第七讲:因式分解(二)
07第七讲 因式分解2
代数(六)因式分解(二)——十字相乘、分组分解【知识要点】1.十字相乘法(1)二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且ba +等于一次项系数中p ,那么它就可以分解成()()()b x a x ab x b a x q px x ++=+++=++22 (2)二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。
2.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的。
例如:22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。
(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。
【典型例题】例1 把下列各式分解因式(1)2914x x ++= (2)212x x --=(3)2812x x ++= (4)2710x x -+=(5)228x x --= (6)2922x x --=(7)2295x x +-= (8)2376x x --=(9)28103x x ++= (10)210275x x ++=例2 把下列各式分解因式(1)bc ac ab a -+-2 (2)bx by ay ax -+-5102(3)n mn m m 552+-- (4)bx ay by ax 3443+++(5)22144a ab b --- (6)223443ax ay bx cy cx by +-++-例3 把下列各式分解因式(1)22421x xy y --; (2)()()267a b a b +-+-;(3)()()22524x x -+-+ (4)()()()()22310a b a b a b a b -+-+-+;(5)()()2224221x y x y y y +-+- (6)222()14()24x x x x +-++例4 把下列各式分解因式(1)()()z y y z x x +-+ (2)()()b a x ab x 34322-+-(3)()()cd b a dc ab 2222--- (4)()()y a bx by b y ax 2233+++思考题(5)()()()()2222d b d c c a b a +-+-+++【练 习】A 组给下列各式分解因式1.221x x +-= 2.2352x x ++=3.232x x +-= 4.221315x x ++=5.2122512x x -+= 6.2310x x +-=7.ax +ay -bx -by = 8.x 2-xy -ax +ay =9.x 2+6y -xy -6x = 10.a 2-b 2-a +b =11.4x 2-y 2+2x +y = 12.a 2-2ab +b 2-c 2 =13.1-x 2-2xy -y 2= 14.x 2-9a 2+12a -4=15.x 2y +3xy 2-x -3y= 16.na 2-2ba 2+mn -2bm=17.x 3+3x 2+3x +9= 18.20ax 2+5xy -8axy -2y 2=19.bx +ax +by +bz +ay +az= 20.2ax -3bx +x -2a +3b -1=B 组一、分解因式1.2249y x -3、2a 4-324、a 2(3a +1)-b 2(3a +1)5、x 2-8x +166、a 2b 2-10ab +257、-x 4+2x 2y 2-y 48、(2x 2+1)2+2(2x 2+1)+1二、分解因式1、9222+--a b ab 2.x 3+3x 2-4x -123.x 2-b x -a 2+a b4.m -m 3-mn 2+2m 2n5.9ax 2+9bx 2-a -b 6.a 2-2a +4b -4b 2C 组三、分解因式1、(a2+b2)2-4a2b22、a4(x-y)+b4(y-x)3、(a2+1)2-4a(a2+1)+4a2 4.a2+2ab+b2-ac-bc 5.m2+2mn+n2-p2-2pq-q2 6.(x2-3)2-4x27. (x2-3)2+(x2-3)-28.(x2-2x)2-4(x2-2x)-5 9.a4-2a2b2-8b4 10.x4-6x3+9x2-16。
人教版八年级上册 14.3 因式分解 讲义(二)
因式分解基本方法二这节课我们学什么1. 十字相乘法(二次系数为1或不为1);2. 分组分解法(一三、二二型分组、五项、六项、七项);知识点梳理1、2()()()x a x b x a b x ab ++=+++ 反过来可得:2()()()x a b x ab x a x b +++=++十字相乘法可以看做多项式与多项式相乘的逆运算,借助十字交叉线来分解因式.2、 将多项式进行分解后运用提取公因式法,十字相乘法和公式法进行分解,其中对于综合型题目需要能分组的分组,不能分组的化简后分组因式分解典型例题分析1、 十字相乘法(二次项系数为1);例1、分解因式26x x +-【答案:(3)(2)x x +-】例2、分解因式22496x xy y --【答案:(12)(8)x y x y -+】 例3、分解因式2()3()54x y x y +-+-【答案:(9)(6)x y x y +-++】 例4、已知多项式256(8)()x mx x x n +-=+-,求m n +的值【答案:8】例5、分解因式(1)(2)(7)(8)8x x x x +++++ 【答案:22(910)(912)x x x x ++++】2、 十字相乘法(二次项系数不为1);例6、分解因式222x xy y +-【答案:(2)()x y x y -+】例7、已知多项式22(35)()310x y x ny x mxy y ++=++,求m n 、的值【答案: 11m = 2n =】例8、已知x ay +是22253x xy y +-的一个因式,求a 的值 【答案:12-或 3】 例9、分解因式2(1)(2)(3)(6)3x x x x x ++++- 【答案:22(46)(86)x x x x ++++】3、 分组分解法(一三、二二型分组、五项、六项、七项);例10、分解因式225526m m n n mn -++-+【答案:(3)(2)m n m n ----】例11、分解因式(1)(1)(1)xy x y xy ++++【答案: (1)(1)xy x xy y ++++】例12、分解因式22242(1)2(1)(1)y x y x y +-++-【答案: (1)(1)(1)(1)x x xy y x x xy y ++-+----】例13、分解因式2422(1)1a a a a ++-+【答案: 22(1)a a ++】例14、分解因式444222222222a b c a b b c c a ++---【答案: ()()()()a c b a c b a c b a c b +++--+--】例15、分解因式2231092x xy y x y --++- 【答案: (52)(21)x y x y +++-】例16、分解因式44(5)(3)32x x ++-【答案:22(5)(3)(5)(3)22(5)(3)x x x x x x ⎡⎡⎤⎡+++++-+++⎣⎢⎢⎥⎣⎣⎦】 例17、分解因式662264121x y x y ++-【答案:22442222(41)(16441)x y x y x y x y +-+-+++ 】 例18、分解因式42424(41)(3110x x x x x -++++)【答案: 2222(1)(1)(1)(1)x x x x x x -+++-+】 例19、分解因式432673676x x x x +--+【答案: (21)(2)(31)(3)x x x x +--+】例20、分解因式2(1)(2)(2)xy x y x y xy -++-+-【答案: 22(1)(1)x y --】例21、分解因式2(3)(1)(5)x x x +-+【答案:(3)(1)1(5)x x x x +-++()】 例22、已知多项式2225101023x xy y x y -++--的值为0,求5x y -的值【答案: 3-或1】课后练习练1. 分解因式33()(2)8a b b a -+--+ . 【答案:6()(2)a b b a ---】练2. 2323(1)x x x x +++-分解因式为 .【答案:2234(1)(1)x x x x x x ++++++】练3. 分解因式22222()4()x xy y xy x y ++-+ . 【答案:222()x xy y -+】练4. 分解因式22496x x y y --- . 【答案:(31)(31)x y x y +---】练5. 分解因式32332a a a +++【答案:2(2)(1)a a a +++】练6. 因式分解2(1)(2)(3)(6)3x x x x x ++++-【答案:22(86)(46)x x x x ++++】练7. 拆项后分解因式2222(48)3(48)2x x x x x x ++++++【答案:2(2)(4)(58)x x x x ++++】练8. 计算333(1)(2)(32)x x x -+-+-【答案:3(32)(1)(2)x x x ---】练9. 分解因式212a a +-【答案:(4)(3)a a +- 】练10. 分解因式223223223()()()x y z x y z ++--+【答案:22223()()()()x y y z x z x z +++-】课后小测验1. 因式分解2253x x +-【答案: (21)(3)x x -+】2. 分解因式21832x x -+【答案:(16)(2)x x --】3. 证明2241293035x x y y -+++永远比0大 【答案:22(23)(35)11x y ++++≥】4. 分解因式2232a ab b --【答案:(3)()a b a b +-】5. 因式分解212a a +-【答案:(4)(3)a a +-】本章小结。
八年级数学 暑假同步讲义 第7讲 因式分解法及配方法求解元二次方程(解析版)
利用因式分解法及配方法解一元二次方程是八年级数学上学期第十七章第二节内容,主要对一元二次方程因式分解和配方法两种解法进行讲解,重点是对一元二次方程这两种解法的原理和过程的理解,难点是因式分解法和配方法在解一元二次方程中的灵活应用.通过这节课的学习一方面为我们后期学习求根公式法解一元二次方程提供依据,另一方面也为后面学习一元高次方程奠定基础.1、因式分解法定义运用因式分解的手段求一元二次方程根的方法叫做因式分解法.2、因式分解法理论依据①如果两个因式的积等于零,那么这两个因式中至少有一个等于零;反之,如果两个因式中至少有一个等于零,那么这两个因式的积也等于零(即:当0A B⋅=时,必有0A=或0B=;当0A=或0B=时,必有0A B⋅=).因式分解法及配方法解一元二次方程知识结构模块一:因式分解法解一元二次方程知识精讲内容分析班假暑级年八2/16②通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,从而把解一元二次方程的问题转化为解一元一次方程的问题. 3、因式分解法解一元二次方程一般步骤①将方程右边化为零;②将方程左边的二次三项式分解为两个一次因式的乘积; ③令每一个因式分别为零,得到两个一元一次方程; ④分别解这两个一元一次方程,它们的解就是原方程的解.【例1】 已知x 、y 是实数,若0xy =,则下列说法正确的是( ).A 、x 一定是0B 、y 一定是0C 、0x =或0y =D 、0x =且0y =【答案】C【解析】xy =0 只需要xy 其中一个为零整个乘式就为零,故选C . 【总结】本题考查当两个因式的乘积为零时,则每一个因式均为零.【例2】 口答下列方程的根: (1)(8)0x x +=; (2)(4)(3)0x x --=; (3)(7)(6)0x x ++=; (4)(51)(2)0x x +-=; (5)()()0x a x b -+=.【答案】(1) 0x =或8x =-;(2)3x =或4x =;(3) 6x =-或7x =-;(4)15x =-或2x =;(5) x a =或x b =-.【解析】两数相乘为零其中一个为零即可,所以只要满足每一项分别为零,即可求解. 【总结】本题考查当两个因式的乘积为零时,则每一个因式均为零.【例3】 解下列方程:(1)25+60x x =;(2)2340x x -=.例题解析【答案】(1)15x =,265x =-; (2)10x =,243x =.【解析】(1)由2560x x +=,得(56)0x x +=,解得:15x =,265x =-,所以原方程的解为:15x =,265x =-;(2)由2340x x -=,得340x x -=(),解得:10x =,243x =,所以原方程的解为:10x =,243x =. 【总结】本题主要考查利用因式分解法求解一元二次方程.【例4】 解下列方程:(1)5(32)(1)(32)0x x x x --+-=;(2)()()3254520x x x ---=.【答案】(1)123x =,214x =; (2)152x =,243x =-. 【解析】(1)由5(32)(1)(32)0x x x x --+-=,得()32510x x x ---=(),即 ()324 10x x --=(),所以原方程的解为:123x =,214x =; (2)由()()3254520x x x ---=,得()()25340x x -+=,所以原方程的解为:152x =,243x =-. 【总结】本题主要考查利用因式分解法求解一元二次方程.【例5】 解下列方程:(1)()()22231x x +=-; (2)229(21)16(2)0x x +--=; (3)24410x x -+=;(4)21236x x =--.【答案】(1)1 32x =,214x =-; (2)1112x =-,212x =; (3)1212x x ==; (4)126x x ==-.【解析】(1)由()()22231x x +=-,得231x x +=-或者2(31)x x +=--,所以原方程的解为:1 32x =,214x =-; (2)由229(21)16(2)0x x +--=,得229(21)16(2)x x +=-,(21)4(23)x x +=±-,解得:112x =-或12x =,所以原方程的解为:1112x =-,212x =; (3)由24410x x -+=,得2(21)0x -=,解得:12x =.所以原方程的解为:1212x x ==; (4)由21236x x =--,得212360x x ++=,即2(6)0x +=,所以原方程的解为:126x x ==-.【总结】本题主要考查利用因式分解法求解一元二次方程.【例6】 解下列方程:(1)27120x x -+=;(2)2421x x +=.【答案】(1)13x =,24x =; (2)17x =-,23x =.【解析】(1)由27120x x -+=,得(3)(4)0x x --=,解得:3x =或者4x =, 所以原方程的解为:13x =,24x =;(2)由2421x x +=,得24210x x +-=,即(7)(3)0x x +-=,解得:7x =-或者3x =,所以原方程的解为:17x =-,23x =.【总结】本题主要考查利用因式分解法求解一元二次方程. 【例7】 解下列方程:(1)23180x x -++=;(2)20.1 1.20.4x x -=.【答案】(1)16x =,23x =-; (2)16x =,22x =-.【解析】(1)由23180x x -++=,得23180x x --=,即(6)(3)0x x -+=,解得:6x =或者3x =-,所以原方程的解为:16x =,23x =-;(2)由20.1 1.20.4x x -=,得24120x x --=,即(6)(2)0x x -+=,解得:6x =或者2x =-,所以原方程的解为:16x =,22x =-.【总结】本题主要考查利用因式分解法求解一元二次方程,注意符号的变化.【例8】 解下列方程:(1)()2225x x x -=+;(2)()()315x x +-=.【答案】(1)15x =,21x =-; (2)14x =-,22x =.【解析】(1)由()2225x x x -=+,得22245x x x -=+,即2450x x --=,解得:5x =或 者1x =-,所以原方程的解为:15x =,21x =-;(2)由()()315x x +-=,得2280x x +-=,即(4)(2)0x x +-=,解得:4x =-或者2x =,所以原方程的解为:14x =-,22x =.【总结】本题要先化成一般形式后再用十字相乘法进行求解,注意计算过程中的符号.【例9】 解方程:()()25258x x +-+=. 【答案】11x =-,27x =-.【解析】由()()25258x x +-+=,得()()252580x x +-+-=,即(54)(52)0x x +-++=, 解得:1x =-或者7x =-,所以原方程的解为:11x =-,27x =-. 【总结】本题必须把x +5看成一个整体,利用整体思想进行因式分解.【例10】解方程:20x x -+=.【答案】1x =2x【解析】由20x x -+=,得(0x x =,解得:x 或者x所以原方程的解为:1x =2x =【总结】本题主要考查将一个无理数化成两个无理数的乘积的形式.【例11】解方程:2(1(30x x -++=.【答案】1x =21x =.【解析】由2(1(30x x +-+=,得[(11](0x x -=,解得:x或者x =,所以原方程的解为:1x =21x =.【总结】本题需要仔细观察之后利用十字相乘法进行因式分解.【例12】 已知一个一元二次方程的两个根分别为2和-3,用刚学的因式分解法思想,直接写出满足条件的一个一元二次方程.【答案】260x x +-=.【解析】由(2)(3)0x x -+=,得260x x +-=. 【总结】本题考查一元二次方程根的运用.【例13】 学生A 在解一元二次方程(1)x x x -=时过程如下,请判断是否正确,若不正确,请说明理由解:等式两边同时消去相同的数x ,得到11x -=解得2x =所以原方程的根为:2x = 【答案】不正确.【解析】不正确,因为等式两边同除的数不能为零,所以当0x =时,此算法是错误的.因此学生A 的做法完全错误的.【总结】本题主要考查等式的性质,注意两边同乘和同除的数不能为零.1、配方法定义先把方程中的常数项移到方程右边,把左边配成完全平方式,然后用直接开平方法求出一元二次方程的根的解法叫配方法. 2、配方法理论依据配方法的理论依据是完全平方公式:2222()a ab b a b ±+=±. 3、配方法解一元二次方程一般步骤①先把二次项系数化为1:即方程左右两边同时除以二次项系数; ②移项:把常数项移到方程右边;③配方:方程两边都加上一次项系数一半的平方,把原方程化成2()x m n +=的形式; ④当0n ≥时,用直接开平方的方法解变形后的方程.【例14】构造完全平方式,完成下列填空:(1)2226()()x x x ++=+;例题解析知识精讲师生总结1、含有字母系数的一元二次方程如何求解?2、若二次项系数含有字母,求解时应注意哪些问题?模块二:配方法解一元二次方程(2)2228()()x x x ++=+; (3)22210()()x x x -+=-;(4)2221()()2x x x -+=-.【答案】(1)9 、3; (2)16、4; (3)25、5; (4)116、14. 【解析】当二次项系数为1时,配方时,方程两边同加一次项系数一半的平方. 【总结】本题考查对配方法的理解及运用.【例15】用配方法解方程:2210x x +-=.【答案】11x =-21x =--.【解析】由2210x x +-=,得2212x x ++=,即2(1)2x +=,所以原方程的解为:11x =-+,21x =-.【总结】本题主要考查用配方法求解一元二次方程的根.【例16】用配方法解方程:2220x mx m +-=.【答案】1x m =-+,2x m =-.【解析】由2220x mx m +-=,得22222x mx m m ++=,即22()2x m m +=,所以原方程的解为:1x m =-+,2x m =-.【总结】本题主要考查用配方法求解一元二次方程的根.【例17】用配方法解方程:21099750x x --=.【答案】195x =-,2105x =.【解析】由21099750x x --=,得2102510000x x -+=,即2(5)10000x -=, 所以5100x -=±,所以95x =-或者105x =,所以原方程的解为:195x =-,2105x =.【总结】本题主要考查用配方法求解一元二次方程的根.【例18】用配方法解方程:220130y --=.【答案】145y =,245y =-.【解析】由220130y --=,得2122025y -+=,即2(2025y -=,所以45y -±, 所以原方程的解为:145y =,245y =.【总结】本题主要考查用配方法求解一元二次方程的根.【例19】用配方法解方程:225200x x --+=.【答案】154x =-,254x =-.【解析】由225200x x --+=,得225200x x +-=,即251002x x +-=,配方,得:2525251021616x x ++=+,即25185()416x +=,解得:54x =-所以原方程的解为:154x =-,254x =-.【总结】本题主要考查用配方法求解一元二次方程的根,注意先将二次项系数化为1,然后再配方.【例20】用配方法解方程:210.30.2030x x -+=. 【答案】1213x x ==.【解析】由210.30.2030x x -+=,得213203x x -+=,即221039x x -+=,所以21()03x -=,所以原方程的解为:1213x x ==.【总结】本题主要考查用配方法求解一元二次方程的根,注意先将二次项系数化为1,然后再配方.【例21】用配方法解方程:2(1)2(1)10x x -+--=(要求用整体法的思想求解).【答案】12x x == 【解析】由2(1)2(1)10x x -+--=,得2(1)2(1)12x x -+-+=,即2(11)2x -+=,所以原方程的解为:12x x == 【总结】本题考查整体思想的运用,把1x -看成一个整体进行配方.【例22】用配方法解关于x 的方程:222240x ax b a --+=.【答案】1222x a b x a b =+=-,.【解析】由222240x ax b a --+=,得22224x ax a b -+=,即22()4x a b -=,解得:2x a b =±,所以原方程的解为:1222x a b x a b =+=-,.【总结】本题主要考查用配方法求解一元二次方程的根.【例23】 若把代数式223x x --化为2()x m k --的形式,其中m 、k 为常数,则m k +=.【答案】5.【解析】因为2223(1)4x x x --=--,所以14m k ==,,所以5m k +=. 【总结】用配方法把代数式变成需要的形式,然后求出m 和k 的值.【例24】已知方程260x x q -+=可以配方成2()7x p -=的形式,则262x x q -+=可以配方成下列的().A 、2()5x p -=B 、2()9x p -=C 、2(2)9x p -+=D 、2(2)5x p -+=【答案】B【解析】因为260x x q -+=可以配方成2()7x p -=的形式,所以262x x q -+=可写成2()72x p -=+的形式,即2()9x p -=.故选B .【习题1】 完成下列填空: (1)方程22x x =的根为; (2)方程(1)(2)0y y -+=的根为; (3)方程(2)4(2)x x x -=-的根为.【答案】(1)12x =,20x =; (2)11y =,22y =-; (3)12x =,24x =. 【解析】(1)由22x x =,得(2)0x x -=,解得:2x =或者0x =, 所以原方程的解为:12x =,20x =; (2)由(1)(2)0y y -+=,得1y =或者2y =-, 所以原方程的解为:11y =,22y =-;(3)由(2)4(2)x x x -=-,得(2)(4)0x x --=,解得2x =或者4x =,所以原方程的解为:12x =,24x =.【总结】本题考查特殊的一元二次方程的解法.随堂检测师生总结1、一元二次方程各项系数满足什么关系时,配方法能求出实数根?2、用配方法解一元二次方程时先要考虑什么因素?【习题2】 完成下列填空: (1)224()()x x x ++=+;(2)2225()()4y y y ++=-.【答案】(1)42、; (2) 552-、 .【解析】利用完全平方公式的概念完成填空. 【总结】本题考查配方法的基本概念.【习题3】 用因式分解法解下列方程,并写出是因式分解法中哪类方法: (1)2540x x -=;(2)224(32)0x x -+=;(3)2690x x ++=; (4)260x x --=.【答案】(1)12405x x ==,; (2)12225x x =-=-,; (3)123x x ==-; (4)1223x x =-=,. 【解析】(1)由2540x x -=,得(54)0x x -=,解得:12405x x ==,; (2)由224(32)0x x -+=,得(52)(2)0x x ++=,解得:12225x x =-=-,;(3)由2690x x ++=,得2(3)0x +=,解得:123x x ==-;(4)由260x x --=,得(3)(2)0x x -+=,解得1223x x =-=,.【总结】本题考查利用因式分解求解特殊的一元二次方程的根.【习题4】 已知一个一元二次方程的两个根分别为3和6-,那么这个方程可以是( ).A 、23180x x --=B 、23180x x +-=C 、23180x x -+=D 、23180x x ++=【答案】B【解析】直接将两个根分别为3和6-代入原方程,即可验证,结果为B . 【总结】考查一元二次方程的根的概念,直接代入即可.【习题5】 用适当的方法解下列方程:(1)2421x x -=-; (2)(2)(2)2(2)x x x -+=-; (3)2230x x +-=; (4)23180x x --=;(5)22570x x --=;(6)224(3)25(2)0x x +--=.【答案】(1)1273x x =-=,; (2)1202x x ==,; (3)1213x x ==-,; (4)1263x x ==-,; (5)12712x x =-=,; (6)126437x x ==,.【解析】(1)由2421x x -=-,得(7)(3)0x x +-=,解得:1273x x =-=,; (2)由(2)(2)2(2)x x x -+=-,得(2)0x x -=,解得:1202x x ==,; (3)由2230x x +-=,得(3)(1)0x x +-=,解得:1213x x ==-,; (4)由23180x x --=,得(6)(3)0x x -+=,解得:1263x x ==-,; (5)由22570x x --=,得(27)(1)0x x -+=,解得:12712x x =-=,; (6)由224(3)25(2)0x x +--=,得2(3)5(2)2(3)5(2)x x x x +=-+=--或,即31674x x ==或,解得:126437x x ==,.【总结】本题主要考查用适当的方法求解一元二次方程的解,注意方法的选择.【习题6】 解方程:2228x --=+.【答案】12218x x =-=--,【解析】由2228x --+,得22)80x +++=,分解因式,得:2)42)0x x +++=,解得:12218x x =-=--,【总结】本题主要考查利用因式分解求一元二次方程的根,注意准确计算.【习题7】 如果222(1)5x m x m -+++是一个完全平方式,求m 的值. 【答案】2m =.班假暑级年八14/16【解析】因为222(1)5x m x m -+++是一个完全平方式,所以225(1)m m +=+,解得:2m =.【总结】本题主要考查学生对完全平方公式的理解及运用.【作业1】 已知方程2222(3)(2)0a b a b ++--=,则22a b +的值为().A 、2B 、3-C 、2或3-D 、以上都不对【答案】C【解析】将22a b +看作一个整体,解得22a b +的值为2或3-,因为22a b +是一个非负数,所以22a b +的值为2,故选A .【总结】本题一方面考查整体代入思想的运用,另一方面考查非负数的概念.【作业2】 用因式分解法及配方法解下列方程:(1)2(4)5(4)x x +=+; (2)25240x x --=; (3)21042000x x --=; (4)2240x x --=; (5)23410x x -+=;(6)2650x x ++=.【答案】(1)1214x x ==-,; (2)1283x x ==-,; (3)127060x x ==-,;(4)1242x x ==-,; (5)12113x x ==,; (6)1215x x =-=-,.【解析】(1)由2(4)5(4)x x +=+,得(4)(45)0x x ++-=,解得:1214x x ==-,; (2)由25240x x --=,得(8)(3)0x x -+=,解得:1283x x ==-,; (3)由21042000x x --=,得(70)(60)0x x -+=,解得:127060x x ==-,;(4)由2240x x --=,得:(4)(2)0x x -+=,解得:1242x x ==-,;课后作业(5)由23410x x -+=,得:(1)(31)0x x --=,解得:12113x x ==,;(6)由2650x x ++=,得:(1)(5)0x x ++=,解得:1215x x =-=-,.【总结】本题主要考查利用因式分解法求解一元二次方程的解.【作业3】 用适当的方法解下列方程:(1)3(1)33x x x +=+;(2)2723200x x --=; (3)22(2)5x x x -=+;(4)(3)(4)8x x -+=;(5)(32)(21)(32)0x x x x -+--=;(6)222(1)5(1)40x x ---+=;(7)220y y -=. 【答案】(1)1211x x ==-,; (2)12547x x ==-,; (3)1251x x ==-,;(4)1254x x =-=,; (5)12213x x ==-,; (6)1234x x x x ====(7)12y y = 【解析】(1)由3(1)33x x x +=+,得21x =,解得:1211x x ==-,; (2)由2723200x x --=,得(75)(4)0x x +-=,解得:12547x x ==-,;(3)由22(2)5x x x -=+,得(5)(1)0x x -+=,解得:1251x x ==-,;(4)由(3)(4)8x x -+=,得2200x x +-=,即(5)(4)0x x +-=,解得:1254x x =-=,; (5)由(32)(21)(32)0x x x x -+--=,得(32)(21)0x x x -+-=,解得:12213x x ==-,;(6)由222(1)5(1)40x x ---+=,得22(11)(14)0x x ----=,解得:1234x x x x ===(7)由220y y -=,得:(20y y -=,解得:12y y =. 【总结】本题主要考考查用适当的方法求解一元二次方程的根,注意在用十字相乘法分解时,先将方程化为一般形式再分解.【作业4】 若△ABC 的三边a 、b 、c 的长度是2760x x -+=的解,求△ABC 的周长. 【答案】3或18或13.【解析】由2760x x -+=,得(6)(1)0x x --=,解得16x x ==或. 当1a b c ===时,成立;当6a b c ===时,成立;当61a b c ===,时,成立; 当16a b c ===,时,不成立.所以周长为3或18或13.【总结】本题一方面考查因式分解解一元二次方程的根,另一方面考查三角形的三边关系.【作业5】 求证:无论x 为何值,代数式245x x -+的值总是大于零. 【答案】略.【解析】因为245x x -+2(2)1x =-+,所以无论x 取何值,代数式245x x -+的值总是大于零.【总结】本题主要考查利用配方法判定代数式的取值范围.。
因式分解知识点归纳总结
因式分解知识点归纳总结因式分解是数学中的一个重要知识点,它在代数的各个领域中有着广泛的应用。
因式分解是将一个多项式表示为乘积的形式,使得每个乘积因子都是原多项式的一个因子。
通过因式分解,我们可以更好地理解多项式的结构、性质和特点。
一、基本概念和思想1.多项式:由变量和常数的乘积相加或相减而成的代数表达式。
2.因式:在乘积中的每个项。
3.因式分解:将一个多项式表示为乘积的形式。
4.公因式提取:在多个项中提取出一个公共的因子,然后将其提取出来。
5.公式:将其中一种特殊形式的多项式因式分解的方法。
二、因式分解的基本方法1.提取公因子:在多个项中提取出一个公共的因子。
2.完全平方公式:将二次多项式表示为完全平方的形式。
3.平方差公式:将二次多项式表示为一个平方差的形式。
4.组合因式法:将多项式按照特定的方式分组,然后进行因式分解。
5.因式定理:根据多项式的特征和性质,通过试探法找到一个因式,然后进行因式分解。
6.代换法:通过适当的代换,将多项式转化为一个更易于因式分解的形式。
三、因式分解的应用1.简化运算:可以通过因式分解将复杂的数学计算简化为更简单的形式,提高计算的速度和效率。
2.解方程:通过因式分解将方程转化为一个乘积的形式,可以更方便地求解方程的解。
3.获得更多信息:因式分解可以给出多项式的根的信息,从而帮助我们更好地理解多项式的特点和性质。
4.拓展推广:通过因式分解的方法,可以推广到更高次数的多项式,进行更深入的数学研究和应用。
四、因式分解的注意事项1.因式分解的结果应尽可能简化,即将多项式表示为最简形式的乘积。
2.对于不同类型的多项式,有不同的因式分解方法,需要根据具体情况选择合适的方法。
3.因式分解中的变量可以是实数、复数或其他数学对象,需要根据具体情况进行分析和处理。
4.在进行因式分解时,需要注意运算规则和性质,避免出现错误。
总结起来,因式分解是数学中的一个重要概念和方法,它在代数的各个领域中有着广泛的应用。
因式分解法(第2课时)课件
05
2. 交叉相乘,将得到的
步骤
02
04 两个积相加,若等于一
次项系数,则分解成功;
典型例题解析
例1
分解因式 $x^2 + 5x + 6$
分析
将常数项6分解成1和6的乘积,将二次项系数1分解成1和1 的乘积,交叉相乘后得到1×6+1×1=7,不等于一次项系数 5,因此分解失败。
正确解法
将常数项6分解成2和3的乘积,将二次项系数1分解成1和1 的乘积,交叉相乘后得到1×3+1×2=5,等于一次项系数5, 因此分解成功。所以 $x^2 + 5x + 6 = (x + 2)(x + 3)$。
练习题2
分解因式 $5a^2b^2 + 10ab + 5$。
练习题1答案
$4x^2y^2(2x + 3y)$。
练习题2答案
$5(a^2b^2 + 2ab + 1) = 5(ab + 1)^2$。
04 分组分解法
分组原则与技巧
分组原则:将多项式按照一定的规则分 成几组,使每组内的项能提取公因式或 应用公式法进行分解。
因式分解法(第2课时)课件
contents
目录
• 引言 • 因式分解法基本概念 • 提取公因式法 • 分组分解法 • 十字相乘法 • 综合应用与拓展
01 引言
回顾上节课内容
因式分解法的基本概念 提取公因式法
公式法(平方差公式、完全平方公式)
引入本节课主题
01
分组分解法
02
十字相乘法
03
拆项、添项法
答案
$x(x - y)(y - x + y) = x(x - y)(2y - x)$
因式分解ppt
因式分解什么是因式分解?在代数学中,因式分解是指将一个多项式表达式写成两个或多个乘积的形式。
通过因式分解,我们可以简化复杂的多项式,更好地理解和计算。
为什么要进行因式分解?因式分解有很多实际应用,尤其在代数学和求解方程问题中非常重要。
以下是因式分解的几个重要作用:1.简化计算:通过将多项式进行因式分解,我们可以将复杂的计算简化为一系列简单的乘法运算。
2.找到根:通过因式分解,我们可以将多项式等式转化为相等的乘法形式,从而更轻松地找到方程的解。
3.转化问题:将多项式进行因式分解,可以让问题转化为更容易解决的形式。
因式分解的基本方法公因式提取法公因式提取法是最常用的因式分解方法,它基于以下原则:如果一个多项式的每一项都有相同的因子,则可以将这个因子提取出来。
下面是一些例子来解释这个方法。
例子1:将多项式2x^2 + 4x进行因式分解。
首先观察多项式的每一项,我们发现每一项都有2x这个因子,因此我们可以将2x提取出来:2x^2 + 4x = 2x(x + 2)我们得到了因式分解的结果。
例子2:将多项式6a^3b^2 + 9ab^2进行因式分解。
观察多项式的每一项,我们发现每一项都有3ab^2这个因子,因此我们可以将3ab^2提取出来:6a^3b^2 + 9ab^2 = 3ab^2(2a^2 + 3)我们得到了因式分解的结果。
分组法分组法是另一种常用的因式分解方法,它适用于多项式中存在四项及以上的情况。
下面是一个例子来解释这个方法。
例子3:将多项式x^3 + x^2 + x + 1进行因式分解。
这个多项式有四项,我们可以将其分为两组:(x^3 + x^2) + (x + 1)在每一组中,我们可以提取因子x^2和1:x^2(x + 1) + 1(x + 1)现在,我们可以再次提取公因子(x + 1):(x + 1)(x^2 + 1)我们得到了因式分解的结果。
公式法公式法适用于特定的多项式形式,包括差平方和、和平方差、二次三项完全平方等。
七年级秋季班-第7讲:因式分解(二)-教师版
本节课继续学习因式分解的另外两种方法——十字相乘法和分组分解法.理解十字相乘法和分组分解法的概念,掌握十字相乘法分解二次项系数为1的二次三项式,能够用分组分解法分解含有四项以上的多项式.重点能够灵活运用十字相乘法与分组分解方法进行分解因式,能够与前两种的方法相结合.难点能够总结归纳这两种方法所针对的多项式,可以在分解因式的时候快速确定方法.1、二次三项式:多项式2ax bx c ++,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c为常数项.2、十字相乘法的依据利用十字相乘法分解因式,实质上是逆用多项式的乘法法则. 如在多项式乘法中有:2()()()x a x b x a b x ab ++=+++, 反过来可得:2()()()x a b x ab x a x b +++=++.因式分解(二)内容分析知识结构模块一:十字相乘法知识精讲3、十字交叉法的定义一般地,22()()()x px q x a b x ab x a x b ++=+++=++可以用十字交叉线表示为:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 4、用十字相乘法分解的多项式的特征 (1)必须是一个二次三项式;(2)二次三项式的系数为1时,常数项能分解成两个因数a 和b 的积,且这两个因数的和a b +正好等于一次项系数,这种方法的特征是“拆常数项,凑一次项”;(3)对于二次项系数不是1的二次三项式,一般要借助“画十字交叉线”的办法来确定. 5、用十字相乘法因式分解的符号规律(1)当常数项是“+”号时,分解的两个一次二项式中间同号;(2)当常数项是“-”号时,分解的两个一次二项式的因式中间是异号;(3)当二次项系数为负数是,先提出负号,使二次项系数为正数,然后再看常数项.【例1】下列各式不能用十字相乘法分解因式的是().A .223x x --B .22x x -+C .22x x --D .232x x -+【难度】★ 【答案】B【解析】2可以分解成12⨯和1(2)-⨯-,但两种情况相加均不为1-. 【总结】考察十字相乘法的方法.【例2】因式分解225148x xy y -+正确的是().A .()()58x y x y --B .()()58x y x y --C .()()524x y x y --D .()()542x y x y --【难度】★ 【答案】C例题解析5x -4yx -2y【解析】225148x xy y -+可以用十字交叉线表示为:【总结】考察十字相乘法的方法.【例3】分解因式:(1)256___________x x -+=;(2)26___________x x --=; (3)2231___________x x -+=; (4)2321__________a a --=.【难度】★【答案】(1) (3)(2)x x --;(2) (3)(2)x x -+;(3) (21)(1)x x --;(4) (31)(1)a a +-. 【解析】(1)(2)直接“拆常数项,凑一次项”;(3)(4)需要画十字交叉线. 【总结】考察十字相乘法的方法.【例4】分解因式:(1)()()21024_______________a b a b ----=; (2)22222566_______________a x a xy a y --=. 【难度】★【答案】(1) (12)(2)a b a b ---+;(2) 2(11)(6)a x y x y -+. 【解析】(1) 中可将a b -看成一整体;(2) 中需要先提取公因式. 【总结】考察十字相乘法的方法.【例5】对于一切x ,等式2(1)(2)x px q x x -+=+-均成立,则24p q -的值为__________. 【难度】★ 【答案】9.【解析】22(1)(2)2x px q x x x x -+=+-=--,所以12p q ==-,,249p q -=. 【总结】考察求代数式的值,本题中需先根据等式成立条件求出p 、q .【例6】若二次三项式215x ax -+在整数范围内可以分解因式,那么整数a 的值为_________. 【难度】★★【答案】8,-8,16,-16.【解析】151151(15)353(5)=⨯=-⨯-=⨯=-⨯-,所以a 的值有四种情况.【总结】考察二次三项式的系数为1时,常数项能分解成两个因数的积的几种情况.【例7】分解因式:(1)23148x x -+;(2)21166a a --+;(3)()225()6a b c a b c ---+;(4)4224109x x y y -+;(5)()()222812x x x x +-++.【难度】★★【答案】(1) 11()()24x x --; (2) 11()()23a a -+-; (3) (3)(2)abc a b c ----;(4) ()()(3)(3)x y x y x y x y +-+-; (5) (1)(2)(2)(3)x x x x --++.【解析】(1)直接用十字相乘法分解;(2) 先提取符号在因式分解;(3)(5)先将小括号里看成一整体再分解;(4)中422422(),()x x y y ==.【总结】考察十字相乘法分解因式的方法,注意分解因式要彻底,如(5).【例8】分解因式:(1)220920x x --+; (2)539829x x x -+;(3)()22234x x --;(4)()()22247412x x x x ++++;(5)()()2223234x x x x ---+. 【难度】★★【答案】(1)(45)(54)x x -+-; (2) (3)(3)(31)(31)x x x x x +-+-;(3) (1)(1)(3)(3)x x x x +-+-; (4) 2(1)(2)(3)x x x +++; (5) (1)(1)(4)(2)x x x x -+--.【解析】(1) 先提取负号;(2) 先提取公因式x ;(3) 先将小括号看成一整体,利用平方差公式分解;(4)(5)将小括号里的代数式看成一整体,(5)需先将常数项放在括号外面来.【总结】考察十字相乘法分解因式的方法,注意分解因式要彻底.【例9】用简便方法计算:2998998016++. 【难度】★★ 【答案】1006000.【解析】229989980169989981016++=+⨯+(9988)(9982)=++10061000=⨯ 1006000=.【总结】考察利用十字相乘法进行简便计算.【例10】已知()()22223540x y xy +++-=,试求22x y +的值.【难度】★★ 【答案】6【解析】令22x y +=a ,则a >0. 原式可化为()3540a a +-=,所以2354(9)(6)0a a a a +-=+-=,所以a =6,即226x y +=.【总结】考察利用十字相乘法求代数式的值,本题中注意22x y +的符号.【例11】试判断:当k 为大于等于3的正整数时,5354k k k -+一定能被120整除. 【难度】★★★ 【答案】成立.【解析】534254(54)k k k k k k -+=-+22(4)(1)k k k =--(2)(1)(1)(2)k k k k k =--++为5个连续自然数的乘积.5个连续自然数中,至少有一个能被3整除,至少有一个能被5整除,至少有一个能被4整除,另外(除了能被4整除的这个)还至少有一个能被2整除,3542120⨯⨯⨯=,所以5个连续自然数的乘积一定能被120整除,即k 为大于等于3的正整数时,5354k k k -+一定能被120整除.【总结】考察代数式的因式分解,及被某数整除的条件.(1)()()22323416x x x x +-++-;(2)()()()()312424x x x x --+++;(3)()22214(1)y x yx y ----. 【难度】★★★【答案】(1) 2(36)(4)(1)x x x x +++-; (2) 2(3)(2)(8)x x x x +-+-; (3) (1)(1)x y xy x y xy -++---.【解析】(1) ()()22323416x x x x +-++-222(3)2(3)24x x x x =+++- 22(36)(34)x x x x =+++- 2(36)(4)(1)x x x x =+++-;(2) ()()()()312424x x x x --+++22(12)(2)24x x x x =+-+-+222(2)10(2)24x x x x =+--+-+ 22(24)(26)x x x x =+--+-- 2(3)(2)(8)x x x x =+-+-;(3) ()22214(1)y x yx y ----222241x x y xy y =---+ 2222(2)(21)x xy y x y xy =-+-++ 22()(1)x y xy =--+(1)(1)x y xy x y xy =-++---.【总结】考察较复杂的代数式因式分解的方法.(1)2231092x xy y x y --++-;(2)222456x xy y x y +--+-.【难度】★★★【答案】(1) (21)(52)x y x y +--+;(2) (22)(3)x y x y -++-. 【解析】(1) 2231092x xy y x y --++-(5)(2)2452x y x y x y x y =-+++-+- (5)(2)2(2)(52)x y x y x y x y =-+++--+ (52)(2)(52)x y x y x y =-++--+ (52)(21)x y x y =-++-;(2) 222456x xy y x y +--+-(2)()63226x y x y x y x y =-+-+++- (2)()3(2)2()6x y x y x y x y =-+--++- (2)(3)2(3)x y x y x y =-+-++-(22)(3)x y x y =-++-.【总结】考察较复杂代数式因式分解的方法,本题还可以用双十字相乘法.1、分组原则:(1)分组后能直接提取公因式;(2)分组后能直接运用公式. 2、分组分解法分解因式的几点注意(1)分组分解法主要应用于四项以上(包括四项)的多项式的因式分解; (2)解题时仍应首先考虑公因式的提取,公式法的应用,其次才考虑分组;(3)分组方法的不同,仅仅是因为分解的手段不同,各种手段的目的都是把原多项式进行因式分解;(4)五项式一般采用三项、两项分组;(5)六项式采用三、三分组,或三、二、一分组,或二、二、二分组;(6模块二:分组分解法知识精讲【例14】把多项式2242x x y y ---用分组分解法分解因式,正确的分组方法应该是( ).A .()()2242x y x y --+ B .()224(2)x y x y --+C .224(2)x x y y -++D .()()2242x x y y --+【难度】★ 【答案】B【解析】B 中分组之后还可以继续分解,其余不行. 【总结】考察分组的原则.【例15】把多项式2221xy x y --+分解因式().A .()()11x y y x -+-+B .()()11x y y x ---+C .()()11x y x y ---+D .()()11x y x y -+-+【难度】★ 【答案】A【解析】2222211(2)xy x y x xy y --+=--+21()x y =--(1)(1)x y x y =+--+.【总结】考察分组的方法.【例16】将多项式2a ab ac bc -+-分解因式,分组的方法共有________种. 【难度】★ 【答案】2【解析】一二分组或一三分组. 【总结】考察分组的方法.例题解析【例17】(1)若3223a a b ab b --+有因式()a b -,则另外的因式是____________.(2)若多项式3233x x x m +-+有一个因式为()3x +,则m 的值为____________. 【难度】★★【答案】(1) ()()a b a b +-;(2) -9.【解析】(1) 322322()()a a b ab b a a b b a b --+=---22()()a b a b =--2()()a b a b =+-; (2) 32233(3)3()3m x x x m x x x +-+=+--,由题意,393mm -==-,. 【总结】考察分组的方法.【例18】分解因式:(1)221448x y xy --+; (2)2222242a x a y a xy -+-; (3)234416x x x +--;(4)3223x x y xy y +--. 【难度】★★【答案】(1) (122)(122)x y x y +--+;(2) (2)(2)ax ay ax ay -+--;(3) (14)(2)(2)x x x ++-; (4) 2()()x y x y +-.【解析】(1) 后三项一组提取公因式4;(2) 一三四一组提取a 2;(3)一二、三四分组;(4) 一二、三四分组.【总结】考察分组的方法,注意分解因式要彻底.【例19】分解因式:(1)222ax ay x xy y --+-;(2)22222x x xy y y --+-.【难度】★★【答案】(1) ()()x y a x y --+;(2) ()(22)x y x y -+-. 【解析】(1) 一二、三四五分组;(2) 22222x x xy y y --+-22222x x xy y x y =--++-,然后按顺序两两分组. 【总结】考察分组的方法,注意分解因式要彻底.【例20】分解因式:(1)54321x x x x x +++++;(2)222212x y z yz x ---+-.【难度】★★【答案】(1) 22(1)(1)(1)x x x x x +++-+;(2) (1)(1)x y z x y z ++----. 【解析】(1) 54321x x x x x +++++322(1)(1)x x x x x =+++++23(1)(1)x x x =+++22(1)(1)(1)x x x x x =+++-+;(2) 222212x y z yz x ---+-222(21)(2)x x y z yz =-+-++ 22(1)()x y z =--+(1)(1)x y z x y z =++----.【总结】考察分组的方法,注意分解因式要彻底.【例21】分解因式:(1)243(34)x y x y +-+;(2)2222()()ab c d cd a b +++.【难度】★★【答案】(1) (1)(43)x x y --;(2) ()()ac bd bc ad ++. 【解析】(1) 小括号展开后一四、二三分组;(2) 小括号展开后一四、二三分组;或者一三、二四分组. 【总结】考察分组的方法.【例22】请将下列多项式因式分解,并求值:(1)2214129x xy y -+-,其中1823x y ==,; (2)22446125x xy y x y -+-++,其中28x y =+.【难度】★★【答案】(1) (123)(123)x y x y +--+,-48;(2) (21)(25)x y x y ----,21.【解析】(1) 2214129x xy y -+-21(23)x y =--(123)(123)x y x y =+--+,把1823x y ==,代入上式得值为-48; (2) 22446125x xy y x y -+-++2(2)6(2)5x y x y =---+(21)(25)x y x y =----,把28x y =+代入上式得值为21.【总结】考察先因式分解再求值,注意方法的合理选择及运用.【例23】当2a c b +=时,求式子22244a c b bc --+的值.【难度】★★【答案】0.【解析】22244a c b bc --+222(44)a c bc b =--+22(2)a c b =--(2)(2)a c b a c b =+--+当2a c b +=时,代入上式第二个因式为0,所以原式值为0.【总结】考察先因式分解再求值.【例24】用因式分解的方法说明当n 为任意正整数时,代数式23232n +-+-的值一定是 10的整数倍.【难度】★★★【答案】见解析.【解析】223232n n n n ++-+-223(31)2(21)n n =+-+10352n n =⨯-⨯110(32)n n -=-.当n 为任意正整数时,132n n --必为整数,所以代数式223232n n n n ++-+-的值一定 是10的整数倍.【总结】考察分组分解法分解因式及倍数的概念.【例25】求证:无论x y 、为何值,2241293035x x y y -+++的值恒为正.【难度】★★★【答案】见解析.【解析】 2241293035x x y y -+++224129930251x x y y =-+++++22(23)(35)1x y =-+++>0所以:无论x y 、为何值,2241293035x x y y -+++的值恒为正.【总结】考察将代数式化成完全平方的形式.【例26】如果多项式2223352kx xy y x y --+-+能分解成两个一次因式乘积,求250.25k k ++的值.【难度】★★★【答案】 3.75-.【解析】2223352kx xy y x y --+-+22(32)(352)kx y x y y =+--+-2(32)(31)(2)kx y x y y =+---+因为接下来再用十字相乘法分解时,常数项可分为31y -和(2)y -+,两者之和正好为32y -,所以1k =-.所以250.25150.25 3.75k k ++=-+=-.【总结】本题综合性较强,主要考察将复杂代数式分解因式的方法.【例27】对于多项式32510x x x -++,我们把2x =代入多项式,发现2x =能使多项式32510x x x -++的值为0,由此可以断定多项式32510x x x -++中有因式()2x -.[注:把x a =代入多项式,能使多项式的值为0,则多项式一定含有因式()x a -],于是我们可以把多项式写成:32510(2)()x x x x x mx n -++=-++,分别求出m n 、后再代入 3510x x x -++=()()22x x mx n -++,就可以把多项式32510x x x -++因式分解. (1)求式子中m n 、的值.(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项32584x x x +++.【难度】★★★【答案】(1)35m n =-=-,;(2) 322584(1)(2)x x x x x +++=++.【解析】(1) 322510(2)()x x x x x mx n -++=-++32(2)(2)2x m x n m x n =+-+--根据系数对应相等得:25210m n -=-⎧⎨-=⎩,解得:35m n =-⎧⎨=-⎩.(2) 32584x x x +++()()21x x mx n =+++ (根据试根法可得多项式含因式x +1)32(1)()x m x m n x n =+++++根据系数对应相等得:154m n +=⎧⎨=⎩, 解得:44m n =⎧⎨=⎩.所以32584x x x +++()()2144x x x =+++2(1)(2)x x =++【总结】主要考查对题目的理解能力.【习题1】下列多项式不能用十字相乘法分解因式的是(). A .22x x +- B .223103x x x -+ C .232x x -+D .2267x xy y -- 【难度】★【答案】B【解析】B 中合并同类项之后变成两项,而十字相乘法分解因式的形式为二次三项式.【总结】考察能用十字相乘法分解因式的条件.【习题2】下列因式分解错误的是( ).A .()()2a bc ac ab a b a c -+-=-+B .5315(5)(3)ab a b b a -+-=-+C .22619(31)(31)x xy y x y x y --+=+++-D .2326(3)(2)x xy x y x y x +--=+-【难度】★【答案】C【解析】C 中正确答案应为22619(31)(31)x xy y x y x y --+=-+--.【总结】考察分解因式的方法,注意符号问题.【习题3】分解因式:25____(___)(4)x x x x ++=++.【难度】★【答案】4,1.【解析】由一次项系数可得后面小括号填1,那么常数项为4.【总结】考察二次项系数为1的二次三项式十字相乘法分解的方法.随堂检测【习题4】若()()23x x -+是二次三项式2x mx n -+的因式分解的结果,则m 的值是_______.【难度】★【答案】1-.【解析】()()2236x x x x -+=+-=2x mx n -+, 利用系数对应相等可得1m =-.【总结】考察二次项系数为1的二次三项式十字相乘法分解的逆运算.【习题5】若()()215x kx x a x b --=++,则a b +的值不可能是(). A .14 B .16 C .2 D .14-【难度】★★【答案】B【解析】15ab =-,151151513553-=-⨯=-⨯=-⨯=-⨯,所以a b +的值可能是14,-14,2,-2四种.【总结】考察二次项系数为1的二次三项式十字相乘法分解的方法.【习题6】分解因式:(1)3246____________ab a b -+-+=;(2)22____________a bx a cx bx cx --+=; (3)22244_____________a a b b --+=.【难度】★★【答案】(1) (23)(2)b a --;(2) ()(1)(1)x b c a a -+-;(3) (2)(22)a b a b -+-.【解析】(1) 一二、三四分组;(2) 一二、三四分组;(3) 一三、二四分组.【总结】考察分组分解法分解因式.(1)21024x +-;(2)2421x x --+; (3)22383x xy y +-;(4)42109x x -+. 【难度】★★【答案】(1) (12)(2)x x +-; (2) (7)(3)x x -+-;(3) (3)(3)x y x y -+; (4) (1)(1)(3)(3)x x x x +-+-.【解析】(1)(3)直接十字相乘法分解;(2) 先提取负号;(4)先将422()x x =,注意分解彻底.【总结】考察用十字相乘法分解因式的方法.【习题8】分解因式:(1)2365()()m n m n -+-+;(2)()229()20a b ac bc c +-++. 【难度】★★【答案】(1) (9)(4)m n m n -+++-;(2) (4)(5)a b c a b c +-+-.【解析】(1) 2365()()m n m n -+-+ 2[()5()36]m n m n =-+++-[()9][()4]m n m n =-+++-(9)(4)m n m n =-+++-;(2)()229()20a b ac bc c +-++ ()229()20a b a b c c =+-++ (4)(5)a b c a b c =+-+-.【总结】考察用十字相乘法分解因式的方法,本题在于将小括号里的因式看成一整体.(1)22444a ab b --+; (2)322x x y xy y x y -+-+-;(3)22446129x xy y x y -+-++;(4)221194n n x x y +-+. 【难度】★★【答案】(1) (22)(22)a b a b -+--;(2) 2()(1)x y x y -++;(3) 2(23)x y --; (4) 1111()()2323n n x y x y +++-. 【解析】(1) 一三四分组;(2) 两两顺次分组;(3) 一二三、四五、六分组;(4) 一二四分组.【总结】考察分组的方法.【习题10】若一个长方形的周长为32,长为x ,宽为y ,且满足32230x x y xy y +--=. 求这个长方形的面积.【难度】★★【答案】64.【解析】3223x x y xy y +--22()()x x y y x y =+-+22()()x y x y =+-2()()0x y x y =+-=,由题意只有x y =,又2432864x x x ===,所以,所以.即这个长方形的面积为64.【总结】考察多项式的因式分解及实际问题中值为0的条件.【习题11】用两种不同的分组方法分解因式:54321x x x x x +----.【难度】★★【答案】42(1)(1)x x x +--.【解析】法一: 54321x x x x x +----42(1)(1)(1)x x x x x =+-+-+42(1)(1)x x x =+--;法二: 54321x x x x x +----5342()(1)x x x x x =--+--4242(1)(1)x x x x x =--+--42(1)(1)x x x =+--.【总结】考察分组的方法.【习题12】已知225302x x a a ++++=,求3x a +的值. 【难度】★★【答案】-3. 【解析】22532x x a a ++++2291344x x a a =+++++2231()()022x a =+++=, 所以3122x a =-=-,,则33x a +=-. 【总结】考察根据代数式求值的方法.【习题13】已知a b c d 、、、是整数,且7a b +=,7c d +=,判断ad bc -的值能否被7整 除,并简要说明理由.【难度】★★★【答案】能,见解析【解析】因为7a b +=, 所以()7a b d d += ①;因为7c d +=,所以()7b c d b += ②.两式相减得777()ad bc d b d b -=-=-,因为a b c d 、、、是整数,所以d b -也为整数,所以7()d b -能被7整除, 即原题成立.【总结】考察能被7整除的条件.【习题14】分解因式:(1)2235294x xy y x y +-++-;(2)2232453x xy y x y +++++.【难度】★★★【答案】(1) (34)(21)x y x y -++-;(2) (23)(1)x y x y ++++.【解析】(1) 2235294x xy y x y +-++- 223(51)(294)x y x y y =++--+23(51)(21)(4)x y x y y =++---(34)(21)x y x y =-++-;(2) 2232453x xy y x y +++++22(34)(253)x y x y y =+++++2(34)(23)(1)x y x y y =+++++(23)(1)x y x y =++++.【总结】考察较复杂代数式分解因式的方法,本题可用双十字相乘法分解.【习题15】分解因式:(1)()()226824x x x x +-+--;(2)()1(2)(3)(6)20x x x x +---+. 【难度】★★★【答案】(1) (4)(3)(2)(1)x x x x +-+-;(2) 2(54)(1)(4)x x x x ----【解析】(1) ()()226824x x x x +-+-- 222(6)2(6)24x x x x =+--+--22(66)(64)x x x x =+--+-+(4)(3)(2)(1)x x x x =+-+-;(2) ()1(2)(3)(6)20x x x x +---+22(56)(56)20x x x x =---++222(56)12(56)20x x x x =--+--+22(562)(5610)x x x x =--+--+2(54)(1)(4)x x x x =----.【总结】考察较复杂代数式分解因式的方法,本题主要考察整体思想.【作业1】分解因式:(1)22524__________x xy y --=;(2)2236_______________x ax bx ab +++=;(3)22993______________x x y y +--=.【难度】★【答案】(1) (8)(3)x y x y -+;(2) (2)(3)x a x b ++;(3) (3)(33)x y x y -++.【解析】(1) 直接用十字相乘法分解;(2)一二、三四分组;(3)一三、二四分组.【总结】考察较简单的因式分解的方法.【作业2】分解因式:(1)21220x x ++;(2)212x x +-;(3)2121115x x --.【难度】★【答案】(1) (2)(10)x x ++;(2) (4)(3)x x --+;(3) (43)(35)x x +-.【解析】(1)(3) 直接用十字相乘法分解;(2)先提取负号再用十字相乘法分解.【总结】考察用十字相乘法分解因式.课后作业【作业3】把下列各式因式分解:(1)222422x x y ++-;(2)22ax bx ax bx a b +--++.【难度】★【答案】(1) 2(1)(1)x y x y ++-+;(2) 2()(1)a b x x +-+.【解析】(1) 先提取公因式2,然后一二三、四分组;(2) 按顺序两两分组.【总结】考察用分组分解法分解因式.【作业4】请将下列多项式因式分解,并求值:2233a b a b ab -+-,其中83a =,2b =. 【难度】★【答案】()(13)a b ab -+,343. 【解析】2233a b a b ab -+- ()3()a b ab a b =-+-()(13)a b ab =-+,把83a =,2b =代入,得上式值为343. 【总结】考察先分解因式后求值.【作业5】已知221547280x xy y -+=,求x y 的值. 【难度】★★【答案】7435或. 【解析】因为22154728x xy y -+(37)(54)0x y x y =--=,所以有3754x y x y ==或,所以7435x y =或. 【总结】考察十字相乘法因式分解.【作业6】在因式分解多项式2x ax b ++时,小明看错了一次项系数后,分解得53x x ++, 小华看错了常数项后,分解得()()42x x -+,求原多项式以及正确的因式分解的结果.【难度】★★【答案】2215(5)(3)x x x x -+=-+.【解析】小明的常数项正确,为5315⨯=;小华的一次项系数正确,为422-+=-,所以原多项式为2215x x -+.【总结】考察十字相乘法因式分解的方法和逆用.【作业7】已知多项式2212x xy y --.(1)将此多项式因式分解;(2)若多项式2212x xy y --的值等于6-,且x y 、都是正整数,求满足条件的x y 、的 值.【难度】★★【答案】(1) 2212(4)(3)x xy y x y x y --=-+;(2) 31x y ==,.【解析】616612(3)23-=-⨯=-⨯=⨯-=-⨯,因为x y 、都是正整数,所以34x y +≥,所以只有3641x y x y +=⎧⎨-=-⎩符合,解得:31x y =⎧⎨=⎩. 【总结】考察十字相乘法因式分解及根据已知条件求值.【作业8】分解因式:(1)()2222()()()a b a c c d b d +++-+-+;(2)42222222()()x a b x a b -++-.【难度】★★ 【答案】(1) 2()()a b c d a d +++-;(2) ()()()()x a b x a b x a b x a b +--+++--.【解析】(1)原式=()2222()()()a b b d a c c d +-+++-+=(2)()(2)()a b d a d a c d a d ++-+++-=()(2222)a d a b c d -+++=2()()a d a b c d -+++(2) 原式=4222222222()()4x a b x a b a b -+++-=22222(())(2)x a b ab -+-=222222(()2)(()2)x a b ab x a b ab -++-+-=2222(())(())x a b x a b ---+=()()()()x a b x a b x a b x a b +--+++--.【总结】考察复杂多项式的因式分解,注意分解要彻底.【作业9】分解因式:(1)22268x y x y -++-; (2)432433x x x x ++++.【难度】★★★【答案】(1)(2)(4)x y x y +--+;(2)22(1)(3)x x x +++.【解析】(1)原式=2221(69)x x y y ++--+=22(1)(3)x y +--=(2)(4)x y x y +--+;(2)原式=4322()(333)x x x x x +++++=222(1)3(1)x x x x x +++++=22(1)(3)x x x +++.【总结】考察复杂多项式的因式分解.【作业10】分解因式:(1)()22214()24x x x x +-++;(2)()2(1)1a b ab +-+; (3)(1)(1)(1)xy x y xy ++++;(4)()()22114x y xy --+. 【难度】★★★ 【答案】(1)(1)(2)(3)(4)x x x x -+-+;(2)22(1)(1)a ab b ab +-+-;(3)(1)(1xy x xy ++++1)(1)x y xy x y -+-++【解析】(1)原式=22(2)(12)x x x x +-+-=(1)(2)(3)(4)x x x x -+-+;(2)原式22(2)(1)1a b ab ab =++-+22(1)(1)2(1)1a ab b ab ab ab =-+-+-+222222()(1)(21)a b a b ab a b ab =++-+-+22222()(1)(1)a b a b ab ab =++-+-22(1)(1)a ab b ab =+-+-;(3)原式(1)(1)xy xy x y xy =+++++2(1)(1)()xy xy x y xy =+++++(1)(1)xy x xy y =++++;(4)原式=222214x y x y xy --++=222221(2)x y xy x xy y ++--+.=22(1)()xy x y +--=(1)(1)xy x y xy x y +-+-++.【总结】考察复杂多项式的因式分解,注意方法的合理选择.【作业11】已知正有理数a b c 、、满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,求a b c ++的值.【难度】★★★【答案】8.【解析】 三个方程相加可得2()()720a b c a b c +++++-=,分解因式,得:(8)(9)0a b c a b c ++-+++=,所以a b c ++=8或者9-(舍).【总结】考察根据已知条件求值,本题运用了2222()222a b c a b c ab bc ac ++=+++++公式的逆用.。
因式分解二
因式分解(二)【内容介绍】本次资料主要包含数学科目,重点指导学生了解因式分解,掌握因式分解的解题方法;主要是通过要点梳理,帮助大家综合掌握因式分解的解题方法,再通过典型例题的分析,帮助大家了解常考题型。
建议大家深入学习掌握要点梳理,认真研读例题,并在日常学习中注重练习,实现对学习目标的综合把握。
【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:++x bx c 2⎩+=⎨⎧=p q bpq c ++=++x bx c x p x q 2)()(++x bx c 2c >c 0、p q <c 0、p q b 、p q ++x bx c 2、b c c b ++ax bx c 2a a =a a a 12c =c c c 12,,,a a c c 1212按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、+a c a c 1221++ax bx c 2b +=a c a c b 1221+a x c 11+a x c 22++=++ax bx c a x c a x c 11222)()(a公式法或分组分解法进行分解要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法. 【典型例题】 类型一、十字相乘法1、将下列各式分解因式: (1); (2); (3)【答案与解析】解:(1)因为所以:原式= (2)因为所以:原式=(3)【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.2、将下列各式分解因式: (1); (2) −+x x 10162−−x x 1032−=−x x x 78+−x x 78)()(−−=−x x x 2810−−x x 28)()(−−=−+−=−+−x x x x x x 1033105222)()()(+−x x 55232++x x 66512(3); (4).【思路点拨】(3)题可看成常数项,.(4)题可将看成一个整体来分解因式. 【答案与解析】 解:(1);(2).(3);(4)因为所以:原式【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,注意观察式子结构,能够看作整体的看作整体.3、将下列各式分解因式: (1);(2)【答案与解析】 解:(1)因为−−x xy y 61622−y 162−=−⨯−+=−y y y y y y 1682,8262+x 2)(+−=x x 55232⎝⎭ ⎪+−⎛⎫x x 513)(⎝⎭⎝⎭⎪⎪++=++⎛⎫⎛⎫x x x x 662351112−−=−+x xy y x y x y 6168222)()(−+−+=−+x x x 25242292)()()(⎣⎦⎣⎦⎡⎤⎡⎤=+−+−x x 225522)()(=−+x x 2158)()(+=y y y 91019所以:原式= (2)因为所以:原式=【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 类型二、分组分解法4、先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等. 如“2+2”分法:ax+ay+bx+by =(ax+ay )+(bx+by ) =a (x+y )+b (x+y ) =(x+y )(a+b ) 如“3+1”分法: 2xy+y 2-1+x 2 =x 2+2xy+y 2-1 =(x+y )2-1 =(x+y+1)(x+y-1)请你仿照以上方法,探索并解决下列问题: (1)分解因式:x 2-y 2-x-y ;++y y 2335)()(−=x x x 21183+−x x 2379)()((2)分解因式:45am2-20ax2+20axy-5ay2;(3)分解因式:4a2+4a-4a2b-b-4ab+1.【思路点拨】(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可;(3)重新分组利用完全平方公式分解因式得出即可.【答案与解析】解:(1)x2-y2-x-y=(x+y)(x-y)-(x+y)=(x+y)(x-y-1);(2)45am2-20ax2+20axy-5ay2=45am2-5a(4x2-4xy+y2)=5a[9m2-(2x-y)2]=5a(3m-2x+y)(3m+2x-y);(3)4a2+4a-4a2b-b-4ab+1=(4a2+4a+1)-b(4a2+4a+1)=(2a+1)2(1-b).【总结升华】此题主要考查了提取公因式法分解因式以及分组分解法分解因式,正确分组是解题关键.【考点精讲】考点1:利用因式分解进行简便计算典例:计算:①2032-203×206+1032②20192-2018×2020. 【答案】①10000;②1.【解析】解:①原式=2032-2×203×103+1032 =(203-103)2 =1002 =10000;②原式=20192-(2019-1)×(2019+1) =20192-(20192-1) =20192-20192+1 =1.方法或规律点拨本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:+−=−a b a b a b 22)()(.完全平方公式:±=±+a b a ab b 2222)(.巩固练习1.(2020·广西兴宾·初一期中)计算:−⨯−⨯−⨯⨯−⨯−56799100(1)(1)(1)...(1)(1)1111122222的结果是( )A .200101B .125101C .100101D .1001 【答案】B 【解析】解:原式=⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⨯+⨯−⨯+⨯−⨯+⨯⨯−⨯+⨯−⨯+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫556677999910010011111111111111111111 =⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯55667799991001004657689810099101=⨯51004101 =125101. 故选:B .2.(2020·全国初二课时练习)计算:1252-50×125+252=( ) A .100 B .150C .10000D .22500【答案】C【解析】1252-2×25×125+252=(125-25)2=1002=10000. 故选C .3.(2020·全国初二课时练习)计算:752-252=( ) A .50 B .500C .5000D .7100【答案】C【解析】原式=(75+25)×(75-25)=100×50=5000, 故选C .4.(2020·河南初二期末)已知−=⨯⨯x 2010201020102009201120212019,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】解:−2010201020212019=⨯⨯=⨯−⨯+⨯−⨯−20102009201120102010120101=201020101=2010201020102019201920192201922019)()()(∴⨯⨯=⨯⨯x 2010200920112010200920112019 ∴x=2019故选:B .5.(2020·河北定兴·初一期末)利用因式分解计算−=2522481000222__________. 【答案】500【解析】解:−+−⨯===⨯252248252248252248500450010001000100010002222)()(. 故答案为:500.考点2:利用十字相乘法进行因式分解 典例:阅读与思考x 2+(p+q )x+pq 型式子的因式分解x 2+(p+q )x+pq 型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p )(x+q )=x 2+(p+q )x+pq ,因式分解是整式乘法相反方向的变形,利用这种关系可得x 2+(p+q )x+pq =(x+p )(x+q ).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x 2-x-6分解因式.这个式子的二次项系数是1,常数项-6=2×(-3),一次项系数-1=2+(-3),因此这是一个x 2+(p+q )x+pq 型的式子.所以x 2-x-6=(x+2)(x-3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x 2-x-6=(x+2)(x-3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题: (1)分解因式:y 2-2y-24.(2)若x 2+mx-12(m 为常数)可分解为两个一次因式的积,请直接写出整数m 的所有可能值.【答案】(1)(y+4)(y-6);(2)-1,1,-4,4,11,-11 【解析】解:(1)y 2-2y-24=(y+4)(y-6);(2)若+−=−+x mx x x 12(3)(4)2,此时=m 1 若+−=+−x mx x x 12(3)(4)2,此时=−m 1 若+−=−+x mx x x 12(1)(12)2,此时=m 11若+−=+−x mx x x 12(1)(12)2,此时=−m 11 若+−=−+x mx x x 12(2)(6)2,此时=m 4 若+−=+−x mx x x 12(2)(6)2,此时=−m 4综上所述,若x 2+mx-12(m 为常数)可分解为两个一次因式的积, m 的值可能是-1,1,-4,4,11,-11. 方法或规律点拨本题主要考查了十字相乘法分解因式,读懂题意,理解题中给出的例子是解题的关键. 巩固练习1.(2020·四川成都实外开学考试)计算结果为a 2-5a-6的是( ) A .(a-6)(a+1) B .(a-2)(a+3) C .(a+6)(a-1) D .(a+2)(a-3)【答案】A【解析】解:a 2-5a-6=(a-6)(a+1). 故选:A .2.(2020·湖南鹤城·初一期末)将下列多项式因式分解,结果中不含有因式+a 1的是( )A .−a 12B .++a a 212C .+a a 2D .+−a a 22【答案】D【解析】解:−=+−a a a 1(1)(1)2,+++a a a 21=122)(+=+a a a a (1)2,+−=+−a a a a 2(2)(1)2,∴结果中不含有因式+a 1的是选项D ; 故选:D .3.(2020·上海市静安区实验中学初一课时练习)已知−−=−−x x m x x n 452)()(,则m ,n 的值是( )A .=m 5,=n 1B .=−m 5,=n 1C .=m 5,=−n 1D .=−m 5,=−n 1【答案】C【解析】解:由x 2-4x-m=(x-5)(x-n ), 得:-5-n=-4,(-5)(-n )=-m 所以n=-1,m=5. 故选:C .4.(2020·全国初二课时练习)下列各式中,计算结果是+−x x 7182的是( ) A .−+x x (1)(18) B .++x x (2)(9) C .−+x x (3)(6) D .−+x x (2)(9)【答案】D【解析】原式=(x -2)(x +9)故选D.5.(2020·湖南茶陵·初一期末)分解因式x 2+3x +2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).这样,我们可以得到x 2+3x +2=(x +1)(x +2).请利用这种方法,分解因式2x 2-3x -2=_____.【答案】(2x +1)(x -2) 【解析】解:原式=(2x +1)(x -2), 故答案为(2x +1)(x -2)考点3:利用分组分解法进行因式分解 典例:将下列各式因式分解: (1)++x x 142;(2)+−+−x x y y 26822.【答案】(1)++−+x x x x 1122)()(;(2)+−−+x y x y (2)(4).【解析】解:(1)原式=++−x x x 21422=+−x x 1222)(=++−+x x x x 1122)()(;(2)原式=++−+−x x y y 216922=++−−+x x y y 216922)()( =+−−x y 1322)()(=++−+−+x y x y 1313)()( =+−−+x y x y 24)()(. 方法或规律点拨本题考查了多项式的因式分解,正确变形、熟练掌握分解因式的方法是解题的关键. 巩固练习1.已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2-ab-bc-ac 的值为_____.【答案】3【解析】解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018, ∴a-b=-1,a-c=-2,b-c=-1, ∴a 2+b 2+c 2-ab-bc-ac=++−−−a b c ab bc ac 2222222222=−+−+−a b a c b c 2()()()222=−+−+−2(1)(2)(1)222=3,故答案为:3.2.分解因式:++−=a ab b 2422__________. 【答案】+++−a b a b (2)(2) 【解析】解:原式=(a+b )2-22 =(a+b+2)(a+b-2), 故答案为:(a+b+2)(a+b-2).3.分解因式:++−=b c bc a 2222_______.【答案】+++−b c a b c a ()()【解析】解:原式=+−=+++−b c a b c a b c a ()()()22.故答案为:+++−b c a b c a ()()4.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如−−+x y x y 42422,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。
第7讲 因式分解--满分班
第7讲 因式分解⎧⎪⎪⎨⎪⎪⎩提公因式法公式法因式分解分组分解法十字相乘法7.1 提公因式法一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.三、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.知识网络图知识概述小试牛刀1.(2017秋•十堰期末)若m﹣n=﹣2,mn=1,则m3n+mn3=()A.6B.5C.4D.3【解答】解:∵m﹣n=﹣2,mn=1,∴(m﹣n)2=4,∴m2+n2﹣2mn=4,则m2+n2=6,∴m3n+mn3=mn(m2+n2)=1×6=6.故选:A.再接再厉2.(2018春•柯桥区期中)多项式(x+2)(2x﹣1)﹣(x+2)可以因式分解成2(x+m)(x+n),则m﹣n的值是()A.0B.4C.3D.1【解答】解:∵(x+2)(2x﹣1)﹣(x+2)可以因式分解成2(x+m)(x+n),∴(x+2)(2x﹣1)﹣(x+2)=(x+2)(2x﹣2)=2(x+2)(x﹣1)=2(x+m)(x+n),故m=2,n=﹣1,则m﹣n=3.故选:C.3.(2018春•太仓市期中)(﹣8)2018+(﹣8)2017能被下列哪个数整除?()A.3B.5C.7D.9【解答】解:(﹣8)2018+(﹣8)2017=(﹣8)2017×(﹣8+1)=7×82017;能被7乘除,故选:C.17.(2017秋•泸县校级期中)2x3﹣24x2+54x.【解答】解:原式=2x (x 2﹣12x +27)=2x (x ﹣3)(x ﹣9).7.2公式法一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积. (3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.二、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.1.(2018•威海)分解因式:﹣a 2+2a ﹣2= _______. 【解答】解:原式=﹣(a 2﹣4a +4)=﹣(a ﹣2)2, 故答案为:﹣(a ﹣2)22.(2018•成都)已知x +y=0.2,x +3y=1,则代数式x 2+4xy +4y 2的值为_____ . 【解答】解:∵x +y=0.2,x +3y=1, ∴2x +4y=1.2,即x +2y=0.6,知识概述小试牛刀则原式=(x+2y)2=0.36.故答案为:0.36再接再厉3.(2017秋•沂水县期末)已知m=2n+1,则m2﹣4mn+4n2﹣5的值为______.【解答】解:∵m=2n+1,∴m﹣2n=1,∴m2﹣4mn+4n2﹣5=(m﹣2n)2﹣5=1﹣5=﹣4,故答案为:﹣4.4.(2017春•庆元县期末)先阅读材料,再回答问题:分解因式:(a﹣b)2﹣2(a﹣b)+1解:设a﹣b=M,则原式=M2﹣2M+1=(M﹣1)2再将a﹣b=M还原,得到:原式=(a﹣b﹣1)2上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:(x+y)(x+y﹣4)+4(2)若a为正整数,则(a﹣1)(a﹣2)(a﹣3)(a﹣4)+1为整数的平方,试说明理由.【解答】解:(1)设M=x+y,则原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,将M=x+y代入还原可得原式=(x+y﹣2)2;(2)原式=(a﹣1)(a﹣4)(a﹣2)(a﹣3)+1=(a2﹣5a+4)(a2﹣5a+6)+1令N=a2﹣5a+4,∵a为正整数,∴N=(a﹣1)(a﹣4)=a2﹣5a+4也是整数,则原式=N(N+2)+1=N2+2N+1=(N+1)2,∵N为整数,∴原式=(N+1)2即为整数的平方.5.(2017秋•杜尔伯特县校级期中)分解因式:x2﹣120x+3456分析:由于常数项数值较大,则采用x2﹣120x变为差的平方形式进行分解:x2﹣120x+3456=x2﹣2×60x+3600﹣3600+3456=(x﹣60)2﹣144=(x﹣60+12)(x﹣60﹣12)=(x﹣48)(x﹣72)请按照上面的方法分解因式:x2+86x﹣651.【解答】解:x2+86x﹣651=(x+43)2﹣2500=(x+43+50)(x+43﹣50)=(x+93)(x﹣7).7.3分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:方法分类分组方法特点分组分解法四项二项、二项①按字母分组②按系数分组③符合公式的两项分组三项、一项先完全平方公式后平方差公式五项三项、二项各组之间有公因式六项三项、三项二项、二项、二项各组之间有公因式三项、二项、一项可化为二次三项式知识概述小试牛刀1.(2017秋•西城区校级期中)分解因式:(1)x2﹣y2+4y﹣4=_______;(2)x2﹣4xy+4y2﹣2x+4y﹣3=______.【解答】解:(1)x2﹣y2+4y﹣4=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2);故答案为:(x+y﹣2)(x﹣y+2);(2)x2﹣4xy+4y2﹣2x+4y﹣3=(x﹣2y)﹣2(x﹣2y)﹣3=(x﹣2y﹣3)(x﹣2y+1).故答案为:(x﹣2y﹣3)(x﹣2y+1).2.(2018春•金牛区校级月考)因式分解(1)x2(a﹣1)+y2(1﹣a)(2)x2﹣y2+4x﹣2y+3【解答】解:(1)原式=x2(a﹣1)﹣y2(a﹣1),=(a﹣1)(x2﹣y2),=(a﹣1)(x+y)(x﹣y);(2)原式=(x2+4x+4)﹣(y2+2y+1),=(x+2)2﹣(y+1)2,=(x+2+y+1)(x+2﹣y﹣1),=(x+y+3)(x﹣y+1).再接再厉3.(2016秋•昌江区校级期末)分解因式:a2+4b2+c4﹣4ab﹣2ac2+4bc2﹣1.【解答】解:a2+4b2+c4﹣4ab﹣2ac2+4bc2﹣1=(a2+4b2﹣4ab)+(﹣2ac2+4bc2)+(c4﹣1)=(2b﹣a)2+2c2(2b﹣a)+(c2+1)(c2﹣1)=(2b﹣a+c2+1)(2b﹣a+c2﹣1).4.(2017秋•灵台县校级月考)把下列各式分解因式:(1)(a2+a+1)(a2﹣6a+1)+12a2;(2)(2a+5)(a2﹣9)(2a﹣7)﹣91;(3);(4)(x4﹣4x2+1)(x4+3x2+1)+10x4;(5)2x3﹣x2z﹣4x2y+2xyz+2xy2﹣y2z.【解答】解:(1)令a2+1=b,则原式=(b+a)(b﹣6a)+12a2=b2﹣5ab﹣6a2+12a2=b2﹣5ab+6a2=(b﹣2a)(b﹣3a)=(a2+1﹣2a)(a2+1﹣3a)=(a﹣1)2(a2﹣3a+1);(2)原式=[(2a+5)(a﹣3)][(a+3)(2a﹣7)]﹣91 =(2a2﹣a﹣15)(2a2﹣a﹣21)﹣91=(2a2﹣a)2﹣36(2a2﹣a)+224=(2a2﹣a﹣28)(2a2﹣a﹣8)=(a﹣4)(2a+7)(2a2﹣a﹣8);(3)设x+y=a,xy=b,则原式=b(b+1)+(b+3)﹣2(a+)﹣(a﹣1)2=(b2+2b+1)﹣a2=(b+1+a)(b+1﹣a)=(xy+1+x+y)(xy+1﹣x﹣y);(4)令x4+1=a,则原式=(a﹣4x2)(a+3x2)+10x4=a2﹣x2a﹣2x4=(a﹣2x2)(a+x2)=(x4+1﹣2x2)(x4+1+x2)=(x+1)2(x﹣1)2(x2+x+1)(x2﹣x+1);(5)原式=(2x 3﹣x 2z )+(﹣4x 2y +2xyz )+(2xy 2﹣y 2z ) =x 2(2x ﹣z )﹣2xy (2x ﹣z )+y 2(2x ﹣z ) =(2x ﹣z )(x 2﹣2xy +y 2) =(2x ﹣z )(x ﹣y )2.7.4十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号(2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.1.(2017秋•醴陵市期末)计算(ax +b )(cx +d )=acx 2+adx +bcx +bd=acx 2+(ad +bc )x +bd ,倒过来写可得:acx 2+(ad +bc )x +bd=(ax +b )(cx +d ).我们就得到一个关于的二次三项式的因式分解的一个新的公式.我们观察公式左边二次项系数为两个有理数的乘积,常数项也为两个有理数的乘积,而一次项系数恰好为这两对有理数交叉相乘再相加的结果.这种因式分解的方法叫十字交叉相乘法.如图1所示.示例:例如因式分解:12x 2﹣5x ﹣2 解:由图2可知:知识概述小试牛刀12x2﹣5x﹣2=(3x﹣2)(4x+1)请根据示例,对下列多项式因式分解:①2x2+7x+6②6x2﹣7x﹣3【解答】解:由题意可知:①2x2+7x+6=(x+2)(2x+3)②6x2﹣7x﹣3=(2x﹣3)(3x+1)2.(2017秋•黔南州期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay,x2+2xy+y2﹣1分组分解法:解:原式=(ax+bx)+(ax+by)解:原式=(x+y)2﹣1=x(a+b)+y(a+b)=(x+y+1)(x+y﹣1)=(a+b)(x+y)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣2=(x+1+2)(x+l﹣2)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(l)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7.【解答】解:(1)原式=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)原式=(x2﹣6x+9﹣16)=(x﹣3)2﹣16=(x﹣3﹣4)(x﹣3+4)=(x﹣7)(x+1).再接再厉3.(2017秋•临颍县期末)仔细阅读下面例题,解答问题;例题,已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式3x2+5x﹣m有一个因式是(3x﹣1),求另一个因式以及m的值.【解答】解:设另一个因式为(x+n),得3x2+5x﹣m=(3x﹣1)(x+n),则3x2+5x﹣m=3x2+(3n﹣1)x﹣n,∴,解得:n=2,m=2,∴另一个因式为(x+2),m的值为2.4.(2017秋•阳泉期末)阅读与思考x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p)(x+q)=x2+(p+q)x+pq,因式分解是整式乘法相反方向的变形,利用这种关系可得x2+(p+q)x+pq=(x+p)(x+q).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x2﹣x﹣6分解因式.这个式子的二次项系数是1,常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),因此这是一个x2+(p+q)x+pq型的式子.所以x2﹣x﹣6=(x+2)(x﹣3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x2﹣x﹣6=(x+2)(x﹣3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:y2﹣2y﹣24.(2)若x2+mx﹣12(m为常数)可分解为两个一次因式的积,请直接写出整数m的所有可能值.【解答】解:(1)y2﹣2y﹣24=(y+4)(y﹣6);(2)若x2+mx﹣12(m为常数)可分解为两个一次因式的积,m的值可能是﹣1,1,﹣4,4,11,﹣11.5.(2018春•慈利县期中)阅读材料题:在因式分解中,有一类形如x2+(m+n)x+mn的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).运用上述方法分解因式:(1)x2+6x+8;(2)x2﹣x﹣6;(3)x2﹣5xy+6y2;(4)请你结合上述的方法,对多项式x3﹣2x2﹣3x进行分解因式.【解答】解:(1)x2+6x+8=(x+2)(x+4);(2)x2﹣x﹣6=(x+2)(x﹣3);(3)x2﹣5xy+6y2=(x﹣2y)(x﹣3y);(4)x3﹣2x2﹣3x=x(x﹣3)(x+1).6.(2018春•邗江区期中)阅读与思考:整式乘法与因式分解是方向相反的变形.由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x+12=_____;(2)分解因式:(x2﹣3)2+(x2﹣3)﹣2;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能的值______.【解答】解:(1)x2+7x+12=(x+3)(x+4),故答案为:(x+3)(x+4);(2)原式=(x2﹣3﹣1)(x2﹣3+2)=(x2﹣4)(x2﹣1)=(x+2)(x﹣2)(x+1)(x﹣1);(3)若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是﹣8+1=﹣7;﹣1+8=7;﹣2+4=2;﹣4+2=﹣2,故答案为:±7,±2.7.5因式分解的应用小试牛刀1.(2018春•苏州期中)已知a=+2012,b=+2013,c=+2014,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是6.【解答】∵a=+2012,b=+2013,c=+2014,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,c﹣b=1,∴2(a2+b2+c2﹣ab﹣bc﹣ac),=2[a(a﹣b)+b(b﹣c)+c(c﹣a)],=2(﹣a﹣b+2c),=2[(c﹣a)+(c﹣b)],=2×3,=6.故答案为:6.2.(2018•南岸区模拟)材料1:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也成立.材料2:两位数m和三位数n,它们各个数位上的数字都不为0,将数m任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为F (m,n),例如:F(12,345)=13+14=15+23+24+25=114;F(11,369)=13+16+19+13+16+19=96.(1)填空:F(16,123)=_____,并求证:当n能被3整除时,F(m,n)一定能被6整除;(2)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除时,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中F(s,t)的最大值.【解答】解:(1)F(16,123)=11+12+13+61+62+63=222,故答案为:222证明:设这个三位数的个位数是x,十位数是y,百位数是z,则这个三位数是100z+10y+x,∵各位数字之和能被3整除,∴(x+y+z)÷3是整数,∵100z+10y+x=(99z+9y)+x+y+z,∴(100z+10y+x)÷3=(99z+9y)÷3+(x+y+z)÷3=33z+3y+(x+y+z)÷3,∴这个数就能被3整除;(2)∵s=21x+y,t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),∴当x分别等于1、2、3、4,y,分别等于1、2、3、4、5时,可得s分别等于22、23、24、25、26、43、44、45、46、47、64、65、66、67、68、85、86、87、88、89,t分别等于321、322、323、324、325、442、443、444、445、446、563、564、565、566、567、684、685、686、687、688,∴s的个位上的数是2、3、4、5、6、7、8、9,t′的个位上的数就是t的百位上的数即为:3、4、5、6,又∵当s和t为“珊瑚数对”时有t′与s的个位数字的3倍的和能被11整除的数是33、66、99、132、165…∴t′与s的个位数字的和是:11∵3+8=11、4+7=11、5+6=11,∴“珊瑚数对”是s的个位上的数是3、4、5、6、7、8的数和t的百位上的数即为:3、4、5、6的所有数∴F(s,t)的最大值是:F(88,688)=86+88+88+86+88+88=524.再接再厉3.(2018•九龙坡区校级模拟)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6整除);又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…(1)我们发现,3和6,4和12,5和20,6和30…,都是两个数的祖冲之数组;由此猜测n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想.(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.【解答】解:(1)∵n•n(n﹣1)÷[n+n(n﹣1)]=n2(n﹣1)÷n2=n﹣1,∴n和n(n﹣1)(n≥2,n为整数)组成的数组是祖冲之数组.(2)∵=,=,=都是整数,∴a是5,9,11的倍数,∴满足条件的所有三位正整数a为495或990.4.(2018•重庆模拟)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后,能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.【解答】解:(1)设两位自然数的十位数字为x,则个位数字为2x,∴这个两位自然数是10x+2x=12x,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”;(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字不是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴这个三位自然数可能是为251,255,257,259,而251,257,259不能被3整除,∴这个三位自然数为255,即这个三位自然数为201,207,255.5.(2018•江津区一模)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出三个)(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可);(3)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.【解答】解:(1)x3﹣xy2=x(x﹣y)(x+y),当x=21,y=7时,x﹣y=14,x+y=28,可得数字密码是211428;也可以是212814;142128;(2)由题意得:,解得xy=48,而x3y+xy3=xy(x2+y2),所以可得数字密码为48100;(2)由题意得:x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∵(x﹣3)(x+1)(x+7)=x3+5x2﹣17x﹣21,∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴,解得.故m、n的值分别是56、17.。
因式分解ppt课件
02
03
04
因式分解的基本概念:定义、 性质、方法等
因式分解的技巧:提公因式、 平方差公式、十字相乘法等
因式分解的应用:代数式化简 、解方程等
Hale Waihona Puke 学习方法:理论学习、练习、 小组讨论等
因式分解的应用与重要性
01
02
03
04
代数式化简
利用因式分解简化复杂的代数 式,提高计算效率
解方程
通过因式分解将方程转化为多 个简单方程,便于求解
因式分解的作用
有助于理解方程的解 法
可以用于解决一些数 学问题,如求根、解 方程等
可以将一个复杂的多 项式简化成易于理解 的形式
课程目标和学习方法
掌握因式分解的基本方法 学习如何将一个多项式分解成几个整式的乘积
通过练习,达到能够快速、准确地完成因式分解的目标
02
因式分解的基本概念
整式和因式的定义
分解6a4b3+18a3b2+12a2b
首先,我们可以发现6a4b3和18a3b2可以组合成一项,得到(6a4b3+18a3b2),接着观察多项式,我 们可以发现12a2b可以单独列出来,所以原多项式可以分解为(6a4b3+18a3b2)+12a2b。
应用题中的例子
在一个水池设计中,需要将一个圆形的水池分割成若干个小 的区域,这时候就需要使用到因式分解的方法,将圆形水池 的面积分解成若干个小的面积之和,这样就可以更加方便地 进行设计和规划。
掌握因式分解的方法
因式分解的方法有很多种,初学者可能难以掌握。解决办 法是加强对方法的学习,可以通过大量的练习来掌握。
解决因式分解的问题
因式分解的问题可能比较复杂,初学者可能难以解决。解 决办法是加强对问题的分析,学会拆解问题,找出合适的 解决方法。
八年级数学因式分解2
色的黑脸部落驼般的一叫,冰冷的睡意朦胧、但却时常露出欢快光彩的眼睛顿时伸长了一百倍,反戴着的牛头公主帽也猛然膨胀了九十倍!最后扭起刚劲有力的粗壮手指一吼,萧洒地从里面滚出 一道幻影,她抓住幻影强悍地一旋,一件明晃晃、绿莹莹的咒符¤雨光牧童谣→便显露出来,只见这个这件怪物儿,一边摇晃,一边发出“咻咻”的猛音。……猛然间壮扭公主快速地念起哼哼唧 唧的宇宙语,只见她如同红苹果样的脸中,威猛地滚出五十缕甩舞着¤天虹娃娃笔→的雨丝状的枕头,随着壮扭公主的耍动,雨丝状的枕头像珍珠一样在额头上独裁地弄出团团光甲……紧接着壮 扭公主又连续使出七帮独鸟麻袋劈,只见她极像紫金色铜墩般的脖子中,快速窜出四十簇转舞着¤天虹娃娃笔→的螺壳状的犄角,随着壮扭公主的转动,螺壳状的犄角像绳头一样念动咒语:“原 野呱 啾,肥妹呱 啾,原野肥妹呱 啾……¤雨光牧童谣→!天仙!天仙!天仙!”只见壮扭公主的身影射出一片水青色奇辉,这时东北方向狂傲地出现了九簇厉声尖叫的纯灰色光羊, 似粼光一样直奔水青色流光而去!,朝着琳可奥基官员跳动的手掌狂劈过去!紧跟着壮扭公主也摇耍着咒符像弯弓般的怪影一样向琳可奥基官员狂劈过去随着两条怪异光影的瞬间碰撞,半空顿时 出现一道亮黄色的闪光,地面变成了水绿色、景物变成了亮青色、天空变成了暗黑色、四周发出了粗野的巨响……壮扭公主大如飞盘的神力手掌受到震颤,但精神感觉很爽!再看琳可奥基官员暗 黄色玉葱般的手指,此时正惨碎成灌木丛样的墨灰色飞烟,加速射向远方,琳可奥基官员怒哮着音速般地跳出界外,狂速将暗黄色玉葱般的手指复原,但元气已损失不少!壮扭公主:“老妖精, 你导师怎么会传授这么蠢的玩意儿!你的套路水平好像很有穷酸性哦……琳可奥基官员:“我再让你领会领会什么是顽强派!什么是粗鲁流!什么是远古粗鲁风格!”壮扭公主:“您要是没什么 新法术,我可不想哄你玩喽!”琳可奥基官员:“你敢小瞧我,我再让你尝尝『绿冰吹圣布条杖』的风采!”琳可奥基官员悠然跳动的鲜红色水桶耳朵离奇摇晃旋转起来……深灰色怪藤样的嘴唇 跳出葱绿色的隐隐寒光……纯黑色轻盈似的眉毛闪出墨黑色的丝丝怪暖……接着把粗犷的脖子耍了耍,只见七道亮亮的酷似鸡尾般的冰冰灵,突然从紧缩的仿佛银剑般的手臂中飞出,随着一声低 沉古怪的轰响,乳白色的大地开始抖动摇晃起来,一种怪怪的嫩哼玛瑙味在风流的空气中绕动。紧接着颤动很大的牙齿一喊,露出一副秀丽的神色,接着摇动结实的仿佛扫帚般的腿,像水蓝色的 亿血牧场鳄般的一吼,寒酸
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲:因式分解(二)
一、重要公式
1、a2-b2=(a+b)(a-b);a n-1=(a-1)( a n-1+a n-2+a n-3+…+a2+a+1)
2、a2±2ab+b2=(a±b)2;
3、x2+(a+b)x+ab=(x+a)(x+b);
4、a3+b3=(a+b)(a2-ab+b2); a3-b3=(a-b)(a2+ab+b2);
二、因式分解的一般方法及考虑顺序
1、基本方法:提公因式法、公式法、十字相乘法、分组分解法;
2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。
3、考虑顺序:(1)提公因式法;(2)十字相乘法;(3)公式法;(4)分组分解法;
(5)其它常用方法与技巧(简单概括为:提十公分
....)。
三、例题
1、添项拆项
[例1]因式分解:(1)x4+x2+1;(2)a3+b3+c3-3abc
(1)分析:x4+1若添上2x2可配成完全平方公式
解:
(2)分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2
解:a3+b3+c3-3abc=
[例2]因式分解:(1)x3-11x+20;(2)a5+a+1
(1)分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。
(注意这里16是完全平方数)
解:
HHψ 数学课堂专用 1
(2)分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用
立方差公式
解:
2、待定系数法
[例3]因式分解2x2+3xy-9y2+14x-3y+20
解:∵2x2+3xy-9y2=(2x-3y)(x+3y),故用待定系数法,
∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)
[另解]原式=2x2+(3y+14)x-(9y2+3y-20),这是关于x的二次三项式
常数项可分解为-(3y-4)(3y+5),用待定系数法,
3、换元法
[例3] 因式分解22
+++-+
x x x x
(43)(45)12
四、填空题
1、两个小朋友的年龄分别为a和b,已知a2+ab=99,则a= ,b= 。
2、计算:(x+6)2(x-6)2= 。
3、若x+y=4,x2+y2=10,则(x-y)2= 。
4、分解因式:a2-b2+4a+2b+3= 。
5、分解因式:4x3-31x+15= 。
6、分解因式:x4+1987x2+1986x+1987= 。
五、选择题
7、x2y-y2z+z2x-x2z+y2x+z2y-2xyz因式分解后的结果是()。
(A)(y-z)(x+y)(x-z) (B)(y-z)(x-y)(x+z)
HHψ 数学课堂专用 2
(C)(y+z)(x-y)(x+z) (D)(y+z)(x+y)(x-z)
8、已知724-1可被40至50之间的两个整数整除,则这两个整数是()。
(A)41,48 (B)45,47 (C)43,48 (D)41,47
9、n为某一自然数,代入代数式n3-n中计算其值时,四个同学算出如下四个结
果,其中正确的结果只能是()。
(A)388944 (B)388945 (C)388954 (D)388948
六、将下列各式分解因式
10、x4+x2y2+y411、x4+4
12、x4-23x2y2+y4 13、x3+4x2-9
14、x3-41x+30 15、x3+5x2-18
16、x3+3x2y+3xy2+2y317、x3-3x2+3x+7
18、x3-9ax2+27a2x-26a3 19、x3+6x2+11x+6
HHψ 数学课堂专用 3
20、a3+b3+3(a2+b2)+3(a+b)+2
21、(1)(1)(3)(5)7
-++++
x x x x
七、解答题
23、已知x-y+4是x2-y2+mx+3y+4的一个因式,求m的值。
24、求方程xy-x-y+1=3的整数解。
解:
HHψ 数学课堂专用 4。