108G OFDM PON

合集下载

OFDM无源光网络中多业务分层带宽分配算法

OFDM无源光网络中多业务分层带宽分配算法

OFDM无源光网络中多业务分层带宽分配算法刘业君;刘玉莹;汉鹏超;王继东;郭磊【摘要】正交频分复用无源光网络(OFDM-PON,orthogonal frequency division multiplexing passive optical network)具有带宽容量大、资源分配灵活等优势,被公认为下一代光接入网的重要候选技术之一.目前,OFDM-PON系统结构的相关研究层出不穷,然而这些研究大多专注于物理结构和信号传输技术,缺少与新型系统结构相适应的带宽分配算法.OFDM-PON中带宽分配涉及时域、频域、比特等多维资源的联合优化,是保证多业务接入和服务质量的关键技术.针对OFDM-PON的增强型系统结构,提出多业务分层带宽分配算法,以实现增强型OFDM-PON 系统带宽资源的高效利用.仿真结果表明,相比传统OFDM-PON系统中无分层带宽分配算法,增强型OFDM-PON的分层带宽分配算法在带宽资源利用率和数据分组时延等性能方面具有明显优势.【期刊名称】《通信学报》【年(卷),期】2018(039)009【总页数】10页(P84-93)【关键词】正交频分复用无源光网络;动态带宽分配;分层带宽分配;多业务传输【作者】刘业君;刘玉莹;汉鹏超;王继东;郭磊【作者单位】东北大学计算机科学与工程学院智慧系统国际合作联合实验室,辽宁沈阳 110819;东北大学计算机科学与工程学院智慧系统国际合作联合实验室,辽宁沈阳 110819;东北大学计算机科学与工程学院智慧系统国际合作联合实验室,辽宁沈阳 110819;东北大学计算机科学与工程学院智慧系统国际合作联合实验室,辽宁沈阳 110819;东北大学计算机科学与工程学院智慧系统国际合作联合实验室,辽宁沈阳 110819【正文语种】中文【中图分类】TP302近年来,移动互联网、大数据、云计算、物联网等技术的迅猛发展,促进了新兴高带宽应用的不断涌现,用户对带宽的需求急剧增长。

02.下一代PON技术介绍

02.下一代PON技术介绍

• • • • •
2006年03月 年 月 2008年03月 年 月 2008年12月 年 月 2009年04月 年 月 2009年09月 年 月
802.3avTF成立 (确定 成立 确定10GEPON标准目标) 标准目标) 标准目标 D1.1 确定主要技术类型 参数 确定主要技术类型/参数 D2.2 修订 D3.2 终稿 标准发布
2010年
2015年
时间
ZTE的NGPON方案
ZTE 10GEPON ONU F822
ZTE 10GEPON ONU F100
10GEPON应用——江苏移动试点
10GEPON应用——法电Tripeplay业务
目录
xPON新技术 10GEPON NGPON
NGPON路标
容 量
?? G
NG-PON2
更高速率,如高速TDM、 DWDM、CDM、 GPON
WDM PON
LR PON
EPON
10GEPON
xPON新技术进展— 10GEPON
标准草案已发布,10GEPON 标准802.3av计划 2009年发布正式标准 802.3av标准和802.3ah标准完全兼容,目前 EPON规模建设的FTTB可平滑演进到10GEPON 802.3av的下行带宽为10Gbps,上行带宽为1G或 10Gbps 利用C 波段和L波段用于WDM以及RF Video的传 输 部分芯片商和设备商已预研10GEPON芯片和产品, 2009-2010年推出相应产品
xPON新技术进展— LR-PON
LR-PON(Long Reach PON)
由欧洲IST的PIAMAN工程(光集成城域网和接入网络)根据欧洲的具体情况 提出的由现有的G-PON向多波长和高速率10Gbit/s的长距离PON 演化的 思路。要求PON的传输距离和覆盖范围可以达到100km甚至更远。这种技 术试图将接入网和城域网集成到单一网络里面,将有源节点逐步采用无源 节点来进行替代,有利于简化网络结构和降低网络维护的费用,节省光纤 成本并方便管理。 其中以BT提出的Super PON的最为有名,Super PON的带宽可达到 10Gbps,传输距离将达100km左右,可以接入多达512~1024个用户,为 了实现远距离的传输,Super PON 采用多级串联的无源光分路器,利用 光放大器来补偿附加损耗,并达到距离远传输和提高分路比 ,是满足各 种宽带需要的一种很好的组网方案。 高的带宽,带宽可达上下行10Gbps甚至更高 提供更远的长距离覆盖,更大的分光比 可以对多种协议和业务进行透传 利用密集波分复用技术来提高光纤的利用效率。上下行波长数各为32个 采用突发性的EDFA来对波长信号进行放大,没有光电转换

烽火通信GPON技术交流

烽火通信GPON技术交流

目录
FTTH建设现状 PON技术简介 FTTH建设方案 烽火GPON产品简介
FTTH单纤入户
➢ FTTH建设方案采用三波合一技术,构筑高带宽、大容量的光纤接入双向网
Video QAM CATV 光发射机
Video QAM
GPON OLT
Optical Access Network
三波合一 节省主干光缆
全网网管 运维方便
分支/ 分配器
PC EoC终端
网管系统
FTTH双纤入户
➢ 数据部分采用PON技术,实现光纤到户 ➢ CATV部分采用家用光接收机接收光信号,实现光纤到户
Video QAM CATV 光发射机
Video QAM
GPON OLT
Optical Access Network
无源光网络 减少电力成本
盒式OLT设备AN5516-04
结构特点:
▪ 尺寸 mm: 480×88×239;19/21英寸300深机柜; ▪ 2业务槽位; 全前插板、前出线; ▪ 支持所有板卡、PON光模块热插拔; ▪ 支持所有核心部件的冗余备份;
兼容性:
▪ 支持G/EPON板卡混插,单框支持32PON口; ▪ 支持EPON/GPON/10G PON \P2P共平台; ▪ AN5516-01/06OLT所有业务板卡通用
目录
FTTH建设现状 PON技术简介 FTTH建设方案 烽火PON产品简介
国内运营商宽带市场现状
51%
45%
31%
14%
宽带 覆盖2.2亿 FTTH 渗透1.14亿
宽带覆盖1.6亿 FTTH渗透7200万
宽带覆盖2.1亿 FTTH渗透6500万
双向网改造覆盖1.4亿 宽带用户2000万

接入网pon技术

接入网pon技术

接入网-PON技术中国电信维护岗位技能认证教材编写小组编制目录第1章 PON拓扑结构 (4)1.1基本拓扑结构 (4)1.2性能比较 (4)第2章 PON的双向传输技术 (5)2. 1 光时分多址(OTDMA) (5)2. 2光波分多址(OWDMA) (5)2. 3光码分多址(OCDMA) (5)2. 4光副载波多址(OSCMA) (5)第3章 PON的双向复用技术 (6)3.1光波分复用(OWDM)技术 (6)3.2光时分复用(OTDM)技术 (6)3.3光码分复用(OCDM)技术 (6)3.4光频分复用(OFDM)技术 (6)3.5光副载波复用(OSCM)技术 (6)3.6光空分复用(OSDM)技术 (6)3.7时间压缩复用(TCM)技术 (7)第4章 PON功能结构 (8)4.1光线路终端(OLT)的功能结构 (8)4.2光网络单元(ONU)的功能结构 (8)4.3光配线网(ODN)的功能结构 (8)4.4操作管理维护功能 (8)4.5光接入网(OAN)基本性能 (8)第5章 PON技术应用 (9)5.1 PON组网应用 (9)5.2 波分复用PON技术应用 (9)5.3 10G PON技术应用 (9)5.4 EPON技术特点及网络结构 (10)5.5 EPON传输原理及帧结构 (11)5.6 EPON光路波长分配 (11)5.7 EPON关键技术 (11)第6章 GPON技术 (13)6.1 两大PON技术:GPON和EPON (13)6.2 GPON与EPON的比较 (13)6.3 为什么选择GPON (14)6.4 GPON网络基本性能参数 (14)6.5 GPON标准协议 (14)6.6 GPON原理 (15)6.7 GPON的基本协议概念- T-CONT (15)6.8 GPON的基本协议概念-DBA (16)6.9 GPON的基本协议概念-Gemport (18)6.10 GPON的基本协议概念-流 (19)6.11 GPON的基本协议概念-Flow control (20)6.12 GPON中的QOS处理 (21)6.13 GPON网络保护方式 (22)第1章 PON拓扑结构1.1基本拓扑结构光接入网(OAN)的拓扑结构取决于光配线网(ODN)的结构。

基于OFDM-PON动态带宽分配算法研究

基于OFDM-PON动态带宽分配算法研究
us e d i n mo s t n e w a n d e me r g i n g b r o a d b a n d wi r e d a n d wi r e l e s s c o mmun i c a t i o n s y s t e ms b e c a u s e i t i s a n e f f e c t i v e s o l u t i o n t o i n t e r s y mb o l i n t e r f e r e n c e c a u s e d b y a d i s p e r s i v e c h a nn e 1 . Ve r y r e c e n t l y a n umb e r o f r e s e a r c h e r s h a v e s ho wn t h a t OFDM i s a l s o a p r o mi s i n g t e c h n o l o g y f o r p a s s i v e o p t i c a l n e t wo r k . T h e t r a n s mi s s i o n p e r f o r ma n c e o f t he OFDM — PON s y s t e m a n d i t s d y na mi c ba n d wi d t h a l l o c a t i o n a l g o r i t h m a r e s t u d i e d i n t h i s p a p e r . Th e i mp r o v e d a l g o r i t h m i s pu t f o r wa r d b a s e d o n t h e t r a d i t i o n a l CP a l g o r i t h m,a c h i e v i n g u p s t r e a m b a n d wi d t h a l l o c a t i o n p e r — f o r ma n c e o f OFDM — PON s y s t e m . Mo d e l i n g a n d s i mu l a t i n g s h o w t h a t b o t h s y s t e m u p s t r e a m t r a ic f d e l a y a n d l i nk u t i l i z a t i o n a r e i mp r o v e d .

10G PON技术的标准及关键特性

10G PON技术的标准及关键特性

10G PON技术的标准及关键特性近几年,不断增长的IPTV、视频游戏业务对带宽的巨大需求推动着宽带技术的发展,未来物联网的发展也离不开宽带网络的支撑。

作为主流的光接入技术,EPON/GPON不能满足未来面对每户100M-1G的带宽需求,PON网络迈向10G的趋势不可逆转。

未来宽带业务将会以多媒体、视频点播、互动游戏为主要特征,伴随着大流量、大宽带业务的开展和普及,EPON和GPON已无法满足未来宽带业务发展的需要,现有PON口带宽将会出现瓶颈。

1、10G PON技术发展背景在PON出现至今的近二十年发展史上,已形成了窄带PON、APON/BPON、EPON和GPON等一系列产品。

目前下一代PON 接入技术的标准主要为10G EPON 标准和10G GPON 标准。

2、10G EPON 标准及关键特性10G EPON 国际标准规定了10Gb/s下行、1Gb/s上行的非对称模式和10Gb/s 上/下行对称模式两种速率模式。

同时,在沿用1G EPON的MAC和MPCP协议的基础上,扩展增加了10Gb/s能力的通信与协商机制,而对1G EPON的底层进行了重新定义,以专门处理10G EPON 10G上下行数据,而避免MAC层及以上各层的改动。

10G EPON最大的特点是:扩大了EPON 的上、下行带宽,同时提供最大达到1:256 的分光比;充分考虑了与EPON的兼容性问题,实现10G EPON与1G EPON 的兼容和网络的平滑演进。

高带宽。

10G EPON 提供了10Gb/s下行、1Gb/s上行的非对称模式和10Gb/s 上下行对称模式两种速率模式。

在前期可以使用非对称模式;随着业务发展导致上行带宽需求增加,可以逐渐采用对称模式。

大分光比和长距离传输。

目前10G EPON采用高功率预算PR30/PRX30时,最大可以支持1:256 分光比下20km的传输距离或者1:128 分光比下30km 的传输距离。

对光纤通信系统中ofdm技术应用的几点探讨

对光纤通信系统中ofdm技术应用的几点探讨

Vol.27,No.1,2020对光纤通信系统中OFDM技术应用的几点探讨杨 坚(武昌工学院,湖北武昌430065)摘 要:光OFDM通信技术融合了光纤通信技术与OFDM技术的双重优点,对促进网络通信服务质量的提升十分重要。

通过对光纤通信中OFDM关键技术进行分析,提出了光OFDM技术在光纤通信系统中的具体应用。

关键词:光纤通信;OFDM;应用分析doi:10.3969/j.issn.1006-8554.2020.01.075! 引言光纤通信具有信息容量大、损耗低、传输速度高、成本低、安全性高,以及不易受到电磁波的干扰、保密性能好、传输距离长等一系列的优点,可以有效节约通信系统架构的成本,而且光纤的尺寸比较小,十分便于运输与安装,已经成为现代通信技术的重点研究内容。

OFDM技术能够将光纤通信系统的多路数字信号同时分开进行,并且在干扰信号存在的情况下,也能够保证各路信号能够正常传输。

在光纤通信系统中,将OFDM技术应用于通信系统中,能提高光纤通信的容量与速度,对保证网络通信的质量具有十分重要的作用。

" 光纤通信系统中>G46技术分析1.1 光OFDM技术的工作原理OFDM技术是一种先进的网络通信调制解调技术,在光纤通信领域具有独特的优势,主要功能是将光纤通信中的高速串行数据流通过调制转换的方式,将它们转换为低速的多路并行数据流,并保证它们之间互不干扰,然后通过调制解调技术,将转换为低速的数据流分解到不同频率的正交子载波上,使得不同频率上的信号之间互不干扰,利用这种调制解调技术,可以提高光纤通信各个频带之间的利用效率,保证光纤通信网络的数据传输效率。

1.2 光OFDM技术的应用优势1)频谱结构紧凑。

光OFDM技术采用的是四进制相移键控(QPSK)数字信号调制技术,可以将通信信号转换到不同的子载波频谱上,使得各个载波频谱之间互不干扰,而且各个载波频道的间隔为零,减少了网络带宽浪费的情况,采用这种频谱结构更加紧凑,网络资源利用率高,也十分有利于网络通信信息的传输,而且网络通信的安全性、稳定性都比较高。

基于OFDM调制的双向TWDM-PON系统设计

基于OFDM调制的双向TWDM-PON系统设计

基于OFDM调制的双向TWDM-PON系统设计彭泉生;陈新桥【摘要】设计了一种基于OFDM调制的TWDM-PON系统,下行链路采用OFDM 调制,采用信号速率为25Gpbs的4波长复用,上行链路采用NRZ调制,利用RSOA 实现ONU的“无色化”,信号速率为10Gbps.采用optisystem对系统进行仿真,得到在误码率为7.17e-12,光纤长度可达60km,ONU的光接收机的灵敏度可达-16.55dBm.所设计的系统具有传输带宽高,传输距离长的特点,可在NG-PON中具有重要的应用价值.【期刊名称】《中国传媒大学学报(自然科学版)》【年(卷),期】2019(026)002【总页数】5页(P71-74,78)【关键词】下一代光接入网;无源光网络;正交频分复用;正交幅度调制【作者】彭泉生;陈新桥【作者单位】中国传媒大学信息工程学院,北京100024;中国传媒大学信息工程学院,北京100024【正文语种】中文【中图分类】TN9111 引言随着交互式网络电视、高清流媒体视频等多种高带宽业务的快速普及,人们对接入网带宽需求大幅提高。

传统的TDM-PON由于单一波长传输速率等性能的受限,正逐步向WDM-PON转型。

针对目前已经大量部署的TDM-PON,出于使用成本和系统平滑升级等因素的考虑,外界普遍认为在向未来WDM-PON过渡的一段时期,可以引入混合时分波分的TWDM-PON。

与TDM-PON和WDM-PON系统不同,TWDM-PON在网络资源的分配上,同时具有波长和时隙的二维特性。

在TWDM-PON中,OLT端通过WDM技术实现多波长的复用和解复用。

在接收端,给每个ONU分配特定的波长接收下行数据和发送上行数据。

本质上,TWDM-PON系统是由多个使用不同波长的TDM-PON 系统通过WDM的方式结合在一起的。

目前的研究和应用表明,TWDM-PON 可以很大程度地改善现有网络资源的利用率,使网络具有较低的使用成本。

接入网--pon技术

接入网--pon技术

接入网--pon技术接入网-PON技术中国电信维护岗位技能认证教材编写小组编制目录第1章 PON拓扑结构 (5)1.1基本拓扑结构 (5)1.2性能比较 (6)第2章 PON的双向传输技术 (8)2. 1 光时分多址(OTDMA) (8)2. 2光波分多址(OWDMA) (8)2. 3光码分多址(OCDMA) (9)2. 4光副载波多址(OSCMA) (9)第3章 PON的双向复用技术 (10)3.1光波分复用(OWDM)技术 (10)3.2光时分复用(OTDM)技术 (11)3.3光码分复用(OCDM)技术 (11)3.4光频分复用(OFDM)技术 (11)3.5光副载波复用(OSCM)技术 (11)3.6光空分复用(OSDM)技术 (12)3.7时间压缩复用(TCM)技术 (12)第4章 PON功能结构 (13)4.1光线路终端(OLT)的功能结构 (13)4.2光网络单元(ONU)的功能结构 (13)4.3光配线网(ODN)的功能结构 (13)4.4操作管理维护功能 (14)4.5光接入网(OAN)基本性能 (14)第5章 PON技术应用 (15)5.1 PON组网应用 (15)5.2 波分复用PON技术应用 (15)5.3 10G PON技术应用 (16)5.4 EPON技术特点及网络结构 (18)5.5 EPON传输原理及帧结构 (20)5.6 EPON光路波长分配 (21)5.7 EPON关键技术 (21)第6章 GPON技术 (24)6.1 两大PON技术:GPON和EPON (24)6.2 GPON与EPON的比较 (24)6.3 为什么选择GPON (26)6.4 GPON网络基本性能参数 (27)6.5 GPON标准协议 (28)6.6 GPON原理 (29)6.7 GPON的基本协议概念- T-CONT (29)6.8 GPON的基本协议概念-DBA (32)6.9 GPON的基本协议概念-Gemport (36)6.10 GPON的基本协议概念-流 (37)6.11 GPON的基本协议概念-Flow control (38)6.12 GPON中的QOS处理 (40)6.13 GPON网络保护方式 (41)第1章 PON拓扑结构1.1基本拓扑结构光接入网(OAN)的拓扑结构取决于光配线网(ODN)的结构。

10G-PON技术

10G-PON技术

10G PON技术10G PON的价值: 更低的带宽和运营成本、更多的业务和应用相对于目前成熟的EPON/GPON技术,10G PON技术主要特征是:提供最大下行10G的带宽、分光比最高可达1:256、传输距离可达60公里、可向下兼容现有PON终端、封装效率高达97%,光器件的功耗更低、对ODN的线路监测更灵活等等。

10G PON不仅能降低每Bit的传输成本,而且可应用的场景也更多,如LTE的回程、商务楼宇接入等等1.PON简介2.FTTH、三网融合的简介FTTH(Fiber To The Home,光纤到户)是指利用光纤媒质连接通信局端和家庭住宅的接入方式,引入光纤由单个家庭住宅独享PON(Passive Optical Network:无源光纤网络)指ODN(Optical Distribution Network:光配线网)不含有任何电子器件及电子电源,ODN全部由光分路器(Splitter:分支器)等无源器件组成,不需要贵重的有源电子设备。

目前PON技术主要有APON、EPON 和GPON等几种,其主要差异在于采用了不同的二层技术。

国内目前主要应用为EPON GPONODN负责连通OLT与所属的ONU。

ODN为OLT与ONU之间提供光传输手段,其主要功能是完成光信号功率的分配。

ODN由用户光缆、无源光分路器、光交接设备、光分纤设备和光缆接头及用户终端盒组成,上述组成部分根据不同的应用场景而略有差异。

用户光缆按用途分为主干光缆、配线光缆和引入光缆。

表1 分光器典型插入衰减值 分光器类型 1:2 1:4 1:8或2:81:16或2:161:32或2:32FBT 或PLC ≤3.6dB ≤7.3dB ≤10.7dB ≤14.0dB ≤17.7dB 光纤衰减取定: 1310nm 波长时 取0.36dB/km1490nm 波长时 取0.22dB/km光活动连接器插入衰减取定: 0.5dB/个;光纤熔接接头衰减取定:分立式光缆光纤接头衰减取双向平均值为:0.08dB/每个接头;带状光缆光纤接头衰减取双向平均值为:0.2dB/每个接头;冷接子双向平均值0.15 dB/每个接头;在设计过程中应对无源光分配网络中最远用户终端的光通道衰减核算,采用最坏值法进行ODN 光通道衰减核算。

面向电力业务可靠性保障的PONLTE融合接入网络资源分配机制

面向电力业务可靠性保障的PONLTE融合接入网络资源分配机制

面向电力业务可靠性保障的PON-LTE融合接入网络资源分配机制朱红1,韦磊2,李秋生1,严东1,蔺鹏3(1.国网南京供电公司,江苏南京 210008;2.国网江苏省电力有限公司,江苏南京 210024;3.北京万可信息技术有限公司,北京 100088)摘 要:随着智能电网的发展,业务对终端通信接入网可靠性保障要求也越来越高。

目前,正交频分复用技术有着广泛的应用,结合无源光网络技术,成为了电力终端通信接入网技术中的一个热点研究方向。

然而,由于终端通信接入网中各类设备对可靠性要求的不同,有的设备要求接入网对其进行冗余覆盖以保证高可靠性的服务。

现有的大多数融合网络资源分配算法未能考虑业务的可靠性要求,且存在算法复杂、计算量大以及容易陷入局部最优解等问题,不足以满足终端通信接入网的业务可靠性要求。

论文提出了一种面向智能电网终端通信接入网的上行资源分配方案,仿真结果表明,本方案能够在可靠性要求高的环境下,相对单一智能优化算法,在10GHz的PON带宽情况下,实现20%的网络覆盖增强效果。

关键词:资源分配;PON-LTE融合接入网;业务可靠性;智能电网中图分类号:TN915.6文献标识码:AReliability-guaranteed resource allocation for power services inPON-LTE integrated access networksZhu Hon g1, We i Lei2, Li Qi us heng1, Ya n Dong1, L in P eng3(1. S tat e Grid Nanj i ng Pow e r Supply C ompany, Ji angsuNanj ing 210008;2. St ate Gri d J ia ngsu E lectr ic P ow er C o., Lt d., JiangsuNanji ng 21002;3.Bei ji ng Ve ct inf o Technologi es C o., Lt d., B eiji ng 100088)Abstract: With the development of smart gird, service requirements for reliability of terminal communication access network are getting higher and higher. At present, Orthogonal Frequency Division Multiplexing (OFDM) technology has a wide range of applications. Combined with passive optical network technology, it has become an important part in power communication access network technology. Due to the different reliability requirements of various types of devices in the grid, some devices require the access network to perform redundant coverage to ensure high reliability services. However, most existing resource allocation algorithms for integrated access network have problems such as non-reliability guaranteed, large computational complexity, and easy to fall into local optimal solutions, which are insufficient to meet the increasing requirements of business reliability. This paper proposes an uplink resource allocation scheme for the terminal communication access network in smart grid. The simulation results show that the scheme can effectively solve the above problems and gain 15-20% better coverage rate compared with single resource allocation algorithms under high reliability requirements.Key words: resource allocation; PON-LTE integrated access network; business reliability; smart grid朱红 等:面向电力业务可靠性保障的P O N-L T E融合接入网络资源分配机制1 引言随着智能电网通信技术的发展,网络对业务的可靠性保障要求也越来越高。

机场1.8G宽带集群通信平台设计规划

机场1.8G宽带集群通信平台设计规划

机场 1.8G宽带集群通信平台设计规划摘要1.8G宽带集群通信平台为机场内的专业用户提供实时性、安全性、可靠性和保密性的无线宽带数据通信及应用服务,保障机场及航空公司的航班日常生产运行任务,提高航班地面保障生产效率和航空安全。

本文主要结合目前各大机场1.8G宽带集群通信平台的设计,对技术方案、承载业务、系统架构、系统定位及通信调度等简要介绍,对于天线配置及覆盖分析计算进行详细叙述,为机场通信建设的设计工作提供参考和方向。

关键词集群通信,LTE,专网,宽带,室内分布系统一、引言随着机场的快速发展,机场服务中移动语音、高清视频、大容量数据传送业务、无线数据办公等需求越来越高,机场当局、航空公司、空管局、海关、公安、货运公司等诸多驻场单位,他们之间的工作协调、生产调度都高度依赖于集群通信系统。

为满足机场无线多媒体集群通行(对讲、电话)、视频监控、拍照回传、信息发布及指挥调度基础网络平台等需求,实现机场的应急调度和指挥平台因此对各种环境下的通信的可靠性和通信效率提出了更高的要求,在机场5G专网频率未批复,并未广泛推广前,1.8G-LTE频段(1785MHz~1805MHz)专网建设依然是现行机场建设的标准配置。

二、建设原则采用1.8G LTE无线基站进行组网,采用先进的LTE通信技术进行系统设计,建设方案主要遵循以下要求:先进性:选用业界最具技术核心竞争力的LTE专网基站产品,支持3GPPR9协议标准,各业务终端在统一的平台下实现多种业务的传输,既能够满足市场对新技术、新业务需求,又具有良好的扩展性。

兼容性:系统提供各种信息接口,多媒体信息指挥调度系统提供与PSTN、专网等接口,可以方便的和语音、视频、数据、图像等业务系统集成,满足二次开发。

灵活性:支持同频组网,LTE终端支持在各基站间漫游平滑切换。

安全性:系统采用电信级设备元器件制造,保障用户的私密和安全性。

可靠性:网络结构集成度高,能够保证7*24小时不间断地稳定可靠运行,适应工作环境能力强,故障率低。

PON技术的发展及演进

PON技术的发展及演进

PON技术的发展及演进无源光网络(PON)是使用点到多点树形光纤分配网络进行信息传输的技术。

点到多点的物理拓扑结构特别适用于有线接入网的场景。

PON系统一般由位于局端的OLT设备,位于用户侧的ONU设备和连接两者的无源光分配网构成。

PON系统中由于多个O NU设备共享同一光纤媒质与OLT通信,因此主要需要解决不同ONU间的媒质共享问题。

解决光纤中媒质共享的主要方式包括时分复用/多址技术、波分复用技术和正交频分复用(OFDM)技术。

因此主要的PON技术也可分为TDM-PON、WDM-PON和OFDM-PON三大类。

目前技术比较成熟应用比较广泛的EPON、GPON等主要是采用TDM-PON技术。

1.PON技术的发展1.1 早期的窄带PON及BPON最早的PON系统主要是用于解决多个的窄带接入网(数字用户环路)远端设备的互联,传送n×64 kbit/s的语音时隙。

但由于价格和业务保护方面均无法与环形拓扑的数字用户环路设备抗衡,因此成为失败的技术。

20世纪90年代,随着ATM/B-ISDN的兴起,宽带第一次成为电信技术发展的重要方向,而带宽潜力巨大的光纤技术也成为信息传输技术的宠儿。

因此,在1995年全球7个重要的运营商成立了全业务接入网组织(FSAN),致力于光纤接入网的标准和应用的推进工作。

在FSAN和ITU-T的共同努力下,第一个关于PON系统的国际标准《基于无源光网络(PON)的宽带光接入系统》(ITU-T G.983.1 )于1998年发布,该标准一般也被称为BPON标准。

BPON在当时的技术环境下采用了以ATM为内核的设计思路,且限于当时器件水平和价格的因素,PON设备的成本还比较高、光纤接入网的外部配套条件也不成熟,因此BPON 仅在北美地区的电信运营商中有一定规模的部署,并未在全球获得广泛的应用。

1.2 EPON和GPON随着ATM技术的衰落和互联网IP技术的迅速兴起,继BPON之后,业界希望开发一种新型的PON系统,取代过时的BPON技术。

6中国移动PON接入网发展思路

6中国移动PON接入网发展思路

中国移动PON接入网发展思路1 PON发展概况1.1 全球PON规模建设发展迅速从下图我们可以看出:在技术选择方面,即使用EPON还是GPON,中国、日本、韩国等国家主要是以EPON为主,但也都在做GPON。

其他的地区、国家基本都是以GPON为主,GPON 可以加DSL加LAN或者加其他的一些设备。

比如说,以后的三网融合领域,广电的运营商可能会用PON加同轴线,也可以加其他的WLAN。

在我国,电信、联通主要是以EPON为主,同时也逐步部署GPON,而移动是采用两者并重的方式,但在实际部署中优先选择GPON。

在PON的建设模式上区分,即以FTTB为主还是以FTTH为主。

在中国主要以FTTB为主,在全球范围内,中国也是最大的以FTTB为主的建设模式。

其他地方都是以FTTH为主,特别阿联酋、日、韩,建设的量比较大,目前在全球范围也处于领先地位。

1.2 欧洲主流运营商PON建设计划与进展下面列举了欧洲几个主要运营商PON的建设情况:计划2013年前投资15亿英镑,完成1000万线FTTC/FTTP建设,室外柜达到2.8万个,多数采用GPON+VDSL2;2009年Q3开始考虑FTTP向FTTH迁移,后续两者建设比例为3:1。

2010年投资1亿欧元建设FTTH。

2015年前投资20亿欧覆盖全法国;2010年2月,法国ARCEP(电信监管机构)明确光纤共享政策,为FTTH 入户扫清障碍。

采用GPON+VDSL2,目前已完成近150万线VDSL2和1万个GPON端口的部署;计划2010年完成GPON FTTH的IMS SIP VoIP互通测试,推动GPON+IMS 的同步建设。

国内竞争加剧:2010年5月,Wind/Fastweb/Vodafone宣布成立合资公司NewCO,未来5年投资25亿欧元建设NGAN,计划覆盖意大利15个城市,100万用户;TI拟在2012年底实现130万家庭FTTH Home Passed。

10G PON技术简介

10G PON技术简介

项目
产业链
光模块
价格
OLT 终端
PON芯片
OLT 终端
设备
产业链 价格
OLT 终端 OLT 终端
非对称10G EPON
对称10G EPON
技术成熟,厂商数量最多,具备量产能力,小批量 供货
1100元
技术较成熟,仍存在一些难点,厂商数量一般,少 量试点及研发供货
1700元
250-400元
450-1000元
5.2*
50*
8*
50%
50%
10%
40%
100%
100%
100%
100%
18.2
标清 4* 50% 100%
*考虑每PON口用户较少没有复用统计特性,且要保证绝大多数情况用户符合签约速率体验,放大忙时平均带宽和并发率(100%)等参数
单PON下可容纳宽带用户数
可用带宽(M) 最大用户数 高流量模型下可带用户数 低流量模型下可带用户数
EPON 900 64 26 49
FTTH GPON 2250
64 65 124
10G PON 8300 256 241 456
EPON 900 256 26 49
FTTB+LAN GPON 2250 256 65 124
10G PON 8300 256 241 456
4K/百兆模型下EPON FTTH/FTTB、GPON FTTB急需通过10G PON提速
PON技术体系契合宽带发展,不断演进
1G/2.5G
10G
A/BPON
TDM-PON
EPON
10G EPON
GPON
XG-PON1 XGS-PON

PON网络线路保护方式的探讨

PON网络线路保护方式的探讨

PON网络线路保护方式的探讨摘要随着PON网络运用越来越普及,网络的可靠性和安全性需要在网络建设时同步考虑。

构建网络保护路由保障网络安全畅通,要结合实际运用场景和PON网络的技术特点,兼顾投资效益。

本文根据PON网络主要线路方式,探讨了如何结合实际应用场景和投资分析,灵活搭建PON网络的线路保护。

关键词PON网络;线路;保护1 背景我国宽带普及率远低于发达国家,并且40%的宽带用户仍使用4Mbps以下宽带接入,远低于发达国家18Mbps的主流速率。

2013年8月17日,国务院发布了《“宽带中国”战略及实施方案的通知》,标志着“宽带战略”从部门行动上升为国家战略。

由于铜缆接入成本增加,光缆接入成本降低、传输带宽大、传输损耗低,PON 技术逐渐成熟,用户对带宽和业务种类的需求越来越丰富等原因,PON是今后一段时间用户接入的主流方式。

2 目前PON网络的组网状况如今,我国的PON网络的主要组网方式一般包括两种类型,即OLT窄带接入与OLT宽带接入等,其中窄带接入网络的方式的主要功能是承载语言等相关业务,宽带接入网络的方式主要功能是承载相关的宽带业务。

2.1 OLT窄带接入网络方式当前,OLT窄带接入网络一般分成3种接入方式:1)城域网承载;2)采用光纤直驱的手段接入到软交换网络;3)采用MSTP专用承载的手段接入到软交换网络。

2.2 OLT宽带接入网络方式目前,采用OLT宽带接入网络的组网方式主要分为直接接入BRAS和利用城域网交换机接入BRAS等两种方式。

通常都是在不超出BRAS端口要求的范围之外,采用直接连接BRAS。

其中OLT设备汇聚如果用户相对比较多就选择4路GE上联城域网BRAS,如果用户相对比较少就选择2路GE上联城域网BRAS。

3 PON接入的线路保护与维护的主要方式PON网络一般分成两个方面进行网络保护,即接入层的网络保护和承载层的网络保护等。

其中,对于接入层的网络保护方式主要是对OLT至ONU段所进行的保护;而对于承载层的网络保护方式主要是保护OLT上联链路,进而确保当上联链路出现故障终端的状况下而不阻断用户业务。

基于偏振复用的WDM-OFDM-PON

基于偏振复用的WDM-OFDM-PON

基于偏振复用的WDM-OFDM-PON冯敏;罗清龙;白成林;张帅【期刊名称】《光通信技术》【年(卷),期】2012(36)8【摘要】波分复用无源光网络(WDM-PON)是一种容量大、易升级、网络安全性高的光接入网技术.利用正交频分复用(OFDM)调制技术在传输速率、距离和色散容限方面的优势,提出一种基于偏振复用的WDM-OFDM-PON,同时在光网络单元(0NU)中实现了无光源的无色设计.仿真实验表明该系统可以在50km单模光纤上利用每一波长实现下行10Gb/s、上行5Gb/s的双向传输.%Wavelength division multiplexing passive optical network (WDM-PON) is an optical access network with the advantages of large capacity, easy upgrades and security. With the superiority of Orthogonal Frequency Division Multiplexing (OFDM) in rate, distance and dispersion tolerance, WDM-OFDM-PON by polarization division multiplexing was proposed, and colorless design without light source was achieved in Optical Network Unit (ONU). The simulation results show that the two way transmission of 10Gb/s in downlink and 5Gb/s in uplink can be achieved using each wavelength in single mode fiber of 50km.【总页数】3页(P11-13)【作者】冯敏;罗清龙;白成林;张帅【作者单位】聊城大学物理科学与信息工程学院,山东聊城252059;光通信科学与技术山东省重点实验室,山东聊城252059;聊城大学物理科学与信息工程学院,山东聊城252059;光通信科学与技术山东省重点实验室,山东聊城252059;聊城大学物理科学与信息工程学院,山东聊城252059;光通信科学与技术山东省重点实验室,山东聊城252059;聊城大学物理科学与信息工程学院,山东聊城252059;光通信科学与技术山东省重点实验室,山东聊城252059【正文语种】中文【中图分类】TN915.63【相关文献】1.光偏振复用正交频分复用系统中基于联合近似特征矩阵对角化-独立分量分析的盲均衡算法 [J], 冯平兴;魏平;张洪波2.基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1×2多模干涉型解复用器的设计 [J], 汪静丽; 陈子玉; 陈鹤鸣3.基于偏振复用IRZ-DPSK信号的数据中心光互连 [J], 王希杰;卢旸;黄桂杏;王尧尧;李星傲;李航4.基于夹层结构的偏振无关1×2定向耦合型解复用器的设计 [J], 汪静丽;陈子玉;陈鹤鸣5.基于伴随仿真的偏振复用超构透镜 [J], 刘永健;张飞;谢婷;蒲明博;赵泽宇;李雄;马晓亮;沈同圣;罗先刚因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

108Gb/s OFDMA-PON With PolarizationMultiplexing and Direct DetectionDayou Qian,Neda Cvijetic ,Member,IEEE ,Junqiang Hu,and Ting WangAbstract—In this paper,we propose and experimentally demon-strate the firstsingle-40Gb/s and 108Gb/s multiple-input multiple-output orthogonal frequency-division multiple access (OFDMA)passive optical networks (PON)architecture for next-generation PON systems based on OFDM,polarization multiplexing (POLMUX),and direct detection.Superior perfor-mance was exhibited after 20km SSMF transmission and a 1:32optical split.The novel POLMUX approach greatly simplified receiver-end hardware compared to coherent detectors,while increasing spectral efficiency to enable 40+Gb/s data rates.Moreover,the proposed solution achieved the highest single-wave-length downstream transmission reported to date in any PON system.As such,the introduced architecture may be viewed as a highly attractive candidate for next-generation optical access.Index Terms—Direct detection,orthogonal frequency-division multiple access (OFDMA),passive optical networks (PON),polar-ization multiplexing.I.I NTRODUCTIONFUELED by an exponentially growing demand for broad-band services and the adventofGb/s Ethernet tech-nologies,the R&D focus for passive optical networks (PON)has shifted toward next-generation access systems that are capable of providing a “future-proof”broadband solution [1]–[3].How-ever,it is also critical that these optical access systems be highly flexible and cost-efficient to readily accommodate emerging ser-vices and applications [2].Consequently,unlike long-haul net-works where short-term flexibility is not a primary goal and dis-tance-bandwidth products are sufficiently large to leverage highimplementation cost,access networks(km)must be easily reconfigurable and maintain low hardware and operational com-plexity to remain attractive and practical.It is well known that advanced modulation formats are a cost-effective way to increase the transmission data rate.Due to its resilience to both chromatic and polarization-mode disper-sion,spectral efficiency,and natural compatibility with digital signal processing (DSP)-based implementation,optical orthog-onal frequency-division multiplexing (OFDM)has emerged as an attractive candidate for future optical transmission systems [4]–[8].Moreover,in the context of PON-based optical access,our recently proposed orthogonal frequency-division multiple access (OFDMA)PON solutions can be used to transparently support various applications and enable dynamic bandwidthManuscript received May 01,2009;revised July 28,2009.First published August 07,2009;current version published February 01,2010.The authors are with NEC Laboratories America,Princeton,NJ 08540USA (e-mail:dqian@;neda@;jqhu@;ying@).Digital Object Identifier 10.1109/JLT.2009.2029541allocation among them [9],[10].In this way,OFDM-PON and OFDMA-PON [9]–[12]provide a novel transmission and networking paradigm that enables both cost-effective spectral efficiency and dynamic bandwidth granularity for next-gener-ation optical access networks.The performance of both directly detected [6]–[8],[13]–[16]and coherent optical (CO)OFDM [5],[17]–[21]has received great attention recently.In coherently detected optical OFDM transmission,polarization multiplexing (POLMUX),wherein a high-speed OFDM signal is carried in each of two orthogonal polarizations,has been widely proposed and demonstrated as an excellent way to further increase spectral efficiency at ultra-high speeds [5],[21].The tradeoff for higher spectral efficiency in such multiple-input multiple-output (MIMO)POLMUX sys-tems is the increased complexity mandated by coherent detec-tion,which entails narrow linewidth lasers for receiver-end local oscillators (LOs),as well as complex frequency-offset and phase noise compensation DSP algorithms.Due to data rate limita-tions imposed by current electronic digital-to-analog converters (DAC),increasing spectral efficiency via POLMUX would also be of great value in OFDM-based networks as well [22],[23].However,the inherent complexity of coherent receiver-end ar-chitectures restricts their use in cost-sensitive access and metro application.In this work,we provide an extended description of our recently proposed and experimentally demonstrated directly detected POLMUX-OFDMA-PON [23],[24],whereby two polarization-orthogonal OFDMA signals are recovered by direct detection (DD)on two photodiodes,followed by post-detection DSP.To the best of our knowledge,these results document the first DD-based method for POLMUX optical OFDM transmission.The remainder of the paper is organized as follows.In Section II,the principles and key benefits of OFDM-PON optical access systems are introduced.Section III details the challenges of POLMUX with DD (POLMUX-DD),while Section IV introduces the architecture of our proposed solution,which circumvents these difficulties.Novel channel estimation algorithms for POLMUX-DD OFDMA-PON are presented in Section V.Section VI contains the experimental setup and results for both 40Gb/s and 108Gb/s POLMUX-DD OFDMA PON transmission,while Section VII summarizes and concludes the paper.II.OFDMA-PON P RINCIPLESThe continuing increase in bandwidth demand in access networks has spurred the emergence of several next-gen-eration PON systems,including time-division multiplexing (TDM)-based 10G-PON and 10GE-PON and wavelength0733-8724/$26.00©2010IEEEFig.1.OFDMA PON architecture for delivery of heterogeneous services.division multiplexed (WDM)-PON [9].However,migration to these new technologies also raises several challenges.For example,to protect legacy network investments,there is in-terest in providing next-generation services primarily through TDM-based techniques;yet,TDM-based 10G-PON and 10GE-PON mandate expensive 10Gb/s components,complex scheduling algorithms and framing technology,and are highly sensitive to packet latency [9].Moreover,looking beyond 10Gb/s PON transmission,the practical design and implementa-tionofGb/s burst-mode TDM receivers currently remain a daunting task from both the technical and economic perspec-tives [9].WDM-based approaches also feature a prohibitive cost barrier due to the need to fundamentally alter legacy PON distribution networks,and adopt either colored or wave-length-tunable ONU-side equipment,respectively.Moreover,WDM-PON technology is also unable to dynamically allocate bandwidth withsub-granularity,which significantly reduces flexibility.Likewise,WDM-PON still lacks the flexibility to dynamically allocate the bandwidth among multiple services and raises system cost due to requirements for multiple trans-ceivers.Consequently,a cost-effective,flexible scheme that addresses these challenges is of great interest.We have recently proposed a novel PON architecture by using OFDMA,shown in Fig.1,to transparently support various applications and enable dynamic bandwidth allocation among them [9],[10].The OFDMA-PON approach illustrated in Fig.2is essentially a hybrid technique,which combines OFDM and TDMA,such that the OFDM subcarriers can be dynamically assigned to different services in different time slots,as illustrated in Fig.2.While this approach can increase complexity of uplink multiple access protocols,it also offers very wide bandwidth flexibility.Moreover,as demonstrated in [11]and [12],OFDM-based PON solutions readily lend them-selves to adaptive per-subcarrier modulation and constellation expansion that may be used to cost-effectively upgrade the datarate of existing 1Gb/s networkstoGb/s.As shown in Fig.1,in the proposed OFDMA-PON system architecture,dedicated subchannels,which are composed of one or more OFDM subcarriers,become transparent pipes for delivery of arbitrary analog or digital signals for both circuit-and packet-switched systems.For example,dedicated subcarriers (white and black OFDM subbands in Fig.1)canFig.2.Frequency-and time-domain partitioning of an OFDMA frame.Dif-ferent colors of time/frequency blocks denote resources assigned to different services.Each ONU will select those time/frequency slots that have been pre-assigned to it according to the schedule distributed from the OLT.be reserved as orthogonal,transparent pipes for legacy TDM (T1/E1)services and RF mobile base station signals,respec-tively.For downstream traffic,the OLT can reserve some subcarriers as dedicated,transparent pipes and encapsulate packet-based data into remaining OFDM bands and time slots,according to the specific frequency-and time-domain scheduling results.The OFDM frame and other analog signals are next mixed by an electrical coupler to drive the optical modulator.At the ONU side,each ONU selects its own data or signal from its preassigned subcarrier(s),pipes and time slots,as communicated by the OLT scheduler.To transmit upstream traffic,each ONU maps its data and/or signal to its assigned OFDM subcarrier(s),nulls all remaining subcarriers,and per-forms OFDM modulation to generate a complete frame.With this approach,the OFDMA-PON is both flexible and extensible to any emerging/future applications.While the upstream archi-tecture is also of great interest,in this paper,we will focus on high-speed downstream transmission in OFDMA-PON using our our newly developed technique of polarization multiplexing with direct detection (POLMUX-DD).III.P OLARIZATION M ULTIPLEXING W ITH D IRECT D ETECTION In both coherently and directly detected optical OFDM sys-tems,the optical OFDM signal is generated through subcar-rier multiplexing of a multi-Gigahertz electrical OFDM signal onto an optical carrier.Consequently,since the electrical OFDM signal can only be generated by high-speed DAC,current DACtechnology with maximum sample rates of10Gsample/s at8-bit resolution limits achievable OFDM bandwidth to5GHz.Thus, in order to generate a40-Gb/s OFDM signal in a5GHz band-width,256-QAM modulation would be required,which,cur-rently,cannot be realized at8-bit DAC resolution.A directly detected POLMUX solution,on the other hand,would enable 40Gb/s transmission in a5GHz bandwidth using16QAM, which can be readily achievable with currently available DAC technology.Moreover,further combining POLMUX with DD (POLMUX-DD)to simplify receiver-end hardware would gen-erate a high-speed,cost-and spectrum-efficient solution for fu-ture-proof PON systems.In order to implement POLMUX-DD,a challenge that is not present in coherent-detected POLMUX transmission mustfirst be ly,in coherent systems[5],[17]–[21],the orthogonal polarization components of the LO signal are lo-cally known and can be perfectly separated using a polarization beam splitter(PBS).In this way,after coherent mixing with the incoming optical signal,full postphotodetection separation of the polarization-multiplexed data bands can readily be achieved.Under DD,however,the optical carrier that travels with the optical signal is also used as the LO;consequently, the LO polarization state at the PBS input is no longer known. As a result,the LO polarization components at the PBS output will each contain a mixture of the two original LO polarization states as defined at the transmitter,such that the LO will not be perfectly orthogonal to either of the POLMUX data bands. The subsequent beating of nonorthogonal LO components with the POLMUX signal will cause destructive interference among the POLMUX data bands.At the photodetector output,this interference will translate to partial or complete signal fading. An example of this cross-polarization interference effect is shown in Fig.3(a)(d).In Fig.3(a),a single-sideband(SSB) optical OFDM signal is shown with its optical carrier prior to POLMUX.In Fig.3(b),the optical SSB-POLMUX-OFDM signal shown on the left passes through an arbitrarily oriented PBS,resulting in a mix of input polarization components at each PBS output.Due to DD,the mixed polarization compo-nents combine incoherently,and since polarization information is lost during this process,the interference effect cannot be undone and the signal fading remains.Moreover,in another potential scenario shown in Fig.3(c),the local polarization state of the LO signal might be exclusively matched to one of the PBS branches and cause the complete loss of one of the POLMUX data bands.Most recently,an architecture that exploits self-coherent detection to obviate this problem [Fig.3(d)]was proposed and demonstrated in[25],[26],yet this solution also mandates a coherent receiver architecture that is not cost-feasible for access and metro systems.In the following section,we will introduce our POLMUX-DD archi-tecture that solves the cross-polarization interference problem described here,while maintaining the cost-efficient structure of a traditional DD receiver.IV.P ROPOSED P OLMUX-DD S YSTEM A RCHITECTUREAs noted in Section III,the inability to preserve polariza-tion orthogonality between the LO and OFDM sidebands at the POLMUX receiver causes cross-polarizationbeating Fig.3.(a)SSB optical OFDM signal with optical carrier;(b)SSB-POLMUX-OFDM signal before/after DD;(c)SSB-POLMUX-OFDM signal with sideband fading;(d)Self-coherent reception of a SSB-POLMUX-OFDM signal.and destructive interference in straightforward extensions of the coherent POLMUX approach to DD systems.In the novel POLMUX-DD approach proposed here,however, such nonorthogonal LO/signal beating is sidestepped by exploiting two frequency-orthogonal optical carriers at the POLMUX-OFDM transmitter,one for each POLMUX band. Since frequency orthogonality is preserved during the transmis-sion process,DD can be used to fully recover the transmitted signal in each polarization,without the need to know the local polarization state of the LO.Following such interfer-ence-free photodetection,novel MIMO channel estimation and equalization techniques need to be used to recover the polarization-specific baseband data symbols.(The discussion of the new MIMO algorithms is reserved for Section V.) Fig.4shows the schematic diagram of the proposed MIMO-OFDM-PON featuring POLMUX and DD.At the OLT,a con-tinuous-wave(CW)laser drives an intensity modulator(IM), which is modulated by a clock source with carrier suppression, generating two optical carriers X and Y separated by two times the clock sourcefrequency,.As will be shown in the experi-mental setup of Figs.10and11,for example,whenGHz,the two optical carriers are25GHz apart in the frequency domain.By carefully choosing the wavelength of the CW laser, a50GHz optical interleaver can be used to separate the two op-tical carriers.It is noted that in the frequency domain descrip-tion of Fig.4,the optical carrier denoted by the dashed lines isFig.4.Proposed POLMUX-DD architecture(top)and frequency-domain description of the SSB-POLMUX-OFDM signal generation(bottom).in factfiltered out by the optical50GHz interleaver and is only shown as a reference to explain the frequency domain place-ment of the modulated OFDM signals.Each individual optical carrier next drives a separate IM,modulated by an independent RF OFDM signal,which is generated by upconversion of the baseband OFDM signal via the IQ-mixer.The RF carrier fre-quency of the IQ mixer is chosen to be the same as that of the clock source modulating thefirst IM.Next,the two IM outputs are combined with a polarization beam combiner(PBC)to generate a POLMUX-OFDM signal with dual POLMUX carriers having orthogonal polarizations, as shown in Fig.4(bottom,fourth insert).Finally,the two outer OFDM side bands arefiltered out with a25GHz optical in-terleaver and the SSB-POLMUX-OFDM output signal is sent downstream.The example PON architecture of Fig.4adopts a20km transmission range,with an additional1:32splitter to emulate ONU-s within the20km distance.At the receiver side,the POLMUX-OFDM signal is divided by a PBS,and the two PBS outputs are directly detected by two separate photodiodes.At this stage,the OFDM signals are still RF signals,so following analog-to-digital conversion (ADC),they are downconverted to the baseband by two OFDM receivers,which output frequency-domain data samples that have contributions from both original polarizations.Finally,the MIMO polarization demultiplexing(PolDeMux)receiver re-covers the original data in each polarization via DSP algorithms described next.We also note that since the proposed PolDeMux algorithms are designed for an arbitrary incoming polarization state,variations among ONU-side polarization states will not affect algorithm performance.V.N OVEL C HANNEL E STIMATION A LGORITHM FORP OLMUX-DD S YSTEMSIn POLMUX system with coherent detection,complete po-larization information is preserved during photodetection,such that from the channel estimation and equalization point of view, the problem is entirely analogous to a two-input,two-output MIMO system pioneered and well-documented in wireless liter-ature[27]and subsequently extended to thefiber-optic channel in[5],[21].Moreover,another reason why the22MIMO extension can readily be made for coherently detected optical OFDM is that both polarizations are detected with respect to the same optical carrier.The equalization task thus consists of derotating polarization components based on the preserved po-larization information and with respect to the same optical car-rier reference.In the POLMUX-DD system proposed here,however,polar-ization information is not preserved and two independent op-tical carriers are needed to prevent cross-polarization-induced signal fading at the OFDM demodulator input.From the channel equalization perspective,the need for two frequency-orthog-onal carriers introduces two different optical carrier references. The received POLMUX signal thus experiences two different22MIMO optical channels:one with respect to each indepen-dent optical carrier.Moreover,since the POLMUX-OFDM data bands overlap in the frequency domain(Fig.4),the different22MIMO channels cannot be considered separately in the channel estimation and equalization process but must be treated in a joint fashion as a single44MIMO channel.The channel estimation problem for the proposed POLMUX-DD system thus consists of obtaining coefficients of this44matrix.Since this is a situation not previously encountered in the context of CO OFDM,new training signal patterns,channel estimation algo-rithms,and PolDeMux approaches are needed.Before introducing the new training sequences used for channel estimation,wefirst set forth the channel model and notation used throughout this section in Fig.5.As shown by Fig.5,due to polarization rotation,signal components on each of the two input polarization states,Pol-X and Pol-Y,may migrate to one of the output polarization states,Pol-X′and Pol-Y′.The notation XY’,for example,denotes component migration from input polarization Pol-X to output polarization Pol-Y′.Moreover,in Fig.5,coefficientsand are used to denote the polarization rotation of the OFDM data band and optical carrier signals,respectively.Thus,denotesFig.5.Channel model for POLMUX-OFDM transmission with two fre-quency-orthogonal opticalcarriers.Fig. 6.Detailed frequency domain description of SSB-POLMUX-OFDM signal.the channel coefficient experienced by the OFDM data band component that migrates from Pol-X to Pol-Y ′,whilerefers to the coefficients decided by the portion of the optical carrier launched from Pol-X that ends up in Pol-Y ′.We note that frequency-flat fading is assumed over the range of interest,which is valid for PON bandwidths and transmission distances of interest [23],[24].A detailed frequency domain description of the optical SSB-POLMUX-OFDM signal and the associated notation used in channel estimation and equalization tasks are shown in Fig.6.(We note that a qualitative description of Fig.6is alsogiven in the bottom rightmost insert of Fig.4.)In Fig.6,and denote frequency-orthogonal optical carriers launched in Pol-X and Pol-Y ,respectively,is the source clock frequency(Fig.4),anddenotes the frequency-domain separation between the optical carriers and the innermost edge of thePOLMUX-OFDM bands.Thenotationdenotes the com-plex baseband OFDM symbol modulated in Pol-X onto the thOFDMsubcarrier;carries an analogous meaning,where is the fast Fourier transform (FFT)size.In a similarmanner,and ,respectively,denote the complex OFDM symbols on the thandth subcarrier in Pol-Y.The novel training pattern,shown in Figs.7and 8,was com-posed of two different training sets:A and B.Training set A,shown in Fig.7,consists ofsubsetsand during which known symbols are transmitted on OFDM subcarriers in the fre-quencyrangein Pol-X and Pol-Y ,respectively,where therangeis defined with respect to the polarization-par-allel optical carrier.The trainingsubsetsand were trans-mitted sequentially in time,and their relative frequency-domain placement is also shown in Fig.6.During training set A,all OFDM subcarriers outside of the frequency range showninFig.7.Training set A:in Pol-X (left)and in Pol-Y (right).Fig.7were nulled.In Fig.7,for example,transmittedsymbolsand belong in theappropriate range in Pol-X and Pol-Y ,respectively.Symbolsand ,de-noted by dashed rectangles in Fig.7,are outside ofthefrequency range with respect to the carrier in their launched po-larizations and are thus set to zero.However,due to polariza-tion rotation of the optical signal,components of the transmittedsymbolsand will appear in these dashed locations,ac-cording to the channel model of Fig.5,and will thus need to be accounted for as part of channel estimation.Fig.8illustrates training set B,composed ofsubsetsand ,and formed by transmitting training symbols on OFDMfrequencieswhereas referred to the optical carrier in Pol-X and Pol-Y ,respectively.All remaining OFDMsubcarriers are nulled in training set B,andsubsetsand are transmitted sequentially in time.The frequency-domainplacementofand is also illustrated in Fig.6.Again,due to polarization rotation governed by the channel model ofFig.5,components of the transmittedsymbolsand will appear on zeroedsymbolsand ,re-spectively,as denoted by the dashed lines in Fig.8.The com-plete training signal for the proposed POLMUX-DD architec-ture consisted of at least one pair of training sets A and B trans-mitted sequentially in time;equivalently,the complete trainingsignal consisted of the timesequence:.Additional details about the insertion of the training sequence into the data stream are also given in the top right inserts of Figs.10and 11,for the 40Gb/s and 108Gb/s experiments.At the receiver end,symbol measurements were made in each of the output polarizations Pol-X ′and Pol-Y ′.We denote themeasured symbols on Pol-X ′byand ,corre-sponding to data measured on the thandth OFDM subcarriers.The corresponding notation for measured symbolson Pol-Y ′isand .Gathering the data provided by training sets A and B and the received symbol measurements,we may form the44channel estimation matrixas(1)Fig.8.Training set B:in Pol-X(left)and in Pol-Y(right).The PolDeMux matrix used in the MIMO-OFDM DSP re-ceiver(Fig.4)to undo polarization rotation and recover base-band data on each OFDM subcarrier may then be readily ob-tainedas(2)To illustrate the practical functionality of the new channelestimation technique,an example is shown in Fig.9(a)and(b),based on the experimental parameters for the108Gb/sPOLMUX-OFDMA-PON system.In Fig.9(a),the opticalspectrum of the108Gb/s SSB-POLMUX-OFDM signal isshown to illustrate that,in this case,for OFDM subcarrierslabeled1–4in each polarization Pol-X and Pol-Y in Fig.9(a),which are not frequency overlapped with data in the orthogonalpolarization,traditional MIMO PolDeMux algorithms basedon a22channel matrix can be used.The reason for this isthat subcarriers1–4in Pol-X are frequency-domain-orthog-onal to their counterparts in Pol-Y and vice versa.However,for OFDM subcarriers5–8in Fig.9(a),which are subject tocross-polarization overlap,the novel training estimation algo-rithm proposed earlier must be used.The need for the novelchannel estimation approach is further highlighted in Fig.9(b),which shows the electrical signal following DD of the opticalspectrum in Fig.9(a).We also note that the approach taken toachieve40Gb/s MIMO-OFDM-PON transmission is directlyanalogous to the example provided here,with the exceptionthat only subcarriers5–8were used in each polarization.VI.E XPERIMENTAL S ETUP AND R ESULTSFigs.10and11depict the two respective experimental setupsused to achieve40Gb/s and108Gb/s MIMO-OFDM-PONdownstream transmission over20km SSMF and an additional15dB attenuation.The additional attenuation was inserted toemulate a1:32optical split that is part of the class opticaldistributionnetwork.Fig.9.(a)Optical spectrum of the108Gb/s SSB-POLMUX-OFDM signal;(b)Received electrical signal after DD of spectrum in Fig.9(a).A.40Gb/s MIMO-OFDM-PON TransmissionFig.10depicts the experimental setup for40Gb/s POLMUX-OFDMA-PON downstream transmission with DD[23].At theOLT transmitter,an OFDM baseband signal was generated off-line,with16QAM used to map bit stream data onto each OFDMsubcarrier.The FFTsize and a1/32cyclic prefix(CP)were applied.A training sequence was added every128OFDMdata frames.Thefirst25and last24OFDM subcarriers wereset to zero and the signal was upsampled by a factor of1.39.The baseband OFDM signal was uploaded into a5GHz Tek-tronix AWG7102arbitrary waveform generator(AWG)oper-ating at10Gsample/s and8-bits DAC resolution,producing a2.8GHz I/Q output.Next,an analog IQ-mixer was used to up-convert the baseband OFDM signal to a12.5GHz RF.An ex-ternal cavity laser(ECL)with wavelength of1549.844nm and100kHz linewidth was employed as the CW optical source,andwas modulated with the same12.5GHz clock signal used in theIQ-mixer.Subcarrier suppression was exploited to generate twooptical carriers with25GHz separation[Fig.10(a)].A50GHzoptical interleaver was employed to separate the two optical car-riers,with each optical carrier used to drive an IM.Each IM wasmodulated by the RF OFDM signal with a bandwidth of5.6GHz centered at12.5GHz.The optical spectrum after the mod-ulator is shown in Fig.10(b)and(c).The two resulting opticalOFDM signals were combined by a PBC,placing them on twoorthogonal polarizations and generating the optical spectrum ofFig.10(d).A25GHz optical interleaver with35dB channelFig.10.Experimental setup and representative spectra of 40Gb/s MIMO-OFDMA-PON transmission using POLMUX-DD.isolation was used to generate the final SSB-POLMUX-OFDM signal shown in Fig.10(e).The SSB-POLMUX-OFDM signal was next amplified and transmitted through 20km fiber and one 15dB attenuator (equal to a 1:32splitter)to the ONU.The fiber used in the experiment was standard SMF-28fiber with 17ps/nm/km dispersion and an insertion loss of 0.2dB/km at 1550nm.The total downstream transmitted power was 8dBm.At the ONU,the received power variedbetweendBmand dBm,accounting for a 4–5dB attenuation from 20km fiber and the 15dB attenuator loss.In order to satisfy oper-ational requirements of the high-speed (20GHz)photodiodes,an erbium-doped fiber amplifier (EDFA)was placed before the PBS to adjust the optical power.The SSB-POLMUX-OFDM signal was next separated by the PBS and directly photode-tected by two 20GHz linear photodiodes.The received RF OFDM signals were sampled by a Tektronix real-time oscil-loscope (DPO72004)at 50Gsample/s,with all subsequent DSP done off-line.The OFDM receiver consisted of a digital IQ-demux,followed by an FFT.Both OFDM receiver outputs were fed to a MIMO PolDeMux receiver,which performed both channel estimation (enabled by training signals)as well as PolDeMux (using the channel estimation results),as described in Section IV.The total overhead in the experiment was divided as follows:7%was used for forward error correction (FEC)coding,3.125%for CP insertion,and 0.78%for preambles.It is noted that,while the total transmission rate before coding was 44.8Gb/s,the post-coding data rate is 40Gb/s.B.108Gb/s MIMO-OFDM-PON TransmissionIn Fig.11,the experimental setup for 108Gb/s directly detected POLMUX-OFDMA-PON downstream transmission is illustrated [24].At the OLT transmitter,two independent 14.4Gb/s OFDM baseband signals and two independent 40Gb/s OFDM baseband signals were generated off-line and output continuously by two Tektronix AWGs,AWG7102(AWG1)and AWG7122B (AWG2)with sampling rates of 10Gsymbols/s and 12Gsymbols/s,respectively.For the 14.4Gb/s OFDM baseband signals,the FFT sizeis,with 252data-bearing subcarriers,while for the 40-Gb/s OFDMbasebandsignals,,with 200data-bearing subcarriers.In both cases,16QAM was used for symbol mapping.The 14.4Gb/s signals were digitally upconverted to a 1.85GHz intermediate frequency (IF),upsampled to 10Gsample/s,and output by AWG1directly.The 40Gb/s OFDM signals were upconverted to 10GHz IF in an analog fashion,with an elec-trical coupler used to combine the two IF bands and generate the electrical spectrum shown in Fig.11(a).After the digital upconversion,the IF OFDM signal frame length was doubled,with a corresponding 1/32CP per OFDM frame.Moreover,an extra 0.8Gb/s was reserved to avoid data transport on OFDM subcarriers whose electrical SNR was degraded by the presence of the IF carrier signals.It is also noted that precise synchronization was maintained between the trans-mitter-end AWGs and synthesizers.Additional details about OFDM signal generation and IQ-mixing can be found in [4],[7].To generate the optical signal,an ECL with wavelength。

相关文档
最新文档