得11366ω≤≤.解法二:(特殊值法)带入特殊值当12ω=,112ω=,逐项排除即可.【详解】解:解法一:(复合函数法)令3X x πω=+,2536x ππ-≤≤,则253363X πωππωπ-+≤≤+.所以函数sin y X =在区间25,3363πωππωπ⎡⎤-++⎢⎥⎣⎦上单调递增,从而可得25,,336322πωππωπππ⎡⎤⎡⎤-++⊆-⎢⎥⎢⎥⎣⎦⎣⎦,则22335632ππωππωππ⎧-≤-+⎪⎪⎨⎪+≤⎪⎩,解得15ω≤.当0x π≤≤时,33X πππω≤≤+,所以函数sin y X =在区间,33πππω⎡⎤+⎢⎥⎣⎦恰好取一次最大值1,所以5232ππππω≤+<,解得11366ω≤≤.综上所知1165ω≤≤.故选:C解法二:(特殊值法)当12ω=时,令23x X π=+,2536x ππ-≤≤,则304X π≤≤,则函数sin y X =在区间30,4π⎡⎤⎢⎥⎣⎦上不单调,所以12ω=不合题意,排除B 、D .当112ω=时,令123x X π=+,0x π≤≤,则5312X ππ≤≤,则函数sin y X =在区间5,312ππ⎡⎤⎢⎥⎣⎦取不到最大值1,所以112ω=不合题意,排除A .故选:C【点睛】本题考查利用正弦型函数的单调性和最值求参数ω的取值,属于基础题.二、多选题9.下列说法中正确的是()A .若||0a = ,则0a=B .0AB BA += C .若21,e e 为单位向量,则12e e = D .||aa是与非零向量a 共线的单位向量【答案】ABD【分析】对于选项AC ,利用零向量和单位向量的定义即可判断出正误;对于选项B ,利用向量的运算法则即可判断出正误;对于选项D ,利用单位向量及共线向量的判断方法即可得到结果的正误.【详解】选项A ,因为||0a = ,根据零向量的定义知,0a=,故选项A 正确;选项B ,根据向量加法的运算法则知,0AB BA +=,故选项B 正确;选项C ,21,e e 为单位向量,则有12e e = ,但1e 与2e可以方向不同,根据向量相等的定义知,选项C错误;选项D ,因||aa的模长为1,且与向量a 同向,故选项D 正确.故选:ABD10.在△ABC 中,根据下列条件解三角形,其中恰有一解的是()A .7,36b c C π===,B .564b c C π===,,C .6333a b B π===,,D .20156a b B π===,,【答案】BC【分析】根据三角形解的个数的判定条件直接计算可得.【详解】A 选项有无穷多解,显然错误;B 中,因为52sin 2b C =,C 为锐角,所以sin b C b c <<,所以该三角形有一解,B 正确;C 中,因为sin 33a B =,B 为锐角,所以sin b a B =,所以该三角形有一解,C 正确;D 中,因为sin 10a B =,B 为锐角,所以sin a B b a <<,所以该三角形有两解,D 错误.故选:BC11.已知函数()()πsin 02||0f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示,下列说法正确的是()A .函数()y f x =的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()y f x =的图象关于直线5π12x =-对称C .函数()y f x =在2ππ,36⎡⎤--⎢⎥⎣⎦单调递减D .该图象向右平移π12个单位可得2sin 3y x =的图象【答案】AD【分析】根据图象求出()y f x =的解析式,然后根据正弦函数的知识判断ABC ,根据图象的平移变换可判断D.【详解】由图象可得()f x 的最大值为2,即2A =,2πππ4412T ω⎛⎫==- ⎪⎝⎭,即3ω=,所以()()2sin 3f x x ϕ=+,因为π212f ⎛⎫= ⎪⎝⎭,所以ππ2π,Z 42k k ϕ+=+∈,所以π2π,Z 4k k ϕ=+∈,因为π||2ϕ<,所以π4ϕ=,所以()π2sin 34f x x ⎛⎫=+ ⎪⎝⎭,对于A ,因为0π12f ⎛-⎫= ⎪⎝⎭,所以函数()y f x =的图象关于点π,012⎛⎫- ⎪⎝⎭对称,故正确;对于B ,因为()25π12sin π0f ⎛⎫- ⎪⎝=-=⎭,所以错误;对于C ,当2ππ,36x ⎡⎤∈--⎢⎥⎣⎦时,π7ππ3,444x ⎡⎤+∈--⎢⎥⎣⎦,所以函数()y f x =在2ππ,36⎡⎤--⎢⎥⎣⎦上不单调,故错误;对于D ,该图象向右平移π12个单位可得ππ2sin 32sin 3124y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象,故正确,故选:AD12.已知函数()sin cos f x x x =+,以下结论正确的是()A .它是偶函数B .它是周期为2π的周期函数C .它的值域为1,2⎡⎤-⎣⎦D .它在()-π,2π这个区间有且只有2个零点【答案】ACD【分析】根据函数奇偶性定义可知,()()f x f x -=,即A 正确;由周期函数得定义可知,()2πf x +与()f x 不一定相等,故B 错误;将函数()f x 写成分段函数的形式并画出函数图像可得C 正确;结合C 以及偶函数的性质,可判断D 正确.【详解】由于()()sin cos()sin cos f x x x f x x x -=-+-==+,所以它是偶函数,故A 正确;由于π7π2,044f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,它们不相等,所以它不是周期为2π的周期函数,即B 错误;现在来考察这个函数在[]0,2πx ∈内的情况.当π30,π,2π22x ⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦时,()πsin cos sin cos 2sin 4f x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭当π3,π22x ⎡⎤∈⎢⎥⎣⎦时,()πsin cos sin cos 2sin 4f x x x x x x ⎛⎫=+=-=- ⎪⎝⎭分别画出以上两个函数图象,并截取相关部分如图:由此可知函数值域为1,2⎡⎤-⎣⎦,即选项C 正确;又由于这个函数是偶函数,它在[]π,π-内没有零点,而在[]π,2π有2个零点,故D 正确.故选:ACD.【点睛】方法点睛:在求解含有绝对值的三角函数值域问题时,可以想尽一切办法先把绝对值去掉,然后结合其他函数性质进行求解即可.例如在判断C 选项时,首先可讨论[]0,2πx ∈时的函数解析式,画出图形;当[]2π4πx ∈,时图像重复[]0,2πx ∈的图像,而[]2π0x ∈-,时,关于y 轴作出对称图像即可.三、填空题13.已知复数21iz i=-,则z =________.【答案】2【详解】试题分析:()()()()21211111i i iz i i i i i i +===+=-+--+,所以 2.z =【解析】复数模的概念与复数的运算.14.已知非零向量a 与b 的夹角为23π,2b = ,若()a ab ⊥+ ,则a = ______.【答案】1【解析】由()a a b ⊥+,得到22cos 03a ab π+= ,进而得到20a a -= ,即可求解.【详解】由()a a b ⊥+ ,可得()0a a b ⋅+= ,所以20+⋅= a a b ,即22cos03a ab π+= ,又由2b = ,可得20a a -=,解得0a = (舍)或1a = .故答案为:1.【点睛】本题主要考查了向量的数量积的运算,以及向量垂直条件的运算,其中解答中熟记向量的数量积的运算公式和向量垂直条件的运算方法是解答的关键,着重考查推理与运算能力.15.化简:()40103sin tan ︒︒-=________.【答案】-1【详解】原式sin10sin 40 (3cos10=-︒︒︒)()sin402sin40 sin1 03cos1 0cos10cos10︒︒︒︒︒︒=-=(13sin1 0 cos1 0)22︒︒-2sin40sin80cos 401cos10cos10-︒-︒︒︒︒===-.故答案为1-【点睛】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.16.如图,直角三角形PQR 的三个顶点分别在等边三角形ABC 的边AB 、BC 、CA 上,且23PQ =,2QR =,2PQR π∠=,则AB 长度的最大值为_________【答案】4213【分析】选取角度作为变量,运用正弦定理将线段表示为角度的函数,进而运用三角函数的知识求解最值可得出结果.【详解】正三角形ABC 中,,60AB BC B C =∠=∠=︒,设QRC θ∠=,则根据题意有:180120RQC C QRC θ∠=︒-∠-∠=︒-,9030BQP RQC θ∠=︒-∠=-︒BPQ 中,180150BPQ B BQP θ∠=︒-∠-∠=︒-BQP 中,根据正弦定理得:()23·sin 150·sin sin sin sin sin 60BQ PQ PQ BPQBQ BPQ B B θ︒-∠=∴==∠∠∠︒RQC 中,根据正弦定理得:·sin 2sin sin sin sin sin 60CQ RQ RQ QRC CQ QRC C C θ∠=∴==∠∠∠︒()23·sin 1502sin sin 60sin 60AB BC BQ QC θθ︒-∴==+=+︒︒化简计算得:()421sin 3AB θϕ=+(3tan 5ϕ=)当()sin 1θϕ+=时,AB 有最大值4213.故答案为:4213.四、解答题17.已知向量()1,2a =-,()3,1b =-,求:(1)求向量a b +与a b - ;(2)求向量a 与b的夹角.【答案】(1)()2,1a b +=--,()4,3a b -=- (2)135【分析】(1)利用向量的坐标运算可得答案;(2)利用向量的夹角公式可得答案.【详解】(1)()2,1a b +=-- ,()4,3a b -=- .(2)5a = ,5a = ,325a b ⋅=--=-,52cos 2510a b a bθ⋅-===-⨯ ,∴135θ= .18.已知函数22()23sin cos cos sin f x x x x x =+-.(1)求函数()f x 的最小正周期及单调递减区间;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π,π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,Zk ∈(2)最大值为2,最小值为1-.【分析】(1)将简函数为π()2sin(2)6f x x =+,再利用三角函数sin y x =的图像与性质即可求出结果;(2)通过x 的范围,求出π26x +的范围,再利用三角函数sin y x =的图像与性质即可求出结果;【详解】(1)因为22π()23sin cos cos sin 3sin2cos22sin(2)6f x x x x x x x x =+-=+=+,所以函数()f x 的最小正周期为2π2ππ2T ω===,由ππ63π2π22π,Z 22k x k k +≤+≤+∈得到π2πππ63k x k +≤≤+,Z k ∈.所以函数()f x 的单调减区间为π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,Z k ∈.(2)因为π()2sin(2)6f x x =+,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,根据函数sin y x =的图像与性质知,π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的最大值为2,最小值为1-.19.在①222cos sin sin 1sin sin A B C B C ++=+;②2cos cos cos c A a B b A =+;③sin cos 6a C c A π⎛⎫=- ⎪⎝⎭这三个条件中任选一个,解答下面两个问题.(1)求角A ;(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,()c b c <,若已知27a =,33ABC S = ,求,b c 的值.【答案】(1)3A π=(2)2b =,6c =【分析】(1)若选①,首先转化221cos sin A A -=,再利用正弦定理边角互化,结合余弦定理求角A ;若选②,首先将边化为角,再结合三角函数恒等变形,化简后求角A ;若选③,首先将边化为角,再利用两角差的余弦公式展开,结合辅助角公式,化简求角A ;(2)首先根据面积公式求bc ,再结合余弦定理求b c +,即可求解,b c 的值.【详解】(1)若选①:由已知得:222sin sin 1cos sin sin B C A B C+=-+222sin sin sin sin sin B C A B C +=+由正弦定理可得222b c a bc +=+,可得222b c a bc +-=,由余弦定理可得2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=.若选②:因为2cos cos cos c A a B b A=+由正弦定理可得2sin cos sin cos sin cos C A A B B A =+,所以()2sin cos sin sin C A A B C=+=因为0C π<<,所以sin 0C >,所以1cos 2A =,因为0A π<<,所以3A π=若选③:因为sin cos 6a C c A π⎛⎫=- ⎪⎝⎭,由正弦定理得sin sin sin cos 6A C C A π⎛⎫=- ⎪⎝⎭因为0C π<<,所以sin 0C >,故可得31sin cos cos sin 622A A A A π⎛⎫=-=+ ⎪⎝⎭,即13sin cos 22A A =,所以tan 3A =,因为0A π<<,所以3A π=;(2)由(1)可得3A π=,13sin 3324ABC S bc A bc ===△,所以12bc =,由余弦定理得:()22222cos 328a b c bc A b c bc =+-=+-=,所以8+=b c ,又因为b c <,解得2b =,6c =.20.已知sin cos π30sin cos 2ααααα+⎛⎫=∈ ⎪-⎝⎭,,.(1)求tan α的值;(2)若()10sin 10αβ-=,且π02β⎛⎫∈ ⎪⎝⎭,,求角β.【答案】(1)tan 2α=(2)4πβ=【分析】(1)根据已知化弦为切即可得解;(2)分别求出sin ,cos αα,()cos αβ-,再根据()sin sin βααβ=--⎡⎤⎣⎦结合两角差的正弦公式即可得解.【详解】(1)解:因为sin cos 3sin cos αααα+=-,所以tan 13tan 1αα+=-,解得tan 2α=;(2)解:因为tan 2α=,π0,2α⎛⎫∈ ⎪⎝⎭,则22sin 2cos sin cos 1αααα=⎧⎨+=⎩,解得255sin ,cos 55αα==,又π02β⎛⎫∈ ⎪⎝⎭,,所以ππ,22αβ⎛⎫-∈- ⎪⎝⎭,又因()10sin 10αβ-=,所以()()2310cos 1sin 10αβαβ-=--=,则()253105102sin sin 5105102βααβ=--=⨯-⨯=⎡⎤⎣⎦,所以4πβ=.21.如图,一块铁皮的形状为半圆和长方形组成,长方形的边AD 为半圆的直径,O 为半圆的圆心,1AB =,2BC =,现要将此铁皮剪出一个等腰三角形PMN ,其底边MN BC ⊥.(1)设30MOD ∠=︒,求三角形铁皮PMN 的面积;(2)求剪下的铁皮三角形PMN 面积的最大值.【答案】(1)33348=+ PMN S (2)3224+【分析】(1)设MN 交AD 交于E 点由30MOD ∠=︒,利用锐角三角函数可求ME ,OE ,进而可求MN ,BN ,代入12PMN S MN BN =⋅ 可求(2)设MOQ θ∠=,由[0θ∈,]2π,结合锐角三角函数的定义可求sin MQ θ=,cos OQ θ=,代入三角形的面积公式1(1sin )(1cos )122PMN MN B S N θθ∆=++⋅=展开利用换元法,令sin cos 2sin 4x πθθθ⎛⎫+==+ ⎪⎝⎭,转化为二次函数的最值求解.【详解】(1)解:设MN AD E ⋂=,则3cos 2OE OM MOD =∠=,1sin 2ME OM MOD =∠=则312BN AE AO OE ==+=+,32MN ME AB =+=,故1333248PMN S MN BN =⋅=+ ;(2)设MOD θ∠=,[)0,θπ∈,MN AD E ⋂=,则sin 1MN θ=+,cos 1BN AE θ==+1sin cos sin cos 122PMN S MN BN θθθθ+++=⋅= ,令sin cos 2sin 4x πθθθ⎛⎫+==+ ⎪⎝⎭,则21sin cos 2x θθ-=,[)0,θπ∈,5,444πππθ⎡⎫+∈⎪⎢⎣⎭,则2sin ,142πθ⎛⎤⎛⎫+∈- ⎥ ⎪ ⎝⎭⎝⎦,所以(1,2x ⎤∈-⎦()221213220,444PMN x x x S ⎛⎤++++==∈ ⎥ ⎝⎦△,即三角形PMN 面积的最大值为3224+.22.如图,设ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知c =1且2c sin A cos B =a sin A ﹣b sin B 14+b sin C ,cos ∠BAD 217=.(1)求b 边的长度;(2)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且AEF △的面积为ABC 面积的一半,求AG EF ⋅ 的最小值.【答案】(1)4(2)2【分析】(1)根据2c sin A cos B =a sin A ﹣b sin B 14+b sin C ,利用正弦定理和余弦定理化简求解;(2)设,AE x AF y == 利用D 为中点,得到2AB AC AD += ,两边平方,设,AB AC θ=uuu r uuu r ,结合21cos 7AB AD BAD AB AD⋅=∠=⋅ ,求得θ,进而得到ABC S ,再根据AEF △的面积为ABC 面积的一半,得到2xy =,然后利用E ,G ,F 共线和基本定理,利用数量积运算求解.【详解】(1)解:因为2c sin A cos B =a sin A ﹣b sin B 14+b sin C ,所以,所以222221224a cb ac a b bc ac +-⨯=-+,化简得:4c =b ,又c =1,所以b =4.(2)设,AE x AF y == ,因为D 为中点,所以2AB AC AD += ,设,AB AC θ=uuu r uuu r ,则θθ++⋅⋅+== 2222cos 178cos 44AB AC AB AC AD ,所以θ+= 178cos 2AD ,而()114cos 22AB AD AB AB AC θ+⋅=⋅+= ,所以θθ⋅+=∠==+⋅ 2114cos cos 7178cos AB AD BAD AB AD ,即228cos 8cos 110θθ+-=,解得1cos 2θ=或11cos 14θ=-,因为14cos 0θ+>,所以1cos 2θ=,3sin 2θ=,所以1sin 32ABC S bc θ== ,因为AEF △的面积为ABC 面积的一半,所以13sin 22AEF S xy θ== ,即2xy =,设AG AD λ= ,则22AG AD AB AC λλλ==+ ,又E ,G ,F 共线,设()1AG AD AF μμ=+- ,则()()114y AG AE AF x AB AC μμμμ-=+-=+ ,所以:()2142x y λμμλ⎧=⎪⎪⎨-⎪=⎪⎩,解得:4y x y μ=+,所以:2244AG AB AC x y x y =+++ ,又4y EF AC xAB =- ,所以22444y AG EF AB AC AC xAB x y x y ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪++⎝⎭⎝⎭,222964444y y y x AC xAB x AC AB x y x y⎡⎤-⎛⎫=-+-⋅= ⎪⎢⎥++⎝⎭⎣⎦ ,又xy =2,化简得:22296186321442242y x x AG EF x y x x --⋅===-++++ ,又y ≤4,所以112x ≥≥,所以2AG EF ⋅≥ ,当x =1时等号成立.。
2022-2023学年山东省济宁一中高一(下)期中数学试卷【答案版】
2022-2023学年山东省济宁一中高一(下)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若sin α=√32,则cos2α=( ) A .12B .√32C .−√32D .−122.若cos α•tan α<0,则角α在( ) A .第一、二象限 B .第二、三象限C .第三、四象限D .第二、四象限3.已知向量a →,b →不共线,若AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线4.已知点A (﹣1,2),B (2,y ),向量a →=(2,1),若AB →⊥a →,则实数y 的值为( ) A .12B .72C .7D .﹣45.已知在△ABC 中,AB =3,AC =4,BC =√10,则AC →⋅CB →=( ) A .−34B .−172C .172D .346.如图,在△ABC 中,BM →=12BC →,NC →=λAC →,直线AM 交BN 于点Q ,若BQ →=57BN →,则λ=( )A .35B .25C .23D .137.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若a =√13,c =3,且2ab sin C =√3(b 2+c 2−a 2),则△ABC 的面积为( ) A .3√3B .3√32C .√3D .6√38.已知函数f (x )=sin (ωx +φ)(ω>0)是在区间(π18,5π36)上的单调减函数,其图象关于直线x =−π36对称,且f (x )的一个零点是x =772π,则ω的最小值为( ) A .2B .12C .4D .8二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,金部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π2)的部分图象,则下列结论正确的是( )A .函数f (x )的图象关于直线x =π12对称 B .函数f (x )的图象关于点(−π12,0)对称C .将函数f (x )图象上所有的点向右平移π6个单位,得到函数g (x ),则g (x )为奇函数D .函数f (x )在区间[−π4,π12]上单调递增10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列结论错误的是( ) A .若a 2+c 2﹣b 2>0,则△ABC 为锐角三角形 B .若A >B ,则sin A >sin BC .若sin2A =sin2B ,则△ABC 为等腰三角形D .若b =3,a =4,B =π6,则此三角形有2解 11.下列说法正确的是( )A .若a →∥b →,则存在唯一实数λ使得a →=λb →B .两个非零向量a →,b →,若|a →−b →|=|a →|+|b →|,则a →与b →共线且反向C .已知a →=(1,2),b →=(1,1),且a →与a →+λb →的夹角为锐角,则实数λ的取值范围是(−53,+∞)D .点O 在△ABC 所在的平面内,若AO →=14AC →+12AB →,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC :S △ABC =1:212.已知点P 在△ABC 所在的平面内,则下列命题正确的是( ) A .若P 为△ABC 的垂心,AB →•AC →=2,则AP •AB →=2B .若△ABC 为边长为2的正三角形,则PA →•(PB →+PC →)的最小值为﹣1C .若△ABC 为锐角三角形且外心为P ,AP →=x AB →+y AC →且x +2y =1,则AB =BCD .若AP →=(1|AB →|cosB+12)AB →+(1|AC →|cosC+12)AC →,则动点P 的轨迹经过△ABC 的外心三、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a →=(1,2),b →=(2,﹣2),c →=(1,λ).若c →∥(2a →+b →),则λ= . 14.已知cos(π6−θ)=13,则cos(5π6+θ)+2sin(5π3−θ)的值为 . 15.已知向量a →=(1,2),b →=(−1,3),则a →在b →方向上的投影向量是 .16.已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为 .四.解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)设向量a →,b →满足|a →|=|b →|=1,且|3a →−2b →|=√7. (1)求a →与b →的夹角; (2)求|2a →+3b →|的大小.18.(12分)如图,甲船A 处,乙船在A 处的南偏东45°方向,距A 有9海里并以20海里/时的速度沿南偏西15°方向航行,若甲船以28海里/时的速度航行. (1)求甲船用多少小时能尽快追上乙船;(2)设甲船航行的方向为南偏东θ,求θ的正弦值.19.(12分)如图所示,在边长为2的等边△ABC 中,点M ,N 分别在边AC ,AB 上,且M 为边AC 的中点,设AB →=a →,AC →=b →.(1)若AN →=12NB →,用a →,b →表示MN →;(2)求CN →⋅MN →的取值范围.20.(12分)已知函数f(x)=2sin 2(ωx +π4)−√3cos(2ωx)−1(ω>0),f (x )的最小正周期为π. (1)求f (x )的对称中心; (2)方程f (x )﹣2n +1=0在[0,7π12]上有且只有一个解,求实数n 的取值范围. 21.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知√3bsin(B +C)+acosB =c . (1)求角A 的大小;(2)若△ABC 为锐角三角形,且b =6,求△ABC 面积的取值范围. 22.(12分)已知函数f(x)=√3sin(ωx +φ)+2sin 2(ωx+φ2)−1(ω>0,0<φ<π)为奇函数,且f (x )图象的相邻两对称轴间的距离为π2.(1)求h (x )=f (x )+sin x +cos x 的最大值.(2)将函数f (x )的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数y =g (x )的图象,记方程g(x)=43在x ∈[π6,4π3]上的根从小到依次为x 1,x 2,x 3,…,x n ﹣1,x n 试确定n 的值,并求x 1+2x 2+2x 3+…+2x n ﹣1+x n 的值.2022-2023学年山东省济宁一中高一(下)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若sin α=√32,则cos2α=( )A .12B .√32C .−√32D .−12解:∵sin α=√32,∴cos2α=1﹣2sin 2α=1﹣2×(√32)2=−12.故选:D .2.若cos α•tan α<0,则角α在( ) A .第一、二象限 B .第二、三象限C .第三、四象限D .第二、四象限解:∵cos α•tan α<0,∴α在第三或第四象限, 故选:C .3.已知向量a →,b →不共线,若AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,则( ) A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,C ,D 三点共线D .B ,C ,D 三点共线解:向量a →,b →不共线,AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →, ∴BD →=BC →+CD →=(﹣3a →+7b →)+(4a →−5b →)=a →+2b →=AB →, ∴BD →∥AB →,∴A ,B ,D 三点共线. 故选:B .4.已知点A (﹣1,2),B (2,y ),向量a →=(2,1),若AB →⊥a →,则实数y 的值为( ) A .12B .72C .7D .﹣4解:因为A (﹣1,2),B (2,y ),所以AB →=(3,y −2),向量a →=(2,1), 若AB →⊥a →,则AB →⋅a →=3×2+y −2=0,解得:y =﹣4. 故选:D .5.已知在△ABC 中,AB =3,AC =4,BC =√10,则AC →⋅CB →=( ) A .−34B .−172C .172D .34解:在△ABC 中,由余弦定理可得:AB 2=BC 2+AC 2﹣2BC •AC •cos C , 即32=(√10)2+42−2×√10×4cosC ,解得cosC =810, 所以AC →⋅CB →=|AC →|⋅|CB →|cos(π−C)=−|AC →|⋅|CB →|cosC =−4×√10178√10=−172.故选:B .6.如图,在△ABC 中,BM →=12BC →,NC →=λAC →,直线AM 交BN 于点Q ,若BQ →=57BN →,则λ=( )A .35B .25C .23D .13解:根据图示可知,A ,M ,Q 三点共线,由共线定理可知, 存在实数μ使得BQ →=μBM →+(1−μ)BA →,又BM →=12BC →,BQ →=57BN →,所以57BN →=12μBC →+(1−μ)BA →,又A ,N ,C 三点共线,所以57=12μ+1−μ,解得μ=47,即可得BN →=25BC →+35BA →,所以(BA →+AN →)=25(BA →+AC →)+35BA →,所以AN →=25AC →,即AC →−NC →=25AC →,可得NC →=35AC →,又NC →=λAC →,即可得λ=35. 故选:A .7.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若a =√13,c =3,且2ab sin C =√3(b 2+c 2−a 2),则△ABC 的面积为( ) A .3√3B .3√32C .√3D .6√3 解:由2ab sin C =√3(b 2+c 2﹣a 2),得2ab sin C =√3•b 2+c 2−a 22bc•2bc =2√3bc cos A ,a sin C =√3c cos A ,即sin A sin C =√3sin C cos A ,则tan A =√3,则A =π3, 由余弦定理得a 2=b 2+c 2﹣2bc cos A ,即13=b 2+9﹣6b ×12, 整理得b 2﹣3b ﹣4=0,得b =4或b =﹣1(舍), 则三角形的面积S =12bc sin A =12×4×3×√32=3√3, 故选:A .8.已知函数f (x )=sin (ωx +φ)(ω>0)是在区间(π18,5π36)上的单调减函数,其图象关于直线x =−π36对称,且f (x )的一个零点是x =772π,则ω的最小值为( ) A .2B .12C .4D .8解:因为函数f (x )=sin (ωx +φ)的图象关于直线x =−π36对称, 所以−ω⋅π36+φ=π2+nπ,n ∈Z ,所以φ=(12+ω36+n)π,n ∈Z . 根据π18<x <5π36,则ωπ18<ωx <5ωπ36,所以ωπ18+φ<ωx +φ<5ωπ36+φ,因为f (x )=sin (ωx +φ)是在区间(π18,5π36)上的单调减函数.所以{ωπ18+φ≥π2+2kπ,k ∈Z 5ωπ36+φ≤3π2+2kπ,k ∈Z , 所以{ωπ18+(12+ω36+n)π≥π2+2kπ,n ∈Z ,k ∈Z 5ωπ36+(12+ω36+n)π≤3π2+2kπ,n ∈Z ,k ∈Z ,即{ω18+(12+ω36+n)≥12+2k ,n ∈Z ,k ∈Z 5ω36+(12+ω36+n)≤32+2k ,n ∈Z ,k ∈Z , 解得12(2k ﹣n )≤ω≤6(2k ﹣n +1),n ∈Z ,k ∈Z , 因为ω>0,所以2k ﹣n =0或2k ﹣n =1,当2k ﹣n =0时,0<ω≤6,当2k ﹣n =1时,12≤ω≤12; 由于π18<7π72<5π36,且f (x )的一个零点是x =772π,所以ω×7π72+φ=(2m +1)π,m ∈Z , 所以ω×7π72+(12+ω36+n)π=(2m +1)π,m ∈Z ,n ∈Z , 即ω=8(2m ﹣n )+4,m ∈Z ,n ∈Z .根据0<ω≤6或12≤ω≤12,可得ω=4,或ω=12,所以ω的最小值为4. 故选:C .二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,金部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π2)的部分图象,则下列结论正确的是( )A .函数f (x )的图象关于直线x =π12对称 B .函数f (x )的图象关于点(−π12,0)对称C .将函数f (x )图象上所有的点向右平移π6个单位,得到函数g (x ),则g (x )为奇函数D .函数f (x )在区间[−π4,π12]上单调递增 解:由函数f (x )=A sin (ωx +φ)的部分图象知, A =2,14T =7π12−π3=π4,解得T =π,所以ω=2πT =2,所以f (x )=2sin (2x +φ),过点(7π12,﹣2),所以7π6+φ=3π2+2k π,k ∈Z ,又0<|φ|<π,所以φ=π3, 所以f (x )=2sin (2x +π3),对于A ,当x =π12时,f (π12)=2sin (2×π12+π3)=2,f (x )的图象关于直线x =π12对称,A 正确;对于B ,当x =−π12时,f (−π12)=2sin[2×(−π12)+π3]=1,f (x )的图象不关于点(−π12,0)对称,B 错误;对于C ,由题意知g (x )=f (x −π6)=2sin2x ,所以g (x )是奇函数,C 正确; 对于D ,x ∈[−π4,π12]时,2x +π3∈[−π6,π2],f (x )=2x +π3在[−π4,π12]内单调递增,D 正确.故选:ACD .10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列结论错误的是( ) A .若a 2+c 2﹣b 2>0,则△ABC 为锐角三角形 B .若A >B ,则sin A >sin BC .若sin2A =sin2B ,则△ABC 为等腰三角形D .若b =3,a =4,B =π6,则此三角形有2解 解:对于A :∵a 2+c 2﹣b 2>0,∴由余弦定理得cosB =a 2+c 2−b 22ac >0,即B ∈(0,π2), 但无法判定A 、C 的范围,故A 错误;对于B ,∵A >B ,则a >b ,由正弦定理得2R sin A >2R sin B (R 为△ABC 外接圆的半径), ∴sin A >sin B ,故B 正确;对于C :若sin2A =sin2B ,由正弦函数的性质得2A =2B +2k π或2A +2B =π+2k π,k ∈Z , 又A 、B ∈(0,π),故A =B 或A +B =π2,故C 错误; 对于D :∵a 2+c 2﹣b 2>0, ∴由正弦定理得a sinA=b sinB,即sinA =a b sinB =23,又12<23<√32,则12<sinA <√32, 又0<A <π, 又A ∈(π6,5π6),则符合题意得有2个A 的值,即三角形有2个解,故D 正确. 故选:AC .11.下列说法正确的是( )A .若a →∥b →,则存在唯一实数λ使得a →=λb →B .两个非零向量a →,b →,若|a →−b →|=|a →|+|b →|,则a →与b →共线且反向C .已知a →=(1,2),b →=(1,1),且a →与a →+λb →的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .点O 在△ABC 所在的平面内,若AO →=14AC →+12AB →,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC :S △ABC =1:2解:对于A :当b →=0→,a →≠0→时,a →∥b →,但是不存在实数λ使得a →=λb →,故A 错误; 对于B :由|a →−b →|=|a →|+|b →|可得|a →−b →|2=(|a →|+|b →|)2, 整理可得−2a →⋅b →=2|a →||b →|,所以cos <a →,b →>=−1, 即<a →,b →>=π,则a →与b →共线且反向,故B 正确;对于C :因为a →=(1,2),b →=(1,1),则a →+λb →=(1+λ,2+λ), 又a →与a →+λb →的夹角为锐角,所以a →⋅(a →+λb →)=1+λ+2(2+λ)>0,即3λ+5>0,解得λ>−53,又当1×(2+λ)=2×(1+λ),即λ=0时,a →与a →+λb →同向, 故λ>−53且λ≠0,即C 错误;对于D :因为AO →=14AC →+12AB →,取AC 的中点D ,则AO →=12(AB →+AD →),所以O 为BD 的中点,连接OC , 因为D 是AC 的中点,所以S △ABD =S △BDC =12S △ABC ,O 是BD 的中点,所以S △ADO =S △ABO =12S △ABD ,S △CDO =S △CBO =12S △CBD , 所以S △AOC =S △ADO +S △CDO =12S △ABD +12S △CBD =12S △ABC ,故D 正确. 故选:BD .12.已知点P 在△ABC 所在的平面内,则下列命题正确的是( )A .若P 为△ABC 的垂心,AB →•AC →=2,则AP •AB →=2B .若△ABC 为边长为2的正三角形,则PA →•(PB →+PC →)的最小值为﹣1C .若△ABC 为锐角三角形且外心为P ,AP →=x AB →+y AC →且x +2y =1,则AB =BCD .若AP →=(1|AB →|cosB+12)AB →+(1|AC →|cosC+12)AC →,则动点P 的轨迹经过△ABC 的外心解:对A 选项,∵P 为△ABC 的垂心,∴CP ⊥AB ,又AB →•AC →=2,∴由向量数量积的几何意义可得:AP •AB →=AB →•AC →=2,∴A 选项正确; 对B 选项,设BC 的中点为D ,AD 的中点为E , 又△ABC 为边长为2的正三角形,∴易得|AE |=√32, ∵PA →•(PB →+PC →)=2PA →⋅PE →,∴根据向量数量积的极化恒等式可得:PA →•(PB →+PC →)=2PA →⋅PE →= 2(|PE |2﹣|AE |2)=2(|PE |2−34), ∴当|PE |=0时,PA →•(PB →+PC →)取得最小值−32,∴B 选项错误; 对C 选项,设AC 的中点为F ,则AC →=2AF →, ∵AP →=x AB →+y AC →=xAB →+2yAF →,又x +2y =1,∴P ,B ,F 三点共线,又△ABC 为锐角三角形且外心为P , ∴BF 垂直平分AC ,∴AB =BC ,∴C 选项正确; 对D 选项,设BC 的中点为M ,则AM →=12(AB →+AC →), ∵AP →=(1|AB →|cosB+12)AB →+(1|AC →|cosC+12)AC →,∴AP →−12(AB →+AC →)=AB →|AB|cosB +AC→|AC|cosC ,∴AP →−AM →=AB →|AB|cosB +AC→|AC|cosC,∴MP →=AB →|AB|cosB +AC→|AC|cosC,∴MP →⋅BC →=AB →⋅BC →|AB|cosB+AC →⋅BC→|AC →|cosC=−|BC →|+|BC →|=0,∴MP ⊥BC ,又BC 的中点为M ,即P 在BC 的垂直平分线上, ∴动点P 的轨迹经过△ABC 的外心,∴D 选项正确. 故选:ACD .三、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a →=(1,2),b →=(2,﹣2),c →=(1,λ).若c →∥(2a →+b →),则λ= 12.解:∵向量a →=(1,2),b →=(2,﹣2),∴2a →+b →=(4,2), ∵c →=(1,λ),c →∥(2a →+b →),∴14=λ2,解得λ=12.故答案为:12.14.已知cos(π6−θ)=13,则cos(5π6+θ)+2sin(5π3−θ)的值为 ﹣1 . 解:原式=cos[π﹣(π6−θ)]+2sin[3π2+(π6−θ)]=−cos(π6−θ)−2cos(π6−θ)=−3cos(π6−θ)=−1.故答案为:﹣1.15.已知向量a →=(1,2),b →=(−1,3),则a →在b →方向上的投影向量是 (−12,32) .解:向量a →=(1,2),b →=(−1,3),则a →在b →方向上的投影向量是|a →|cos〈a →,b →〉|b →|b →=(−12,32).故答案为:(−12,32).16.已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为 5 .解:如图,以直线DA ,DC 分别为x ,y 轴建立平面直角坐标系, 则A (2,0),B (1,a ),C (0,a ),D (0,0)设P (0,b )(0≤b ≤a )则PA →=(2,﹣b ),PB →=(1,a ﹣b ), ∴PA →+3PB →=(5,3a ﹣4b )∴|PA →+3PB →|=√25+(3a −4b)2≥5. 故答案为5.四.解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)设向量a →,b →满足|a →|=|b →|=1,且|3a →−2b →|=√7.(1)求a →与b →的夹角; (2)求|2a →+3b →|的大小.解:(1)∵|a →|=|b →|=1,|3a →−2b →|=√7;∴(3a →−2b →)2=9a →2+4b →2−12|a →||b →|cos <a →,b →>=9+4−12cos <a →,b →>=7;∴cos <a →,b →>=12;又0≤<a →,b →>≤π;∴a →与b →的夹角为π3;(2)∵a →⋅b →=12,a →2=b →2=1;∴(2a →+3b →)2=4a →2+12a →⋅b →+9b →2=4+6+9=19; ∴|2a →+3b →|=√19.18.(12分)如图,甲船A 处,乙船在A 处的南偏东45°方向,距A 有9海里并以20海里/时的速度沿南偏西15°方向航行,若甲船以28海里/时的速度航行. (1)求甲船用多少小时能尽快追上乙船;(2)设甲船航行的方向为南偏东θ,求θ的正弦值.解:(1)设用th ,甲船能追上乙船,且在C 处相遇. 设∠ABC =α,∠BAC =β,在△ABC 中,AC =28t ,BC =20t ,AB =9,∴α=180°﹣45°﹣15°=120°,由余弦定理可得(28t)2=81+(20t)2−2×9×20t ×(−12), ∴128t 2﹣60t ﹣27=0,即(4t ﹣3)(32t +9)=0,∴t =34; (2)由(1)得:AC =28×34=21海里,BC =20×34=15海里 根据正弦定理,得sinβ=BCsinαAC =5√314,∴cosβ=1114, ∴sinθ=sin(45°−β)=√22×1114−5√314×√22=11√2−5√628.19.(12分)如图所示,在边长为2的等边△ABC 中,点M ,N 分别在边AC ,AB 上,且M 为边AC 的中点,设AB →=a →,AC →=b →.(1)若AN →=12NB →,用a →,b →表示MN →;(2)求CN →⋅MN →的取值范围.解:(1)因为M 为边AC 的中点,所以AM →=12AC →,又AN →=12NB →,所以AN →=13AB →, 所以MN →=AN →−AM →=13AB →−12AC →=13a →−12b →.(2)设AN →=λAB →,λ∈[0,1],所以CN →⋅MN →=(AN →−AC →)•(AN →−AM →)=(λAB →−AC →)•(λAB →−12AC →)=λ2AB →2−32λλAB →•AC →+12AC →2=4λ2−32λ×2×2×12+12×4=4λ2﹣3λ+2=4[(λ−38)2]+2316, 当λ=38时,CN →⋅MN →取得最大值2316,当λ=1时,CN →⋅MN →取得最小值3, 故CN →⋅MN →的取值范围为[2316,3].20.(12分)已知函数f(x)=2sin 2(ωx +π4)−√3cos(2ωx)−1(ω>0),f (x )的最小正周期为π. (1)求f (x )的对称中心; (2)方程f (x )﹣2n +1=0在[0,7π12]上有且只有一个解,求实数n 的取值范围. 解:(1)由f(x)=−cos(2ωx +π2)−√3cos(2ωx)=sin(2ωx)−√3cos(2ωx)=2sin(2ωx −π3), 因为f (x )的最小正周期为π,即T =2π2ω=π, 故ω=1,所以f(x)=2sin(2x −π3),令2x −π3=kπ,k ∈Z ,则x =kπ2+π6,k ∈Z ,故函数对称中心为(kπ2+π6,0),k ∈Z ; (2)令t =2x −π3,当x ∈[0,7π12]时t ∈[−π3,5π6], 所以y =2sin t 在[−π3,5π6]的图象如下,由图知:f (x )=2n ﹣1在[0,7π12]上有且只有一个解,则−√3≤2n −1<1或2n ﹣1=2, 所以1−√32≤n <1或n =32,故n ∈[1−√32,1)∪{32}. 21.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知√3bsin(B +C)+acosB =c . (1)求角A 的大小;(2)若△ABC 为锐角三角形,且b =6,求△ABC 面积的取值范围.解:(1)因为√3bsin(B +C)+acosB =c ,所以√3bsinA +a ⋅a 2+c 2−b22ac=c , 则2√3bcsinA +a 2+c 2−b 2=2c 2,即a 2=b 2+c 2−2√3bcsinA . 又a 2=b 2+c 2﹣2bc cos A ,所以√3sinA =cosA ,即tanA =√33, 又A ∈(0,π),所以A =π6. (2)因为c sinC=b sinB,所以c =6sinC sinB ,S △ABC =12bcsinA =9sinC sinB =9sin(B+π6)sinB =9√32+92tanB, 因为△ABC 为锐角三角形,所以{0<B <π2,0<5π6−B <π2,解得π3<B <π2,则tanB >√3,故9√32<9√32+92tanB<6√3,即△ABC 面积的取值范围为(9√32,6√3). 22.(12分)已知函数f(x)=√3sin(ωx +φ)+2sin 2(ωx+φ2)−1(ω>0,0<φ<π)为奇函数,且f (x )图象的相邻两对称轴间的距离为π2.(1)求h (x )=f (x )+sin x +cos x 的最大值.(2)将函数f (x )的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数y =g (x )的图象,记方程g(x)=43在x ∈[π6,4π3]上的根从小到依次为x 1,x 2,x 3,…,x n ﹣1,x n 试确定n 的值,并求x 1+2x 2+2x 3+…+2x n ﹣1+x n 的值.解:(1)由题意,函数f(x)=√3sin(ωx +φ)+2sin 2(ωx+φ2)−1 =√3sin(ωx +φ)−cos(ωx +φ)=2sin(ωx +φ−π6)因为f (x )图象的相邻两对称轴间的距离为π2,所以T =π,可得ω=2,又由函数f (x )为奇函数,可得f(0)=2sin(φ−π6)=0,所以φ−π6=kπ,k ∈Z , 因为0<φ<π,所以φ=π6,所以函数f (x )=2sin2x , 所以h (x )=f (x )+sin x +cos x =2sin2x +sin x +cos x , 令t =sinx +cosx =√2sin(x +π4),t ∈[−√2,√2], 则t 2=1+sin2x ,y =2t 2+t ﹣2,t ∈[−√2,√2], 因为对称轴t =−14,所以当t =√2时,y max =2+√2, 即h (x )的最大值为2+√2.(2)将函数f (x )的图象向右平移π6个单位长度,可得y =2sin(2x −π3),再把横坐标缩小为原来的12(纵坐标不变),得到函数y =g(x)=2sin(4x −π3)的图象,由方程g(x)=43,即2sin(4x −π3)=43,即sin(4x −π3)=23, 因为x ∈[π6,4π3],所以4x −π3∈[π3,5π], 设θ=4x −π3,其中θ∈[π3,5π],即sinθ=23, 结合正弦函数y =sin θ的图象,如图,可得方程sinθ=23在θ∈[π3,5π]有5个解,即n=5,其中θ1+θ2=3π,θ2+θ3=5π,θ3+θ4=7π,θ4+θ5=9π,即4x1−π3+4x2−π3=3π,4x2−π3+4x3−π3=5π,4x3−π3+4x4−π3=7π,4x4−π3+4x5−π3=9π,解得x1+x2=11π12,x2+x3=17π12,x3+x4=23π12,x4+x5=29π12,所以x1+2x2+2x3+2x4+x5=(x1+x2)+(x2+x3)+(x3+x4)+(x4+x5)=20π3.。
2022-2023学年河南省信阳市高一年级下册学期期中数学试题【含答案】
2022-2023学年河南省信阳市高一下学期期中数学试题一、单选题1.复平面内表示复数()的点位于( )()z i a i =-a<0A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】先化简复数,即可判断表示的点所在的象限.z 【详解】表示的点为,()1z i a i ai=-=+()1,a 因为,所以点位于第四象限,a<0()1,a 故选:D.2.已知向量,且,则实数等于( )()()241a m b ==- ,,,()()a b a b-⊥+ mA .2B .C .8D .12【答案】D 【分析】根据,由求解.()()a b a b -⊥+()()a b a b +⋅-= 【详解】解:因为向量,()()241a m b ==- ,,,所以,()()2,1,6,1a b m a b m -=-++=-因为,()()a b a b -⊥+ 所以,()()()()()26110a b a b m m +⋅-=-⨯++-=解得,即213=m m =故选:D3.“为第一象限角”是“”的( )αtan 0α>A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据正切函数在各个象限的符号,结合充分条件、必要条件的概念,即可得出答案.【详解】若为第一象限角则必有;αtan 0α>反之,若,则为第一或第三象限角.tan 0α>α4.在中,若,,则形状为( )ABC3sin b B =cos cos A C =ABC A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】C【分析】首先利用正弦定理化边为角求出的值,再结合,以及三角形的内角和可求出sin A A C =,进而可得正确选项.B ∠【详解】因为,3sin b B =所以,3sin sin B A B =因为0180B <<所以,sin 0B ≠所以或,sin A =60A =120 又因为,,cos cos A C =0180A <<0180C << 所以A C∠=∠所以,,,60A ∠= 60C ∠= 180606060B ∠=--=所以为等边三角形.ABC 故选:C.5.已知,,则( )3π0,4α⎛⎫∈ ⎪⎝⎭πcos 4α⎛⎫+= ⎪⎝⎭cos α=A .B .C .D .35-354535±【答案】B 【分析】由的范围判断的符号,再由展开计算即可.π4α+πsin(4α+()ππcos cos 44αα⎡⎤=+-⎢⎥⎣⎦【详解】因为,所以,则,3π0,4α⎛⎫∈ ⎪⎝⎭ππ,π44α⎛⎫+∈ ⎪⎝⎭πsin 04α⎛⎫+>⎪⎝⎭所以πsin 4α⎛⎫+==⎪⎝⎭所以,ππππππ3cos cos cos cos sin sin 4444445αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦6.把函数图象上所有点的横坐标缩短到原来的,纵坐标不变.再把所得曲线向左平移()y f x =13个单位长度,得到函数的图象,则( )π4πsin 3y x ⎛⎫=+ ⎪⎝⎭()f x =A .B .πsin 312x ⎛⎫+ ⎪⎝⎭7πsin 312x ⎛⎫+ ⎪⎝⎭C .D .πsin 312x ⎛⎫+ ⎪⎝⎭7πsin 312x ⎛⎫+ ⎪⎝⎭【答案】A【分析】根据三角函数图象变换规律求解析式.【详解】函数的图象向右平移个单位长度,得到,πsin 3y x ⎛⎫=+ ⎪⎝⎭π4πππsin sin 4312y x x ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭再把所得的曲线所有点的横坐标伸长到原来的倍,得到.3()πsin 312x f x ⎛⎫=+ ⎪⎝⎭故选:A.7.八角星纹是大汶口文化中期彩陶纹样中具有鲜明特色的花纹.八角星纹常绘于彩陶盆和豆的上腹,先于器外的上腹施一圈红色底衬,然后在上面绘并列的八角星形的单独纹样.八角星纹以白彩的成,黑线勾边,中为方形或圆形,且有向四面八方扩张的感觉.八角星纹延续的时间较长,传播范围亦广,在长江以南的时间稍晚的崧泽文化的陶豆座上也屡见刻有八角大汶口文化八角星纹.图2是图1抽象出来的图形,在图2中,圆中各个三角形(如)为等腰直角三角形,点为四心,中ACD O 间部分是正方形且边长为2,定点,所在位置如图所示,则的值为( )A B AB AO ⋅A .10B .12C .14D .16【答案】C【分析】利用转化法得,展开利用向量数量积的定义并代入相关数()()·AB AO AD DB AD DO⋅=++ 据即可.【详解】如图所示:连接,OD因为中间阴影部分是正方形且边长为2,且图中各个三角形为等腰直角三角形,所以可得,,4ADO ODB π∠=∠=||OD = ||4AD = 2ADB π∠=则,()()··AB AO AD DB AD DO =++ 23cos cos44AD AD DO DB AD DB DO ππ=++⋅+.244214⎛=++= ⎝故选:C.8.函数在内恰有两个最小值点,则ω的范围是( )()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭π7π,44⎛⎫⎪⎝⎭A .B .13,47⎛⎤⎥⎝⎦13,37⎛⎤ ⎥⎝⎦C .D .4,43⎛⎤ ⎥⎝⎦4,33⎛⎤ ⎥⎝⎦【答案】B【分析】根据正弦型函数的最小值的性质,结合题意进行求解即可.【详解】当时,即时,函数有最小值,π3π2π(Z)42x k k ω+=+∈5π2π4(Z)k x k ω+=∈令时,有,,,,1,0,1,2k =-34πx ω=-5π4x ω=13π4x ω=21π4x ω=因为函数在内恰有两个最小值点,,()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭π7π,44⎛⎫⎪⎝⎭0ω>所以有:,π5π4413π7π1334477π21π44ωωωω⎧<⎪⎪⎪<⇒<≤⎨⎪⎪≤⎪⎩故选:B二、多选题9.已知中,,若三角形有两解,则x 不可能的取值是( )ABC ,2,45a x b B ===︒A .2B .2.5C .3D .3.5【答案】ACD【分析】若三角形有两解,则,结合正弦定理即可求解,sin 1a b A ><【详解】解:因为中,,且三角形有两解,ABC ,2,45a x b B ===︒所以,,sin 1a b A ><由正弦定理得,sin sin a bA B =所以,解得sin sin 1a B A b ===<x <因为,所以,a b >2x >所以,2x <<故选:ACD10.若复数,则( )z i =A .|z |=2B .|z |=4C .z 的共轭复数iD .z 24z =-【答案】AC【分析】根据复数的知识对选项进行分析,由此确定正确选项.,故A 选项正确,B 选项错误.2=,C 选项正确.z i =,D 选项错误.)22232z ii ==-+=-故选:AC11.下列关于平面向量的命题正确的是( )A .若∥,∥,则∥a b b c a cB .两个非零向量垂直的充要条件是:,a b 0a b ⋅= C .若向量,则四点必在一条直线上AB CD =,,,A B C D D .向量与向量共线的充要条件是:存在唯一一个实数,使()0a a ≠b λb aλ= 【答案】BD【分析】根据向量共线的概念判断A ,根据向量垂直的性质判断B ,根据向量相等和向量概念判断C ,根据向量共线定理判断D .【详解】对于,当时,不一定成立,A 错误;A 0b =∴对于,两个非零向量,当向量垂直可得,反之也一定有向量垂直,B ,a b ,a b 0a b ⋅= 0a b ⋅= ,a b B 正确;∴对于C ,若向量与方向和大小都相同,但四点不一定在一条直线上,,AB CD AB = CD,,,A B C D 错误;C ∴对于D ,由向量共线定理可得向量与向量共线的充要条件是:存在唯一一个实数,使()0a a ≠ bλD 正确.,b a λ=∴故选:BD .12.关于函数 有以下四个选项,正确的是( )()()cos sin 0f x x a x a =+≠A .对任意的都不是偶函数()0a f x ≠,B .存在使是奇函数0a ≠,()f x C .存在使0a ≠,()()πf x f x +=D .若的图像关于对称,则()f x π4x =1a =【答案】AD【分析】根据辅助角公式将函数化简,然后结合正弦型函数的性质,对选项逐一判断即可.()f x【详解】因为,其中,,()()cos sin f x x a x x ϕ=+=+1tan a ϕ=ππ22ϕ-<<对于A ,要使为偶函数,则,且,则无解,()f x ππ,2k k ϕ=+∈Z ππ22ϕ-<<即对任意的a ,都不是偶函数,故正确;()f x 对于B ,要使为奇函数,则,且,又,所以不存在a ,使()f x π,k k ϕ=∈Z ππ22ϕ-<<1tan a ϕ=是奇函数,故错误;()f x对于C ,因为,故错误;()()()()ππf x x x f x ϕϕ+=++=+≠对于D ,若的图像关于对称,则,,()f x π4x =πππ42k ϕ+=+k ∈Z 解得,且,所以,即,故正确.ππ,4k k ϕ=+∈Z ππ22ϕ-<<π4ϕ=π1tan 114a a ==⇒=故选:AD三、填空题13.______.cos112.5︒=【答案】【分析】首先由诱导公式求出,再利用二倍角公式计算可得;cos 225︒【详解】解:因为()cos 225cos 18045cos 45︒=︒+︒=-︒=又()2cos 225cos 2112.52cos 112.51︒=⨯︒=︒-=所以2cos 112.5︒=cos112.5︒=因为,所以90112.5180︒<︒<︒cos112.5︒=故答案为:14.已知函数,若,则=__________________() ³sin 2022f x ax b x =++22021f =()()2f -【答案】2023【分析】由条件可得,即可算出答案.()()4044f x f x -+=【详解】因为,所以,()3sin 2022f x ax b x -=--+()()4044f x f x -+=因为,所以,22021f =()()22023f -=故答案为:.202315.如图,中华中学某班级课外学习兴趣小组为了测量某座山峰的高气度,先在山脚A 处测得山顶C 处的仰角为60°,又利用无人机在离地面高400m 的M 处(即),观测到山顶C 处的仰400MD =角为15°,山脚A 处的俯角为45°,则山高___________m.BC=【答案】600【分析】确定,,在中,利用正弦定理计算得到AM =45ACM ∠=︒75MAC ∠=︒MAC △答案.【详解】,则,,,45AMD ∠=︒AM ==451560CMA ∠=︒+︒=︒60CAB ∠=︒故,,18060MAC ∠=︒-︒4575-︒=︒180756045ACM ∠=︒-︒-︒=︒在中,由正弦定理得,即MAC △sin sin AC MA AMC ACM =∠∠sin60AC =︒解得.AC =sin60600BC AC =︒=故答案为:60016.在中,若,,则的最大值为__________.ABC ∆3B π=AC =2AB BC +【答案】【详解】设22sin sin 3AB BC A θθπθ====⎛⎫- ⎪⎝⎭22sin ,3AB πθ⎛⎫∴=- ⎪⎝⎭,最大值为2sin BC θ=()222sin 4sin 3AB BC πθθθϕ⎛⎫∴+=-+=+ ⎪⎝⎭【解析】解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只需将三角函数化简为的形式()sin cos a b θθθϕ+=+四、解答题17.已知复数满足:.z i 13iz z +=+(1)求复数;z (2)化简:.61i zz +--【答案】(1)34iz =+(2)97i 22+【分析】(1)设复数,根据复数的模的计算公式结合复数相等的定义,列出方()i ,z m n m n =+∈R 程组,求出,从而可得出答案;,m n (2)根据共轭复数的定义结合复数的模的计算公式及复数的除法运算计算即可得解.【详解】(1)解:设复数,()i ,z m n m n =+∈R,()i i 13im n +=+,i 13i n m +=+则,41,33n n m m =⎧=⇒⎨==⎩⎪⎩;34i z ∴=+(2)解:由(1)得,34i z =+则34i 634i 61i 1i z z ++-=+----()()()()34i 1i 34i1i 1i ++=+---+17i 52-+=+.97i 22=+18.已知向量满足.,a b123a b a b ==-= ,,(1)求向量与向量的夹角;a b(2)求向量在向量方向上的投影的模.ba b - 【答案】(1)2π3【分析】(1)根据向量模的计算公式以及夹角公式即可求出;(2)根据投影向量的求解公式即可解出.【详解】(1)由可得,,3a b -=3a b -==229619a a b b -⋅+= 而,所以,,,而,12a b == ,1a b ⋅=-1cos ,2a b a b a b⋅〈〉==-0,πa b ≤〈〉≤所以,向量与向量的夹角为.a b2π3(2)向量在向量方向上的投影的模为:ba b - cos b b a-,=19.已知.22sin 2sin 12αα=-(1)求的值;sin cos cos 2ααα+(2)若,求的值.1(0,),(0,tan()23παπβαβ∈∈+=-2αβ+【答案】(1)15(2)74π【分析】(1)先根据降幂公式得,再对原式构造齐次式结合即可求解.1tan 2α=-1tan 2α=-(2)先求出,再根据角的范围即可确定的值.tan(2=tan(++)1αβααβ+=-)2αβ+【详解】(1)由已知得,所以2sin cos αα=-1tan 2α=-所以2222sin cos cos sin sin cos cos 2sin cos ααααααααα+-+=+.22tan 1tan 1tan 15ααα+-==+(2)因为tan +tan(+)tan(2=tan(++)11tan tan()ααβαβααβααβ+==--+)又,13tan ,0,24πααπαπ=-<<∴<< 同理33,2242ππαβπαβπ<+<∴<+<所以.724παβ+=20.在①,②这两个条件中任选一个,222cos cos sin sin sin B C A A B --=-sin cos 2sin sin cos C C B A A =-补充在下面的横线上,并解答.在中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足ABC ______.(1)求角C 的大小;(2)若点D 为边BC 上的一点,且AD =3,,,求的面积.BD =AB ACD 【答案】(1)3C π=【分析】(1)分别选择条件①和②,运用正弦定理和余弦定理即可求解;(2)作图,先求 ,再求 ,运用面积公式即可.ADB ∠DAC ∠【详解】(1)选①,因为,222cos cos sin sin sin B C A A B --=-所以,2221sin (1sin )sin sin sin B C A A B ----=-即,222sin sin sin sin sin A B C A B +-=由正弦定理得,222a b c ab +-=由余弦定理,2221cos 22a b c C ab +-==因为,所以;(0,)C π∈3C π=选②,因为,sin cos 2sin sin cos C C B A A =-所以,(2sin sin )cos sin cos B A C C A -=⋅所以,,sin cos sin cos 2sin cos C A A C B C ⋅+⋅=⋅sin 2sin cos B B C =⋅因为,所以,所以,(0,)B π∈sin 0B ≠1cos 2C =因为,所以;(0,)C π∈3C π=(2)由第一问可知,作图如下:3C π=在 中,由余弦定理,ABD△222cos 2AD BD AB ADB AD BD +-===⨯∠所以,,34ADB π∠=4ADC π∠=在中,由正弦定理,ADC △sinsin AC AD ADC C =∠∠=解得,,AC =54312DAC ππππ=--=∠,5sin sin sin sin cos cos sin 1243434343ππππππππππ⎡⎤⎛⎫⎛⎫=-+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;11sin 322ADC S AD AC DAC =⨯⨯∠=⨯=△综上,,三角形ADC .3C π=21.已知()1sin cos ,2cos ,2sin ,sin 2.2a x x b x θθ⎛⎫=+= ⎪⎝⎭ (1)若且 时,与的夹角为钝角,求的取值范围;),4(3c =- ()π,0,π4x θ=∈a c cos θ(2)若函数,求的最小值.π3θ=,()f x a b=⋅ ()fx 【答案】(1);(1,(-⋃(2)12【分析】(1)根据给定条件,利用向量数量积及共线向量的坐标表示列式,求出范围作答.cos θ(2)利用数量积的坐标表示求出函数,再利用换元法结合二次函数性质求解作答.()f x【详解】(1)当时, ,与的夹角为钝角,π4x =)2cos a θ= a c 于是,且与不共线,0a c ⋅< a c则 ,解得,即,8cos 0a c θ⋅=-< cos θ<()0,πθ∈()cos 1,1θ∈-则有,又当与共线时,,解得1cos θ-<<a c 6cos 0θ=cos θ=因此与不共线时,,a c cos θ≠所以的取值范围是.cos θ(1,(-⋃(2)依题意,当时,π3θ=()()1sin cos ,1sin 2)2f x a b x x x =⋅=+⋅,1sin 2cos )sin cos 2x x x x x x x =+=++令,则,πsin cos [4t x x x =+=+∈21sin cos 2t x x -=于是,而函数在上为增函数,()(2211222t f x t -=+=-(2122y t =+-t ⎡∈⎣则当y 有最小值,t =12所以的最小值为()f x 1222.已知函数的部分图像如图所示,若,()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭288AB BC π⋅=- B ,C 分别为最高点与最低点.(1)求函数的解析式;()f x (2)若函数在,上有且仅有三个不同的零点,,,(),求实()y f x m =-130,12π⎡⎤⎢⎥⎣⎦1x 2x 3x 123x x x <<数m 的取值范围,并求出的值.123 cos (2)x x x ++【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2),m ⎡∈⎣12【分析】(1)化简函数为,设函数的周期为T ,得到,()2sin 26f x x πω⎛⎫=+ ⎪⎝⎭()f x ,24T AB ⎛⎫= ⎪⎝⎭ ,再根据求解;,42T BC ⎛⎫=- ⎪⎝⎭ 288AB BC π⋅=- (2)将问题转化为曲线与在上有且仅有三个不同的交点,设,由()y f x =y m =130,12π⎡⎤⎢⎥⎣⎦26t x π=+与求解;再由,,得到求解.2sin y t =y m =12t t π+=233t t π+=12324t t t π++=【详解】(1)解:,)()2cos cos 1f x x x x ωωω=+-,2cos 2cos 1x x x ωωω=⋅+-,2cos 2x x ωω=+,2sin 26x πω⎛⎫=+ ⎪⎝⎭设函数的周期为T ,则,,()f x ,24T AB ⎛⎫= ⎪⎝⎭ ,42T BC ⎛⎫=- ⎪⎝⎭ 则,228888T AB BC π⋅=-=- 所以.故,故,T π=22T ππω==1ω=所以.()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)由题意,函数在上有且仅有三个不同的零点,,,,()y f x m =-130,12π⎡⎤⎢⎥⎣⎦1x 2x 3x 即曲线与在上有且仅有三个不同的交点.()y f x =y m =130,12π⎡⎤⎢⎥⎣⎦设,当时,.则,,26t x π=+130,12x π⎡⎤∈⎢⎥⎣⎦7,63t ππ⎡⎤∈⎢⎥⎣⎦2sin y t =7,63t ππ⎡⎤∈⎢⎥⎣⎦则,,,m ⎡∈⎣12t t π+=233t t π+=所以,即,12324t t t π++=12322224666x x x ππππ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即,123523x x x π++=所以.12351cos(2)cos 32π++==x x x。
安徽省阜阳市第二中学2023-2024学年高一下学期期中考试数学试题(含答案)
阜阳市第二中学2023-2024学年高一下学期期中考试数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:必修第一册,必修第二册第六章~第八章8.4.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,,则()A. B. C. D. 2. 计算的值( )A.B.C.D. 3.已知,在上的投影为,则( )A.B. C.D. 4. 已知函数是定义在上的奇函数,当时,,则( )A. B. 2C. 3D. 5. 如图,为水平放置的斜二测画法的直观图,且,则的周长为(){}215M x x =->{}N |15N x x *=∈-<<()M N =Rð{}0,1,2,3{}1,2,3{}0,1,2{}1,2cos 43cos13sin 43sin13︒︒+︒︒12cos572a = b a 13a b ⋅= 1313-2323-()f x R 0x >32()3f x x x =-(1)f -=2-3-A O B '''V AOB V 3,42''''==O A O B AOB VA. 9B. 10C. 11D. 126. 在中,,则( )AB.C.D.7. 如图,在中,为的中点,则( )A. B. C. D. 8. 如图,在梯形中,,,,,,以所在直线为轴将梯形旋转一周,所得的几何体的体积为( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知i 为虚数单位,复数,则( )A. 的共轭复数为B. C. 为实数D. 在复平面内对应点在第一象限.的ABC V 2,120AB AC C === sin A =ABC V 4,AB DB P = CD BP =1142AB AC-+1143AB AC-+5182AB AC-+5183AB AC-+ABCD AB AD ⊥//AB DC 4AB =3AD =1DC =AD 16π19π21π24π1212i,2i z z =+=-1z 12i -+12=z z 12z z +12z z ⋅10. 在中,,则的面积可以是( )A.B. 1C.D.11. 已知函数(,)的部分图象如图所示,则下列说法正确的是( )A. 函数的解析式B. 直线是函数图象的一条对称轴C. 在区间上单调递增D. 不等式的解集为,三、填空题:本题共3小题,每小题5分,共15分.12 已知函数,则__________.13. 已知,且,则的最小值为______.14. 已知向量满足,若对任意的实数,都有,则的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 已知复数满足,.(1)求复数;(2)求复数的实部和虚部.16. 已知向量,且.(1)求的值;.ABC ∆1,6AB AC B π===ABC ∆()3sin()f x x ωϕ=+0ω>π||2ϕ<()f x π()3sin(2)3f x x =+11π12x =-()f x ()f x 3π11π(,263()2f x ≤3ππ[π,π]412k k -+-+Z k ∈()21log ,01,04x x x f x x ->⎧⎪=⎨⎛⎫≤ ⎪⎪⎝⎭⎩f f ⎛⎫= ⎪ ⎪⎝⎭12a >2250a b ab -+-=a b +,,a b c ||||2==r r a b x 13a b a xb +≤+ c a c b -+- z 2z z +=22i z =-z 4z ()()()2,4,,1,1,2a b m c ===()2a b c -⊥ m(2)求向量与的夹角的余弦值.17. 如图,某种水箱用的“浮球”是由两个半球和一个圆柱筒组成,已知球的直径是,圆柱筒长.(1)这种“浮球”的体积是多少?(2)要这样个“浮球”表面涂一层胶质,如果每平方厘米需要涂胶克,共需胶多少克?18. 在中,内角A ,B ,C 的对边分别为a ,b ,c,且.(1)求角B ;(2)若为锐角三角形,,D 是线段AC 的中点,求BD 的长的取值范围.19. 在中,内角对边分别为,已知.(1)求角;(2)已知是边上的两个动点(不重合),记.①当时,设的面积为,求的最小值;②记.问:是否存在实常数和,对于所有满足题意的,都有和的值;若不存在,说明理由.在的a b - 23b c - 8cm 3cm 3cm 10000.02ABC V sin sin sin sin b a C Ac B A--=+ABC V 2AC =Rt ABC △,,A B C ,,a b c cos cos cos A B Ca b c+=+A 2,,c b a P Q ≠=AC ,P Q PBQ θ∠=π6θ=PBQ V S S ,BPQ BQP ∠α∠β==θk ,αβ()sin2sin22cos k k αβαβ++=-θk阜阳市第二中学2023-2024学年高一下学期期中考试数学答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】C二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BD【10题答案】【答案】AD【11题答案】【答案】ABD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】8【13题答案】【答案】##【14题答案】四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.【15题答案】【答案】(1)(2)复数的实部为,虚部为.【16题答案】【答案】(1) (2)【17题答案】【答案】(1)(2)克【18题答案】【答案】(1)(2)【19题答案】【答案】(1); (2)①;②存在,12-12-+1i z =-4z 4-03m =3400πcm 31760π3B π=π3A =(min 32S =-π,3k θ==。
甘肃省白银市会宁县第四中学2023-2024学年高一下学期期中考试数学试题(含答案)
会宁县第四中学2023-2024学年高一下学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量,且 ,则向量与的夹角为( )A. B. C. D. 2. 若复数纯虚数,则实数( )A. B. C. 2 D. 33. ( )A. B. C. D. 4. 平行四边形(是原点,按逆时针排列),,则点坐标( )A. B. C. D. 5. 在中,内角A ,B ,C 所对的边分别为a ,b ,c ,若,,,则( )A. 8B. 5C. 4D. 36. 在中,,且( )A. B. 3 C. 2 D.7. 如图,,是九个相同的正方形拼接而成的九宫格中的两个角,则()A. B. C. D. 为10a = 12b = 60a b ⋅=- a b 60︒120︒135︒150︒2i 3i a a z ++=-=a 3-2-sin145cos35︒︒=sin 70-︒1sin 702-︒sin 70︒1sin 702︒OABC O ,,,O A B C ()()1,2,3,7A B -C ()4,5-()4,4-()3,5-()5,4-ABC V 6a =sin A =9cos 16B =b =ABC V 2π,3A AC ==ABC V AB =αβαβ+=π6π4π35π128. 已知向量.若与的夹角的余弦值为,则实数的值为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 某校对参加高校综合评价测试的学生进行模拟训练,从中抽出名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间内的学生人数为2人.则( )A. 的值为0.015,的值为40B. 平均分72,众数为75C. 中位数为75D. 已知该校共1000名学生参加模拟训练,则不低于90分的人数一定为50人10. 已知直角三角形中,,,则实数k 值可以为( )A. B. C. D.11 设函数,则( )A. 是偶函数 B. 在上单调递减C. 的最大值为2 D. 的图象关于直线对称三、填空题:本题共3小题,每小题5分,共15分.12. 已知,则的值为__________.13. 已知平面向量满足,与的夹角为,则的值______.14._________.为的.()(),2,2,1a t b ==- a bt 5252-3232-N [90,100]x N ABC (2,3)AB = (1,)AC k = 23-32113ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()f x ()f x π0,2⎡⎤⎢⎥⎣⎦()f x ()f x π2x =1sin 3α=-cos2α,a b ||1a = ||2,b a = b 60︒|2|a b + sin 31cos59+cos31cos31︒︒︒︒=四、解答题:本题共5小题,共77分.解答题应写出文字说明、证明过程或演算步骤.15. 已知,,求以及的值.16. 已知为第二象限角,且满足.求值:(1);(2).17. 已知复数,且纯虚数.(1)求复数;(2)若,求复数以及模.18. 已知.(1)求函数的最小正周期;(2)已知均为锐角,的值.19. 在中,角,,所对的边分别为,,,且,再从条件①、条件②这两个条件中选一个条件作为已知,求:(1)的值;(2)的面积和边上的高.条件①:,;条件②:,.为3cos 5θ=()π,2πθ∈πsin 6θ⎛⎫+ ⎪⎝⎭πtan 4θ⎛⎫- ⎪⎝⎭α2sin cos αα=-sin cos 3sin cos αααα-+πcos 3α⎛⎫+ ⎪⎝⎭()3i R z b b =+∈()13i z +⋅z 2iz ω=+ωω()2cos 2sin 1222x x x f x =+-()f x ,αβ8,co 6πs 5f αβ⎛⎫+== ⎪⎝⎭()sin αβ-ABC V A B C a b c 3a =sin A ABC V AC 2cos 3C =4b =2cos 3C =1cos 9B =会宁县第四中学2023-2024学年高一下学期期中考试数学试卷答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AB【10题答案】【答案】ACD【11题答案】【答案】ABD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】1四、解答题:本题共5小题,共77分.解答题应写出文字说明、证明过程或演算步骤.【15题答案】【答案】,7【16题答案】【答案】(1)3(2)【17题答案】【答案】(1);(2),.【18题答案】【答案】(1)(2)【19题答案】【答案】(1(2)的面积为79πsin 6θ⎛⎫+⎪⎝⎭πtan =4θ⎛⎫- ⎪⎝⎭3i z =+71i 55ω=-ω=2πABC V AC。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 1B. y = 3x^2 + 5C. y = 1/xD. y = -4x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B等于()A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}3. 若sinα=0.6,则cosα的值是()A. 0.8B. -0.8C. -0.4D. 0.44. 函数f(x) = |x - 2| + |x + 3|的最小值是()A. 5B. 2C. 1D. 45. 不等式x^2 - 4x + 3 ≤ 0的解集是()A. (1, 3)B. (-∞, 3]C. [1, 3]D. (-∞, 1] ∪ [3, +∞)6. 已知数列1, 3, 5, 7, ...,其第n项an等于()A. 2n - 1B. 2n + 1C. 2nD. n + 17. 若a + b + c = 0,则a^2 + b^2 + c^2 =()A. 0B. 2abC. 2bcD. 2ac8. 函数y = x^3 - 6x^2 + 12x - 4的极大值点是()A. x = 1B. x = 2C. x = 3D. x = 49. 已知tanθ = 2,求sin^2θ + cos^2θ的值是()A. 1B. 5C. 3D. 410. 下列哪个选项是二元一次方程()A. x^2 + y = 7B. 3x + 2y = 10C. x^2 - y = 0D. 2x/3 + y/4 = 1二、填空题(每题4分,共20分)11. 等差数列的首项是5,公差是3,则其第10项是_________。
12. 若函数f(x) = x^2 - 2x在区间[1, 4]上是增函数,则f(1) = ________。
13. 已知三角形ABC中,∠A = 90°,a = 3,b = 4,则c=_________。
2022-2023学年安徽省合肥市高一下学期期中考试数学试题【含答案】
2022-2023学年安徽省合肥市高一下学期期中考试数学试题一、单选题1.若复数为纯虚数,则实数的值为( )()242iz a a =-+-a A .2B .2或C .D .2-2-4-【答案】C【分析】根据给定条件,利用纯虚数的定义列式计算作答.【详解】因为复数为纯虚数,则有,解得,()242i z a a =-+-24020a a ⎧-=⎨-≠⎩2a =-所以实数的值为.a 2-故选:C2.在中,内角A ,B ,C 所对的边分别是a ,b ,c ,且,则的形状为ABC 2cos c a B =ABC ( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】A【分析】已知条件用正弦定理边化角,由展开后化简得,可得出等()sin sin C A B =+tan tan A B =腰三角形的结论.【详解】,由正弦定理,得,2cos c a B =()sin sin 2sin cos C A B A B=+=即sin cos cos sin 2sin cos ,A B A B A B +=∴,可得,sin cos cos sin A B A B =tan tan A B =又,∴,0π,0πA B <<<<A B =则的形状为等腰三角形.ABC 故选:A.3.某圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为( )120︒A .BC .D 【答案】D【分析】求出扇形的弧长,进而求出圆锥的底面半径,由勾股定理得到圆锥的高,利用圆锥体积公式求解即可.【详解】因为圆锥的侧面展开图是半径为3,圆心角为的扇形,120︒所以该扇形的弧长为,120π32π180⨯=设圆锥的底面半径为,则,解得:,r 2π2πr =1r =因为圆锥的母线长为3,所以圆锥的高为h =该圆锥的体积为.2211ππ133r h =⨯⨯=故选:D4.中,三个内角A ,B ,C 的对边分别为a ,b ,c .已知,B 的大ABC π4A =a =b =小为( )A .B .C .或D .或π6π3π65π6π32π3【答案】D【分析】根据正弦定理即可求解.【详解】由正弦定理可得sin sin sin a B b A B B =⇒==由于,,所以或,()0,πB ∈b a>B =π32π3故选:D5.设点P 为内一点,且,则( )ABC ∆220PA PB PC ++=:ABP ABC S S ∆∆=A .B .C .D .15251413【答案】A【分析】设AB 的中点是点D ,由题得,所以点P 是CD 上靠近点D 的五等分点,即14PD PC=- 得解.【详解】设AB 的中点是点D ,∵,122PA PB PD PC+==- ∴,14PD PC=- ∴点P 是CD 上靠近点D 的五等分点,∴的面积为的面积的.ABP ∆ABC ∆15故选:A【点睛】本题主要考查向量的运算,意在考查学生对这些知识的理解掌握水平.6.如图,在长方体中,已知,,E 为的中点,则异面直1111ABCD A B C D -2AB BC ==15AA =11B C 线BD 与CE 所成角的余弦值为()ABCD【答案】C【分析】根据异面直线所成角的定义,利用几何法找到所成角,结合余弦定理即可求解.【详解】取的中点F ,连接EF ,CF ,,易知,所以为异面直线BD11C D 11B D 11EF B D BD∥∥CEF ∠与CE所成的角或其补角.因为1112EF B D ==CE CF ====余弦定理得.222cos 2EF EC CF CEF EF EC +-∠====⋅故选:C7.在《九章算术》中,底面为矩形的棱台被称为“刍童”.已知棱台是一个侧棱相ABCD A B C D -''''等、高为1的“刍童”,其中,“刍童”外接球的表面积为22AB A B ''==2BC B C ''==( )A .B .CD .20π20π3【答案】A【分析】根据刍童的几何性可知外接球的球心在四棱台上下底面中心连线上,设球心为O ,根据几何关系求出外接球半径即可求其表面积.【详解】如图,连接AC 、BD 、、,设AC ∩BD =M ,∩=N ,连接MN .A C ''B D ''AC ''BD ''∵棱台侧棱相等,∴易知其外接球球心在线段MN 所在直线上,设外接球球心为ABCD A B C D -''''O ,如图当球心在线段MN 延长线上时,易得,MC =2,,,4AC ===2A C ''===1NC '=MN =1,由得,,即OC OC '=2222NC ON OM MC '+=+,()()2222141141OM MN OM OM OM OM ++=+⇒++=+⇒=故OC =OC ==∴外接球表面积为.24π20π⋅=如图当球心在线段MN 上时,由得,,即OC OC '=2222NC ON OM MC '+=+舍去,()()2222141141MN OM OM OM OM OM +-=+⇒+-=+⇒=-故选:A【点睛】关键点睛:利用刍童的几何性确定外接球的球心是解题的关键.8.如图,直角的斜边长为2,,且点分别在轴,轴正半轴上滑动,点ABC ∆BC 30C ∠=︒,B C x y 在线段的右上方.设,(),记,,分别考查A BC OA xOB yOC =+ ,x y ∈R M OA OC =⋅N x y =+的所有运算结果,则,MN A .有最小值,有最大值B .有最大值,有最小值M N M N C .有最大值,有最大值D .有最小值,有最小值M N M N 【答案】B【分析】设,用表示出,根据的取值范围,利用三角函数恒等变换化简,OCB α∠=α,M N α,M N 进而求得最值的情况.,M N 【详解】依题意,所以.设,则30,2,90BCA BC A ∠==∠=1AC AB ==OCB α∠=,所以,,所30,090ABx αα∠=+<<()())30,sin 30Aαα++()()2sin ,0,0,2cos B C αα以,当时,取得最大值()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ 23090,30αα+==M 为.13122+=,所以,所以OA xOB yOC =+ ()sin 302cos x y αα+==时,有最小值为()sin 302cos N x y αα+=+=+ 1=290,45αα==N 故选B.1+【点睛】本小题主要考查平面向量数量积的坐标运算,考查三角函数化简求值,考查化归与转化的数学思想方法,属于难题.二、多选题9.下列关于复数的四个命题,其中为真命题的是( )21i z =-A .z 的虚部为1B .22iz =C .z 的共轭复数为D .1i -+2z =【答案】AB【分析】根据复数的除法运算化简复数,即可结合选项逐一求解.【详解】,故虚部为1,共轭复数为,()()()21i 21i 1i 1i 1i z +===+--+1i-=,故AB 正确,CD 错误,()221i 2i z =+=故选:AB10.蜜蜂的巢房是令人惊叹的神奇天然建筑物.巢房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱形的底,由三个相同的菱形组成.巢中被封盖的是自然成熟的蜂蜜.如图是一个蜂巢的正六边形开口,下列说法正确的是( )ABCDEF A .B .AC AE BF -= 32AE AC AD+= C .D .在上的投影向量为AF AB CB CD ⋅=⋅ AD AB AB 【答案】BCD【分析】对A ,利用向量的减法和相反向量即可判断;对B ,根据向量的加法平行四边形法则即可判断;对C ,利用平面向量的数量积运算即可判断;对D ,利用向量的几何意义的知识即可判断.【详解】连接,与交于点,如图所示,,,,,,AE AC AD BF BD CE CE AD H 对于A :,显然由图可得与为相反向量,故A 错误;AC AE AC EA EC -=+= EC BF对于B :由图易得,直线平分角,且为正三角形,根据平行四边形法AE AC=AD EAC ∠ACE △则有,与共线且同方向,2AC AE AH += AH AD易知,均为含角的直角三角形,EDH AEH △π6,即,3AH DH = 所以,34AD AH DH DH DH DH =+=+=又因为,故,26AH DH= 232AH AD=故,故B 正确;32AE AC AD+= 对于C :设正六边形的边长为,ABCDEF a 则,,22π1cos 32AF AB AF AB a⋅=⋅=- 22π1cos 32CB CD CB CD a ⋅=⋅=-所以,故C 正确;AF AB CB CD ⋅=⋅ 对于D :易知,则在上的投影向量为,故D 正确,π2ABD ∠=AD AB AB故选:BCD .11.有一个三棱锥,其中一个面为边长为2的正三角形,有两个面为等腰直角三角形,则该几何体的体积可能是( )AB CD【答案】BCD【分析】分三种情况讨论,作出图形,确定三棱锥中每条棱的长度,即可求出其体积.【详解】如图所示:①若平面,为边长为2的正三角形,,,都是等腰直角三AB ⊥BCD BCD △2AB =ABD △ABC 角形,满足题目条件,故其体积;11222sin 6032V =⨯⨯⨯⨯⨯︒=②若平面,为边长为2的正三角形,,,都是等腰直角三AB ⊥BCD ACD AB =ABD △ABC角形,满足题目条件,故其体积1132V ==③若为边长为2的正三角形,,都是等腰直角三角形,BCD △ABD △ABC,中点,因为,而2AB BC CD AD ====AC =AC E BE AC ⊥,所以,即有平面,故其体积为222DE B D E B +=BE DE ⊥BE ⊥ACD 112232V =⨯⨯=故选:BCD12.如图,已知的内接四边形中,,,,下列说法正确的O ABCD 2AB =6BC =4AD CD ==是( )A .四边形的面积为B ABCDC .D .过作交于点,则4BO CD ⋅=- D DF BC ⊥BC F 10DO DF ⋅=【答案】BCD【分析】A 选项,利用圆内接四边形对角互补及余弦定理求出,,进而求出1cos 7D =-1cos 7B =,利用面积公式进行求解;B 选项,在A 选项基础上,由正弦定理求出外接圆直径;Csin ,sin B D 选项,作出辅助线,利用数量积的几何意义进行求解;D 选项,结合A 选项和C 选项中的结论,先求出∠DOF 的正弦与余弦值,再利用向量数量积公式进行计算.【详解】对于A ,连接,在中,,,AC ACD 21616cos 32AC D +-=2436cos 24AC B +-=由于,所以,故,πB D +=cos cos 0B D +=22324003224AC AC--+=解得,22567AC =所以,,所以1cos 7D =-1cos 7B =sin sin B D ===故11sin 2622ABC S AB BC B =⋅=⨯⨯=11sin 4422ADC S AD DC D =⋅=⨯⨯= 故四边形,故A 错误;ABCD =对于B ,设外接圆半径为,则,R 2sin AC R B ===B 正确;对于C ,连接,过点O 作OG ⊥CD 于点F ,过点B 作BE ⊥CD 于点E ,则由垂径定理得:BD ,122CG CD ==由于,所以,即,πA C +=cos cos 0A C +=22416163601648BD BD +-+-+=解得,所以,所以,且,BD =1cos 2C =π3C =1cos 632CE BC C =⋅=⨯=所以,即在向量上的投影长为1,且与反向,321EF =-= BO CD EG CD 故,故C 正确;4BO CD EG CD ⋅=-⋅=-对于D,由C 选项可知:,故,π3C =sin 604DF CD =⋅︒== 30CDF ∠=︒因为,由对称性可知:DO 为∠ADC 的平分线,故,AD CD =1302ODF ADC ∠=∠-︒由A 选项可知:,显然为锐角,1cos 7ADC ∠=-12ADC ∠故1cos 2ADC ∠==1sin 2ADC ∠==所以1cos cos 302ODF ADC ⎛⎫∠=∠-︒ ⎪⎝⎭11cos cos30sin sin3022ADCADC =∠⋅︒+∠⋅︒=所以,故D 正确.cos 10DO DF DO ODF DF ∠==⋅=⋅ 故选:BCD三、填空题13.已知向量,,若,则________.()2,4a =(),3b m =a b ⊥ m =【答案】6-【分析】依题意可得,根据数量积的坐标表示得到方程,解得即可;0a b ⋅=【详解】因为,且,()2,4a =(),3b m =a b ⊥ 所以,解得.2430a b m ⋅=⨯+⨯=6m =-故答案为:6-14.若复数所对应复平面内的点在第二象限,则实数的取值范围为________;()16z m i i=++m 【答案】60m -<<【分析】先化成复数代数形式得点坐标,再根据条件列不等式解得实数的取值范围.m 【详解】因为对应复平面内的点为,又复数所对应复平面()6z m m i=++6m m +,()16z m i i=++内的点在第二象限,所以06060m m m <⎧∴-<<⎨+>⎩【点睛】本题重点考查复数的概念,属于基本题.复数的实部为、虚部为、模为(,)a bi a b R +∈a b 、对应点为、共轭为(,)a b .-a bi15.已知,是边AB 上一定点,满足,且对于AB 上任一点P ,恒有ABC 0P 014P B AB= .若,,则的面积为________.00PB PC P B P C ⋅≥⋅ π3A =4AC = ABC【答案】【分析】建立直角坐标系,利用平面向量数量积的坐标运算公式,结合二次函数的性质、三角形面积公式进行求解即可.【详解】以所在的直线为横轴,以线段的中垂线为纵轴建立如图所示的直角坐标系,AB AB设,,,因为,所以,()40AB t t =>()2,0A t -()2,0B t 014P B AB =()0,0P t 设,,(),C a b ()(),022P x t x t -≤≤,()()()()002,0,,,,0,,PB t x PC a x b P B t P C a t b =-=-==-由,()()()()2200220PB PC P B P C t x a x t a t x x a t at t ⋅≥⋅⇒--≥-⇒-+++≥设,该二次函数的对称轴为:,()()222f x x x a t at =-++22a tx +=当时,即,222a t x t+=<-6a t <-则有,所以无实数解,()()222042203f t t t a t at t a t-≥⇒++++≥⇒≥-当时,即,222a tx t +=>2a t >则有,所以无实数解,()()22204220f t t t a t at t a t≥⇒-+++≥⇒≤当时,即,2222a tt t +-≤≤62t a t -≤≤则有,而,所以,()()2222400a t at t a ∆=-+-+≤⇒≤⎡⎤⎣⎦20a ≥0a =显然此时在纵轴,而,所以该三角形为等边三角形,()0,C b π3A =故的面积为ABC 1442⨯⨯=故答案为:【点睛】关键点睛:建立合适的直角坐标系,利用二次函数对称轴与区间的位置关系关系分类讨论是解题的关键.16.我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.意思是:夹在两个平行平面之间的两个等高的几何体被平行于这两个面的平面去截,若截面积相等,则两个几何体的体积相等,这个定理的推广是:夹在两个平行平面间的几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为k ,则两个几何体的体积比也为k .已知线段AB 长为4,直线l 过点A 且与AB 垂直,以B 为圆心,以1为半径的圆绕l 旋转一周,得到环体;以A ,B 分别为上M 下底面的圆心,以1为上下底面半径的圆柱体N ;过AB 且与l 垂直的平面为,平面,且距β//αβ离为h ,若平面截圆柱体N 所得截面面积为,平面截环体所得截面面积为,我们可以α1S αM 2S 求出的比值,进而求出环体体积为________.12S S M 【答案】28π【分析】画出示意图的截面,结合图形可得和的值,进而求出圆柱的体积,乘以,可得环1S 2S 2π体的体积,得到答案.M 【详解】画出示意图,可得,14S ==222ππS r r =-外内其中,,(224r =外(224r =内故,即,21π2πS S ==1212πS S =环体体积为.M 22π2π4π8πV =⨯=柱故答案为:28π四、解答题17.如图所示,在中D 、F 分别是BC 、AC 的中点,,,.ABC 23AE AD =AB a =AC b = (1)用,表示向量,;a bAD BF (2)求证:B ,E ,F 三点共线.【答案】(1),()12AD a b =+ 12BF b a=-(2)证明见解析【分析】(1)由向量的线性运算法则求解;(2)用,表示向量、,证明它们共线即可得证.a bBF BE 【详解】(1)∵,,D ,F 分别是BC ,AC 的中点,AB a =AC b = ∴,()()111222AD AB BD AB BC AB AC AB a b=+=+=+-=+ ,12BF AF AB b a=-=- (2)由(1),,∴1233BE b a =- 12BF b a=-1312322332BF b a b a BE ⎛⎫=-=-= ⎪⎝⎭∴与共线,又∵与有公共点B ,BF BE BF BE故B ,E ,F 三点共线.18.在中,a ,b ,c 分别是角A 、B 、C 的对边,且.ABC222a b c +=+(1)求C ;(2)若,求A .tan 2tan B a cC c -=【答案】(1)45C =︒(2)75A =︒【分析】(1)由余弦定理即可求解,(2)利用正弦定理边角互化,结合两角和的正弦公式即可得,进而可求解.60B =︒【详解】(1)∵,∴,∴,222a b c +=+2222a b c ab +-=cos C =由于C 是三角形内角,∴.45C =︒(2)由正弦定理可得,tan 22sin sin tan sin B a c A CC c C --==∴sin cos 2sin sin cos sin sin B C A CB C C -=∴,∴,sin cos 2sin cos sin cos B C A B C B =-sin cos sin cos 2sin cos B C C B A B +=∴,∴.()sin 2sin cos B C A B+=sin(π)sin 2sin cos A A A B ==-∵,∴,sin 0A ≠1cos 2B =由于B 是三角形内角 ,∴,则.60B =︒180456075A ︒-︒-︒==︒19.如图,数轴的交点为,夹角为,与轴、轴正向同向的单位向量分别是.由平面,x y O θx y 21,e e 向量基本定理,对于平面内的任一向量,存在唯一的有序实数对,使得,OP(),x y 12OP xe ye =+ 我们把叫做点在斜坐标系中的坐标(以下各点的坐标都指在斜坐标系中的坐标).(),x y P xOy xOy(1)若为单位向量,且与的夹角为,求点的坐标;90,OP θ=OP 1e 120 P(2)若,点的坐标为,求向量与的夹角的余弦值.45θ=P (OP 1e【答案】(1)1,2⎛- ⎝【分析】(1)时,坐标系为平面直角坐标系,设点利用求出,再90θ= xOy (),P x y 112⋅=- OP e x 利用模长公式计算可得答案;(2)根据向量的模长公式计算可得答案.,12==OP e e 1⋅OP e【详解】(1)当时,坐标系为平面直角坐标系,90θ=xOy 设点,则有,而,(),P x y (),OP x y =()111,0,e OP e x=⋅=又,所以,又因,111cos1202OP e OP e ⋅=⋅⋅=- 12x =-1OP ==解得的坐标是;y =P 1,2⎛- ⎝(2)依题意夹角为,21,e e 12121245,cos45⋅=⋅==e e e e OP e e12OP e e ∴====,()2111121121cos ,2OP e OP e OP e e e e e e e αα⋅=⋅⋅=⋅=+⋅=+⋅=2,cos αα==20.如图所示,在四棱锥中,平面,,E 是的中点.P ABCD -//BC PAD 12BC AD =PD(1)求证:;//BC AD (2)若M 是线段上一动点,则线段上是否存在点N ,使平面?说明理由.CE AD //MN PAB 【答案】(1)证明见解析;(2)存在,理由见解析.【分析】(1)根据线面平行的性质定理即可证明;(2)取中点N ,连接,,根据线面平行的性质定理和判断定理即可证明.AD CN EN 【详解】证明:(1)在四棱锥中,平面,平面,P ABCD -//BC PAD BC ⊂ABCD 平面平面,ABCD ⋂PAD AD =∴,//BC AD (2)线段存在点N ,使得平面,理由如下:AD //MN PAB取中点N ,连接,,AD CN EN ∵E ,N 分别为,的中点,PD AD ∴,//EN PA ∵平面,平面,EN ⊄PAB PA ⊂PAB ∴平面,//EN PAB 取AP 中点F,连结EF,BF ,,且,//EF AN =EF AN 因为,,//BC AD 12BC AD =所以,且,//BC EF =BC EF 所以四边形BCEF 为平行四边形,所以.//CE BF 又面PAB ,面PAB ,所以平面;CE ⊄BF ⊂//CE PAB 又,CE EN E = ∴平面平面,//CEN PAB ∵M 是上的动点,平面,CE MN ⊂CEN ∴平面PAB ,//MN ∴线段存在点N ,使得MN ∥平面.AD PAB 21.合肥一中云上农舍有三处苗圃,分别位于图中的三个顶点,已知,ABCAB AC ==.为了解决三个苗圃的灌溉问题,现要在区域内(不包括边界)且与B ,C 等距的40m BC =ABC 一点O 处建立一个蓄水池,并铺设管道OA 、OB 、OC.(1)设,记铺设的管道总长度为,请将y 表示为的函数;OBC θ∠=m y θ(2)当管道总长取最小值时,求的值.θ【答案】(1)()202sin π200cos 4y θθθ-⎛⎫=+<< ⎪⎝⎭(2)π6θ=【分析】(1)根据锐角三角函数即可表示,,进而可求解,20cos BO θ=20sin cos OD θθ=(2)利用,结合三角函数的最值可得.2sin cos k θθ-=k 【详解】(1)由于,在的垂直平分线 上,AB AC ==,OB OC O =∴BC AD 若设,则, ∴OBC θ∠=20cos BO θ=20sin cos OD θθ=20sin 20cos OA θθ=-则;()202sin 202020tan 2200cos cos 4y θπθθθθ-⎛⎫=-+⨯=+<< ⎪⎝⎭(2)令得2sin cos k θθ-=2cos sin k θθ=+≤故,又,故23k≥0k >k ≥min2020y =+此时:得2sin cos θθ-=πsin 2sin 23θθθ⎛⎫+=+= ⎪⎝⎭πsin 13θ⎛⎫+= ⎪⎝⎭又,故,故π0,4θ⎛⎫∈ ⎪⎝⎭ππ32θ+=π6θ=22.数学史上著名的波尔约-格维也纳定理:任意两个面积相等的多边形,它们可以通过相互拼接得到.它由法卡斯·波尔约(FarksBolyai )和保罗·格维也纳(PaulGerwien )两位数学家分别在1833年和1835年给出证明.现在我们来尝试用平面图形拼接空间图形,使它们的全面积都与原平面图形的面积相等:(1)给出两块相同的正三角形纸片(如图1、图2),其中图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥;图2,正三角形三个角上剪出三个相同的四边形(阴影部分),其较长的一组邻边边长为三角形边长的,有一组对角为直角,余下部分按虚线折起,可成一个14缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱锥的上底.(1)试比较图1与图2剪拼的正三棱锥与正三棱柱的体积的大小;(2)如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等.请仿照图2设计剪拼方案,用虚线标示在图3中,并作简要说明.【答案】(1)柱锥V V>(2)答案见解析【分析】(1)根据题中的操作过程,结合棱锥、棱锥的体积进行求解比较即可;(2)根据题中操作过程,结合三角形内心的性质、直三棱柱的定义进行操作即可.【详解】(1)依上面剪拼方法,有.柱锥V V >推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正如图所示:在正四面体中,高,DO ===在图2一顶处的四边形中,如图所示:直三棱柱高,()π11tan tan 21622PN PMN MN =∠⋅=⨯⨯-==,13V V h h ⎛⎫-=-= ⎪⎝⎭柱锥柱锥0=>∴.柱锥V V >(2)如图,分别连接三角形的内心与各顶点,得三条线段,再以这三条线段的中点为顶点作三角形.以新作的三角形为直棱柱的底面,过新三角形的三个顶点向原三角形三边作垂线,沿六条垂线剪下三个四边形,可以拼成直三棱柱的上底,余下部分按虚线折起,成为一个缺上底的直三棱柱,再将三个四边形拼成上底即可得到直三棱柱.。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
2022-2023学年安徽省合肥市高一下学期期中检测数学试题【含答案】
2022-2023学年安徽省合肥市高一下学期期中检测数学试题一、单选题1.已知集合,,则( ){}14A x x =-≤≤(){}2ln 4B x y x==-A B ⋃=A .B .[)1,2-[]1,4-C .D .(]2,4-(][),12,-∞-⋃+∞【答案】C【分析】先化简集合B ,再去求即可解决.A B ⋃【详解】因为,(){}{}2ln 422B x y x x x ==-=-<<则,{}{}{}142224A B x x x x x x ⋃==-≤≤⋃-<<=-<≤故选:C2.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【分析】根据圆锥的结构特征即可判断A 选项;根据棱台的定义即可判断选项B;结合圆柱、圆锥、圆台的旋转特征,举出反例即可判断选项C ;由棱柱的定义即可判断选项D.【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.【点睛】解决空间几何体结构特征问题的3个策略(1)把握几何体的结构特征,提高空间想象力.(2)构建几何模型、变换模型中的线面关系.(3)通过反例对结构特征进行辨析.3.在边长为2的正方形ABCD 中,( )()AB AD CD -⋅=A .-4B .-2C .2D .4【答案】A【分析】作出图形,利用向量的三角形法则与数量积运算即可求得结果.【详解】根据题意,如图可知,,2DC = =45BDC ∠=︒.()AB AD CD DB CD DB DC -⋅=⋅=-⋅cos 2cos 454DB DC BDC =-⋅∠=-︒=-故选:A .【点睛】4.在中,,,.则ABC π3B =8AB =5BC =外接圆的面积为( )ABC A .B .C .D .49π316π47π315π【答案】A【分析】设外接圆的半径为,由余弦定理可得,再由正弦定理得可得答案.ABC R AC R 【详解】设外接圆的半径为,ABC R 由余弦定理可得,2222cos AC AB BC AB BC B =+-⨯即,所以,216425285492=+-⨯⨯⨯=AC 7AC =由正弦定理得,所以2sin ===AC RB R =则外接圆的面积为.ABC 249ππ3=R 故选:A.5.刘徽构造的几何模型“牟合方盖”中说:“取立方棋八枚,皆令立方一寸,积之为立方二寸.规之为圆,径二寸,高二寸,又复横规之,则其形有似牟合方盖矣.”牟合方盖是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的“牟合方盖”平均分为八份,取它的八分之一(如图一).记正方形OABC 的边长为r ,设,过P 点作平面OP h =PQRS 平行于平面OABC .,由勾股定理有PQRS 面OS OQ r ==PS PQ ==积是.如果将图一的几何体放在棱长为r 的正方体内(如图二),不难证明图二中与图一等22r h -高处阴影部分的面积等于.(如图三)设此棱锥顶点到平行于底面的截面的高度为h ,不难发现2h 对于任何高度h ,此截面面积必为,根据祖暅原理计算牟合方盖体积( )2h 注:祖暅原理:“幂势既同,则积不容异”、意思是两个同高的立体图形,如在等高处的截面积相等,则体积相等.A .B .C .D .383r 38π3r 3163r 316π3r 【答案】C【分析】计算出正方体的体积,四棱锥的体积,根据祖暅原理可得图一中几何体体积,从而得结论.【详解】棱锥,V 23111333Sh r r r ==⨯⨯=由祖暅原理图二中牟合方盖外部的体积等于棱锥V 313r =所以图1中几何体体积为,3331233V r r r =-=所以牟合方盖体积为.31683V r =故选:C .6.已知函数,若函数在有且仅有两个零()()π12sin sin cos 2032f x x x x ωωωω⎛⎫=++-> ⎪⎝⎭()f x []0,π点,则实数的取值范围是( )ωA .B .1117,66⎛⎫ ⎪⎝⎭1117,66⎡⎫⎪⎢⎣⎭C .D .1117,1212⎛⎫ ⎪⎝⎭1117,1212⎡⎫⎪⎢⎣⎭【答案】D【分析】由三角恒等变换化简函数解析式为,由可计算出的()πsin 26f x x ω⎛⎫=+ ⎪⎝⎭0πx ≤≤π26x ω+取值范围,再根据已知条件可得出关于的不等式,解之即可.ω【详解】因为()112sin sin cos 222f x x x x x ωωωω⎛⎫=++- ⎪ ⎪⎝⎭211cos 21cos sin cos 22cos 2222x x x x x x x ωωωωωωω-=++-=++-,1π2cos 2sin 226x x x ωωω⎛⎫=+=+ ⎪⎝⎭当时,,0πx ≤≤πππ22π666x ωω≤+≤+因为函数函数在有且仅有两个零点,则,解得.()f x []0,ππ2π2π3π6ω≤+<11171212ω≤<故选:D.7.已知O 为的外心,,则的值为( )ABC 3450++=OA OB OC cos ABC ∠A B C D 【答案】A【分析】设的外接圆的半径为R ,将平方后求出,找到ABC 3450++= OA OB OC 3cos 5AOC ∠=-,利用二倍角公式求出2AOC ABC =∠∠cos ABC∠【详解】设的外接圆的半径为R ,ABC ∵,3450++=OA OB OC ∴,且圆心在三角形内部,354OA OC OB +=-∴()()22354OA OCOB+=- ∴,()()()2229253016OA OCOA OC OB++⋅= ∴222292530cos 16R R R AOC R++∠=3cos 5AOC ∴∠=-根据圆心角等于同弧对应的圆周角的两倍得: 2AOC ABC =∠∠∴232cos 1cos 5ABC AOC ∠-=∠=-解得cos ABC ∠故选:A【点睛】方法点睛:(1)树立“基底”意识,利用基向量进行线性运算;(2)求向量夹角通常用,还要注意角的范围.cos ,||||a ba b a b ⋅=⨯8.若函数的定义域为,是偶函数,且.则下列说法正确的()f x R ()21f x +()()226f x f x -++=个数为( )①的一个周期为2;()f x ②;()223f =③的一条对称轴为;()f x 5x =④.()()()121957f f f +++= A .1B .2C .3D .4【答案】C【分析】根据给定条件,结合奇偶函数的定义,可得,,由(2)()f x f x -=(2)(2)0f x f x -+++=此推理计算即可判断各命题作答.【详解】对于①:是偶函数,设,得,()21f x +2t x =()()11f t f t +=-+因,所以,故,()()226f x f x -++=()()46f x f x +-=()()136f t f t ++-=故,即,故,()()136f t f t -++-=()()26f x f x ++=()()246f x f x +++=所以,所以的一个周期为4,故①错误.()()4f x f x =+()f x 对于②:由于,令,得.()()226f x f x -++=0x =()23f =.故②正确.()()()2245223f f f =⨯+==对于③:由知函数的一条对称轴为,因为的一个周期为4,所以也(2)()f x f x -=1x =()f x 5x =是函数的一条对称轴,故③正确.()f x 对于④:因,得,即.()23f =(2)()f x f x -=()03f =()43f =因,所以,()()226f x f x -++=()()136f f +=,故④正确()()()()()()()()()12195123420512457f f f f f f f f f +++=+++-=⨯-=⎡⎤⎣⎦ 故选:C.二、多选题9.设向量,,则( )(2,0)a = (1,1)b = A .B .与的夹角是=a ba b 4πC .D .与同向的单位向量是()a b b-⊥ b 11,22⎛⎫ ⎪⎝⎭【答案】BC 【分析】由条件算出,,即可判断A ,算出的值可判断B ,算出的值可判断abcos ,a b()a b b -⋅C ,与同向的单位向量是,可判断D.b 【详解】因为,,(2,0)a = (1,1)b =所以A 错误2a =因为,所以与的夹角是,故B 正确cos ,a b a b a b ⋅===⋅a b4π因为,所以,故C正确()()()1,11,1110a b b -⋅=-⋅=-=()a b b -⊥ 与同向的单位向量是,故D 错误b故选:BC10.已知复数,为的共轭复数,则下列结论正确的是( )z =z z A .B .z ||1z =C .为纯虚数D .在复平面上对应的点在第四象限.3z z 【答案】BD【分析】先利用复数的除法得到,再利用复数的虚部概念判定选项A错误,利用模长12z =公式判定选项B 正确,利用复数的乘方运算得到,再利用复数的分类判定选项C 错误,利用共3z 轭复数的概念、复数的几何意义判定选项D 正确.【详解】因为,12z ====则A 错误;z,即选项B 正确;||1z ==因为,所以12z =3323119(i 288z ==+,即为实数,19188=-=-3z 即选项C 错误;因为,所以,12z =12z =则在复平面上对应的点 在第四象限,z 1(,2即选项D 正确.故选:BD.11.已知函数,下列说法正确的是( )()()sin cos sin cos f x x x x x=+⋅-A .的最正周期为()f x 2πB .若,则()()122f x f x +=()12πZ 2k x x k +=∈C .在区间上是增函数()f x ππ,22⎡⎤-⎢⎥⎣⎦D .的对称轴是()y f x =()ππZ 4x k k =+∈【答案】ABD【分析】把函数化成分段函数,作出函数图象,根据图象判断AC ,由余弦函数的性质判断()f xC ,再结合图象利用函数对称性的性质判断D.【详解】依题意,,函数部分图象如图,3ππcos 2,2π2π44()(Z)π5πcos 2,2π2π44x k x k f x k x k x k ⎧-+<<+⎪⎪=∈⎨⎪-+≤≤+⎪⎩()fx 由图象知函数是周期函数,周期为,故A 正确;()f x 2π因且,则当时,且,()11f x ≤()21f x ≤()()122f x f x +=1|cos 2|1x =2|cos 2|1x =则且,,因此,,,B 正确;11π2k x =22π2k x =12,Z k k ∈1212()ππ22k k k x x ++==12Z k k k +=∈观察图象知,在区间上不单调,所以在区间上不是增函数,故C 不正确;()f x ππ,22⎡⎤-⎢⎥⎣⎦()f x ππ,22⎡⎤-⎢⎥⎣⎦观察图象知,,是函数图象的相邻两条对称轴,且相距半个周期长,π4x =3π4x =-()y f x =事实上,即图象关于ππππ()[sin()cos()]|sin()cos()|()22222f x x x x x f x π-=-+-⋅---=()y f x =对称,π4x =同理有图象关于对称,而函数的周期是,所以函数图象对称轴()y f x =3π4x =-()f x 2π()y f x =,D 正确.ππ,Z4x k k =+∈故选:ABD 12.在中,若,角的平分线交于,且,则下列说法正确的是( )ABC 3B π=B BD ACD 2BD =A .若,则B .若,则的外接圆半径是BD BC =ABC BD BC =ABC C .若,则D .BD BC =AD DCAB BC +【答案】ACD【分析】A 、B 、C 选项由已知结合正弦定理和差角公式及同角的基本关系进行变形即可判断,D 选项用角表示出结合三角恒等变换以及均值不等式即可判断.θAB BC +【详解】因为,角的平分线交于,所以,,所3B π=B BD ACD 6ABD CBD π∠=∠=2BD BC ==以,,56212C BDC πππ-∠=∠==51234A ∠=--=ππππ由正弦定理得,sin sinBC ABA C ==所以,5sin cos cos sin 112646464AB ⎛⎫⎫==+=+= ⎪⎪⎝⎭⎭πππππππ所以A 正确;)11sin 1222ABC S AB BC ABC =⋅⋅∠=⨯+⨯= 因为,所以,设的外接圆半径是,由正弦定理,,所以BD BC =4A π=ABCR 2sin BCR A ==B 错误;R =因为,由正弦定理,因为和互补,所BD BC =,sin sin sinsin 66ADAB CD BCADB BDC==∠∠ππADB∠BDC ∠以,所以C 正确;si n si n ADB BDC ∠=∠AD AB DC BC ==设,则,A θ∠=2,36C BDC ∠=-∠=+ππθθ因为,,sin sin sinsin BD AB BD BCA ADBC BDC ==∠∠所以2sin 2sin 662sin sin 3AB BC ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+=+=⎛⎫- ⎪⎝⎭ππθθπθθ若,则,90θ=AB BC +==若,则()()0,9090,180∈ θ,,1tanAB BC +=θ1tan =tθ()0,t ⎛⎫∈+∞⎪ ⎪⎝⎭)1AB BC t t +===+时,≥)1+=t =t =则或或(舍去),tan θ=tan θ=3πθ=56πθ=综上:当为等边三角形时,D 正确.ABC AB BC +故选:ACD.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.三、填空题13.在中,角,,所对的边分别为,,,已知,则______.ABC A B C a b c sin cos c A C C =【答案】/3π60︒【分析】根据正弦定理,结合同角三角函数的关系求解即可【详解】由正弦定理可得,,又,故,又显然sin sin cos C A A C =sin 0A ≠sin C C =,故,故cos 0C ≠tan C =()0,C π∈3C π=故答案为:3π14.设为复数,若为实数(为虚数单位),则的最小值为___________.z (1i)z +i |2|z +【分析】设,根据为实数(为虚数单位),得到,再利用复数的模()i ,z a b a b R =+∈(1i)z +i =-b a 求解.【详解】解:设,()i ,z a b a b R =+∈则,()()(1i ,)i +=-++∈a z a b b b a R 因为为实数(为虚数单位),(1i)z +i 所以,即,0a b +==-b a所以|2|+z当时,1a =-min |2|+=z15.半径为的球的球面上有四点,已知为等边三角形且其面积为,则三棱锥4,,,A B C D ABC体积的最大值为________.D ABC -【答案】【分析】根据题意,设的中心为,三棱锥外接球的球心为,进而得当体积最ABC O 'D ABC -O 大时,点,,在同一直线上,且垂直于底面,再结合几何关系计算即可求解.D O 'O ABC 【详解】设的中心为,三棱锥外接球的球心为,ABC O 'D ABC -O 则当体积最大时,点,,在同一直线上,且垂直于底面,如图,D 'O OABC 因为为等边三角形且其面积为的边长,故,所以ABCABCx 2x =6x =,,故,'AO =4DO AO =='2OO===故三棱锥的高,所以6DO DO OO ''=+=163V =⨯=故答案为:16.已知平面向量,,满足,,,,则的最小值a b c 1a = 2b = 2aa b =⋅ 22c b c =⋅ 22c a c b -+- 为________.【答案】72【分析】令,,,OB 的中点为D ,AB 的中点为E ,OD 的中点为F ,与OA a = OB b = OC c = a的夹角为,由题意,计算C 的轨迹为以OD 为直径的圆,利用向b θπ3θ=量基底表示,将转化为,然后转()()222222+=+-- c b BCa AC c ()222243-+-=+ c b CE c a化为圆上任意一点到定点距离的最小值进而求解最小值.()222+-- c a bc 【详解】令,,,OB 的中点为D ,AB 的中点为E ,OD 的中点为F ,OA a = OB b = OC c =与的夹角为,连接CA 、CB 、CD 、CO 、EF .a bθ由,,,得,,1a = 2b = 2a a b =⋅ 112cos θ=⨯⨯1cos 2θ=因为,所以,在[]0,πθ∈π3θ=OAB 又由,得,即,22c b c =⋅ 02⎛⎫⋅-= ⎪⎝⎭b c c ()0OC OC OD OC DC ⋅-=⋅= 所以点C 的轨迹为以OD 为直径的圆.因为()()222222+=+-- c b BC a AC c 2222112422EC AB EC AB CE AB⎡⎤⎛⎫⎛⎫=++-=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,22211434343722CE EF ⎫⎛⎫=+≥-+≥+=-⎪ ⎪⎪⎝⎭⎭当且仅当点C 、E 、F 共线,且点C 在点E 、F 之间时,等号成立.所以的最小值为22c a c b-+-72故答案为:72【点睛】本题解题关键是通过平面向量的几何表示,将问题转化为圆上任意一点到定点距离的最值从而根据几何知识得解.四、解答题17.已知向量,.1,2m ⎛= ⎝ (),cos sin x n x = (1)若∥,求的值;m ntan x (2)若且,求的值.13m n ⋅= π0,2x ⎛⎫∈ ⎪⎝⎭cos x 【答案】(1)【分析】(1)由两向量平行可得,即可得的值;1sin 2x x =tan x (2)由可得,进而可得求13m n ⋅=π1cos()33x +=πsin(3x +=ππcos cos[(]33x x =+-解即可.【详解】(1)解:因为∥,所以,m n 1sin 2x x= 即,sin x x =所以;tan x =(2)解:因为,13m n ⋅=即,所以,11cos 23x x =π1cos(33x +=又因为,所以,π0,2x ⎛⎫∈ ⎪⎝⎭ππ5π,336x ⎛⎫+∈ ⎪⎝⎭所以πsin(3x +=所以ππππππcos cos[(]cos()cos sin()sin 333333x x x x =+-=+++=18.如图所示,现有一张边长为的正三角形纸片ABC ,在三角形的三个角沿图中虚线剪去三10cm 个全等的四边形,,(剪去的四边形均有一组对角为直角),然后把三个矩11ADA F 11BD B E 11CE C F 形,,折起,构成一个以为底面的无盖正三棱柱.111A B D D111B C E E 111A C FF 111A B C(1)若所折成的正三棱柱的底面边长与高之比为3,求该三棱柱的高;(2)求所折成的正三棱柱的表面积为【答案】m(2)12 3cm【分析】(1)设出,表达出,利用正三棱柱的底面边长与高之比求出的长,即为该三棱1A D 11A B 1A D 柱的高;(2)设出,表达出,表达出所折成的正三棱柱的表面积,求出的长,进而求出该三棱柱1A D 11A B 1A D 的体积.【详解】(1)由题意及几何知识得,设, 则,.1A D x=AD=1110A B =-因为,1113A B A D ==所以x =∴.m(2)由题意,(1)及几何知识得,正三棱柱的表面积为设, 则,,1A D x=AD =1110A B=-∴表面积())221111331010S A D DDA B x =⋅=⋅--=解得:x =∴,,1A D =3AD ==11104A B =-=∴该三棱柱的体积为:22111412V A B A D =⋅==3cm 19.已知为三角形的一个内角,复数,且满足.θcos isin z θθ=+11z +=(1)求;21z z ++(2)设z ,,在复平面上对应的点分别为A ,B ,C ,求的面积.2z -21z z ++ABC 【答案】(1)0【分析】(1)由求出,得出,再由复数的四则运算求;11z +=cos θz 21z z ++(2)求出复数对应复平面上点的坐标,计算三角形的边长,利用三角形面积公式求解.【详解】(1)且,1(cos 1)isin z θθ+=++ 11z +=,22(cos 1)sin 22cos 1θθθ∴++=+=且,1cos 2θ∴=-(0,π)θ∈1sin 2z θ∴==-,2131442z ∴=-=-.21111022z z ∴++=--=(2)复数,,,12z =-122(12z -=--=210z z ++=在复平面上对应的点分别为,1((0,0)2A B C -,,1CA ∴=2CB =AB =由余弦定理可得,2221431cos 2222CA CB AB ACB CA CB +-+-∠===⋅⨯且,(0,π)ACB ∠∈sin ACB ∴∠=.11sin 1222ABC S CA CB ACB ∴=⋅⋅∠=⨯⨯=△20.已知函数(,且).()x xk f x a ka -=+Z k ∈0a >1a ≠(1)若,求的值;11()32f =1(2)f (2)若为定义在上的奇函数,且,是否存在实数,使得()k f x R 01a <<m 0对任意的恒成立,若存在,请写出实数的取值范围;若不()21(5)k k f mx mx f m --+->[1,3]x ∈m 存在,请说明理由.【答案】(1)47;(2)存在,.6(,)7-∞【分析】(1),由此计算即可计算的值.3=1a a +1(2)f (2)由给定条件求出,再探求函数的单调性,然后脱去函数对应法则,分离参数并求出函数k ()k f x 最值作答.【详解】(1)依题意,,由,两边平方得,解1()xxf x a a -=+11(32f =3=129a a ++=得,17a a +=所以.22211(2)()247f a a a a -=+=+-=(2)因为定义在上的奇函数,则,,即,()k f x R R x ∀∈()()0k k f x f x -+=0x x x xa ka a ka --+++=则,而,解得,因此,,(01)()x x k a a -++=0x x a a -+>1k =-()1x x f x a a --=-因,则在上单调递减,在上单调递增,从而得在上单调递减,01a <<x a R xa -R ()1x xf x a a --=-R ()()()()()2211111150155f mx mx f m f mx mx f m f m -------+->⇔-->--=-,而,则,2215(1)6mx mx m x x m --<-⇔-+<⇔22131()024x x x -+=-+>261m x x <-+依题意,,成立,显然在上单调递增,在上单调[1,3]x ∀∈261m x x <-+21x x -+[1,3]261x x -+[1,3]递减,则当时,,于是得,3x =min 2166()7x x =-+67m <所以存在实数满足条件,的取值范围是.m m 6(,7-∞21.已知满足.ABC ()22sin sin 2sin sin sin C B A A C B -=-(1)试问:角是否可能为直角?请说明理由;B (2)若为锐角三角形,求的取值范围.ABC sin sin CA 【答案】(1)角不可能为直角,理由见解析B (2)15,33⎛⎫ ⎪⎝⎭【分析】(1)使用反证法,假设角为直角,根据题目条件证明假设不成立,得到角不可能为直B B 角;(2)将的取值范围转化为的取值范围,通过为锐角三角形,列出关sin sin CA sin (0)sin C c t t A a ==>ABC 于的不等式,进而求得结果.t 【详解】(1)假设角为直角,则,B π2A C +=所以,sin cos ,sin cos A C C A ==因为,()22sin sin 2sin sin sin C B A A C B-=-所以,2cos cos 2sin cos 1A A A A =-所以,所以,1cos2sin21A A +=-πsin 24A ⎛⎫-= ⎪⎝⎭显然,所以矛盾,故假设不成立,πsin 214A ⎛⎫-≤ ⎪⎝⎭所以角不可能为直角.B (2)因为,()22sin sin 2sin sin sin C B A A C B-=-所以,22sin sin cos 2sin cos sin 2sin sin sin C B A C B A A C B -=-由正弦定理,得,22cos 2cos 2bc A ac B ac b -=-由余弦定理化简,得,22322b ac a =+因为为锐角三角形,ABC 所以π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩222222222cos 00cos 00,cos 00A b c a B a c b C a b c ⎧⎧>+->⎪⎪⇒>⇒+->⎨⎨⎪⎪>+->⎩⎩令,则有,sin (0)sin C c t t A a ==>222321032103250t t t t t t ⎧+->⎪-+>⇒⎨⎪-++>⎩113R 513t t t t ⎧><-⎪⎪∈⎨⎪⎪-<<⎩或1533t ⇒<<所以的取值范围为.sin sin CA 15,33⎛⎫ ⎪⎝⎭22.如图所示的两边,,设是的重心,边上的高为,过的ABC 1BC =2AC =G ABC BC AH G 直线与,分别交于,,已知,;AB AC E F AE AB λ= AF AC μ=(1)求的值;11λμ+(2)若,,,求的值;1cos 4C =920AEFABCS S =△△λμ>()()EH AF HF EA+⋅+(3)若的最大值为,求边的长.BF CE ⋅ 518-AB 【答案】(1)3(2)321100-(3)2【分析】(1)利用重心的性质以及三点共线的充要条件即可求解(2)先解出与,λμ再利用解三角形的知识求出和,最后将化简即可求解(3)以和EF AH ()()EH AF HF EA+⋅+AB 为基底表示,引入参数,通过分类讨论求解ACBF CE ⋅ 1,22t λη⎡⎤=∈⎢⎥⎣⎦【详解】(1),1AE AB AB AEλλ=⇒= 1AF AC AC AB μμ=⇒= 如图所示,连接并延长交于点,则为中点AG BC D D BC 因为为重心G ABC 所以()22111113323333AG AD AB AC AB AC AE AFλμ⎡⎤==+=+=+⎢⎥⎣⎦ 因为,,起点相同,终点共线AG AEAF 所以,所以11133λμ+=113λμ+=(2)设角,,所对的边分别为,,,,A B C a b c ∴1a =2b =22212cos 1421244c a b ab C =+-=+-⨯⨯⨯=2c ∴=()11sin sin 22AEF S AE AF EAF AB AC EAF λμ=⨯⨯∠=⨯⨯∠△1sin 2ABC S AB AC BAC =⨯⨯∠△所以,920AEF ABCS S λμ∆==△由解之得113920λμλμ⎧+=⎪⎪⎨⎪=⎪⎩3435λμ⎧=⎪⎪⎨⎪=⎪⎩33362,24255AE AF ∴=⨯==⨯=在中ABC 2227cos 28b c a A bc +-==在,,AEF △222272cos 50EF AE AF AE AF A =+-⨯⨯=在,中Rt AHC sin AH AC C =⨯=EH AF AH AE AF AH EF+=-+=+HF EA AF AH AE EF AH+=--=- ==()()()()22EH AF HF EA EF AH EF AH EF AH∴+⋅+=+⋅-=- 2715504-321100-(3)()()()221cos BF CE AC AB AB AC bc A c b μλλμλμ⋅=-⋅-=+--==2231432c c λμλμ++⎛⎫+⋅-- ⎪⎝⎭22235321266c c c λμ⎛⎫+---+ ⎪⎝⎭=222353211112663c c c λμλη⎛⎫⎛⎫+--=-++⨯⎪ ⎪⎝⎭⎝⎭()()222532115121818c c c λμμλ⎡⎤--⎢⎥=+-+⎢⎥⎣⎦令, 1,22t λη⎡⎤=∈⎢⎥⎣⎦BF CE ∴⋅=()()2221511532121818c c t c t ⎡⎤+--+-⎢⎥⎣⎦①,3c ≤<1,22⎡⎤⎢⎥⎣⎦,得:()2max15218c BFCE⋅=+185=-42452924480c c -+=解得:2c =②若1c <2>==,()222max 15121253218182c cBF CE c ⎡⎤-⋅=+-+-⎢⎥⎣⎦ 219436c -518-解得:(舍去)2199c =综上可得:2c =。
辽宁省协作校2023-2024学年高一下学期5月期中考试数学试题(解析版)
2023—2024学年度下学期期中考试高一试题数学考试时间:120分钟 满分:150分第I 卷(选择题 共58分)一、单项选择题(本题共8小题,每小题5分,共40分)1. ( )A.B.C.D. 1【答案】C 【解析】【分析】本题先利用诱导公式进行化简,再利用两角和正弦公式,即可得到结果.详解】,故选:C.2. 下列函数中,周期为1的奇函数是 ( )A. y=1-2sin 2πxB. y=sinC.y=tanx D. y=sinπxcosπx【答案】D 【解析】【分析】对,利用二倍角余弦公式化简后判断;对直接判断奇偶性即可;对,直接利用正切函数的周期公式判断即可;对,利用二倍角的正弦公式化简后判断即可.【详解】化简函数表达式y=1-2sin 2πx=cos 是偶函数,周期为1,不合题意;y=sin 的周期为1,是非奇非偶函数,周期为1,不合题意;y=tanx 是奇函数,周期为2,不合题意;y=sinπxcosπx=sin2πx 是奇函数,周期为1,合题意;故选D.【的sin 735cos 45sin105sin135︒︒+︒︒=12()()()sin 735cos 45sin105sin135sin 720+15cos 45sin 90+15sin 90+45︒︒︒︒︒︒︒︒︒︒︒+=+()sin15cos 45cos15sin 45sin 1545sin 60︒︒︒︒︒︒︒=+=+==π2πx 3⎛⎫+⎪⎝⎭π2A B C D ()2πx π2πx 3⎛⎫+ ⎪⎝⎭π212【点睛】本题主要考查二倍角的正弦公式、二倍角的余弦公式以及三角函数的周期公式,属于中档题.由函数可求得函数的周期为;由函数可求得函数的周期为;由函数可求得函数的周期为.3. 已知,,且,则与的夹角的余弦值为( )A.B.C.D.【答案】B 【解析】【分析】根据模长公式可得,即可由夹角公式求解.【详解】由题意,,,又,所以,.故选:B .4. 在中,,,则“恰有一解”是“”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据余弦定理可得,利用一元二次方程根的情况,结合判别式即可分类求解只有一个解时的范围,即可根据逻辑关系求解.【详解】由,得,方程 的判别式,①,解得.()cos y A x ωϕ=+2πω()sin y A x ωϕ=+2πω()tan y A x ωϕ=+πω()2,1a = 2b = a b ⊥ a b - a 3a b -=a == 2b = a b ⊥ 0a b ⋅= 3a b -=== ∴()2co s a b a a b a a b a a b a a b a -⋅-⋅-====-⨯-⨯,ABC cos B =2AC =AB m =ABC 02m <≤2240a m +-=ABC 2222cos AC AB BC AB BC B =+-⋅2240a m +-=2240a m +-=2223244161699m m m ∆=-+=-22232441616099m m m ∆=-+=-=6m =±当时, 转化为,解得符合题意;当时 转化为,解得 不符合题意;②,且两根之积,可得有一正根和一负根,负根舍去,此时有一解,此时;③,且两根之积,解得,当时,,解得符合题意;当时,解得不符合题意;故若有一解,则或,故“恰有一解”,是“”的必要不充分条件故选:B .5. 英国数学家布鲁克·泰勒以发现泰勒公式和泰勒级数而闻名于世.根据泰勒公式我们可知:如果函数在包含的某个开区间上具有阶导数,那么对于,有,若取,则,此时称该式为函数在处的n 阶泰勒公式(其中,).计算器正是利用这一公式将,,,等函数转化为多项式函数,通过计算多项式函数值近似求出原函数的值,如,,则运用上面的想法求的近似值为( )A. 0.83 B. 0.46C. 1.54D. 2.54【答案】C 【解析】【分析】首先根据诱导公式和二倍角公式化简,再利用,即可求解.6m =2240a m +-=2320a -+=a =6m =-2240a m +-=2320a ++=a =-22232441616099m m m ∆=-+=->240m -<a ABC 02m <<22232441616099m m m ∆=-+=->240m -=2m =±2m =20a =a =2m =-20a +=a =ABC 02m <≤6m =ABC 02m <≤()f x 0x (),a b ()1n +(),x a b ∀∈()()()()()()()()()200000000!1!2!!n nf x f x f x f x f x x x x x x x n '''=+-+-++-+⋅⋅⋅ 00x =()()()()()()200000!1!2!!n n f f f f f x x x x n =+++⋅'⋅⋅+''+⋅⋅⋅()f x 0x =0!1=!123n n =⨯⨯⨯⋅⋅⋅⨯sin x cos x e x ln x 357sin 3!5!7!x x x x x =-+-+⋅⋅⋅246cos 12!4!6!x x x x =-+-+⋅⋅⋅π112sin cos222⎛⎫+ ⎪⎝⎭246cos 12!4!6!x x x x =-+-+⋅⋅⋅【详解】,因为,所以,近似值为,所以的近似值为.故选:C6. 扇形的半径为1,,点在弧上运动,则的最小值为( )A. B. 0C. D. -1【答案】A 【解析】【分析】利用三角函数的定义可得,即可根据向量的坐标运算,结合三角恒等变换可得,即可利用三角函数的性质求解.【详解】以为原点,以所在直线为轴,过作的垂线为轴,建立平面直角坐标系,设,则,其中,,,故,,,,,,,的取值范围为,,故的最小值为;故选:A .2π1112sin cos 2cos cos112222⎛⎫+==+⎪⎝⎭246cos 12!4!6!x x x x =-+-+⋅⋅⋅111cos11 (224720)=-+-+0.54π112sin cos 222⎛⎫+ ⎪⎝⎭1.54AOB 120AOB ∠=︒C AB CA CB ⋅12-32-(cos ,sin )C θθ1πsin()26CA CB θ⋅=-+ O OA x O OA y AOC θ∠=(cos ,sin )C θθ2π03θ≤≤(1,0)A 1(2B -(1cos ,sin )CA θθ=-- 1(cos 2CB θ=-- sin )θ-∴1(cos 1)(cos )sin )(sin )2CA CB θθθθ⋅=-+--+--111πcos sin()2226θθθ=--=-+2π03θ≤≤∴ππ5π666θ≤+≤∴1πsin()126θ≤+≤11πsin()0226θ∴-≤-+≤∴CA CB ⋅ 1[2-0]CA CB ⋅ 12-7. 2023年下半年开始,某市加快了推进“5G +光网”双千兆城市建设.如图,某市区域地面有四个5G 基站A ,B ,C ,D .已知C ,D 两个基站建在江的南岸,距离为,基站A ,B 在江的北岸,测得,,,,则A ,B 两个基站的距离为( )A. B. C. 40kmD. 【答案】D 【解析】【分析】利用的边角关系求出,在中利用正弦定理求出,在中利用余弦定理求出即可.【详解】在中,,,所以,即,得故.在中,.由正弦定理得,,解得,在中,由余弦定理得,,解得、之间的距离为.故选:D.75ACB ∠=︒120ACD ∠=︒30ADC ∠=︒45ADB ∠=︒ACD AC BCD △BC ACB △AB ACD 30ADC ∠=︒120ACD ∠=︒30CAD ∠=︒CAD ADC ∠=∠AC CD ==BDC 180()180(4575)60CBD BCD BDC ∠=︒-∠+∠=︒-︒+︒=︒sin sin BC CDBDC CBD=∠∠()40sin 30cos 45cos30sin 45BC ===︒+︒= cos75cos30cos 45sin 30sin 45=︒-︒=ABC 222222cos 2cos752000AB AC BC AC BC BCA =+-⋅⋅∠=++-⨯⨯︒=AB =A B8. 已知函数,则下列结论错误的是( )A. 函数偶函数 B. 函数关于对称C. 函数的最大值为D. 函数在上单调递减【答案】C 【解析】【分析】利用偶函数定义判断A ;计算,从而判断B ;利用二次复合函数的性质判断C ;利用复合函数的单调性判定D.【详解】根据题意,函数定义域为,故函数为偶函数,A 不符合题意;,,故,即函数关于对称,B 不符合题意;,又,当时,函数取最大值,C 符合题意;当,则,,且为增函数,为()cos sin 2xf x x =-()f x ()f x πx=()f x 98()f x π0,6⎛⎫⎪⎝⎭(π)(π)f x f x +=-()f x R ()()()cos sincos sin cos sin 222x x xf x x x x f x --=--=--=-=()f x ()()ππcos πsin cos cos 22x x f x x x -⎛⎫-=--=-- ⎪⎝⎭()()ππcos πsincos cos 22x xf x x x ++=+-=--(π)(π)f x f x +=-()f x πx =()22cos sin12sin |sin 12sin |sin 22222x x x x xf x x =-=--=--2192sin 248x ⎛⎫=-++ ⎪⎝⎭[]sin0,12x ∈|sin |02x=()f x 1π0,6x ⎛⎫∈ ⎪⎝⎭π0,212x ⎛⎫∈ ⎪⎝⎭sinsin 22x x ⎛=∈ ⎝所以函数在上单调递减,D 不符合题意.故选:C二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 在中,角的对边分别是.下面四个结论正确的是( )A. ,,则的外接圆半径是4B. 若,则C. 若,则一定是钝角三角形D. 若,则【答案】BCD 【解析】【分析】根据正弦定理可得,即可判断A ;由正弦定理即可求解BD ,利用余弦定理,判断出为钝角,即可判断C.【详解】A .,,设的外接圆半径是,则,解得,故A 错误;对于B ,由可得,由正弦定理可得,故B 正确,对于C .,则,为钝角,故一定是钝角三角形,因此C正确;对于D ,由以及正弦定理可得:,,因为,故D 正确;故选:BCD .10. 在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.在适当的直角坐标系下,某个简谐运动可以用函数(,,)的部分图象如图所示,则下列结论正确的是( )()f x π0,6⎛⎫⎪⎝⎭ABC ,,A B C ,,a b c 2a =30A =︒ABC A B >sin sin A B>222a b c +<ABC cos sin a bA B=45A =︒2sin aR A=222cos 2a b c C ab+-=C 2a =30A =︒ABC R 224sin sin 30a R A ===︒2R =A B >a b >sin sin a bA B=sin sin A B >222a b c +< 222cos 02a b c C ab+-=<C ∴ABC cos sin a b A B =sin sin a bA B=sin cos A A =tan 1A ∴=0180,45A A ︒<<︒∴=︒()()sin f x A x ωϕ=+0A >0ω>π<ϕA.,频率为,初相为B. 函数的图象关于直线对称C. 函数在上的值域为D. 若在上恰有4个零点,则m 的取值范围是【答案】BD 【解析】【分析】利用函数的图象求出,进而根据相关定义即可求解A ,代入验证是否为最值即可求解B ,利用整体法结合三角函数的性质即可求解CD.【详解】根据函数的图象,,,故,所以;当时,,所以,,整理得,,由于,所以当时,,故.对于A ,,频率为,初相为,故A 错误;对于B :当时,,故B 正确;对于C :由于,故,故,故C 错误;对于D :,则,若在上恰有4个零点,则,解得,2A =1ππ6()f x π6x =-()f x π5π,1212⎡⎤⎢⎥⎣⎦⎡⎣()f x []0,m 19π25π,1212⎡⎫⎪⎢⎣⎭π()2sin(26f x x =-2A =313π4π3π=412124T =-πT =2ω=π3x =π2π(2sin()233f ϕ=+=2ππ2π+32k ϕ+=()k ∈Z π2π6k ϕ=-()k ∈Z ||πϕ<0k =π6ϕ=-π()2sin(2)6f x x =-:2ω=πT =1ππ6-π6x =-ππ(2sin()262f -=-=-π5π,1212x ⎡⎤∈⎢⎥⎣⎦π2π20,63x ⎡⎤-∈⎢⎥⎣⎦[]π()2sin(2)0,26f x x =-∈[]0,x m ∈πππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦()f x []0,m π3π24π6m ≤-<19π25π1212m ≤<故的取值范围是,D 正确.故选:BD .11. 已知O 为坐标原点,的三个顶点都在单位圆上,且则( )A. B. C. 为锐角三角形 D. 在上投影的数量【答案】BCD 【解析】【分析】由,可得,化为,得到,即可求解B .由,可得化为,即可根据投影的公式求解D ,根据,即可根据夹角公式求解A ,根据数量积的正负求解角,即可判断C.【详解】由于的外接圆半径为1,圆心为,.由,可得,化为.,,.故是等腰直角三角形.B 正确,由,可得,,所以,故,A 错误,由得,所以,,,因此均为锐角,故为锐角三角形,C 正确.m 19π25π,1212⎡⎫⎪⎢⎣⎭ABC 3450OA OB OC ++=3cos ,5OA OC =OA OB⊥ ABC AB OC15-3450OA OB OC ++=22(34)(5)OA OB OC +=- 0OA OB = OA OB ⊥ 3450OA OB OC ++= 534OC AB OA AB OB AB =-- 15OC AB =- 3455OC OA OB -=-ABC O ∴||||||1OA OB OC === 3450OA OB OC ++=22(34)(5)OA OB OC +=- 2229162425OA OB OA OB OC ++= 9162425OA OB ∴++= ∴0OA OB = ∴OA OB ⊥OAB 3450OA OB OC ++= 534OC OA OB =-- 25343OC OA OA OB OA =--⋅=- 35OC OA =- 3cos ,5OC OA OA OC OC OA⋅==-534OC OA OB =-- 3455OC OA OB -=-()()()2239396055555B BC OA OB OC OB OA OB OA OB O OB A A --⎛⎫⋅=-⋅-=-⋅-=+=> ⎪⎝⎭()()()2284844055555A AC OB OA OC OA OB OA OA OB OA OB B -⎛⎫⋅=-⋅-=-⋅-=-=> ⎪⎝⎭ ()()2284392436120555525255C CB OA OC OB OC OA OB O A A OB OA OB ⎛⎫⎛⎫⋅=-⋅-=+⋅+=+=> ⎪ ⎪⎝⎭⎝⎭ ,,A B C ABC ∴()()22534341OC AB OA OB OB OA OA OB ⋅=--⋅-=-=-.在上的投影.D 正确故选:BCD第II 卷(非选择题92共分)三、填空题(本题共3小题,每小题5分,共15分)12. 已知中角所对的边分别为,,则的面积,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若的周长为18,,则的面积为________.【答案】【解析】【分析】由正弦定理边角互化可求,代入已知面积公式可求.【详解】由题意得,,所以,则, 所以.故答案为:.13. 已知向量,将绕原点O 沿逆时针方向旋转到的位置,则点的坐标________.【答案】【解析】【分析】由条件得,设,则,,再求的正弦和余弦,然后由坐标,,即可求出结果.【详解】,设,则,,∴15OC AB =-∴AB OC 11515||OC AB OC -⋅===- ABC ,,A B C ,,a b c 2a b cp ++=ABC S =ABC ()()()sin sin :sin sin :sin sin 5:7:6A B BC C A +++=ABC 4,6,8a b c ===18a b c ++=(sin sin ):(sinsin ):(sin sin )():():()5:7:6A B B C C Aa b b c c a+++=+++=::2:3:4a b c =4,6,8a b c ===92a b cp ++==S =()4,3OP = OP 45︒1OP 1P ||5OP = xOP θ∠=3sin 5θ=4cos 5θ=45︒cos x r α=sin y r α=||5OP == xOP θ∠=3sin 5θ=4cos 5θ=设,,则,故,故答案为:14. 如图,在四边形中,分别在边上,且,,,,与的夹角为,则________.【答案】【解析】【分析】本题关键是对向量进行线性运算,并用基底与线性表示,然后再做数量积运算即可.【详解】由图形结合向量线性运算可得:,由,可得,由可得,由上面两式相加得:,即又由,,与的夹角为,可得,11(P x 1)y 15cos(45)5(cos cos 45sin sin 45)x θθθ=+︒=︒-︒=15sin(45)5(sin cos 45cos sin 45)y θθθ=+︒=︒+︒=1P ABCD E F ,AD BC ,13AE AD =13BF BC =3AB =2DC =AB DC 60︒AB EF ⋅= 7EF AB DC EF ED DC CF =++ 13AE AD =13BF BC =22EF EA D F C B =-+- EF EA AB BF =++ 2222EF EA AB BF =++ 32F D E AB C =+ 23AB EF DC += 3AB =2DC =AB DC 60︒1cos 603232AB DC AB DC ︒⋅=⋅=⨯⨯=所以,故答案为:.四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤)15. 已知平面向量,.(1)若,且,求的坐标;(2)若与的夹角为锐角,求实数的取值范围.【答案】(1)或.(2)且.【解析】【分析】(1)先设的坐标,再利用向量垂直关系得到向量积为0和它的模已知列方程组求坐标;(2)利用向量夹角为锐角,肯定向量积大于0,但要注意检验是否有可能夹角为0即可.【小问1详解】由,可得,设,则由,可得,又因为,可得,联立方程组解得:或即或.【小问2详解】由与的夹角为锐角,可得,代入,可得:,解得,当时,,可得,解得:,此时满足,即同向共线,所以夹角要排除为0的情形,222+293=7333AB AB AB AB EF AB DC DC +⋅⨯+⋅=⋅== 7()1,2a = ()3,2b =--r ()2c a b ⊥+ c = c a a b λ+ λ()4,2c = ()4,2c =-- 57λ<0λ≠c()1,2a = ()3,2b =-- ()()()2=21,23,21,2a b ++--=- (),c x y = ()2c a b ⊥+ ()()()2=,1,220c a b x y x y ⋅+⋅-=-+= c = 2220x y +=42x y =⎧⎨=⎩42x y =-⎧⎨=-⎩()4,2c = ()4,2c =-- a a b λ+ ()0a a b λ⋅+> ()1,2a = ()3,2b =-- ()()()()()()1,21,23,21,213,2213222=570λλλλλλ⎡⎤⋅+--=⋅--=-+-->⎣⎦57λ<()//a a b λ+ ()()1,2//13,22λλ--()()21322=0λλ---=0λ57λ<综上可得与的夹角为锐角时,且.16. 已知函数.(1)求的最小正周期和单调减区间;(2)若的值.【答案】(1)最小正周期为,单调减区间, (2)【解析】【分析】(1)根据二倍角公式以及辅助角公式化简,即可利用周期公式求解,利用整体法求解单调性,(2)代入化简可得,进而利用和差角公式以及二倍角公式化简即可代入求值.【小问1详解】函数,,,令,,,,,单调减区间,【小问2详解】根据(1)知,,故,a a b λ+ 57λ<0λ≠()44cos 2sin cos sin x x x f x x =+-()f x π28f θ⎛⎫+= ⎪⎝⎭cos3θππ5ππ,π88k k ⎡⎤++⎢⎥⎣⎦Z k ∈2327-π())4f xx =+1cos3θ=()()()442222cos 2sin cos sin cos sin cos sin 2sin cos f x x x x x x x x x x x=+-=+-+cos 2sin 2x x =+π4x =+π()4f x x ∴=+2ππ2T ==∴ππ3π2π22π242k x k +≤+≤+Z k ∈∴π5π2π22π44k x k +≤≤+∴π5πππ88k x k +≤≤+Z k ∈∴π5ππ,π88k k ⎡⎤++⎢⎥⎣⎦Z k ∈π()4f x x =+ππππ2282842f θθθθ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故,故17. 在中,角A ,B ,C 所对的边分别是a ,b ,c ,且________,在①;②,这三个条件中任选一个,补充在上面的横线上,并解答下列问题:(1)求角A 的大小;(2)若AD 是的角平分线,且,,求线段AD 的长;(3)若,判断的形状.【答案】(1) (2(3)直角三角形【解析】【分析】(1)选择①:利用三角形的面积公式和向量的数量积的运算公式,求得,得到,即可求解;,得到,即可求解;选择③,化简得到,即,由余弦定理求得,即可求解;(2)设,结合,列出方程,即可求解;(3)由余弦定理得,再由,联立得到,进而得到方程,求得或,进而得到三角形的形状.1cos 3θ∴=28sin 9θ=()()222cos3cos 2cos 2cos sin 2sin cos sin cos 2sin cos θθθθθθθθθθθθ=+=-=--181********9327⎛⎫=-⨯-⨯⨯=- ⎪⎝⎭ABC 2S AC AB =⋅ a c =2sin sin sin 1sin sin sin sin B C A C B B C +=+ABC 2b =3c =b c -=ABC π3sin A A =tan A =cos 1A A =+π1sin()62A -=222sin sin sin sin sinBC A B C +=+222b c a bc +-=1cos 2A =AD x =ABC ABD ACD S S S =+ 222a b c bc =+-b c -=232a bc =222520b bc c -+=2b c =12b c =【小问1详解】选择①:由,可得,即,即,因为,所以;选择②:因为②,,因为,可得,所以,,可得,因为,可得,所以;选择③,由,可得,又由正弦定理得,再由余弦定理得,因为,所以.【小问2详解】因为AD 是的角平分线,且,设,因为,可得,即,解得,即.【小问3详解】由(1)知,由余弦定理得,因为,平方得,即,代入上式,可得,即,2S AC AB =⋅ 12sin cos 2bc A bc A ⨯=sin A A =tan A =(0,π)A ∈π3A =a c =sin si n A C =sin sin cos sin A C C A C =+(0,π)C ∈sin 0C >cos 1A A =+cos 2sin()16πA A A -=-=π1sin()62A -=(0,π)A ∈ππ66A -=π3A =2sin sin sin 1sin sin sin sinBC A C B B C+=+222sin sin sin sin sin B C A B C +=+222b c a bc +-=2221cos 22b c a A bc +-==(0,π)A ∈π3A =ABC 2,3b c ==AD x =ABC ABD ACD S S S =+ 1π1π1π23sin 3sin 2sin 232626x x ⨯⨯=⨯⨯⨯+⨯⨯⨯11111233222222x x ⨯⨯=⨯⨯⨯+⨯⨯⨯x =AD =π3A =222222cos a b c bc A b c bc =+-=+-b c -=222123b c bc a +-=222123b c a bc +=+223a bc =232a bc =将代入,可得,解得或,当时,可得,此时,可得为直角三角形;当(不成立,舍去);综上可得,为直角三角形.18. 古希腊数学家托勒密对凸四边形(凸四边形是指没有角度大于180°的四边形)进行研究,终于有重大发现:任意一凸四边形,两组对边的乘积之和不小于两条对角线的乘积,当且仅当四点共圆时等号成立.且若给定凸四边形的四条边长,四点共圆时四边形的面积最大.根据上述材料,解决以下问题,如图,在凸四边形中,(1)若,,,(图1),求线段长度的最大值;(2)若,,(图2),求四边形面积取得最大值时角的大小,并求出四边形面积的最大值;(3)在满足(2)条件下,若点是外接圆上异于的点,求的最大值.【答案】(1)(2)时,四边形面积取得最大值,且最大值为(3)【解析】【分析】(1)由题意可得,进而求出的最大值;(2)由题意可得,分别在,中,由余弦定理可得的表达式,两式联立可得的值,进而求出角的大小,进而求出此时的四边形的面积.(3)根据余弦定理可得,即可结合不等式求解最值.232a bc =222a b c bc =+-222520b bc c -+=2b c =12b c =2b c =a =222a c b +=ABC 12b c =12c =-ABC ABCD AB =1BC =π2ACD ∠=AC CD =BD 2AB =6BC =4AD CD ==ABCD A ABCD P ABD △,B D PB PD +2π3A =ABCD AB CD BC AD AC BD ⨯+⨯≥⨯BD πA C +=ABD △BCD △2BD cos A A ABCD ()22228328PB PD PB PD PB PD PB PD +-⋅=⇒+-⋅=【小问1详解】由,,,,可得,由题意可得,即,,当且仅当四点共圆时等号成立即的最大值为;【小问2详解】如图2,连接,因为四点共圆时四边形的面积最大,,,,所以,即,,在中,,①在中,由余弦定理可得,②由①②可得,解得,而,可得,所以此时.所以时,四边形面积取得最大值,且最大值为【小问3详解】由题意可知所以,即,在中,由余弦定理可得,故,故,AB =1BC =π2ACD ∠=AC CD =AD =AB CD BC AD AC BD ⨯+⨯≥⨯AB CD BC CD BD ⨯+≥⨯BD ≥,,,A B C D BD BD 2AB =6BC =4AD CD ==πA C +=cos cos C A =-sin sin A C =ABD △2222cos 416224cos 2016cos BD AB AD AB AD A A A =+-⋅=+-⨯⨯=-BCD △2222cos 3616264cos 5248cos BD BC CD BC CD C A A =+-⋅=++⨯⨯=+2016cos 5248cos A A -=+1cos 2A =-(0,π)A ∈2π3A =sin sin A C ==1111sin sin 24642222ABCD ABD BCD S S S AB AD A BC CD C =+=⨯⨯⨯+⨯⨯=⨯⨯+⨯⨯= 2π3A =ABCD πA P +=1cos cos 2P A =-=BPD △222222cos 5248cos BD PB PD PB PD P PB PD PB PD A =+-⋅=+-⋅=+()22228328PB PD PB PD PB PD PB PD +-⋅=⇒+-⋅=()222832832PB PD PB PD PB PD +⎛⎫+=+⋅≤+ ⎪⎝⎭故,当且仅当时等号成立,故最大值为19. 某公园为了美化环境和方便顾客,计划建造一座“三线桥”连接三块陆地,如图1所示,点A 、B 是固定,点C 在右边河岸上.把右边河岸近似地看成直线l ,如图2所示,经测量直线AB 与直线l 平行,A 、B 两点距离及点A 、B 到直线l 的距离均为100米.为了节省成本和兼顾美观,某同学给出了以下设计方案,MA 、MB 、MC 三条线在点M 处相交,,,设.(1)若时,求MC 的长;(2)①若变化时,求桥面长(的值)的最小值;②你能给出更优的方案,使桥面长更小吗?如果能,给出你的设计方案,并说明理由.【答案】(1)米(2)①时,取得最小值为米;②答案见解析【解析】【分析】(1)首先求直角三角形中斜边的高,即可求解的值;(2)①首先利用三角函数表示,再根据三角函数关系式,利用换元法,即可求解;②当点是中垂线上,且结合图形,设时,利用角三角函数表示,再利用三角恒等变换,结合基本不等式,计算最小值.【小问1详解】中,,,,则,,点到,所以米;的的PB PD +≤=PB PD ==PB PD +M A M B ⊥MC l ⊥MAB θ∠=π3θ=θMA MB MC ++100-π4θ=MA MB MC ++50MAB △AB MC MA MB MC ++M AB AMC α'∠=αMA MB MC ++MAB △M A M B ⊥100AB =π3MAB θ∠==50MA =MB =M AB =100MC =-【小问2详解】①中,,,设点到的距离为,则,则,则,所以,设,,,,所以,所以,当时,即时,取得最小值为米.②当点是中垂线上,且时,桥面长更小,证明:记,则,,记,因为,而,当且仅当时等号成立,此时由最小值.【点睛】关键点点睛:本题的关键是利用三角函数表示长度,再结合三角运算和性质,求解最值.MAB △100cos MA θ=100sin MB θ=M AB h 100100100sin cos h θθ=⨯⨯100sin cos h θθ=100100sin cos MC θθ=-()100sin cos 100100sin cos MA MB MC θθθθ++=++-sin cos t θθ+=21sin cos 2t θθ-=ππsin cos ,0,42t θθθθ⎛⎫⎛⎫=+=+∈ ⎪ ⎪⎝⎭⎝⎭ππ3π,444θ⎛⎫+∈ ⎪⎝⎭(t ∈()()22100501100501200MA MB MC t t t ++=--+=--+t =π4θ=MA MB MC ++50+M AB 120AMB ∠= π0,2AMC α⎛⎫∠=∈ ⎪⎝⎭'50sin MA MB α==50100tan MC α=-()100502cos 10010050sin tan sin g MA MB MC ααααα-=++=+-=+⨯22cos 3sin 2cos 11322tan sin 2222sin cos tan 222αααααααα+-==⋅+≥()tan 0,12α∈tan 2α=()g α10050+<+。
北京市2023-2024学年高一下学期期中考试数学试题含答案
北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
高一下学期期中数学试卷-(解析版)
高一下学期期中数学试卷一、填空题(共12小题).1.2021°角是第象限角.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为.3.已知tanθ=2,则=.4.函数y=arcsin(2x﹣1)的定义域为.5.S n为数列{a n}的前n项的和,,则a n=.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.7.已知,若,则sinα=.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是米.(精确到0.1米)9.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为.11.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是.12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.参考答案一.填空题1.2021°角是第三象限角.解:2021°=360°×5+221°,是第三象限角.故答案为:三.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为2.解:设扇形的半径为r,则×2×r8=2,∴扇形的弧长=2×=4.故答案为:2.3.已知tanθ=2,则=.解:∵tanθ=2,∴==.故答案为:.4.函数y=arcsin(2x﹣1)的定义域为[0,1] .解:设t=2x﹣1,∵反正弦函数y=arcsin t的定义域为[﹣1,1],所以函数的定义域为:[0,7].故答案为:[0,1].5.S n为数列{a n}的前n项的和,,则a n=.解:因为,所以a3=S1=2﹣3+1=0,当n≥7时a n=S n﹣S n﹣1=(2n6﹣3n+1)﹣[2(n﹣1)2﹣3(n﹣5)+1]=4n﹣5,∴a n=.故答案为:.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.解:由题意可得cosα=,则sin()=cosα=.故答案为:﹣7.已知,若,则sinα=.解:,所以α+∈(,),又,所以sin(α+)==;=sin(α+)cos﹣cos(α+)sin=.故答案为:.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是236.6 米.(精确到0.1米)解:设电视塔的高度为x,则在Rt△BCD中,∠CBD=60°,则,解得.由于,整理得,解得x≈236.5.故答案为:236.69.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于1925 .解:∵等差数列{a n}、{b n}满足a1=1,b6=4,a25+b25=149,∴数列{a n+b n}的前25项和=+=+(a25+b25)=+×149=1925.故答案为:1925.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134 .解:由能被3除余1且被5除余1的数就是能被15整除余7的数,故a n=15n﹣14.得n≤135,故此数列的项数为135﹣1=134.故答案为:13411.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是[﹣3,﹣2] .解:设x=cosθ,.则f(x)=4x4﹣3x﹣2=4cos6θ﹣3cosθ﹣2=cos3θ﹣2.∴cos3θ﹣5.∈[﹣3,﹣2]故答案为:[﹣3,﹣2]12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.解:根据题意作出图象如下,设f(x)=sin(ωx)的最小正周期为,所以,即,解得;若A1A4A5A7为菱形,则若A1A k﹣1A k A m为菱形,则,解得,故答案为:.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要解:tan x=1⇔x=kπ+,k∈Z.∴“tan x=1”是“”成立的必要不充分条件.故选:B.14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位解:只需要将函数y=2sin(2x﹣)的图象向左平移个长度单位,可得函数y=3sin[2(x+)﹣]=2sin(2x+)的图象,故选:D.15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.解:∵等差数列前n项和S n=•n2+(a1﹣)n,由S15=15a8>0,S16=16×<0可得:故Sn最大值为S8.故S n最大且a n取最小正值时,有最大值,故选:D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11解:设==…==k,则条件等价为f(x)=kx,的根的个数,由图象可知y=kx与函数f(x)最多有10个交点,故选:C.三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.解:(1)∵,,∴cosα=﹣=﹣,∵,∴.∴tan(α﹣2β)===.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.解:(1)当n=1时,f(x)=sin x+cos x=(sin x+cos x)=cos(x).∴f(x)≠f(﹣x)≠﹣f(﹣x),∴f(x)为非奇非偶函数;当时,,此时x的取值集合是;当cos x=﹣1时,f(x)min=﹣1,此时x的取值集合是{x|x=2kπ+π,k∈Z}.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.解:(1)由4sin B•sin2(+)+cos2B=1+,得:2sin B•[7﹣cos(+B)]+1﹣2sin2B=1+,可得sin B=,∴B=,或B=;∴ac sin B=×4×c×=5,解之得c=6,∴当B=时,b==;即边b的值等于或.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.解:(1)设等差数列{a n}的公差为d,∵a3+a4=﹣2,a5+a7=8.∴2a1+5d=﹣2,2a1+10d=8,∴a n=﹣6+2(n﹣1)=2n﹣8.∴当n=2或4时,S n取得最小值,(3),∴数列{b n}的前10项和=﹣2﹣1﹣1+8+0+0+0+1+2+8=2.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.解:(1)函数f(x)=cos2x+2sin x cos x+l=cos2x+sin2x+1=2sin(2x+)+6,x∈R;∴f(x)的最小正周期为T==π,值域为[﹣1,3];解得﹣+kπ≤x≤+kπ,k∈Z,(3)若对于任意x1∈R,总存在x2∈R,使得g(x2)=f(x2)恒成立,由g(x)的值域为[﹣a,a],f(x)的值域为[﹣1,8],解得0<a≤;所以实数a的取值范围是(0,].。
北京市首都师范大学附属中学2023-2024学年高一下学期期中考试数学试题(含简单答案)
首都师范大学附属中学2023-2024学年高一下学期期中考试数学第Ⅰ卷(共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)1. 下列函数中,既是偶函数又是周期为函数为( ).A. B. C. D.2. 已知是第二象限的角,为其终边上的一点,且,则( ).A. B. C.D. 3. 角的度量除了有角度制和弧度制之外,在军事上角的度量还有密位制,密位制的单位是密位.1密位等于周角的,即弧度密位.在密位制中,采用四个数字来记一个角的密位数.且在百位数字与十位数字之间画一条短线,例如3密位写成,123密位写成,设圆的半径为1,那么密位的圆心角所对的弧长为( )A.B.C.D.4. 已知点A (1,2),B (3,7),向量,则A. ,且与方向相同B. ,且与方向相同C. ,且与方向相反D. ,且与方向相反5. 关于函数,则下列结论中:①为该函数的一个周期;②该函数的图象关于直线对称;③将该函数的图象向左平移个单位长度得到的图象:④该函数在区间上单调递减.所有正确结论的序号是( )A. ①②B. ③④C. ①②④D. ①③④的πsin y x=cos y x=tan2y x=cos2y x=α(),6P x 3sin 5α=x =4-4±8-8±160002π3606000=︒=003-123-1000-π6π4π3π2(,1),//a x AB a =-25x =AB a25x =-AB a25x =AB a 25x =-AB a π3cos 23y x ⎛⎫=+⎪⎝⎭π-π3x =π63cos 2y x =ππ,66⎡⎤-⎢⎥⎣⎦6. 设,是两个不共线向量,则“与的夹角为钝角”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知函数,,其图象如下图所示.为得到函数图象,只需先将函数图象上各点的横坐标缩短到原来的(纵坐标不变),再( )A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位8. 若P 是内部或边上的一个动点,且,则的最大值是( )A.B.C. 1D. 29. 如图,质点在以坐标原点为圆心,半径为1的圆上逆时针作匀速圆周运动,的角速度大小为,起点为射线与的交点.则当时,动点的纵坐标关于(单位:)的函数的单调递增区间是( )A. B. C. D. 10. 如图,圆M 为的外接圆,,,N 为边BC 的中点,则( )的a b a b()a ab ⊥+ 111()sin()f x A x ωϕ=+222()sin()g x A x ωϕ=+()g x ()f x 12π6π12π6π3ABC V AP xAB y AC =+xy 1412P O P 2rad /s 0P ()0y x x =-≥O e 012t ≤≤P y t s π0,2⎡⎤⎢⎥⎣⎦7π11π,88⎡⎤⎢⎥⎣⎦11π15π,88⎡⎤⎢⎥⎣⎦3π11π,44⎡⎤⎢⎥⎣⎦ABC V 4AB =6AC =AN AM ⋅=A. 5B. 10C. 13D. 26第Ⅱ卷(共80分)二、填空题(本大题共5小题,敏小题5分,共25分)11 _________.12. 已知是第四象限角,且,则______,______.13. 在正方形网格中的位置如图所示,则______,向量在向量上的投影的数量为______.14. 已知函数的图象关于直线对称,且在上单调,则的最大值为_____.15 已知函数,给出下列四个结论:①存在无数个零点;②在上有最大值;③若,则;④区间是的单调递减区间.其中所有正确结论的序号为__________.三、解答题(本大题共5小题,共55分.解答应写出文字说明、演算步骤或证明过程.)16. 如图,在平行四边形ABCD 中,,.设,...sin 330︒=α5tan 12α=-cos α=πcos()2α+=,a b ,a b 〈〉=a b ()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭1110x π=()f x ,6m π⎡⎤⎢⎥⎣⎦m ()2sin πxf x x x=-()f x ()f x ()1,+∞()2023.7f a =()2022.7f a -=1,12⎛⎫⎪⎝⎭()f x 2AE AB = 13DF DE = AB a =AD b =(1)用,表示,;(2)用向量的方法证明:A ,F ,C 三点共线.17. 已知函数,其中,且的图象过点.(1)求的值;(2)求的单调减区间和对称中心的坐标;(3)若,函数在区间上最小值为,求实数的取值范围.18. 在平面直角坐标系中,已知点,点是直线上的一个动点.(1)求的值;(2)若四边形是平行四边形,求点的坐标;(3)求的最小值.19. 在条件①对任意的,都有;条件②最小正周期为;条件③在上为增函数,这三个条件中选择两个,补充在下面的题目中,并解答.已知,若______,则唯一确定.(1)求的解析式;(2)设函数,对任意的,不等式恒成立,求实数的取值范围.20. 设(为正整数),对任意的,,定义(1)当时,,,求;a b AC DE()sin(2)f x x ϕ=-π||2ϕ<()y f x =π(,0)12ϕ()f x 0m >()f x []0,m 12-m xOy ()()()3,3,5,1,2,1A B P M OP PA PB -APBQ Q MA MB ⋅x ∈R ()π6f x f x ⎛⎫-=⎪⎝⎭()f x π()f x 5ππ,1212⎡⎤-⎢⎥⎣⎦()()()sin ,0,02πf x x ωϕωϕ=+>≤<,ωϕ()f x ()π216g x f x ⎛⎫=++ ⎪⎝⎭ππ,612x ⎡⎤∈-⎢⎥⎣⎦()()210g x mg x --≤m (){}{}12,,,0,1,1,2,,n niS x x x x i n =⋯∈=⋯n ()12,,,nx x x α=⋅⋅⋅()12,,,n y y y β=⋅⋅⋅1122n nx y x y x y αβ⋅=++⋅⋅⋅+3n =()1,1,0α=()1,0,1β=αβ⋅(2)当时,集合,对于任意,,均为偶数,求A 中元素个数的最大值;(3)集合,对于任意,,,均有,求A 中元素个数的最大值.3n =n A S ⊆αA β∈αβ⋅n A S ⊆αA β∈αβ≠0αβ⋅≠首都师范大学附属中学2023-2024学年高一下学期期中考试数学 简要答案第Ⅰ卷(共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)【1题答案】【答案】D 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】D 【5题答案】【答案】C 【6题答案】【答案】B 【7题答案】【答案】A 【8题答案】【答案】A 【9题答案】【答案】B 【10题答案】【答案】C第Ⅱ卷(共80分)二、填空题(本大题共5小题,敏小题5分,共25分)【11题答案】【答案】【12题答案】12【答案】 ①.②.【13题答案】【答案】①②.【14题答案】【答案】【15题答案】【答案】①②③三、解答题(本大题共5小题,共55分.解答应写出文字说明、演算步骤或证明过程.)【16题答案】【答案】(1),;(2)略【17题答案】【答案】(1); (2),; (3).【18题答案】【答案】(1)(2); (3).【19题答案】【答案】(1) (2)【20题答案】【答案】(1)1 (2)4(3).12135133π43π5A C a b =+2DE a b =- π6ϕ=π5π[π,π](Z)36k k k ++∈()ππ,0Z 122k k ⎛⎫+∈ ⎪⎝⎭2π(0,3(6,3)2-()π()sin 32f x x +=8[,)3+∞12n -。
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
北京市2023-2024学年高一下学期期中考试数学试题含答案
2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。
泰安第一中学2022-2023学年高一下学期期中考试数学试题(含答案)
泰安一中新校区2022-2023学年高一下学期期中考试数学试题2023.5一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数()1i 1i z -=+,则z = A.22B.1C.D.22.若,m n 表示两条不重合的直线,,,αβγ表示三个不重合的平面,下列命题正确的是A .若m αγ⋂=,n βγ= ,且//m n ,则//αβB .若,m n 相交且都在,αβ外,//m α,//n α,//m β,//n β,则//αβC .若//m n ,n α⊂,则//m αD .若//m α,//n α,则//m n4.已知2a =,3b =.若a b a b +=-,则23a b +=425.某景区为提升游客观赏体验,搭建一批圆锥形屋顶的小屋(如图1).现测量其中一个屋顶,得到圆锥SO 的底面直径AB 长为12m ,母线SA 长为18m (如图2).若C 是母线SA 的一个三等分点(靠近点S ),从点A 到点C 绕屋顶侧面一周安装灯光带,则灯光带的最小长度为A. B.16mC. D.12m6.如图所示,在ABC ∆中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB mAM = ,(,0)AC nAN m n =>,则m n +的值为A .2B .3C .92D .57.已知4sin 45πα⎛⎫+= ⎪⎝⎭,,42ππα⎛⎫∈ ⎪⎝⎭,则cos α=A.210 B.3210C.22D.72108.函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,将该函数图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移()0θθ>个单位长度后,所得到的图象关于原点对称,则θ的最小值为A.3πB.6πC.12π D.724π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列有关复数的说法中(其中i 为虚数单位),正确的是A .22i 1=B .复数32i z =-的共轭复数的虚部为2C .若13i -是关于x 的方程()20,x px q p q ++=∈R 的一个根,则8q =-D .若复数z 满足i 1z -=,则z 的最大值为210.下列说法正确的是A .已知向量()1,3a = ,()cos ,sin b θθ= ,若a b ⊥ ,则3tan 3θ=-B .已知向量()2,3a = ,(),2b x = ,则“a ,b的夹角为锐角”是“3x >-”的充要条件C .若向量()()4,31,3a b =- = ,,则a 在b 方向上的投影向量坐标为13,22⎛⎫ ⎪⎝⎭三、填空题:本题共4小题,每小题5分,共20分.13.已知复数2(4)(2)i m m +-+ (R)m ∈是纯虚数,则m =___________.14.需要测量某塔的高度,选取与塔底D 在同一个水平面内的两个测量基点A 与B ,现测得75DAB ∠= ,45ABD ∠= ,96AB =米,在点A 处测得塔顶C 的仰角为30 ,则塔高CD 为__________米.15.公元前6世纪,毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值,这一数值近似可以表示为2sin18m =︒,若24m n +=,则cos 27m =︒______.四、解答题:本题6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知,,a b c是同一平面内的三个向量,()1,2a = .(1)若c = ,且//c a ,求c的坐标;(2)若52b = ,且2a b + 与2a b - 垂直,求a 与b 的夹角θ..19.(12分)已知ABC 中,D 是AC 边的中点.3BA =,7BC =,7BD =(1)求AC 的长;(2)BAC ∠的平分线交BC 于点E ,求AE 的长.20.(12分)已知函数()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间;(2)若函数()y f x k =-在11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求实数k 的取值范围.泰安一中新校区2022-2023学年高一下学期期中考试数学试题解析2023.5一、单项选择题:1.B2.B3.D4.A5.C6.A7.A8.C二、多项选择题:9.BD 10.ACD 11.ACD 12.ACD11.【详解】对于A ,由正弦定理可得sin cos sin cos sin sin C B B C A a A +==,因为0πA <<,所以sin 0A ≠,所以1a =,若2B C A +=,且πB C A ++=,所以π3A =,由余弦定理得22222π1cos cos 322b c a b c A bc bc+-+-===,由0,0b c >>,可得2212b c bc bc +=+³,即1bc ≤,则ABC面积11sin 22bc A ≤=ABC,故A 正确;对于B ,若π4A =,且1a =,由正弦定理得1πsin sin 4b B=,所以πsin sin4B b b =,当sin 1B =1=,所以b =时有一解,故B 错误;对于C ,若C =2A ,所以π2π3B A A A =--=-,且ABC 为锐角三角形,所以π02π022π0π32A A A ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得ππ64A <<,所以2cos 2A ⎛∈ ⎝⎭,由正弦定理sin sin a cA C =得1sin sin 22cos sin sin C A c A A A⨯===∈,故C 正确;对于D ,做OD BC ⊥交BC 于点D 点,则D 点为BC 的中点,且1BC =,设OBD αÐ=,所以cos BDBOα=,所以211cos 22BD BC BO BC BO BC BO BC BD BC BOα⋅=⋅=⋅⨯=⋅==,故D 正确.12.【详解】由题意,PC 的中点O 即为-P ABC 的外接球的球心,设外接球的半径为R ,则34108π33R π=,得3R =,在Rt PAB 中,222PA AB PB +=,故222PB BC PC +=,即222224PA AB BC PC R ++==,而2AB =,所以2232PA BC +=,鳖臑-P ABC 的体积()()22111116232663P ABC V AB BC PA BC PA BC PA -=⨯⋅⋅=⋅⋅≤⋅+=,当且仅当4BC PA ==时,取得等号,故max 16()3P ABC V -=,故A 项正确,B 项错误;而1823C ABO O ABC V V V --===,故C 项正确;设-P ABC 的内切球半径为r ,由题意知三棱锥-P ABC 的四个侧面皆为直角三角形,由等体积法1111116322223P ABC V AB BC PA AC PA PB BC r -⎛⎫=⨯⋅+⋅+⋅+⋅⋅= ⎪⎝⎭,而2AC ==6PC =,得(1632r +⋅=,所以r =,故D 项正确,三、填空题:13.214.15.16.216【详解】以ABC 外接圆圆心为原点建立平面直角坐标系,如图,因为等边ABC21sin BCr r A=⇒=,设11(1,0),(,(,),(cos ,sin )2222A B C P αα---,则1(1cos ,sin ),(cos sin )2PA PB αααα=--=---,1(cos ,sin )2PC αα=--,所以(12cos ,2sin )PC PB αα+=---,所以()1cos PA PB PC α⋅+=-,因为1cos 1α-≤≤,所以01cosα2£-£,所以()PA PB PC ⋅+的最大值为2.四、解答题:17.【详解】(1)设向量(),c x y = ,因为()1,2a = ,c =r ,c a ∥,所以2x y==⎪⎩,解得24x y =⎧⎨=⎩,或24x y =-⎧⎨=-⎩,所以()2,4c =r 或()2,4c =-- ;(2)因为2a b + 与2a b -垂直,所以()()220a b a b +⋅-=r r r r ,所以222420a a b a b b -⋅+⋅-= 而52b =,a == ,所以5253204a b ⨯+⋅-⨯= ,得52a b ⋅=- ,a 与b的夹角为θ,所以52cos 12a b a bθ-⋅===-⋅,因为[]0,θπ∈,所以θπ=.18.【详解】(1)设圆锥的底面半径为r ,高为h.由题意,得:2r π=,∴r =,∴3h =∴圆锥的侧面积16S rl ππ===,底面积223S r ππ==,∴表面积129S S S π=+=.(2)由(1)可得:圆锥的体积为211133333V r h πππ==⨯⨯=.又圆柱的底面半径为2r =322h =,∴圆柱的体积为2233922428r hV πππ⎛⎫==⨯⨯= ⎪⎝⎭.∴剩下几何体的体积为12915388V VV πππ=-=-=.19.【详解】(1)设AD DC x ==,由余弦定理可得22cosADB CDB∠=∠==又cos cos ADB CDB ∠∠=- 2=1x ∴=,即2AC =.(2)由(1)知223271cos 2322A +-==⨯⨯,因为0A π<<,所以3A π=,由ABE ACE ABC S S S += 可得,1113sin 302sin 3032sin 60222AE AE ︒︒︒⨯⨯+⨯⨯=⨯⨯⨯,即5AE =,解得5AE =.20.【详解】(1)()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin 2coscos 2sin 2cos sin 6644x x x x ππππ⎛⎫⎛⎫=-+++ ⎪ ⎪⎝⎭⎝⎭11sin 2cos 2sin 2sin 2cos 2cos 222222x x x x x x π⎛⎫=-++=-+ ⎪⎝⎭1sin 2cos 2sin 2+226x x x π⎛⎫=+= ⎪⎝⎭,令222,Z 262k x k k πππππ-+≤+≤+∈,所以,Z 36k x k k ππππ-+≤≤+∈,所以函数()f x 的单调递增区间为:,,Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦(2)函数()y f x k =-在区间11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,即曲线sin 26y x π⎛⎫=+ ⎪⎝⎭与直线y k =在区间11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个交点.设26t x π=+,则sin ,y t =且,26t ππ⎡⎤∈-⎢⎥⎣⎦,又因为1sin 62π⎛⎫-=- ⎪⎝⎭,由图象可知,若要使sin y t =与y k =区间,26t ππ⎡⎤∈-⎢⎥⎣⎦上有且仅有两个交点,则()11,0,12k ⎛⎫∈--⋃ ⎪⎝⎭.21.【详解】(1)选择①,在ABC 中,由余弦定理得222222222a c b a c b a b c b ac a+-+-=+⋅=+,整理得222a b c ab +-=,则2221cos 22a b c C ab +-==,又()0,πC ∈,所以π3C =.选择②,可得sin cos sin cos cos a A B b A A C +=,在ABC中,由正弦定理得,2sin cos sin sin cos cos A B A B A A C +=,因为sin 0A ≠,则sin cos sin cos A B B A C +=,即()sin A B C +=,因为πA B C ++=,因此sin cos C C =,即tan C =又()0,πC ∈,所以3C π=.选择③,在ABC22(2cos1)2cos 2CC C =--=-,cos 2C C +=,即πsin 16C ⎛⎫+= ⎪⎝⎭,又()0,πC ∈,所以ππ7π,666C ⎛⎫+∈ ⎪⎝⎭,所以ππ62C +=,从而π3C =.(2)由(1)知,π3C =,有2π3ABC BAC ∠+∠=,而BAC ∠与ABC ∠的平分线交于点I ,即有π3ABI BAI ∠+∠=,于是2π3AIB ∠=,设ABI θ∠=,则π3BAI θ∠=-,且π03θ<<,在ABI △中,由正弦定理得,4π2πsin sin sin()sin33BI AI AB AIB θθ====∠-,所以)4sin π3(BI θ=-,4sin AI θ=,所以ABI △的周长为3234sin(4si π)n θθ-+3123cos sin )4sin 22θθθ=-+π23232sin 4sin()233θθθ=++=++由π03θ<<,得ππ2π333θ<+<,所以当ππ32θ+=,即π6θ=时,ABI △的周长取得最大值423+22.【详解】(1)记F 为AB 的中点,连接,DF MF ,如图1,因为,F M 分别为,AB AE 的中点,故//MF EB ,因为MF ⊄平面,EBC EB ⊂平面,EBC 所以//MF 平面EBC ,又因为ADB 为正三角形,所以60DBA ∠=︒,DF AB ⊥,又BCD △为等腰三角形,120BCD ∠=︒,所以30DBC ∠=︒,所以90ABC ∠=︒,即BC AB ⊥,所以//DF BC ,又DF ⊄平面,EBC BC ⊂平面,EBC 所以//DF 平面EBC ,又DF MF F ⋂=,,DF MF ⊂平面DMF ,故平面//DMF 平面EBC ,又因为DM ⊂平面DMF ,故//DM 平面BEC .(2)延长,CD AB 相交于点P ,连接PM 交BE 于点N ,连接CN ,过点N 作//NQ AE 交AB 于点Q ,如图2,因为//DM 平面ECB ,DM ⊂平面PDM ,平面PDM 平面ECB CN =,所以//DM CN ,此时,,,D M N C 四点共面,由(1)可知,2,60,BC CD PCB CB BP ==∠=︒⊥,得30,4CPB PC ∠=︒=,故4263PN CP PM DP ===,又因为//NQ AE ,所以23NQ PN AM PM ==,则有3112223NQ NQ AE AM ==⨯=,故13BN NQ BE AE ==.N。
2022-2023学年黑龙江省双鸭山市高一下学期期中数学试题【含答案】
2022-2023学年黑龙江省双鸭山市高一下学期期中数学试题一、单选题1.设,则复数的实部和虚部之和为( )()2i 1iz =-z A .3B .C .1D .3-1-【答案】B【分析】利用复数的乘法可得,从而可得其实部和虚部之和.z 【详解】,故其实部为,虚部为,两者的和为,()2i 1i 2iz =-=--2-1-3-故选:B.【点睛】本题考查复数的乘法以及复数的虚部和实部,注意复数的虚部为,本题i(,)a b a b +∈R b 属于基础题.2.中,角,,,的对边分别为,,,若,,则( )ABC A B C a b c 3a=c =6B π=b =A .B .C D【答案】C【解析】由余弦定理可直接求出.【详解】由余弦定理得,2222cos 93233b a c ac B =+-=+-⨯=b ∴=故选:C.3.向量在向量上的投影向量的坐标为( )()2,1a =()3,4b =A .B .()6,8()6,8--C .D .68,55⎛⎫ ⎪⎝⎭68,55⎛⎫-- ⎪⎝⎭【答案】C【分析】利用坐标求得与同向的单位向量,由可知所求向量为.b ecos ,2a b a a b b⋅<>==2e,与同向的单位向量,5=∴b 34,55b e b ⎛⎫== ⎪⎝⎭又,所求投影向量为.64cos ,25a b a a b b⋅+<>===∴682,55e ⎛⎫= ⎪⎝⎭ 故选:C.4.已知直线和平面,下列说法正确的是( ),a b αA .若,,则 B .若,,则//a b //b α//a α//a b b α⊂//a αC .若,,则D .若,,则a α⊥b α⊥//a b //a α//b α//a b【答案】C【分析】根据直线与直线、直线与平面的位置关系对四个选项逐一分析,即可判断.【详解】对A :若,,则或,故A 错误;//a b //b α//a αa α⊂对B :若,,则或,故B 错误;//a b b α⊂//a αa α⊂对C :根据垂直于同一平面的两条直线平行可知,C 正确;对D :若,,则与可能平行、可能相交、可能异面,故D 错误.//a α//b αa b 故选:C5.如图,在△ABC 中,,,设,,则( )3AB AD =CE ED =AB a = AC b = AE = A .B .1132a b +1142a b +C .D .1152a b + 1162a b + 【答案】D【分析】根据向量的加法法则,即可求解.【详解】解:由题意得:,11111112223262AE AD AC AB AC a b=+=⨯+=+故选:D.6.一个水平放置的三角形的斜二侧直观图是等腰直角三角形如图所示,若,那么原A B O '''1O B ''=的面积是( )ABOA B C .D .【答案】B【分析】根据斜二测画法可得原三角形的底边及高,进而可求原三角形的面积.【详解】因为三角形的斜二侧直观图是等腰直角三角形,A B O '''所以的底.斜边ABO 1OB O B ''==A O ''则为直角三角形,高ABO 三角形22OA A O ''==所以直角三角形的面积是ABO 112⨯⨯=故选:B .7.空间四边形中,,,分别是,的中点,ABCD 2AD BC ==E F AB CD EF =,所成的角为( )AD BCA .30°B .60°C .90°D .120°【答案】B【解析】取AC 中点G ,连接EG 、FG ,可知∠EGF 或其补角即为异面直线AD ,BC 所成的角,在△EFG 中,由余弦定理可得cos ∠EGF ,结合角的范围可得答案.【详解】取AC 中点G ,连接EG 、FG ,由三角形中位线的知识可知:EG BC ,FG AD ,12=12=∴∠EGF 或其补角即为异面直线AD ,BC 所成的角,在△EFG 中,cos ∠EGF,222122EG FG EF EG FG +-===-⨯⨯∴∠EGF =120°,由异面直线所成角的范围可知应取其补角60°,故选:B .【点睛】本题考查异面直线所成的角,涉及解三角形的应用,属中档题.8.如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得,,,在点C 测得塔顶A 的仰角为,则塔高BCD α∠=BDC β∠=CD s =θ( )AB =A .B .()tan sin sin s θβαβ⋅+()tan sin sin s θαββ⋅+C .D .()sin sin sin s θαββ⋅+()sin sin sin s θβαβ⋅+【答案】A【分析】运用正弦定理和锐角三角函数定义进行求解即可.【详解】在中,由正弦定理可知:BCD △,sin sin sin sin sin(π)sin()BC CD BC s s BC BDC CBD ββαβαβ⋅=⇒=⇒=∠∠--+在直角三角形中,ABC ,sin tan tan sin()BA s ACB BA BC βθαβ⋅∠=⇒=+故选:A二、多选题9.已知两点,,则与向量垂直的单位向量( )()1,2A ()4,2B -ABe = A .B .43,55⎛⎫ ⎪⎝⎭43,55⎛⎫-- ⎪⎝⎭C .D .34,55⎛⎫- ⎪⎝⎭34,55⎛⎫- ⎪⎝⎭【答案】AB【分析】设,根据单位向量的模长公式以及向量垂直的坐标表示列式可求出结果.(,)e x y = 【详解】因为,,所以,()1,2A ()4,2B -(3,4)AB =-设,则且,(,)e x y =||1e = 0AB e ⋅= 所以,解得或,221340x y x y ⎧+=⎨-=⎩4535x y ⎧=⎪⎪⎨⎪=⎪⎩4535x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以或.43(,)55e = 43(,)55e =-- 故选:AB10.,是三个平面,是两条直线,下列四个命题中错误的是( )αβ,γm n ,A .若,则B .若则//,,m n αβαγβγ== //m n ,,//,//,m n m n ααββ⊂⊂//αβC .若,则D .若,则//m αβα⊂,//m β//m n m n αβ⊂⊂,,//αβ【答案】BD【分析】根据空间直线与直线、直线与平面、平面与平面的位置关系逐个分析可得答案.【详解】对于A ,若,由平面与平面平行的性质可得,故选项A 正//,,m n αβαγβγ== //m n 确;对于B ,若,当与相交时,,故选项B 错误;,,//,//m n m n ααββ⊂⊂m n //αβ对于C ,若则与无公共点,因为,所以与无公共点,所以,故选项C//αβαβm α⊂m β//m β正确;对于D ,若,,则或与相交,故选项D 错误.//m n ,m n αβ⊂⊂//αβαβ故选:BD.11.在中,设所对的边分别为,则以下结论正确的是( )ABC ,,A B C ,,a b c A .若,则为等腰三角形.sin 2sin 2A B =ABC B .若,则sin sin A B >A B>C .若,则是锐角三角形.2220b c a +->ABC D .若,则一定是一个钝角三角形.():():()4:5:6b c c a a b +++=ABC 【答案】BD【分析】根据正弦函数的性质可判断A ,根据正弦定理及大边对大角的性质可判断B ,由余弦定理以及锐角三角形的定义判断C ,根据已知条件及余弦定理判断D.【详解】,,sin 2sin 2A B = 022π,022πA B <<<<或,即或,22A B ∴=22πA B +=A B =π2A B +=为等腰或直角三角形,故A 错误;ABC ∴△,由正弦定理可知,,故B 正确;sin sin A B > a b >A B ∴>因为,所以,所以,2220b c a +->222cos 02b c a A bc +-=>π02A <<而角、角不一定是锐角,所以不一定是锐角三角形,故C 错误;B C ABC 设,则解得,4,5,6b c k c a k a b k +=+=+=753,,222a k b k c k ===则,因为,222222222357152224cos 01515222k k k k b c a A k k bc⎛⎫⎛⎫⎛⎫+-- ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭===<0πA <<所以是钝角,故D 正确.A 故选:BD12.在正四面体中,若,为的中点,下列结论正确的是( )ABCD 2AB =M BC AB .正四面体外接球的表面积为6πC .如果点在线段上,则的最小值为P DM ()2AP CP +4+D .正四面体内接一个圆柱,使圆柱下底面在底面上,上底圆面与面、面、ABCD BCD ABD ABC面ACD 【答案】BCD【分析】由正四棱锥的结构特征,应用棱锥的体积公式求体积,并确定外接球的半径求表面积,展开侧面,要使最小,只需共线,结合余弦定理求其最小值,根据正四面体()2AP CP +,,A P C内接一个圆柱底面圆与其中截面正三角形关系求半径、体高,应用二次函数性质求侧面积最ABCD 大值.【详解】由正四面体各棱都相等,即各面都为正三角形,故棱长为2,如下图示,为底面中心,则共线,为体高,故,O ,,D O MAO 23BO BD =所以,故正四面体的体积为AO ===A 错误;1111sin 6043232AO BC BD ⋅⋅⋅⋅⋅︒=⨯=由题设,外接球球心在上,且半径,E AO r EA EB ==所以,则,222()r AO r BO =-+222AO BO r AO +==故外接球的表面积为,B 正确;234π4π6π2r =⨯=由题意知:将面与面沿翻折,使它们在同一个平面,如下图示,AMD CMD MD所以且2AD CD ==cos DO BO ADM AD AD ∠==sin AO ADM AD ∠==又,而,30CDM ∠=︒1cos cos()2ADC ADM CDM ∠=∠+∠==要使最小,只需共线,则,()2AP CP +,,A P C ()2222min 2cos AP CP AC AD CD AD CD ADC +==+-⋅∠所以C 正确;()2min 8(1AP CP +==如下图,棱锥中一个平行于底面的截面所成正三角形的内切圆为正四面体内接一个圆柱的上ABCD 底面,若截面所成正三角形边长为,则圆柱体的高(0,2)x ∈(12x h AO =⋅-=,13==r所以其侧面积,2π2πS rh ====故当时,,D 正确.1x =max S =故选:BCD三、填空题13.已知复数为纯虚数,则________.22(2)(1)i(R)z m m m m =+-+-∈m =【答案】2-【分析】根据纯虚数的定义即可求解.【详解】因为复数为纯虚数,22(2)(1)i(R)z m m m m =+-+-∈所以且,解得.220m m +-=210m -≠2m =-故答案为:2-14.若一个圆锥的侧面是半径为6的半圆围成,则这个圆锥的表面积为________.【答案】27π【分析】求出底面半径,代入公式即可.【详解】因为圆锥的侧面展开图是一个半径为的半圆,6所以圆锥的母线长为,6l =设圆锥的底面半径为,则,所以,r 26r ππ=⨯3r =所以圆锥的表面积为.227S r rl πππ=+=故答案为:.27π15.在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为 .【答案】【详解】试题分析:设点A 到平面A1BC 的距离为h ,则三棱锥的体积为1A ABCV -即11A ABCA A BC V V --=111133ABCA BC S AA S h ∆∆⋅=⋅111233h h ∴=⋅⋅∴=【解析】点、线、面间的距离计算四、双空题16.已知锐角的内角所对的边分别,角.若是的平分线,ABC A B C 、、a b c 、、π=3A AM CAB ∠交于,且,则的最小值为________;若的外接圆的圆心是,半径B C M =2AM +3AC AB ABC O 是1,则的取值范围是________.()OA AB AC⋅+【答案】.4+53,2⎡⎫--⎪⎢⎣⎭【分析】(1)由已知利用,可得“”的代换,基本不等式ABC CAMBAM S SS =+△△△11b c+=1即可得出结果.(2)根据锐角三角形的角度范围,表示出,进而得出结果.()OA AB AC ⋅+ π=cos 223B ⎛⎫+- ⎪⎝⎭【详解】(1)由是的平分线,AM CAB ∠得,=30CAM BAM ∠=∠︒又,ABC CAMBAMS SS=+ △△△即,1π1π1πsin 2sin 2sin232626bc b c =⨯⨯⨯+⨯⨯⨯化简得,11b c+=()1133=+334c b AC AB b c b c b c b c ⎫⎫∴+=++++⎪⎪⎭⎭,+4≥=当且仅当,即时,取等号.3c b b c=23c =2b =(2),π2π=33A B C +=, ∴()()2=22OA AB AC OA OB OC OA OA OB OA OC OA ⋅+⋅+-=⋅+⋅- =cos cos 2=cos 2cos 22AOB AOC C B ∠+∠-+-2π=cos 2cos 223B B ⎛⎫-+- ⎪⎝⎭1=cos 2222B B -,π=cos 223B ⎛⎫+- ⎪⎝⎭是锐角三角形,ABC ,π022ππ032B C B ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩2π4π,2+62333πππB B ∴<<<<,π11cos 232B ⎛⎫∴-≤+<-⎪⎝⎭.()532OA AB AC ⎡⎫∴⋅+∈--⎪⎢⎣⎭,;.453,2⎡⎫--⎪⎢⎣⎭五、解答题17.如图为长方体与半球拼接的组合体,已知长方体的长、宽、高分别为10,8,15(单位:cm ),球的直径为5 cm ,(1)求该组合体的体积;(2)求该组合体的表面积.【答案】(1)(cm 3)125π120012+(2)(cm 2).25π7004+【分析】(1)根据长方体和球的体积公式可求出组合体的体积;(2)根据长方体和球的表面积公式可求出组合体的表面积;【详解】(1)根据该组合体是由一个长方体和一个半球组合而成.由已知可得,3108151200(cm )V =⨯⨯=长方体又,=V 半球3314π5125π(cm )23212⎛⎫⨯⨯= ⎪⎝⎭所以所求几何体体积为:,=V V V=+长方体半球125π120012+3(cm )(2)因为长方体的表面积,=2(1088151015)700S ⨯+⨯+⨯=长方体表2(cm )半球的底面积,球的表面积,2525=π()π24S ⋅=半球底2(cm )25=4π(25π2S ⋅=球2(cm )故所求几何体的表面积为.1252570025ππ700π244+⨯-=+2(cm )18.已知向量.(1,2),(3,)a b k ==-(1)若,求;a b∥||b (2)若向量与的夹角是钝角,求实数k 的取值范围.a b【答案】(1);(2)且.32k <6k ≠-【分析】(1)根据向量共线的坐标表示即可求出k ,根据向量模长公式即可计算;(2)若向量与的夹角是钝角,则<0且与不反向,根据数量积即可运算.a b a b ⋅ a b【详解】(1)∵,a b ∥∴,解得,12(3)0k ⨯-⨯-=6k =-∴.||b ==(2)∵与的夹角是钝角,a b ∴,且与不反向,0a b ⋅< a b即且,1(3)20k ⨯-+⨯<6k ≠-∴且.32k <6k ≠-19.如图,四边形ABCD 为长方形,平面ABCD ,,,点E 、F 分别为PD ⊥2PD AB ==4=AD AD 、PC 的中点.设平面平面.PDC PBE l =(1)证明:平面PBE ;//DF (2)证明:;//DF l 【答案】(1)证明见解析(2)证明见解析【分析】(1)取PB 中点,连接FG ,EG ,证明,根据鲜明平新的判定定理即可证明结G //DF GE 论;(2)利用线面平行的性质定理即可证明结论.【详解】(1)证明:取PB 中点,连接FG ,EG ,因为点E 、F 分别为AD 、PC 的中点,G所以,,//FG CB 12FG BC =因为四边形ABCD 为长方形,所以,且,//BC AD BC AD =所以,,所以四边形DEGF 为平行四边形,//DE FG DE FG =所以,因为平面PBE ,平面PBE ,//DF GE DF ⊄GE Ì故平面PBE.//DF (2)证明:由(1)知平面PBE ,又平面PDC ,平面平面,//DF DF ⊂PDC PBE l =所以.//DF l 20.已知的内角、、的对边分别是、、,且.ABC A B C a b c 2cos 2b A c a ⋅=+(1)求;B (2)若,求的面积的最大值.3b =ABC 【答案】(1);23B π=【分析】(1)利用正弦定理边化角,再利用和角的正弦化简求解作答.(2)利用余弦定理结合均值不等式求出的最大值,再由面积定理求解作答.ac 【详解】(1)在中,,由及正弦定理得:ABC A B C π++=2cos 2b A c a ⋅=+,2sin cos 2sin sin B A C A ⋅=+即,,2sin cos 2sin()sin B A A B A ⋅=++2sin cos 2sin cos 2cos sin sin B A A B A B A ⋅=⋅+⋅+于是得,又,即,则,因,2cos sin sin B A A ⋅=-0A π<<sin 0A >1cos 2B =-(0,)B π∈所以.23B π=(2),由余弦定理得:,当且仅当时取“=”,3b =222222cos 3b a c ac B a c ac ac =+-=++≥a c =因此,,于是得“=”,3ac ≤11sin 322ABC S ac B =≤⨯= a c ==所以ABC 21.如图,在三棱柱中,侧面,均为正方形,交于点,111ABC A B C -11ABB A 11ACC A 1AC 1A C O ,为中点.90BAC ∠= D BC(1)求证:平面;1C A ⊥11A B C (2)求直线与平面所成的角.11B C 11A B C 【答案】(1)证明见解析(2)30【分析】(1)利用已知条件结合线面平行的判定定理进行证明即可;(2)根据线面角的定义进行求解即可.【详解】(1)在正方形中,,11ACC A 11C A A C⊥因为,所以,90BAC ∠=AB AC ⊥又因为侧面是正方形,所以,11ABB A 1AB AA ⊥因为平面,11,,AC AA A AC AA ⋂=⊂11ACC A 所以平面,AB ⊥11ACC A 而平面,则,而,1C A ⊂11ACC A 1AB C A⊥11//A B AB∴,而,111A B C A⊥1111= A B A C A 又平面,111,A B CA ⊂11A B C ∴平面1C A ⊥11A B C(2)连接,如图所示:1OB ∵为正方形,,11ACC A 90BAC ∠=∴,11111,AC A C AC A B ⊥⊥而平面,1111111,,A B CA A A B CA =⊂11A B C ∴平面,1AC ⊥11A B C ∴为直线与平面所成的角,11C B O∠11B C 11A B C ∵,11111122C O C A C B ==∴,1130C B O ∠=所以直线与平面所成的角为.11B C 11A B C 3022.在中,角A ,B ,C 所对的边分别是a ,b ,c ,且.ABC 2sin sin sin A C CA CBC BA BC -⋅=⋅(1)求角B 的大小;(2)求的取值范围;22sin sin A C +(3)若D 是AC 边上的一点,且,,当取最大值时,求的面积.:1:2AD DC =1BD =3a c +ABC 【答案】(1);3B π=(2);33,42⎛⎤ ⎥⎝⎦【分析】(1)先由向量的数量积及余弦定理求得,再由正弦定理化简得222222sin sin sin 2a A C b c c C a b -+-=+-,即可求出,进而求出;222a c b ac +-=cos B B (2)直接由两角差的正弦、倍角公式及辅助角公式化简得,再由221sin(212sin 6sin A C A π=+-+的范围及正弦函数的单调性求解即可;A (3)先由结合余弦定理得,令,借助πADB CDB ∠+∠=()2239a c c ++=3cos 3sin a c θθ+==辅助角公式得,求出取最大值时的值,即可计算面积.()3a c θϕ+=+,a c 【详解】(1)由,222222cos 2a b c CA CB CA CB C ba a b c ab +-⋅=⋅=⋅=+- ,222222cos 2a c b BA BC BA BC B ca a c b ac +-⋅=⋅=⋅=+- 则,由正弦定理得,化简得2222222sin sin sin A C CA CB a b c C a c b BA BC -⋅+-==+-⋅2222222a c a b c c a c b -+-=+-,222a c b ac +-=故,又,故;2221cos 22a c b B ac +-==()0,B π∈3B π=(2)由(1)知,,故23A C π+=2222222231sinsin sin sin sin cos cos sin 344A C A A A A A A Aπ⎛⎫+=+-=++⎪⎝⎭213sin cos 24A A A =++11cos 23122cos 212244A A A A -=⋅+=-+,1sin(2126A π=-+又,则,,故;203A π<<72666A πππ-<-<1sin(2,162A π⎛⎤-∈- ⎥⎝⎦2233sin sin ,42A C ⎛⎤+∈ ⎥⎝⎦(3)易得,由,可得12,33AD b CD b==πADB CDB ∠+∠=,2222141199cos cos 02433b c b a ADB CDB b b +-+-∠+∠=+=整理得,又,整理可得,令2222233b a c =+-222a c b ac +-=()2239a c c ++=,3cos 3sin a c θθ+==则,其中,即()33cos a c θθθϕ+=++sin ϕϕ==()sin 1θϕ+=时,取最大值,2πθϕ+=3a c +此时,解得3cos 3sin 3sin 3cos a c θϕθϕ+======a c ==的面积为ABC 11sin 22ac B ==。
2022-2023学年黑龙江省哈尔滨市高一下学期期中数学试题-含答案
2022-2023学年黑龙江省哈尔滨市高一下学期期中数学试题一、单选题1.在空间中,下列命题不正确的是( )A .若两个平面有一个公共点,则它们有无数个公共点.且在一条直线上B .若已知四个点不共面,则其中任意三点不共线C .梯形可确定一个平面D .任意三点能确定一个平面【答案】D【分析】利用平面的相关公理和推论逐项进行判断即可求解.【详解】对于选项A ,若两个平面有一个公共点,则它们有经过该公共点的一条直线,即两平面有无数个公共点,故选项A 正确;对于选项B ,若已知四个点不共面,则其中任意三点不共线,否则,若存在三点共线,则问题转化为一条直线与直线外一点,则四点共面,故选项B 正确;对于选项C ,因为两条平行直线确定一个平面,所以梯形可确定一个平面,故选项C 正确;对于选项D ,共线的三点不能确定一个平面,故选项D 错误;故选:D.2.已知复数满足,则的虚部为( )z (2i)24i z +=-z A .B .C .D .22i -2i 2-【答案】C【分析】计算,确定虚部得到答案.2i z =-【详解】,故虚部为.()()()()24i 2i 24i 10i2i 2i 2i 2i 5z ----====-++-2-故选:C3.在中,角A ,B ,C 所对的边分别为a ,b ,c .已知a,b,则角A 为ABC π3B =( )A .B .C .D .或3π4π3π4π43π4【答案】C【分析】由正弦定理即可求解.【详解】由正弦定理,得sin sin a b A B =sin sin a B A b ===又,所以,所以为锐角,所以.a b <A B <A π4A =故选:C .4.向量,, 在边长为1的正方形网格中的位置如图所示,若为与同方向的单位向量,a b c ec 则( )()a b e+⋅ A .1.5B .2C .-4.5D .-3【答案】D【分析】首先建系,确定向量的坐标,根据向量数量积的坐标表示求解.【详解】如图,建立平面直角坐标系,由图可知,,,()1,1a =-()2,1b =--()1,0e =则,所以.()3,0a b +=- ()3a b e +⋅=- 故选:D5.在中,角所对的边分别为,已知,则下列结论正确的是( )ABC ,,A B C ,,a b c ::3:3:4a b c =A .B .sin :sin :sin 4:3:3A B C =0CA CB ⋅< C .若,则的面积是D.若,则8c =ABC 7b c +=ABC 【答案】C【分析】根据题意,由正弦定理可判定A 错误;由余弦定理求得,结合向量的数量积的定cos 0C >义,可判定B 错误;由三角形的面积公式,可判定C 正确;由正弦定理求得外接圆的半径,可判定D 错误.【详解】由题意,在中,满足,ABC ::3:3:4a b c =对于A 中,由正弦定理,所以,sin sin sin a b cA B C ==sin :sin :sin 3:3:4A B C =所以A 不正确;对于B 中,设三边的长分别为,ABC 3,3,4a m b m c m ===由余弦定理得,222(3)(3)(4)1cos 02339m m m C m m +-==>⨯⨯所以,所以B 错误;cos 0CA CB ab C ⋅=> 对于C 中,若,可得,可得,则8c =6a b ==1cos 9C =sinC =所以的面积为C 正确;ABC 11sin 6622S ab C ==⨯⨯=对于D 中,设三边的长分别为,ABC 3,3,4a m b m c m ===由,即,可得,所以,7b c +=347m m +=1m =4c=设外接圆的半径为,则,ABC R 2sinc R C ===所以D 错误.R 故选:C.6.已知非零向量,满足,且向量在向量方向的投影向量是,则向量a b ()()a b a b +⊥- b a 12a -与的夹角是( )a bA .B .C .D .6π3π23π56π【答案】C【分析】运用数量积和投影向量的定义求解.【详解】由题意,,则,即 ,()()a b a b +⋅-=22a b = a b=设与的夹角为 ,则在方向的投影,a b θb a 1cos 2a b aa θ⋅=-,则;[]1cos ,0,π2θθ∴=-∈2π3θ=故选:C.7.=( )23sin 502cos 20--A .BCD .212【答案】D【分析】根据降幂公式及变名的诱导公式进行化简.【详解】.()()223sin 5023sin 503sin 503sin 5021cos 402cos 203cos 403sin 5022----====+----故选:D.8.已知函数,若存在实数,满足 ,且()cos f x x=12,,,n x x x ⋅⋅⋅1204πn x x x ≤<<⋅⋅⋅<≤,, ,,则n 的最小值为()()()()()()122318n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=2n ≥*N n ∈( )A .4B .5C .6D .7【答案】B 【分析】由的性质,根据的特()cos f x x=()()()()()()122318n n f x f x f x f x f x f x --+-++-= 点以及题意求解.【详解】由题意,n 要尽可能地小,则等式中,每一项要尽可能地大,()()()()()()122318n n f x f x f x f x f x f x --+-++-= ,显然时,n 最小,()()()1cos ,2n n f x x f x f x -=∴-≤ ()()12n n f x f x --= ,即,()()()()()()122312n n f x f x f x f x f x f x --=-==-= 814,52n n -==∴=此时不妨取 ,满足题意;123450,π,2π,3π,4πx x x x x =====故选:B.二、多选题9.如图,正方形ABCD 的边长为3,点E 是线段AB 的靠近点B 的一个三等分点,若边DC 上存在点F ,使得成立,则下列选项中符合题意的的值有( )EA EF λ⋅=λA .B .1C .5D .02-【答案】ABD【分析】以为基底,设,用基底表示出,根据x 的范围可求得,BA BC (01)CF xCD x =≤≤ EA EF ⋅ 的范围即可.λ【详解】记,设,,BA a BC b ==(01)CF xCD x =≤≤ 由题知,,3,0a b a b ==⋅=又因为,211,333EA a EF EB BC CF a b xa x a b⎛⎫==++=-++=-+ ⎪⎝⎭ 所以,22121623333EA EF a x a b x a x ⎡⎤⎛⎫⎛⎫⋅=⋅-+=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 因为,所以,即.01x ≤≤24EA EF -≤⋅≤24λ-≤≤故选:ABD.10.已知是函数的一个周期,则的取值可能为( )π()2sin cos 066y x x ππωωω⎛⎫⎛⎫=++≠ ⎪ ⎪⎝⎭⎝⎭ωA .﹣2B .1C .D .312【答案】ABD【分析】根据三角恒等变换公式进行化简,根据周期函数定义求出的表达式即可求解.ω【详解】依题意得,2sin cos sin 2663y x x x πππωωω⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由周期函数定义得:,即: ()()f x f x π+=()sin 2sin 233x x ππωπω⎡⎤⎛⎫++=+ ⎪⎢⎥⎣⎦⎝⎭即:sin 22sin 233x x ππωωπω⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭222233x x k k Zππωωπωπ∴++=++∈,解得:k k Zω=∈,又0ω≠ 或1ω∴=32ω=-,故选:ABD .11.在中,角A ,B ,C 所对的边分别为a ,b ,c .若,内角A 的平分线交BC 于点ABC cos b c A =D ,AD =1,,以下结论正确的是( )1cos 8A =A .B .C .D .32AC =6AB =18CD BD =ABD △【答案】BCD【分析】首先根据题意结合余弦定理可得,并根据二倍角公式得到,依次计算π2C =3cos 4CAD ∠=的值,根据面积公式,分析判断选项C 和D.,AC AB 【详解】在中,ABC ∵,则,整理得,所以,cos b c A =2222b c a b c bc +-=⨯222b ac +=π2C =由二倍角公式得,解得,21cos 2cos 18BAC CAD ∠∠=-=3cos 4CAD ∠=在中,则,故选项A 错误;Rt ACD △3cos 4AC AD CAD ∠==在中,则,故选项B 正确;Rt ABC △3461cos 8ACAB BAC ===∠由题意可知:,即,CAD BAD ∠=∠sin sin CAD BAD ∠=∠由,解得,故选项C 正确;11sin 2211sin 22ACDADB CD AC AC AD CADS S BD AC ABAD BAD∠∠⋅⋅⋅==⋅⋅⋅ 18CD AC BD AB ==在中,ABD △∵,则3cos 4BAD ∠=sin BAD ∠==∴D 正确.11sin 1622ABD S AD AB BAD ∠=⋅⋅=⨯⨯= 故选:BCD.12.如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形,其中,则( )ABCDEFGH 2OA =A B .0OE OG ++= OA OD ⋅=-C .D .4AH EH +=4+=+AH GH 【答案】ABC【分析】分别以所在的直线为轴和轴,建立的平面直角坐标系,作,结合向,HD BF x y AM HD ⊥量的坐标运算,逐项判定,即可求解.【详解】由题意,分别以所在的直线为轴和轴,建立如图所示的平面直角坐标系,,HD BF x y 因为正八边形,所以ABCDEFGH AOH HOG AOB EOF FOG∠∠∠∠∠====,DOE COB COD =∠=∠=∠360458==作,则,AM HD ⊥OM AM =因为,所以,2OA =OM AM ==(A同理可得其余各点坐标,,,,,,()0,2B -E (G ()2,0D ()2,0H -对于A ,故A 正确;(0(0OE OG ++=-=对于B 中,,故B 正确;(2(0OA OD ⋅=⨯+⨯=-对于C 中,,,,(2AH =- (2EH =-(4,0)AH EH +=-所以,故C 正确;4AH +=对于D 中,,,,(2AH =- (2GH =-(4AH GH +=-+,故D 不正确.4AH +=- 故选:ABC.三、填空题13.若复数为纯虚数,则=___________.i1i a +-2ia +【分析】由复数除法法则化简后求得,再由复数模的定义求解.a 【详解】为纯虚数,则且,i (i)(1i)1(1)i 11i 1i (1i)(1i)222a a a a a a +++-++-+===+--+102a -=102a +≠∴,1a =,2+14.圆锥侧面展开图扇形的圆心角为60°,底面圆的半径为6,则圆锥的侧面积为______.【答案】216π【分析】运用扇形的弧长公式以及圆锥的侧面积公式计算即可求解.【详解】设圆锥的底面周长为,母线长为,则,c l 2π612πc =⨯=因为圆锥侧面展开图扇形的圆心角为,60︒所以,解得,π12π3c l l ==36l =则圆锥的侧面积为,113612π216π22lc =⨯⨯=故答案为:.216π四、双空题15.已知,是单位向量,且,设向量,当时,______;1e 2e 120e e ⋅=12a e e λμ=+ 1λμ==1,a e = 当时,的最小值为______.4λμ+=1a e -【答案】/4π45︒【分析】求出,根据夹角公式可得,将表示为关于的二次函数,求出最小值即可.a1,a e 1a e - λ【详解】当时,,1λμ==12a e e =+222112222a ee e e =+⋅+= ,()1211111cos ,e e e a e a e a e a e +⋅⋅====⨯⨯因为,所以;[]1,0,πa e ∈1π,4a e =当时,,4λμ+=()()()11212114a e e e e e λμλλ-=-+=-+-则,()()222215914222a eλλλ⎛⎫-=-+-=-+⎪⎝⎭ 当时,的最小值为,52λ=1a e - 故答案为:π4五、填空题16.在中,若AC=2,,,点D 为AB 边上的动点,有如下结论:ABC =60B ∠︒45A ∠=︒①不存在点D 使得为等边三角形 ②存在点D 使得BCD △1cos 3CDA ∠=③存在点D使得④存在点D 使得CD =1:BD DC =上述结论中正确的有______【答案】②③【分析】运用三角形的正弦定理和三角形的内角和定理、边角关系,结合正弦函数的性质,对选项一一判断,即可得到结论.【详解】若△BCD 为边长为x 的等边三角形,可得=解得x 2,sin 45x ︒2sin 60︒满足AC >CD ,所以存在点D 使得为等边三角形,则①不正确;BCD △因为cos ∠CDA =<=cos60°,且0°<∠CDA <180°,1312可得∠CDA >B ,所以AB 上存在点D ,则②正确;由=,BD DC =::sin sin 60BCD ︒∠BDDC可得,即有∠BCD =45°<∠BCA =75°,则③正确;sin BCD ∠=若CD =1,在中可得=,ACD sin 45CD ︒sin ACADC ∠可得sin ∠ADC1,∠ADC 不存在,则④不正确.故答案为:②③.六、解答题17.某广场内设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样的四面体得到的,如图所示,若被截正方体的棱长是60cm .(1)求石凳的体积;(2)为了美观工人准备将石凳的表面进行粉刷,已知每平方米造价50元,请问粉刷一个石凳需要多少钱?【答案】(1)3180000cm (2)元(54+【分析】(1)计算出正方体的体积减去8个小正三棱锥的体积,得到答案;(2)计算出石凳的表面积,从而求出粉刷一个石凳的钱数.【详解】(1)正方体的体积为,3360216000cm =石凳的体积为正方体的体积减去8个正三棱锥的体积,其中一个小正三棱锥的三条侧棱边长为,30cm 故一个小正三棱锥的体积为,321130304c 52m 003⨯⨯⨯=故石凳的体积为;321600045008c 180m 000-⨯=(2)石凳的表面由6个正方形和8个正三角形组成,其中正方形和正三角形的边长均为,则石凳的表面积为,(()22166081080cm 02⨯+⨯︒⨯=元.(5054=+18.角A ,B ,C 对边分别为,向量,,且ABC ,,a b c ()cos cos ,m a B b A abc =+()222,1n a b c =+--.m n ⊥ (1)求角C ;(2)若的周长为外接圆半径为2,求的面积.ABC ABC ABC 【答案】(1)3C π=(2)【分析】(1)运用数量积以及三角函数和差公式,正弦定理,余弦定理求解;(2)运用正弦定理余弦定理求出 ,再利用面积公式计算.ab 【详解】(1)由 得:,由余弦定理知:m n ⊥ ()()222cos cos 0a B b A a b c abc ++--= ,2222cos a b c ab C +-= , ,()2cos cos cos 0ab C a B b A abc ∴+-=()0,0,2cos cos cos 0a b C a B b A c ≠≠∴+-= 由正弦定理得:,即()2cos sin cos sin cos sin 0C A B B A C +-= ,()2cos sin sin 0,2cos sin sin 0C A B C C C C +-=-= ,,;()0,πC ∈ sin 0C ∴≠∴π3C =(2)由正弦定理得,即,2,22sin c R c C =∴=⨯=a b +=由余弦定理得,()2222222cos 312c a b ab C a b ab a b ab =+-=+-=+-=,12ab ∴=1sin 2ABC S ab C ==即.ABC S = 19.已知点,,,()3,0A ()0,3B ()cos ,sin C x x Rx ∈(1)若,且,求x 的值AC BC = []0,2πx ∈(2)设函数,求的单调递增区间.()f x AC BC=⋅()f x(3)对于(2)中的函数,,求()f x ()1f α=π,02α⎛⎫∈- ⎪⎝⎭sin α【答案】(1)或π4x =5π4(2)增区间为()π5π2π,2πZ 44k k k ⎡⎤++∈⎢⎥⎣⎦(3)sin α=【分析】(1)求得,,根据模长坐标公式并化简得到(cos 3,sin )AC x x =- (cos ,sin 3)BC x x =-,结合即可求解;tan 1x =[]0,2πx ∈(2)化简得到,令,即可得到增区间;()π14f x x ⎛⎫=-++ ⎪⎝⎭ππ3π2π2π,Z242k x k k +≤+≤+∈(3)代入可得,由得到,从而得到π1sin 43α⎛⎫+= ⎪⎝⎭π,02α⎛⎫∈- ⎪⎝⎭πππ,444α⎛⎫+∈- ⎪⎝⎭,利用差角正弦公式即可求解.πcos 4α⎛⎫+= ⎪⎝⎭ππsin sin 44αα⎛⎫=+- ⎪⎝⎭【详解】(1),,(cos 3,sin )AC x x =- (cos ,sin 3)BC x x =-因为,所以,AC BC=2222(cos 3)sin cos (sin 3)x x x x -+=+-即,即,2222cos 6cos 9sin cos sin 6sin 9x x x x x x -++=+-+cos sin x x =所以,又,所以或.tan 1x =[]0,2πx ∈π4x =5π4(2)22()(cos 3)cos sin (sin 3)cos 3cos sin 3sin fx AC BC x x x x x x x x=⋅=-+-=-+- ,π3(sin cos )114x x x ⎛⎫=-++=-++ ⎪⎝⎭令,ππ3π2π2π,Z 242k x k k +≤+≤+∈解得,π5π2π2π,Z 44k x k k +≤≤+∈所以的单调递增区间为.()f x ()π5π2π,2πZ44k k k ⎡⎤++∈⎢⎥⎣⎦(3),π()114f αα⎛⎫=-++= ⎪⎝⎭π1sin 43α⎛⎫+= ⎪⎝⎭因为,所以,所以,π,02α⎛⎫∈- ⎪⎝⎭πππ,444α⎛⎫+∈- ⎪⎝⎭πcos 4α⎛⎫+== ⎪⎝⎭所以ππππππsin sin sin cos cos sin444444αααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13==20.已知函数的部分图像如图所示.,()()πsin 20,0,2f x A x A ϕωϕ⎛⎫=+>>< ⎪⎝⎭π4f ⎛⎫= ⎪⎝⎭,3π08f ⎛⎫= ⎪⎝⎭3π4f ⎛⎫= ⎪⎝⎭(1)求的解析式;()f x (2)将的图像先向右平移个单位,再将图像上所有点的横坐标变为原来的倍(纵坐标()y f x =7π2412不变),所得到的图像对应的函数为,若对于恒成立,求实数m 取()y g x =()2g x m -≤π0,4x ⎡⎤∈⎢⎥⎣⎦值范围.【答案】(1).()π2sin 24f x x ⎛⎫=+ ⎪⎝⎭(2)0,2m ⎡∈⎣【分析】(1)根据图像求出函数的周期,进而求出ω,再由特殊点以及求出φ,然后由π||2ϕ<A ,从而得出答案;π()4f =(2)利用图像的平移伸缩变换求出,再根据三角函数的性质即可求解.()y g x =【详解】(1)由图像可得:,故,且,解得,3πππ2442T =-=2ππT ω==0ω>2ω=可得,()()sin 2f x A x ϕ=+∵的图像过点,则,()f x 3π,08⎛⎫⎪⎝⎭3π3πsin 2sin 084A A ϕϕ⎛⎫⎛⎫⨯+=+= ⎪ ⎪⎝⎭⎝⎭可得,且,则,3πsin 04ϕ⎛⎫+= ⎪⎝⎭ππ,22ϕ⎛⎫∈- ⎪⎝⎭3ππ5π,444ϕ⎛⎫+∈ ⎪⎝⎭∴,解得,3ππ4ϕ+=π4ϕ=可得,()sin π24f x A x ⎛⎫=+ ⎪⎝⎭又∵的图像过点,则,()f x π4⎛ ⎝ππ3πsin 2sin 444A A A ⎛⎫⨯+=== ⎪⎝⎭解得,2A =故.()π2sin 24f x x ⎛⎫=+ ⎪⎝⎭(2)将的图像先向右平移个单位,得到;()y f x =7π247π24ππ2sin 22sin 243y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将图像上的所有点的横坐标变为原来的倍(纵坐标不变),得到,12π2sin 43y x ⎛⎫=- ⎪⎝⎭故,()π2sin 43g x x ⎛⎫=- ⎪⎝⎭∵,则,π0,4x ⎡⎤∈⎢⎥⎣⎦ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦∴,可得,πsin 44x ⎡⎤⎛⎫-∈⎢⎥⎪⎝⎭⎣⎦()2g x ⎡⎤∈⎣⎦故在上的最大值为2,最小值为()y g x =π0,4x ⎡⎤∈⎢⎥⎣⎦因为对于恒成立,所以,可得恒成()2g x m -≤π0,4x ⎡⎤∈⎢⎥⎣⎦()22m g x m ≤≤+-()()22m g xg x -≤≤+立,,可得.()()max min 22m g x g x -≤≤+02m ≤≤0,2m ⎡∈⎣21.目前,中国已经建成全球最大的5G 网络,无论是大山深处还是广袤平原,处处都能见到5G 基站的身影.如图,某同学在一条水平公路上观测对面山顶上的一座5G 基站AB ,已知基站高,该同学眼高(眼睛到地面的距离),该同学在初始位置C 处(眼睛所在位置)测得50m AB = 1.5m 基站底部B 的仰角为37°,测得基站顶场A 的仰角为45°.(1)求出山高BE (结果保留一位小数);(2)如图,当该同学面向基站AB 前行时(保持在同一铅垂面内),记该同学所在位置M 处(眼睛所在位置)到基站AB 所在直线的距离,且记在M 处观测基站底部B 的仰角为,观测基m MD x =α站顶端A 的仰角为.试问当x 多大时,观测基站的视角最大?βAMB ∠参考数据:,,,.sin 80.14︒≈sin 370.6︒≈sin 450.7︒≈sin1270.8︒≈【答案】(1)151.5m(2)x =【分析】(1)在中,利用正弦定理求出,再在中,求出即可;ABC BC Rt BCD BD (2)易得,分别在在和在中,求出,再根据π02AMB βα∠=<-<Rt BMD △Rt AMD △tan ,tan αβ两角和的正切公式结合基本不等式求出取得最大值时,的值,再根据正切函数的单调tan AMB ∠x 性即可得解.【详解】(1)由题意可知,,37,45,8,45BCD ACD ACB A ∠=︒∠=︒∠=︒=︒在中,,ABC sin sin AB BCACB A =∠所以,250BC =≈在中,,Rt BCD sin 2500.6150BD BC BCD =⋅∠≈⨯=所以出山高;150 1.5151.5m BE =+=(2)由题意知,且,,AMD BMD βα∠=∠=π02αβ<<<则,π02βα<-<在中,,Rt BMD △150tan BD MD x α==在中,,Rt AMD △200tan AD MD x β==则()200150tan tan tan tan 2001501tan tan 1x x AMB x x βαβαβα--∠=-==++⋅,250503000030000x x x x ==≤=++当且仅当,即30000x x =x =所以取得最大值时,tan AMB ∠x =又因为,所以此时最大,π02AMB <∠<AMB ∠所以当时,最大.x =AMB ∠22.在中,内角A ,B ,C 所对的边分别为a ,b ,c,请在;②ABC cos sin C c B =;③这三个条件中任选一个,完成下列问题.()()()c a c a b b a +-=-sin cos 2sin sin cos C CB A A =-(1)求角C 的大小;(2)若b =2,当取最大值时,求外接圆半径和内切圆半径的乘积的值;πsin cos 6B A ⎛⎫-+ ⎪⎝⎭ABC (3)若为锐角三角形,,求面积的取值范围.ABCa =ABC 【答案】(1)条件选择见解析,π3C=(2))21-(3)【分析】(1)利用正弦定理、余弦定理、三角恒等变换的知识化简已知条件,求得的大小.C (2)先求得,然后求得外接圆半径和内切圆半径,进而求得正确答案.,a c ABC(3)先求得的取值范围,然后根据三角形的面积公式求得面积的取值范围.b ABC 【详解】(1)若选,cos sin C c B =,cos sin sin B C C B =由于,0π,sin 0B B <<>sin C C =所以,则为锐角,且.tan 0C =>C π3C =若选②,()()()c a c a b b a +-=-整理得,则,222a b c ab +-=2221cos 022a b c C ab +-==>则为锐角,且.C π3C =若选③,sin cos 2sin sin cos C C B A A =-则,sin cos 2sin cos sin cos C A B C A C =-,()sin cos sin cos sin sin 2sin cos A C C A A C B B C+=+==由于,所以,0π,sin 0B B <<>1cos 02C =>则为锐角,且.C π3C =(2)由(1)得,π3C =()ππsin cos sin cos 66B A A C A ⎛⎫⎛⎫-+=+-+ ⎪ ⎪⎝⎭⎝⎭ππsin cos 36A A ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,11sin sin sin 22A A A A A =+=由于,所以当时取得最大值为,2π03A <<π2A =πsin cos 6B A ⎛⎫-+ ⎪⎝⎭1此时,,则π6B =2b =4,a c ==所以外接圆半径为,ABC 122a=设内切圆半径为,ABCr 则,解得,(1122422r⨯⨯=⨯++⨯1r =所以外接圆半径和内切圆半径的乘积为.ABC )21(3)由(1)得,π3C =由正弦定理得,sin 3sin tan a B b A A ===+由于三角形是锐角三角形,所以,所以,ABC π02ππ32A A ⎧<<⎪⎪⎨⎪+>⎪⎩ππ62A<<所以,所以tan >A 130tan tan A A <<<<3tan A <<所以.113sin 222ABC S ab C b b ==⨯=∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10-11学年下学期高中部高一年级期中考试--数学试题
答案
13、π50;14、①②③;15、222-;16、n
n 2
)1(1
1+-. 三、解答题
17、解:(1) 54cos =
B ∴5
3sin =B 3,2==b a ∴由正弦定理得5
2
sin sin ==B b a A
(2) B ac S ABC sin 2
1
3==∆∴5=c
由余弦定理,ac
b c a B 2cos 222-+=得13=b
18、解:(1) }{n b 是等比数列,2,5414==b b ,设其公比为q
∴
272
54
314===q b b ∴3=q ∴132-⋅=n n b }{n a 是等差数列,32321b b a a a +=++
∴6,8,2431222=-=∴=∴=a a d a a ∴46-=n a n
(2)由(1)知n n n
a a S n n )13(2)(1
-=+= 131)1(1-=--=n n n q
q b T
∴PB 在平面ABCD 内的射影为AB AB AC ⊥由三垂线定理 ∴PB AC ⊥
(2)证明:连接BD 交AC 于点O 四边形ABCD 为平行四边形 ∴O 为BD 中点,
连接EO E 为PD 中点 ∴EO//PB
由PB ⊄平面AEC ,EO ⊂平面AEC ∴PB//平面AEC
(3)取AD 中点为F ,连接EF ,FO
∴EF
2
1//=PA ,FO
2
1//=AB
∴EF ⊥平面ABCD ,FO ⊥AC
由(1)(2)知EO//PB ,PB ⊥AC ∴EO ⊥AC
∴EOF ∠为二面角E —AC —D 的平面角
PA=AB ∴EF=FO ∴在等腰直角三角形EFO 中︒=∠45EOF ∴二面角E —AC —D 的大小为︒45
21、解:(1) 方程012)(=+-x x f 有两个实根为4,321==x x
∴⎪⎩⎪⎨⎧=-=---121127112a
b a b
a ,解得2,1=-=
b a x x x f -=∴2)(2
(2)化简x
k
x k x f --+<2)1()(得0))(2)(1(>---k x x x
①当1<k<2时,原不等式解集为}2,1|{><<x k x x 或;
②当k=2时,原不等式解集为}2,1|{≠>x x x 且; ③当k>2时,原不等式解集为},21|{k x x x ><<或.
22、解:(1)由1221-+=-n
n n a a ,814=a 得
1228143-+=a ,有333=a
1223332-+=a ,有132=a 1221321-+=a ,有51=a
(2) }2
{
n
n p
a +为等差数列 3
31222222p
a p a p a +++=+⋅
∴
1-=∴p
(3)由(2)知}2
1
{
n n a -为等差数列,设其公差为d 121
21122=---=
∴a a d ∴12
12111-+-=-n a a n n
12)1(++=∴n n n a
令=n b n
n 2)1(+,其前n 项和为n T
n n n T 2)1(232221+++⨯+⨯=∴ ①
①2⨯ 1
322)1(23222++++⨯+⨯=n n n T ② ①-②得 1
2+⋅=n n n T
=+=∴n T S n n n n n +⋅+12。