9.3一元一次不等式组同步练习2
【七年级】人教版七年级数学下9.2一元一次不等式同步练习题(带答案)
【七年级】人教版七年级数学下9.2一元一次不等式同步练习题(带答案)《9.2一元一次不等式》同步练习题一、选择题(每小题只有一个正确答案)1.在一次“数学与生活”科学知识竞赛中,竞赛题共26道,每道题都得出4个答案,其中只有一个答案恰当,里韦县得4分后,说实话或看错甩2分后,罚球不高于70分后获奖,那么获奖至少高文瑞对()道题.a.22b.21c.20d.192.小明拎40元钱出售雪糕和矿泉水,未知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x两支雪糕,则所列关于x的不等式恰当的就是()a.b.c.d.3.不等式?x+2≥0的解集在数轴上表示正确的是()a.b.c.d.4.下列各式中,是一元一次不等式的是()a.5+4>8b.4x≤5c.2x-1d.x^2-3x≥05.若关于x的不等式mx-n>0的解集是x<,则关于x的不等式(m+n)x>n-m的解集是()a.x<-b.x>-c.x<d.x>6.已知关于不等式的解集为,则a的取值范围是()a.b.c.d.7.一共有()个整数x适合不等式|x?2000|+|x|≤9999.a.10000b.20000c.9999d.80000二、填空题8.不等式x?2≤3(x+1)的边值问题为_____.9.若是关于x的一元一次不等式,则m=________.10.当的值不大于的值时,m的值域范围就是_______________.11.不等式3x?2≤5x+6的所有负整数解的和为________12.例如图,数轴上则表示的不等式的求解________.三、解答题13.求解不等式2x-1≤4x+5,并把边值问题在数轴上则表示出.14.若代数式的值不大于代数式5k+1的值,求k的取值范围.15.某公司为了不断扩大经营,同意供货6台机器用作生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表中右图,经过财政预算,本次出售机器所耗资金无法少于34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司建议可以存有几种出售方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?参考答案1.b【解析】设要获奖至少aes对道题,根据题意得:,Champsaur:,∵只能取整数,∴最轻挑21,即为至少必须搞对21道题,就可以得奖.故选b.2.d【解析】解:根据题意得:2×5+1.5x≤40.故选d.3.b【解析】移项得,?x≥?2,不等式两边都乘?1,改变不等号的方向得,x≤2;在数轴上表示应包括2和它左边的部分;故本题挑选b.4.b【解析】试题解析:a.不所含未知数,错误;b.符合一元一次不等式的定义,正确;c.不是不等式,错误;d.未知数的最高次数是2,错误.故挑选b.5.a【解析】∵关于x的不等式的边值问题为,∴,且,∴,∴关于x的不等式:可化为:,∵,∴.故挑选a.6.a【解析】由题意只须1a<0,移项得a<1,化系数为1得a>1.故选:a.7.c【解析】分析:先去绝对值,分别求出x的取值范围,再计算其整数解.揭秘:(1)当x=2000时,原式可以化成2000≤9999,故x=2000;其整数解有1个;(2)当x>2000时,原式可以化成x-2000+x≤9999,解得2000<x≤5999.5,其整数解有3999个;(3)当0≤x<2000时,原式可以化成2000-x+x≤9999,即2000≤9999;其整数解有2000个;(4)当x<0时,原式可以化成2000-x-x≤9999,解得-3999.5≤x<0;其整数解有3999个;由上只须其整数第七品9999个.故选c.8.x≥?5/2【解析】【分析】按去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【揭秘】x?2≤3(x+1),去括号得,x-2≤3x+3,移项得,x-3x≤3+2,合并同类项得,-2x≤5,系数化成1得,x≥?5/2.9.-2【解析】∵就是关于x的一元一次不等式,∴m23=1,且m2≠0.Champsaurm=2.故答案为:m=2.10.【解析】分析:根据题意列不等式,解不等式.,解得m.11.-10【解析】解不等式得:,∴原不等式的负整数第七品:-4,-3,-2,-1.∵-4+(-3)+(-2)+(-1)=-10,∴原不等式的所有正数整数解的和为-10.故答案为:-10.12.x>1【解析】解:根据数轴可得:x>1.故答案为:x>1.13.x≥-3,它在数轴上则表示见到解析【解析】分析:移项,合并同类项后,系数化为1,两边同时除以同一个负数时,不等号要改变方向.揭秘:2x-4x≤5+1-2x≤6x≥-3它在数轴上表示如下:14.k≥.【解析】试题分析:根据题意可得有关k的不等式,解不等式即可得.试题解析:∵代数式的值不大于代数式5k+1的值,∴≤5k+1,Champsaur:k≥.15.(1)见解析;(2)应选择方案一【解析】分析:(1)设立出售甲种机器x台(x≥0),则出售乙种机器(6-x)台,根据卖机器所耗资金无法少于34万元,即为出售甲种机器的钱数+出售乙种机器的钱数≤34万元.就可以获得关于x的不等式,就可以算出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.揭秘:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台依题意,得7x+5×(6-x)≤34解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按建议可以存有以下三种出售方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:出售甲种机器l1台,出售乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)≥380解之得x>1/2由(1)得x≤2,即1/2≤x≤2.∴x可取1,2俩值.即为存有以下两种出售方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应当挑选方案一.故应选择方案一。
人教版七年级数学下册9.3一元一次不等式组同步练习(解析版)
9.3一元一次不等式组同步练习参考答案与试题解析一.选择题(共10小题)1.下列选项中是一元一次不等式组的是()A.B.C.D.选D2.下列说法正确的是()A.不等式组的解集是5<x<3B.的解集是﹣3<x<﹣2C.的解集是x=2D.的解集是x≠﹣3解:A、不等式组的解集是x>5;B、的解集是无解;C、的解集是x=2;D、的解集是无解.故选C3.不等式组的解集在数轴上表示为()A.B.C.D.解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.4.不等式组的所有整数解是()A.﹣1、0 B.﹣2、﹣1 C.0、1 D.﹣2、﹣1、0解:,由①得:x>﹣2,由②得:x≤,则不等式组的解集是﹣2<x≤,不等式组的所有整数解是﹣1,0;故选A.5.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.解:根据题意,得.故选A.6.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,在共有学生人数为()A.6人B.5人C.6人或5人D.4人解:设共有学生x人,0≤(3x+8)﹣5(x﹣1)<3,解得,5<x<6.5,故共有学生6人,故选A.7.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.故选B.8.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解解:,解①得:x<4,解②得:x≥3,则不等式的解集是:3≤x<4.故选:C.9.不等式组的整数解有三个,则a的取值范围是()A.﹣1≤a<0 B.﹣1<a≤0 C.﹣1≤a≤0 D.﹣1<a<0解:不等式组的解集为a<x<3,由不等式组的整数解有三个,即x=0,1,2,得到﹣1≤a<0,故选A10.八年级某班级部分同学去植树,若每人平均植树7课,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确地求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列方程组为:,故选C.二.填空题(共6小题)11.写出一个无解的一元一次不等式组为等.解:当解集为无解时,构造的不等式组为.答案不唯一.12.若点P(a,4﹣a)是第一象限的点,则a的取值范围是0<a<4.解:∵点P(a,4﹣a)是第一象限的点,∴,解得0<a<4.故答案为:0<a<4.13.已知关于x的不等式组只有四个整数解,则实数a的取值范是﹣3<a≤﹣2.解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:﹣2,﹣1,0,1.则实数a的取值范围是:﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.14.一个等腰三角形的底边长为7cm,周长小于20cm,若它的腰长为x cm,则x必须满足的不等式组为.解:由题意得,.故答案为:.15.若我们规定[x)表示大于x的最小整数,例如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.其中正确的是④.(填写所有正确结论的序号)解:∵[x)表示大于x的最小整数,∴①[0)=1,故①错误;②若x为整数,则[x)﹣x=1,若x不是整数,则[x)﹣x≠0,故[x)﹣x的最小值是0错误,故②错误;③若x=1,则[x)﹣x=2﹣1=1,故③错误;④当x=0.5时,[x)﹣x=1﹣0.5=0.5成立.故④正确,故正确的个数为1,故答案为:④.16.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品50件.已知生产一件A种产品需要甲种原料9千克,乙种原料3千克;生产一件B种产品需要甲种原料4千克,乙种原料10千克.则安排A、B两种产品的生产件数有3种方案.解:(1)设生产x件A种产品,则生产B产品(50﹣x)件,由题意得:,解得:30≤x≤32,∵x为整数,∴x=30,31,32,∴有3种生产方案:方案1,A产品30件,B产品20件;方案2,A产品31件,B产品19件;方案3,A产品32件,B产品18件.故答案为:3.三.解答题(共4小题)17.解不等式组:.解:.由①得x≤1;由②得x<4;所以原不等式组的解集为:x≤1.18.某文具批发商有水彩笔144支,油画棒102支,计划将其装成甲,乙两种套装小礼盒,甲种每盒装有水彩笔10支,油画棒6支,乙种装有水彩笔8支,油画棒8支,两种套装礼盒共装15盒.设装x盒甲种礼盒,写出x应满足的不等式组.解:依题意得:.19.当k为何整数时,方程组的解是非负数?解:解方程组得:,∵方程组的解是非负数∴,解之得2≤k≤12.∵k是整数,∴k=2、3、4、5、6、7、8、9、10、11、12.20.某校九年级举行数学竞赛,学校准备购买甲、乙、丙三种笔记本奖励给获奖学生,已知甲种笔记本单价比乙种笔记本单价高10元,丙种笔记本单价是甲种笔记本单价的一半,单价和为80元.(1)甲、乙、丙三种笔记本的单价分别是多少元?(2)学校计划拿出不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本,有哪几种购买方案?解:(1)设甲种笔记本的单价为x元,乙种为(x﹣10)元,丙种为元,根据题意得x+(x﹣10)+=80,解得x=36,乙种单价为x﹣10=36﹣10=26元,丙种为==18元.答:甲种笔记本的单价为36元,乙种为26元,丙种为18元.。
9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1
2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1
2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①
一元一次不等式组(2)全面版
务;如果每个小组每天比原先多生产1件产品,就能
提前完成任务.每个小组原先每天生产多少件产品?
解:设每个小组原先每天生产x件产品,
根据题意,得 310x500 ①
310(x1)500 ②
由不等式①得 x 16 2
3
由不等式②得 x 15 2
3
因此,不等式组的解集为
152 x162
归 纳:课本140页
(1)对于具有多种不等关系的问题,可 通过不等式组解决。 (2)解一元一次不等式组时,一般先求 出其中各个不等式的解集,再求出这些 解集的公共部分。 (3)利用数轴可以直观地表示不等式组 的解集,再结合实际问题求出符合实际 问题的解。
三、巩固训练,熟练技能
1、在方程组2xxyym6中, 已知x 0, y 0,求m的取值范.围
– 解不等式3≤2x-1≤5,你觉得该
怎样思考这个问题,你有解决的
办法吗?
• •
求出不等式组 3x 7 2 的解集中的正整数3x。 7 8
课本140页练习1
2、某工厂工人经过第一次改进工作
方法,每人每天平均加工的零件比原来多 10个,因而,每人在8天内加工的零件超 过200个,第二次又改进工作方法,每人 每天平均又比第一次改进方法后多做27个 零件,这样只做了4天,所做的件数就超 过前8天所做的数量。试问每个工人原来 每人平均做几个零件?
思考: 你觉得列一元一次不等式组解
应用题与列二元一次方程组解应用 题的步骤一样吗?
设
列 解(结果) 答
一元一次 不等式组
二元一次 方程组
一个未知 数
两个未知 数
找 一个范围 不等关系
找
一组数
等量关系
根据题意 写出答案
数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题
9.3.2一元一次不等式组的运用同步测试题一、选择题1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69. 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A. 3×4+2x<4 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥2410. 小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买几支笔()A.1 B.2 C.3 D.411. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折12 现用甲、乙两种运输车将46吨抗震物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆二、填空题13、如果不等式组的解集是,那么的值为.14、若不等式组无解.则m的取值范围是______.15、已知关于x的不等式3x-a>x+1的解集如图所示,则 a的值为_________.16、某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对___12___道题,成绩才能在60分以上.17、若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有间。
人教版七年级下册数学同步练习9.1----9.3基础检测题有答案)
9.1《不等式》一、选择题(每道题目只有一个正确选项,请把正确答案填到括号内)1. 当x=3时,下列不等式成立的是()A.x+3>5B.x+3>6C.x+3>7D.x+3>82. 在数学表达式:−3<03x+5>0x2−6x=−2y≠0x≥50中,不等式的个数是()A.2个B.3个C.4个D.5个3. 下列不等式一定成立的是()A.2x<6B.−x<OC.x2+1<OD.x2+1>04. 下列不等式中,变形不正确的是()A.若a>b,则b<aB.若a>b,则a+c>b+cC.若ac2>bc2,则a>bD.若−x>a,则x>−a5. 下列不等关系一定正确的是()A.|a|>0B.−x2<0C.(x+1)2≥0D.a2>06. 已知1张桌子配4把椅子,1立方米木料可做5把椅子或1张桌子,现用90立方米木料制作桌子和椅子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x二、填空题7. 用“<”或“>”填空:当a>0,b________0时,ab>0;当a>0,b________0时,ab<0;当a<0,b________0时,ab>0;当a<0,b________0时,ab<0.8. y与x的3倍的和是非负数,用不等式表示为________.9. 用不等式表示“a的2倍与3的差是非负数”________.10. 一瓶饮料净重340g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x________g.三、解答题11. 将下列不等式的解集分别表示在数轴上:x≤0;x>−2.5;x<2;3x≥4.12. 在数轴上表示出下列不等式的解集;x<3;x≥−1;−2<x≤3.归纳总结:(1)用数轴表示不等式的解集通常分成三步进行,即“画数轴、定界点、走方向”;(2)数轴上的实心点与空心点的区别在于:________;(3)走方向的原则:“大于向________走,小于向________走”.13. 某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?14. 用适当的符号表示下列关系:与x的2倍的和是非正数;(1)x的13__________________________________________________(2)一枚炮弹的杀伤半径不小于300米;__________________________________________________(3)三件上衣与四条长裤的总价钱不高于268元;__________________________________________________(4)明天下雨的可能性不小于70%;__________________________________________________(5)小明的身体不比小刚轻.__________________________________________________15. 用不等式表示下列数量之间的不等关系:(1)去年某农场某种粮食亩产量是480kg,今年该粮食作物亩产量为xkg,较去年有所增加;(2)如图,天平左盘放有三个乒乓球,右盘放有5g砝码,天平倾斜,设每个乒乓球的质量为x(g).参考答案1.A2.C3.D4.D5.C6.A7.><<>8.y+3x≥09.2a−3≥010.x≥1.711.解:如图所示:如图所示:如图所示:如图所示:12.实心含等,空心不含等右,左13.解:∵ 某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∵ 蛋白质含量的最小值=300×0.5%=1.5克,∵ 蛋白质的含量不少于1.5克.x+2x≤0;14.解:(1)13(2)设炮弹的杀伤半径为r,则应有r≥300;(3)设每件上衣为a元,每条长裤是b元,应有3a+4b≤268;(4)用P表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a千克,小刚的体重为b千克,则应有a≥b.15.(1)根据题意可知,今年该粮食作物亩产量为xkg,较去年有所增加,则x>480(2)观察图可知,三个乒乓球的质量大于5克的砝码,则3x>59.2一元一次不等式一.选择题1.某闹市区新建一个小吃城,设计一个进口和一个出口,内设n个摊位,预估进口和出口的客流量都是每分钟10人,每人消费25元,摊位的毛利润为40%,若平均每个摊位一天(按10个小时计)的毛利润不低于1000元,则n的最大值为()A.30B.40C.50D.602.不等式3x+2≥5的解集是()A.x≥1B.C.x≤1D.x≥﹣1 3.如果关于x的不等式3x﹣a≤﹣1的解集如图所示,则a的值是()A.a≤﹣1B.a≤﹣2C.a=﹣1D.a=﹣2 4.某商店为了促销一种定价为5元的商品,采取下列方式优惠销售:若一次性购买不超过4件,则按原价付款;若一次性购买4件以上,则超过部分按原价的八折付款.如果小莹有42元钱,那么她最多可以购买该商品()A.9件B.11件C.10件D.12件5.某电子商城销售一批电视,第一个月以5500元/台的价格售出60台,第二个月以5000元/台的价格将剩下的全部售出,销售金额超过55万元,这批电视至少()台A.103B.104C.105D.1066.不等式2x﹣1≤3的解集在数轴上表示正确的是()A.B.C.D.7.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x元,并列出关系式为0.7(2x﹣100)<1500,则下列哪一项可能是妈妈告诉爸爸的内容()A.买两件等值的商品可减100元,再打3折,最后不到1500元B.买两件等值的商品可减100元,再打7折,最后不到1500元C.买两件等值的商品可打3折,再减100元,最后不到1500元D.买两件等值的商品可打7折,再减100元,最后不到1500元8.不等式x﹣1<0的解集在数轴上表示正确的是()A.B.C.D.9.为了治理环境,九年级部分同学去植树,若每人平均植树7棵,还剩9棵;若每人平均植树9棵.则有1名同学植树的棵树小于8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.10.不等式6x+1≤2x﹣3的解集在数轴上表示正确的是()A.B.C.D.二.填空题11.用不等式表示“x与5的差不大于1”:.12.如果不等式(2a﹣1)x>1的解集是x<,那么a的取值范围是.13.已知关于x,y的二元一次方程组的解满足x+y>1,则满足条件的k 的最小整数是.14.苹果的进价是19元/千克,销售中估计有5%的苹果正常损耗,为了避免亏本,售价至少应定为元/千克.15.已知关于x,y的二元一次方程组的解满足x+y<3,则m的取值范围为.三.解答题16.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设顾客累计购物x元(x>100),请根据x的值,确定顾客到哪家商场购物花费少?17.解不等式6x+1≥2(x+1)+7,并把它的解集在数轴上表示出来.18.某商品进价是6000元,标价是9000元,需按标价打折出售,商店要求利润率不低于20%,至多可以打多少折?19.某药店销售每只进价分别为1.2元、1.7元的A、B两种型号的口罩,下表是近两天的销售情况:销售时段销售数量销售额A种型号B种型号第一天300只500只2100元第二天400只1000只3800元(1)求A、B两种型号口罩的销售单价;(2)该药店准备再次采购这两种型号的口罩共15000只.如果全部售出后的利润不少于16000元,那么最多采购A种型号的口罩多少只?(进价、售价均保持不变,利润=销售总额﹣进货成本)参考答案与试题解析一.选择题1.【解答】解:依题意,得:n≤10×60×10×25,解得:n≤60.故选:D.2.【解答】解:∵3x+2≥5,∴3x≥3,则x≥1,故选:A.3.【解答】解:∵3x﹣a≤﹣1,∴3x≤a﹣1,则x≤,由数轴知x≤﹣1,则=﹣1,解得a=﹣2,故选:D.4.【解答】解:设小莹可以购买x件,依题意,得:5×4+5×0.8(x﹣4)≤42,解得:x≤9.又∵x为整数,∴x的最大值为9.故选:A.5.【解答】解:设这批电视共x台,则第二个月售出(x﹣60)台,依题意,得:5500×60+5000(x﹣60)>550000,解得:x>104.∵x为整数,∴x的最小值为105.故选:C.6.【解答】解:∵2x﹣1≤3,∴2x≤3+1,2x≤4,x≤2,故选:B.7.【解答】解:由题意可得,0.7(2x﹣100)<1500表示买两件等值的商品可减100元,再打7折,最后不到1500元,故选:B.8.【解答】解:x﹣1<0,x<1,故选:D.9.【解答】解:设同学人数为x人,则种植的树木的数量为(7x+9)棵,由题意得:,故选:C.10.【解答】解:6x+1≤2x﹣3,6x﹣2x≤﹣3﹣1,4x≤﹣4,x≤﹣1,故选:D.二.填空题(共5小题)11.【解答】解:用不等式表示“x与5的差不大于1”为x﹣5≤1,故答案为:x﹣5≤1.12.【解答】解:∵(2a﹣1)x>1的解集为x<,∴2a﹣1<0,解得:a<,故答案为:a<.13.【解答】解:,①+②,得:3x+3y=3k﹣3,则x+y=k﹣1,∵x+y>1,∴k﹣1>1,解得:k>2,则满足条件的k的最小整数为3,故答案为:3.14.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥19,解得:x≥20,故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.15.【解答】解:,①+②,得:3x+3y=12m﹣3,∴x+y=4m﹣1,∵x+y<3,∴4m﹣1<3,解得m<1,故答案为:m<1.三.解答题(共4小题)16.【解答】解:甲商场购物花费为[100+0.9(x﹣100)]元,乙商场购物花费为[50+0.95(x﹣50)]元①若到甲商场购物花费少,则100+0.9(x﹣100)<50+0.95(x﹣50),解得:x>150,②若到乙商场购物花费少,则100+0.9(x﹣100)>50+0.95(x﹣50),解得:x<150,③若到甲,乙商场购物花费一样多,则100+0.9(x﹣100)=50+0.95(x﹣50),解得:x=150,答:当100<x<150时,到乙商场购物花费少,当x=150时,到甲,乙商场购物花费一样多,当x>150时,到甲商场购物花费少.17.【解答】解:去括号得,6x+1≥2x+2+7移项得,6x﹣2x≥2+7﹣1,合并同类项得,4x≥8系数化为1,得x≥2,把解集表示在数轴上为:.18.【解答】解:设打x折销售,依题意,得:9000×﹣6000≥6000×20%,解得:x≥8.答:至多可以打8折.19.【解答】解:(1)设A型号口罩的销售单价为x元/只,B型号口罩的销售单价为y 元/只,根据题意,得.解得.答:A型号口罩的销售单价为2元/只,B型号口罩的销售单价为3元/只;(2)设采购A种型号的口罩m只,则采购B种型号的口罩(15000﹣m)只,依题意得:(2﹣1.2)m+(3﹣1.7)(15000﹣m)≥16000.解得m≤7000.所以m最大值是7000.答:最多采购A种型号的口罩7000只.9.3一元一次不等式组一.选择题1.不等式组的最小整数解为()A.﹣1B.0C.1D.22.不等式组的所有整数解的和为()A.1B.0C.﹣2D.﹣33.不等式组恒有解,下列a满足条件的是()A.﹣4≤a≤﹣2B.﹣3≤a≤﹣1C.﹣2≤a≤0D.﹣1≤a≤1 4.不等式组的解集为()A.6≤x<8B.6<x≤8C.2≤x<4D.2<x≤8 5.已知关于x的方程的解不大于1,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数m的和为()A.2B.3C.5D.66.如果关于x的不等式组只有3个整数解,那么a的取值范围是()A.3≤a<4B.3<a≤4C.2≤a<3D.2<a≤37.如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤78.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.已知关于x的不等式组的整数解只有三个,则a的取值范围是()A.a>3或a<2B.2<a<C.3<a≤D.3≤a<10.使得关于x的不等式组至少有3个整数解,且关于y的方程2﹣(a+y)=2(y﹣3)有非负整数解的所有的整数a的个数是()A.0个B.1个C.2个D.3个二.填空题11.不等式组的解集为.12.已知不等式组,x是非负整数,则x的值为.13.不等式组的解集为.14.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是.15.新定义:对非负数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(﹣1)=4,则x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);其中正确的结论有(填写所有正确的序号).三.解答题16.解不等式(组):(1);(2).17.解下列不等式(或不等式组),并把解集表示在数轴上:(1)﹣≤1;(2).18.(1)解方程组:;(2)解不等式组,并把解集表示在数轴上.19.为应对新冠肺炎疫情,某服装厂决定转型生产口罩,根据现有厂房大小决定购买10条口罩生产线,现有甲、乙两种型号的口罩生产线可供选择.经调查:购买3台甲型口罩生产线比购买2台乙型口罩生产线多花14万元,购买4条甲型口罩生产线与购买5条乙型口罩生产线所需款数相同.(1)求甲、乙两种型号口罩生产线的单价;(2)已知甲型口罩生产线每天可生产口罩9万只,乙型口罩生产线每天可生产口罩7万只,若每天要求产量不低于75万只,预算购买口罩生产线的资金不超过90万元,该厂有哪几种购买方案?哪种方案最省钱?最少费用是多少?参考答案与试题解析一.选择题1.【解答】解:,由不等式①,得x≤2,由不等式②,得x>﹣1,故原不等式组的解集是﹣1<x≤2,故不等式组的最小整数解为0,故选:B.2.【解答】解:,由不等式①,得x>﹣3,由不等式②,得x≤2,故原不等式组的解集是﹣3<x≤2,故不等式组的所有整数解的和为:(﹣2)+(﹣1)+0+1+2=0,故选:B.3.【解答】解:,由①得,x>﹣a2﹣a﹣6,由②得,x<3a﹣2,∵不等式组恒有解,∴﹣a2﹣a﹣6<3a﹣2,∴(a+2)2>0,∴a≠﹣2.即a≠﹣2的所有实数满足条件.∵A,B,C选项中均有a=﹣2,∴﹣1≤a≤1满足题意.故选:D.4.【解答】解:,由①得:x>6,由②得:x≤8,不等式组的解集为:6<x≤8,故选:B.5.【解答】解:解方程得x=6﹣5m,∵方程的解不大于1,∴6﹣5m≤1,解得m≥1;解不等式3x﹣6≤0,得:x≤2,解不等式﹣m+4x>﹣3,得:x>,则不等式组的解集为<x≤2,∵不等式组只有3个整数解,∴其整数解为2、1、0,∴﹣1≤<0,解得﹣1≤m<3,综上,1≤m<3,所以符合条件的所有整数m的和为1+2=3,故选:B.6.【解答】解:∵关于x的不等式组只有3个整数解,∴3个整数解是0,1,2,∴2≤a<3,故选:C.7.【解答】解:依题意,得,解得:4≤x<7.故选:B.8.【解答】解:,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.9.【解答】解:解不等式3x+5a>4(x+1)+3a,得:x<2a﹣4,解不等式>﹣,得:x>﹣,∵不等式组的整数解只有三个,∴这三个整数解为0、1、2,∴2<2a﹣4≤3,解得3<a≤,故选:C.10.【解答】解:解不等式(2x+5)>x+1,得:x<2,解不等式(x+3)≤x+a,得:x≥3﹣2a,∵不等式组至少有3个整数解,∴3﹣2a≤﹣1,解得a≥2,解关于y的方程2﹣(a+y)=2(y﹣3)得y=,∵方程有非负整数解,∴≥0,则a≤8,所以2≤a≤8,其中能使为非负整数的有2,5、8,这3个,故选:D.二.填空题(共5小题)11.【解答】解:,解①可得:x>2,解②可得:x<3,所以不等式组的解集为:2<x<3,故答案为:2<x<3.12.【解答】解:不等式组整理得:,解得:1<x<,由x为非负整数,得到x=2,则x的值为2.故答案为:2.13.【解答】解:,解①得:x>﹣6,解②得:x≤13,不等式组的解集为:﹣6<x≤13,故答案为:﹣6<x≤13.14.【解答】解:设参加无人机组有x人,则参加航海组有(2x﹣3)人,参加航空组有18﹣x﹣(2x﹣3)=(21﹣3x)人,依题意有3≤21﹣3x≤9,解得4≤x≤6,∵x为正整数,∴x=4或x=5或x=6,当x=4时,2x﹣3=5,21﹣3x=9;当x=5时,2x﹣3=7,21﹣3x=6;当x=6时,2x﹣3=9,21﹣3x=3;设为无人机组的每位同学购买y个无人机模型,当x=4时,75×2×5+98×9×3+165×4y=6114,解得y=4(不合题意舍去);当x=5时,75×7×2+98×6×3+165×5y=6114,解得y=4;当x=6时,75×9×2+98×3×3+165×6y=6114,解得y=3(不合题意舍去),165×5×4=3300(元).答:购买无人机模型的费用是3300元.故答案为:3300元.15.【解答】解:①(1.493)=1,故①符合题意;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②不符合题意;③若(x﹣1)=4,则4﹣≤x﹣1<4+,解得:9≤x<11,故③符合题意;④m为非负整数,故(m+2013x)=m+(2013x),故④符合题意;综上可得①③④正确.故答案为:①③④.三.解答题(共4小题)16.【解答】解:(1)去分母得,3(x+1)<2(x﹣2)﹣6x,去括号得,3x+3<2x﹣4﹣6x,移项得,3x﹣2x+6x<﹣4﹣3,合并同类项得,7x<﹣7,把x的系数化为1得,x<﹣1.(2),由①得,x≤4,由②得,x>0,故不等式组的解集为:0<x≤4.17.【解答】解:(1)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,把x的系数化为1得,x≥﹣1.在数轴上表示为:;(2),由①得,x≤4,由②得,x>0,故不等式组的解集为:0<x≤4.在数轴上表示为:.18.【解答】解:(1),①+②×2得:7x=21,解得:x=3,把x=3代入①得:3+2y=3,解得:y=0,所以原方程组的解为;(2),解不等式①得:x<2,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x<2,在数轴上表示不等式组的解集为:.19.【解答】解:(1)设甲型号口罩生产线的单价为x万元,乙型号口罩生产线的单价为y万元,由题意得:,解得:,答:甲型号口罩生产线的单价为10万元,乙型号口罩生产线的单价为8万元.(2)设购买甲型号口罩生产线m条,则购买乙型号口罩生产线(10﹣m)条,由题意得:,解得:2.5≤m≤5,又∵m为整数,∴m=3,或m=4,或m=5,因此有三种购买方案:①购买甲型3条,乙型7条;②购买甲型4条,乙型6条;③购买甲型5条,乙型5条.当m=3时,购买资金为:10×3+8×7=86(万元),当m=4时,购买资金为:10×4+8×6=88(万元),当m=5时,购买资金为:10×5+8×5=90(万元),∵86<88<90,∴最省钱的购买方案为:选购甲型3条,乙型7条,最少费用为86万元.试卷第31页,总31页。
9.3 一元一次不等式组 同步练习(含答案)数学人教版七年级下册
9.3 一元一次不等式组一、选择题1.下列不等式组中,是一元一次不等式组的是( )A .⎩⎨⎧x >2x <-3B .⎩⎨⎧x +1>0y -2<0C .⎩⎨⎧3x -2>0(x -2)(x +3)>0D .⎩⎪⎨⎪⎧3x -2>0x +1>1x2.如图,数轴上表示的解集用不等式表示为( )A .2<x <4B .-2<x≤4C .-2≤x <4D .-2≤x≤43.不等式组⎩⎨⎧x -1>0,x -3≤0的解集是( )A .x >1B .1<x <3C .1<x ≤3D .x ≤34.若关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>1的解集为x>1,则a 的取值范围是 ( )A .a>1B .a<1C .a ≥1D .a ≤15.把不等式组⎩⎪⎨⎪⎧x -3<2x ,x +13≥x -12中每个不等式的解集在一条数轴上表示出来,正确的为( )6.对于不等式组⎩⎪⎨⎪⎧13x -6≤1-53x ,3(x -1)<5x -1,下列说法中正确的是 ( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为-1<x ≤76 C .此不等式组有5个整数解 D .此不等式组无解7.如图,这是嘉琪同学设计的一个计算机程序,规定从“输入一个值x ”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x 的取值范围是( )A .x ≥4B .4≤x <7C .4<x ≤7D .x ≤7二、填空题8.(1)不等式组⎩⎪⎨⎪⎧x -3≤0,x 2>1 的解集为______________;(2)满足不等式组⎩⎨⎧2x -5≤0x -1>0的整数解是________.9.如图所示,点C 位于点A ,B 之间(不与A ,B 重合),点C 表示1-2x ,则x 的取值范围是___________.10.已知关于x 的不等式组⎩⎪⎨⎪⎧2x +3≥x +m2x +53-3<2-x 无解,则1m 的取值范围是__________________.11.不等式组⎩⎨⎧3x -6>0x >m 的解集为x >2,则m 的取值范围为__________.12.关于x 的不等式组⎩⎪⎨⎪⎧-x +a <23x -12≤x +1 恰有3个整数解,则a 的取值范围是______________.三、解答题13.解不等式组:(1)⎩⎪⎨⎪⎧2x +1≥x +2①,2x -1<12(x +4)②; (2)⎩⎨⎧x +2>-1①,x -5≤3(x -1)②.14.若点P 的坐标为(x -13 ,2x -9),其中x 满足不等式组⎩⎪⎨⎪⎧5x -10≥2(x +1)①,12x -1≤7-32x ②. 求点P 所在的象限.15.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?16.某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:水果品种,梨,菠萝,苹果,车厘子批发价格(元/kg),4,5,6,40零售价格(元/kg),5,6,8,50请解答下列问题:(1)第一天,该经营户用1700元批发了菠萝和苹果共300 kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88 kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?参考答案一、选择题1.下列不等式组中,是一元一次不等式组的是( A )A .⎩⎨⎧x >2x <-3B .⎩⎨⎧x +1>0y -2<0C .⎩⎨⎧3x -2>0(x -2)(x +3)>0D .⎩⎪⎨⎪⎧3x -2>0x +1>1x2.如图,数轴上表示的解集用不等式表示为( B )A .2<x <4B .-2<x≤4C .-2≤x <4D .-2≤x≤43.不等式组⎩⎨⎧x -1>0,x -3≤0的解集是( C )A .x >1B .1<x <3C .1<x ≤3D .x ≤34.若关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>1的解集为x>1,则a 的取值范围是 ( D )A .a>1B .a<1C .a ≥1D .a ≤15.把不等式组⎩⎪⎨⎪⎧x -3<2x ,x +13≥x -12中每个不等式的解集在一条数轴上表示出来,正确的为( C )6.对于不等式组⎩⎪⎨⎪⎧13x -6≤1-53x ,3(x -1)<5x -1,下列说法中正确的是 ( A )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为-1<x ≤76 C .此不等式组有5个整数解 D .此不等式组无解7.如图,这是嘉琪同学设计的一个计算机程序,规定从“输入一个值x ”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x 的取值范围是( B )A .x ≥4B .4≤x <7C .4<x ≤7D .x ≤7二、填空题8.(1)不等式组⎩⎪⎨⎪⎧x -3≤0,x 2>1 的解集为______________;(2)满足不等式组⎩⎨⎧2x -5≤0x -1>0的整数解是________.【答案】2<x≤3 29.如图所示,点C 位于点A ,B 之间(不与A ,B 重合),点C 表示1-2x ,则x 的取值范围是___________.【答案】-12 <x <010.已知关于x 的不等式组⎩⎪⎨⎪⎧2x +3≥x +m 2x +53-3<2-x 无解,则1m 的取值范围是__________________.【答案】0<1m ≤1511.不等式组⎩⎨⎧3x -6>0x >m的解集为x >2,则m 的取值范围为__________.【答案】m≤212.关于x 的不等式组⎩⎪⎨⎪⎧-x +a <23x -12≤x +1 恰有3个整数解,则a 的取值范围是______________.【答案】2≤a <3三、解答题13.解不等式组:(1)⎩⎪⎨⎪⎧2x +1≥x +2①,2x -1<12(x +4)②; 解:解不等式①,得x ≥1,解不等式②,得x <2,故原不等式组的解集为1≤x <2(2)⎩⎨⎧x +2>-1①,x -5≤3(x -1)②.解:解不等式①,得x >-3,解不等式②,得x ≥-1,则不等式组的解集为x ≥-114.若点P 的坐标为(x -13 ,2x -9),其中x 满足不等式组⎩⎪⎨⎪⎧5x -10≥2(x +1)①,12x -1≤7-32x ②. 求点P 所在的象限.解:解①得x≥4,解②得x ≤4,∴不等式组的解是x =4,∴x -13 =1,2x -9=-1,∴点P 的坐标为(1,-1),∴点P 在第四象限15.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A ,B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A ,B 两种货厢的节数,有哪几种运输方案?解:设应安排x 节A 型货厢,则安排(50-x)节B 型货厢,由题意得⎩⎨⎧35x +25(50-x )≥1530,15x +35(50-x )≥1150,解得28≤x ≤30.因为x 为整数,所以x 只能取28,29,30.相应地(50-x)的值为22,21,20.所以共有三种运输方案:第一种运输方案:用A 型货厢28节,B 型货厢22节;第二种运输方案:用A 型货厢29节,B 型货厢21节;第三种运输方案:用A 型货厢30节,B 型货厢20节16.某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表: 水果品种,梨,菠萝,苹果,车厘子批发价格(元/kg),4,5,6,40零售价格(元/kg),5,6,8,50请解答下列问题: (1)第一天,该经营户用1700元批发了菠萝和苹果共300 kg ,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88 kg ,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?解:(1)设第一天,该经营户批发了菠萝x kg ,苹果y kg ,依题意,得⎩⎨⎧x +y =300,5x +6y =1700, 解得⎩⎨⎧x =100,y =200,∴(6-5)×100+(8-6)×200=500(元).答:这两种水果获得的总利润为500元 (2)设购进m kg 菠萝,则购进1700-5m6 kg 苹果,依题意,得 ⎩⎪⎨⎪⎧m ≥88,(6-5)m +(8-6)×1700-5m 6>500, 解得88≤m<100.又∵m ,1700-5m 6 均为正整数,∴m 可以为88,94,∴该经营户第二天共有2种批发水果的方案,方案1:购进88 kg 菠萝,210 kg 苹果;方案2:购进94 kg 菠萝,205 kg 苹果。
最新 同步练习9.3一元一次不等式组 练习卷 2021-2022学年人教版数学七年级下册
9.3 一元一次不等式组(练习卷)-2022年人教新版数学七年级下册一.选择题(共12小题)1.已知关于x的不等式组只有四个整数解,则实数a的取值范围()A.﹣3≤a<﹣2B.﹣3≤a≤﹣2C.﹣3<a≤﹣2D.﹣3<a<﹣22.不等式组的整数解有()A.0个B.1个C.2个D.3个3.若关于x的一元一次不等式组的解集为,且关于y的方程的解为非负整数,则符合条件的所有整数m的和为()A.2B.7C.11D.104.如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.3B.4C.5D.65.把不等式组的解集表示在数轴上,下列符合题意的是()A.B.C.D.6.平面直角坐标系中,点A(2x﹣6,x+1)在第二象限,x的取值范围在数轴上表示为()A.B.C.D.7.已知一种新运算定义为:a⊙b=a•b﹣|a﹣2|,则不等式组的非正整数解有()A.1个B.2个C.3个D.4个8.不等式组的最大整数解是()A.﹣3B.﹣2C.﹣1D.09.对于任意的实数m和n,定义一种运算m※n=mn﹣m﹣n+2,例如:2※3=2×3﹣2﹣3+2=3.根据上述定义,不等式组的解集在数轴上表示为()A.B.C.D.10.从﹣3,﹣1,,1,2这五个数中随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的一元一次方程ax+3=5﹣x有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2B.﹣C.﹣3D.11.某班数学兴趣小组对不等式组讨论得到以下结论:①若a=5,则不等式组的解集为2<x≤5;②若a=1,则不等式组无解;③若不等式组无解,则a的取值范围为a<2;④若不等式组有且只有两个整数解,则a的值可以为5.1,以上四个结论,正确的序号是()A.①②③B.①③④C.①②④D.①②③④12.若不等式组的最小整数解是a,最大整数解是b,则a+b=()A.2B.1C.4D.0二.填空题(共5小题)13.如果关于x的不等式组的整数解只有1,2,3,那么a的取值范围是,b的取值范围是.14.满足﹣<x<的所有整数x的和是.15.不等式组的解集是.16.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是.A.7B.9C.11D.1317.已知不等式组的解集为x>﹣1,则k的取值范围是.三.解答题(共3小题)18.(1)解方程组;(2)解不等式(组).19.对x,y定义一种新运算F(x,y)=(ax+by)(x+3y)(其中a,b均为非零常数).例如:F(1,1)=4a+4b;已知F(3,1)=0,F(0,1)=﹣9.(1)求a,b的值;(F(3t+1,t)≥k;(2)若关于F的不等式组恰好只有1个整数解,求k的取值范围.20.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,1)=4,T(4,﹣2)=7.①求a、b的值;②若关于m的不等式组恰好有4个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x、y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?10.2直方图-课堂练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是() A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<2.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,•7,6,第五组的频率是0.2,故第六组的频率是() A .0.2B .0.1C .0.3D .0.43.某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15-20次之间的频率是(). A .0.4B .0.33C .0.17D .0.14.在频数分布表中,所有频数之和() A .是1B .等于所有数据的个数C .与所有数据的个数无关D .小于所有数据的个数5.有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是(). A .4B .5C .6D .76.如图是若干只电灯泡的使用寿命进行检测的频数分布折线图,由图可知检测的频数为() A .20B .14C .12D .10二、填空题7.在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知: (1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.8.对某班同学的身高进行统计(单位:厘米),频数分布表中,这一组学生人数是12,频率是0.24,则该班共有________名学生;这一组学生人数是8,频率是________.9.在频率分布直方图中,小长方形的面积等于_______,各小长方形的面积和等于_______. 10.一个样本容量为80的样本最大值是123,最小值是50,取10为组距,则可分为_____组11.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数). 三、解答题12.为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.13.一个面粉批发商统计了前48个星期的销售量(单位:t):24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.624.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.321.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.721.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.621.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.14.为了改进银行的服务质量,随机抽随机抽查了30名顾客,统计了顾客在窗口办理业务所用的时间(单位:分钟)下图是这次调查得到的统计图。
人教版七年级下册数学同步练习9.3《一元一次不等式组》(word版有答案)
人教版七年级下册数学同步练习9.3《一元一次不等式组》一、选择题(每道题只有一个正确选项,请把正确答案填到括号内。
)1. 下列不等式组:① {x >−2,x <3②{x >0,x +2>4③{x 2+1<x ,x 2+2>4④{x +3>0,x <−7⑤{x +1>0,y −1<0 其中一元一次不等式组的个数是 ( )A.2B.3C.4D.52. 下列各式不是一元一次不等式组的是( )A.{x −1>3x −3<2B.{a −1<0b +2>0C.{3x −5>04x +2<0D.{3x <52x −1<9 3. 不等式组 {x +1≥0,1−13x >0的解集在数轴上表示正确的是( )A. B.C.D.4. 某关于x 的一元一次不等式组{2x −1>3(x −2),x <m的解集是x <5,则m 的取值范围是( )A.m >5B.m ≥5C.m <5D.m ≤55. 一元一次不等式组{2x +1>0,x −5≤0的解集中,整数解的个数是( ) A.4个 B.5个 C.6个 D.7个6. 已知不等式组{x −1≥0,2x +3<a,只有三个整数解,则实数a 的范围是( ) A.9≤a ≤11 B.9<a ≤11 C.9≤a <11 D.9<a <117. 八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x +9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是( )A.7x +9≤8+9(x −1)B.7x +9≥9(x −1)C.{7x +9<8+9(x −1)7x +9≥9(x −1)D.{7x +9≤8+9(x −1)7x +9≥9(x −1)8. 小明要制作一个长方形的相片框架,这个框架的长为25cm ,面积不小于500cm 2,所选择宽的长度x 应满足( )A.{25x ≥500,x <25B.{25x ≥500,x >25C.{25x >500,x <25D.{25x <500,x >25 二、填空题9. 不等式组{2−x ≥0,2x >x −1,的最小整数解是________. 10. 一个等腰三角形的底边长为7cm ,周长小于20cm ,若它的腰长为x cm ,则x 必须满足的不等式组为________.11. 在数轴上表示数x 的点与原点的距离不超过5,则x 满足的不等式(组)为________.12. 某公司从超市购买了墨水笔和圆珠笔共15盒,所付金额超过570元,但不到580元.已知墨水笔的单价为每盒34.90元,圆珠笔的单价为每盒44.90元.设购买圆珠笔x 盒,可列不等式组为________.13. “x 的2倍与7的和大于4小于9”用不等式组表示为________.三、解答题14. 阅读材料:形如2<2x +1<3的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如,{2<2x +1,2x +1<3;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x <2,然后同时除以2,得12<x <1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥−2x +3>−5;(3)已知−3≤x <−52,求3x +5的整数值.15. 如果关于x 的不等式组 {x−a 3>0,x +2<2(x −1), 的解集为x >4,求a 的取值范围.16. 解不等式组{2+5x 3−6>x,5(x −1)≤6+4x并把解集表示在数轴上.17. 解不等式组:{2x >3x −2,2x−13≥12x −23,并将解集在数轴上表示出来.18. 解不等式组{2(x −1)+1≤x +2,x−12≥−1,并写出满足条件的所有整数.19. 列方程解应用题为了保证零冷两区快速公交在2018年元旦的顺利开通,永州市公交公司计划购买A 型和B 型两种环保节能公交车共10辆,其中A 型车每辆100万元,B 型车每辆150万元.预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?20. 在“保护地球,爱护家园”活动中,校团委把一批树苗分给九(1)班同学去栽种,如果每人分2棵,还剩42棵,如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得1棵).设九(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示)九(1)班至少有多少名同学?最多有多少名同学?21. 甲以5km/ℎ的速度进行有氧体育锻炼,2ℎ后,乙骑自行车从同地出发沿路追赶甲.根据他们两人的约定,乙最快不早于1ℎ追上甲,最慢不晚于1ℎ15min追上甲.问乙骑车的速度应当控制在什么范围内?参考答案1.B2.B3.A4.B5.C6.B7.C8.A9.010.{2x +7<202x >711.−5≤x ≤512.{44.90x +34.90×(15−x)>57044.90x +34.90×(15−x)<58013.{2x +7>42x +7<914.解:(1)−2<x −1<3,转化为不等式组为{−2<x −1,x −1<3.(2)双连不等式左、中、右同时减去3,得−1≥−2x >−8,然后同时除以−2,得12≤x <4.(3)∵−3≤x <−52,∴−9≤3x <−152,∴−4≤3x +5<−52,∴3x +5的整数值为−4和−3.15.解:已知关于x 的不等式组 {x−a 3>0,x +2<2(x −1),解得{x >a ,x >4.∵ 原不等式组的解集为x >4,∵ a ≤4.16.解:{2+5x3−6>x,①5(x−1)≤6+4x,②解不等式①,得x>8,解不等式②,得x≤11,则不等式组的解集为8<x≤11,在数轴上表示不等式组的解集如图所示.17.解:{2x>3x−2,①2x−13≥12x−23,②解不等式①,得x<2,解不等式②,得x≥−2,则原不等式组的解集为−2≤x<2.在数轴上表示的解集如图所示.18.解:{2(x−1)+1≤x+2,①x−12≥−1,②解①得,x≤3;解②得,x≥−1,∵ −1≤x≤3是原不等式组的解集,即满足条件的所有整数解为:x=−1,0,1,2,3.19.解:设购买A型公交车a辆,则购买B型公交车(10−a)辆.由题意,得{60a+100(10−a)≥680,100a+150(10−a)≤1200,解得6≤a≤8.又a取整数,则a=6或a=7或a=8.共有三种方案:方案一:购买A型公交车6辆,B型公交年4辆,费用为6×100+4×150=1200(万元);方案二:购买A型公交车7辆,B型公交车3辆,费用为7×100+3×150=1150(万元);方案三:购买A型公交车8辆.B型公交车2辆,费用为8×100+2×150=1100(万元).因为1200>1150>1100,所以选择方案三,购买A型公交车8辆.购买B型公交车2辆,且最少费用为1100万元.20.解:(1)由题意可得,这批树苗共有2x+42棵.(2)由(1)知,这批树苗总数为2x+42,因为如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得1棵),所以1≤2x+42−3x<5,解得37<x≤41,所以九(1)班至少有38名同学,最多有41名同学.21.解:设乙的速度为x km/ℎ,1ℎ15 min=54ℎ,根据题意得:{x≤(2+1)×5 (2+54)×5≤54x,得13≤x≤15.。
一元一次不等式组练习题(含答案)
∴不等式组的解集是:–a<x<b,
∵不等式组 的解集为2<x<3,
∴–a=2,b=3,即a=–2,
故选A.
13.【答案】C
【解析】把方程组 的两式相加,得3x+3y=2+2m,
两边同时除以3,得x+y= ,所以 <0,即m<–1.故选C.
14.【答案】0
【解析】–1< ≤2,
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
所以整数解为0,1,2共3个.
故选C.
22.【解析】由①,得3x–2x<3–1,∴x<2.
由②,得4x>3x–1,∴x>–1.
∴不等式组的解集为–1<x<2.
23.【解析】解①得:x≤4,
解②得:x>2,
故不等式组的解为:2<x≤4,
在数轴上表示如下:
.
24.【解析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
第九章不等式与不等式组
9.3一元一次不等式组
1.不等式组 的解集为
A. B.
C. 或 D.
2.在下列各选项中,属于一元一次不等式组的是
A. B.
C. D.
《一元一次不等式组》同步练习2
一元一次不等式组一、填空题1.不等式-6x >4的解集是 。
2.若x 的5倍加1小于x 的3倍减5,则x 的取值范围是 。
3.x = 3-2a 是不等式53)3(51-<-x x 的解,那么a 的取值范围是 。
4.代数式2x +1的值不小于代数式x -32的值,则x 的最大整数值是 。
5.不等式31221->+x x 的非负整数解是 。
6.已知不等式4x -a≤0的正整数解是1,2,则a 的取值范围是 。
7.不等式组⎩⎨⎧>-≥-01204x x 的解集是 。
8.满足不等式组⎪⎪⎩⎪⎪⎨⎧≥--->-x x x 311221的正整数x 为 。
9.若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 。
10.若不等式组⎩⎨⎧<->-10a x a x 的解集中任一个x 的值均不在2≤x≤5的范围内,则a的取值范围是11.不等式组⎪⎩⎪⎨⎧-≤-->-x x x x 32314315的整数解的积是 。
12.如果不等式组⎩⎨⎧≤≥-mx x 032无解,则m 的取值范围是 。
13.已知不等式组⎪⎩⎪⎨⎧-<<->k x x x 111 (1)当k=21时,不等式组的解集是 ;当k = 3时,不等式组的解集是 ;当k =-2时,不等式组的解集为 。
(2)由(1)知,不等式组的解集随数k 值的变化而变化,当k 为任意实数时,写出不等式组的解集 。
14.不等式组⎩⎨⎧<+<+1321x x x 的解集是 。
二、选择题15.若a < b ,则①3-a > 3-b ; ②a +3 < b +2 ; ③3a < 3b ; ④33b a -<-,其中正确结论的个数是( )A .1B .2C .3D .416.下面给出了四个命题:①b a =若,则a 2 = b 2 ; ②若a≤0,则a a =2;③若(1-2)x > 1,则x >211-④若关于x 的不等式(m -2)x > 1的解集是x < 21-m ,则m < 2。
9.3 一元一次不等式组 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解法1.(2022山东潍坊中考)不等式组x+1≥0,x―1<0的解集在数轴上表示正确的是( )A B C D2.(2021广西贵港中考)不等式1<2x-3<x+1的解集是( )A.1<x<2B.2<x<3C.2<x<4D.4<x<53.(2020四川广元中考)关于x的不等式组x―m>0,7―2x>1的整数解只有4个,则m的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-24.如图所示,点C位于点A、B之间(点C不与A、B重合),点C表示1-2x,则x的取值范围是 .5.(2022天津中考)解不等式组2x≥x―1,①x+1≤3.②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .6.(2020山东聊城中考)<7―32x,≥x3+x―44,并写出它的所有整数解.7.(2019湖北黄石中考)若点P,2x―9,其中x满足不―10≥2(x+1),x―1≤7―32x,求点P所在的象限.知识点2 列一元一次不等式组解决实际问题8.李华爸爸计划以60 km/h的平均速度行驶4 h从家去往某地开会,因路上堵车,实际行驶2 h时只行驶了100 km,但是前方路段限速80 km/h.为了按时参会,他在后面的行程中的平均速度为v km/h,则v的取值范围是 .9.【新独家原创】已知某商店某品牌水杯的售价是156元/个,商家出售一个该品牌水杯可获利20%~30%.设该品牌水杯的进价为x元/个,则x的取值范围是 .10.【教材变式·P130T6变式】为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质羊若干只.在准备发放的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.求这批优质羊共多少只.11.(2020河北石家庄二中期末)王老师为了准备奖品,购买了笔记本和钢笔共16件,笔记本一本5元,钢笔一支8元,一共110元.(1)笔记本、钢笔各多少件?(2)王老师计划再购买笔记本和钢笔共8件(钢笔和笔记本每样至少一件),但是两次总花费不得超过160元,有多少种购买方案?请将购买方案一一写出.能力提升全练12.(2022湖南邵阳中考,10,★★☆)关于x的不等式组13x>23―x,x―1<12(a―2)有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.613.(2021广西北部湾经济区中考,12,★★☆)定义一种运算:a*b= a,a≥b,b,a<b,则不等式(2x+1)*(2-x)>3的解集是( )A.x>1或x<13B.―1<x<13C.x>1或x<-1D.x>13或x<-114.(2022福建漳州期中,12,★☆☆)甲种蔬菜保鲜的适宜温度t(单位:℃)的范围是1≤t≤5,乙种蔬菜保鲜的适宜温度t的范围是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t的范围是 .15.(2022青海中考,12,★★☆)不等式组2x+4≥0,6―x>3的所有整数解的和为 .16.(2021黑龙江龙东地区中考,15,★★☆)关于x的一元一次不等式组2x―a>0,3x―4<5无解,则a的取值范围是 .17.(2022四川遂宁中考,19,★★☆)某中学为落实教育部办公厅印发的《关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,有哪几种购买方案?素养探究全练18.【运算能力】某计算程序如图所示,若开始输入的x的值为正整数.规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果为 .若经过2次运算输出结果,求x可以取的所有值. 19.【运算能力】(2022吉林省第二实验学校期中)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组x―1>0,x<4的解集为1<x<4,则方程2x-6=0是不等式组x―1>0,x<4的关联方程.(1)在方程①3x-3=0;②23x+1=0;③x-(3x+1)=-9中,不等式组2x―9<0,―x+8<x+1的关联方程是 .(填序号)(2)若不等式组3x+6>x+1,x>3(x+1)的一个关联方程的解是整数,且这个关联方程是x+m=0,则常数m= .(3)①解两个方程:x+32=1和x+22+1=x+73.②是否存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.答案全解全析基础过关全练1.B x+1≥0①,x―1<0②,由①得x≥-1,由②得x<1,∴不等式组的解集为-1≤x<1,表示在数轴上如图所示:故选B.2.C 不等式可化为1<2x―3,①2x―3<x+1,②由不等式①,得x>2,由不等式②,得x<4,故原不等式的解集是2<x<4,故选C.3.C 由题意得,不等式组的解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1.4.答案-12<x<0解析 根据题意得1<1-2x<2,解得-12<x<0,∴x的取值范围是-12<x<0.5.解析 (1)解不等式①,得x≥-1.(2)解不等式②,得x≤2.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为-1≤x≤2.6.解析<7―32x,①≥x3+x―44,②解不等式①,得x<3,解不等式②,得x≥-45,∴不等式组的解集为-45≤x<3,它的所有整数解为0,1,2.7.解析―10≥2(x+1),①x―1≤7―32x,②解不等式①得x≥4,解不等式②得x≤4,则不等式组的解集是x=4,∴x―13=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在第四象限.8.答案70≤v≤80解析 由题意可得,(4―2)v+100≥60×4,v≤80,解得70≤v≤80.9.答案120≤x≤130解析 可列不等式:1561+30%≤x≤1561+20%,解得120≤x≤130.10.解析 设该村共有x户,则母羊共有(5x+17)只.由题意,得5x+17―7(x―1)>0,5x+17―7(x―1)<3,解得212<x<12.∵x为整数,∴x=11,∴这批优质羊共11+5×11+17=83(只).答:这批优质羊共83只.11.解析 (1)设笔记本有x本,钢笔有y支,依题意,得x+y=16,5x+8y=110,解得x=6,y=10.答:笔记本有6本,钢笔有10支.(2)设购买笔记本m本,则购买钢笔(8-m)支,依题意,得5m+8(8―m)+110≤160, 8―m>0,解得423≤m<8.又∵m为正整数,∴m可以为5,6,7,∴共有3种购买方案,方案1:购买笔记本5本,钢笔3支;方案2:购买笔记本6本,钢笔2支;方案3:购买笔记本7本,钢笔1支.能力提升全练12.C13x>23―x①,x―1<12(a―2)②,由①得x>1,由②得x<a,∴1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选C.13.C 由题意得2x+1≥2―x,2x+1>3或2x+1<2―x, 2―x>3,解得x>1或x<-1,故选C.14.答案3≤t≤5解析 根据题意可知1≤t≤5, 3≤t≤8,解得3≤t≤5.故答案为3≤t≤5.15.答案0解析 2x+4≥0①,6―x>3②,由①得x≥-2,由②得x<3,∴-2≤x<3,x可取的整数有-2,-1,0,1,2,∴所有整数解的和为-2-1+0+1+2=0,故答案为0.16.答案a≥6解析 2x―a>0,①3x―4<5,②解不等式①得x>12a,解不等式②得x<3,∵不等式组无解,∴12a≥3,∴a≥6,故答案为a≥6.17.解析 (1)设篮球的单价为a元,足球的单价为b元,由题意可得2a+3b=510, 3a+5b=810,解得a=120, b=90.答:篮球的单价为120元,足球的单价为90元. (2)设采购篮球x个,则采购足球(50-x)个,∵要求篮球不少于30个,且总费用不超过5 500元,∴x≥30,120x+90(50―x)≤5 500,解得30≤x≤3313,∵x为整数,∴x的值可以为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.素养探究全练18.解析 当x =2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x =2时,输出结果为11.若经过2次运算输出结果,则有(2x +1)×2+1>10,2x +1≤10,解得1.75<x ≤4.5.∵x 为正整数,∴x 可以取的所有值是2、3、4.19.解析 (1)①3x -3=0,3x =3,x =1;②23x +1=0,23x =-1,x =-32;③x -(3x +1)=-9,x -3x -1=-9,-2x =-8,x =4,解不等式组2x ―9<0,―x +8<x +1,得3.5<x <4.5,所以不等式组2x ―9<0,―x +8<x +1的关联方程是③,故答案为③.(2)解不等式组3x +6>x +1,x >3(x +1),得-2.5<x <-1.5,所以不等式组的整数解是x =-2,∵不等式组3x +6>x +1,x >3(x +1)的一个关联方程的解是整数,且这个关联方程是x +m =0,∴把x =-2代入方程x +m =0,得-2+m =0,解得m =2,故答案为2.(3)①x +32=1,x +3=2,x =-1.x +22+1=x +73,3(x +2)+6=2(x +7),3x +6+6=2x +14,3x -2x =14-6-6,x =2.②不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,理由:解不等式组x+m>2,2x+3m≤2,得2―m<x≤2―3m2,假如方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,则2-m<-1且2―3m2≥2,<―1,≥2,得不等式组无解,所以不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x 的不等式组x+m>2,2x+3m≤2的关联方程.。
最新 同步练习9.3 一元一次不等式组 -期末复习训练2021-2022学年人教版数学七年级下册
专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤73.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤26.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣37.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣19.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣310.不等式组的整数解的个数是()A.2B.3C.4D.5二、填空题(共5小题)11.不等式组的解集是.12.关于x的不等式组有2个整数解,则a的取值范围为.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为.14.不等式组的解集是.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是.三、解答题(共5小题)16.解不等式组.17.解不等式组:,并写出它的所有整数解.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.求不等式组的整数解.20.解不等式组:,并将解集在数轴上表示.专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练参考答案与试题解析一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,将两不等式解集表示在数轴上如下:故选:C.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤7【解答】解:依题意,得:,解得:3≤x<7.故选:B.3.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个【解答】解:由数轴知,不等式组的整数解为﹣1、0、1、2,故选:C.4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在【解答】解:解不等式x﹣2≥﹣3得x≥﹣1,解2x+3<5得x<1.则公共部分是:﹣1≤x<1.则整数值是﹣1,0.故选:C.5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤2【解答】解:,∵解不等式①得:x≥2,解不等式②得:x>a,又∵不等式组的解集是x≥2,∴a<2故选:C.6.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣3【解答】解:∵不等式组无解,∴2a﹣5≥3a﹣2,解得:a≤﹣3,故选:D.7.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.【解答】解:,由①得x≤2,由②得x>﹣2,故此不等式组的解集为:故选:C.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.9.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣3【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.10.不等式组的整数解的个数是()A.2B.3C.4D.5【解答】解:解不等式x+5>3,得:x>﹣2,解不等式x+6>4x﹣3,得:x<3,则不等式组的解集为﹣2<x<3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C.二、填空题(共5小题)11.不等式组的解集是≤x<2.【解答】解:,解①得:x<2,解②得:x≥,则不等式组的解集是:≤x<2.故答案是:≤x<2.12.关于x的不等式组有2个整数解,则a的取值范围为0≤a<1.【解答】解:解不等式8+2x>0,得:x>﹣4,解不等式x﹣a≤﹣2,得:x≤a﹣2,∵不等式组有两个整数解,∴不等式组的整数解为﹣3、﹣2,∴﹣2≤a﹣2<﹣1,解得0≤a<1,故答案为:0≤a<1.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为x>25.【解答】解:根据题意可得:,如图:∵三个人中只有一人说对了,∴这本书的价格x(元)所在的范围为x>25.故答案为:x>25.14.不等式组的解集是x≤3.【解答】解:由①得,x≤3,由②得,x<4,故原不等式组的解集为:x≤3.故答案为x≤3.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣2,﹣1.【解答】解:不等式组,由①得:x≥,由②得:x<2,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是≤x<2,即整数解为1,0,∴﹣1<≤0,解得:﹣3<a≤﹣1,则整数a的值为﹣2,﹣1,故答案为:﹣2,﹣1.三、解答题(共5小题)16.解不等式组.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.17.解不等式组:,并写出它的所有整数解.【解答】解:,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,∴不等式组的所有整数解为0,1.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?【解答】解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.19.求不等式组的整数解.【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤1,∴原不等式组的解集为:﹣1<x≤1,∴它的整数解是0、1.20.解不等式组:,并将解集在数轴上表示.【解答】解:由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:用坐标表示地理位置练习题一、选择题1..海事救灾船前去救援某海域失火货轮,需要确定()A.方位B.距离C.方位和距离D.失火轮船的国籍2.如图所示是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y 轴正方向建立平面直角坐标系,则熊猫馆所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为()A.(2,3)B.(0,3)C.(3,2)D.(2,2)4.点A可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走()A.(7,2)B.(2,6)C.(7,6)D.(4,5)5.如图,是做课间操时,李明,李刚和李红三人的相对位置,如果用(4,5)表示李明的位置,(2,4)表示李刚的位置,则李红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)6.如图所示是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向上B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处二、填空题7.如图,用坐标原点O表示学校的位置,用x轴正方向表示正东方向,用y轴正方向表示正北方向.若李威家在王聪家的正西方向、张颜家的正北方向,则李威家的位置用坐标表示是____距离学校最近的是____家. 8.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____.9.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是____.10.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是____.三、解答题11.常用的确定物体位置的方法有两种.如图10,在4×4的边长为1的小正方形组成的网格中,标有A,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.12.如图为某废墟示意图,由于雨水冲蚀,残缺不全,依稀可见钟楼坐标为A(5,-2),街口坐标为B(5,2),•资料记载阿明先生的祖居的坐标为(2,1),你能帮助阿明先生找到他家的老屋吗?13.回答下列问题:如图②,已知过点O的所有射线等分圆周且相邻两射线的夹角为15°.(1)点A的极坐标是____;点D的极坐标是__.(2)请在图②中标出点B(5,45°),点E(2,-90°).(3)怎样从点B运动到点C?小明设计的一条路线为:点B→(4,45°)→(3,45°)→(3,30°)→点C.请你设计与小明不同的一条路线,也可以从点B运动到点C.14.国家实施西部大开发,大力进行电网建设,某电厂决定给A,B,C,D四个村庄架设输电线路,已知电厂O及A,B,C,D四个村的位置如图所示.若点A表示为(2,3),那么点O,B,C,D怎样表示?。
七年级下册(人教版)数学同步练习:9.3一元一次不等式组(无答案)
9.3 —兀次不等式组3x「6 :: 0,么” 口1. 下列四个数中,为不等式组的解的是():3 + x>3A.-1B.0C.1D.22. 不等式组!3x—1>5,的解集在数轴上表示正确的是()|2x 兰6x 3 _ 0—宀口3. 不等式组的解集是()|x —仁0A.-3< x< 1B.-3v x v 1C.x <1D.x >34. 已知点p (3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是()2x _1 3 ^1,的解集是x v 2,那么m的取值范围是5. 如果不等式组()/ < mA.m = 2B.m > 2C.m v 2D.m>23x :: 2x 46. 不等式组x " 3 的解集在数轴上表示为()----- x空—1.3(2x 讦‘107. —元一次不等式组的解集中,整数解的个数是()[x -5 兰0A.4B.5C.6D.712x a -1 08. 若不等式组的解集为0v x v 1,则a的值为()[2x -a -1 £0A.1B.2C.3D.4l x -2m :: 0, 一9. 若关于x的一元一次不等式组有解,则m 的取值范围为()l x +m>29.3 —兀次不等式组2 2 2 2A.m >-—B.m<C.m > —D.m<--3 3 3 3工2x 3—010. 不等式组4 的解集是__________ .lx-1>011. 代数式1-k的值大于-1而又不大于3,则k的取值范围是_____________ .x 3,12. 若不等式组5 的解集是x>3,则m的取值范围是__________________ .lx >m13. 不等式组 fx <8 ______ 的解集是4x —1AX +214. _________________________________________ 不等式组[X -1王°,的最小整数解是 _______________________________________________4 -2x cO1 +2x15. -------------------------------- 同时满足不等式 _______________________________ >x-1与x+3(x-1)<1的x 的取值范围是 ____________________________________________ .3「2x _b 二016. 若不等式组I一 '的解集为3< x w,则不等式ax+b v 0的解集为 ________________/ + a 兰 017.解不等式组严+2别,2(x +3 )-3>3x,并将解集在数轴上表示出来x :::m •1,十"亠―,+卄* 18.若不等式组无解,求m的取值范围x >2^ -1。
人教版初中数学七年级下册9.3.1《一元一次不等式组》同步练习(不包含答案)
9.3 一元一次不等式组练习题1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______.2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______.二、选择题3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ). (A)1个(B)2个 (C)3个 (D)4个 4.若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1(D)1≤k <2 三、解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x 6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x8..234512x x x -≤-≤-9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______. 10、解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x 12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.15.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.3 一元一次不等式组一、基础过关:1.不等式组2,1xx<⎧⎨>-⎩的解集是()A.x<2 B.x>-1 C.-1<x<2 D.x<-1或x>22.不等式组中的两个不等式的解在数轴上表示如图所示,则此不等式组可是()A.0,1xx≥⎧⎨≥⎩B.0,1xx≤⎧⎨≤⎩C.0,1xx≥⎧⎨≤⎩D.0,1xx≤⎧⎨≥⎩3.不等式组10,23xx+≥⎧⎨+<⎩的整数解是()A.-1,0,1 B.-1,1 C,-1,0 D.0,14.若不等式组3,xx a>⎧⎨>⎩的解集是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥35.不等式组24,357xx>-⎧⎨-≤⎩的解集在数轴上可以表示为()A BCD6.若不等式组1,21x mx m<+⎧⎨>-⎩无解,则m的取值范围是______.7.若关于x的不等式组211,3xxx k-⎧>-⎪⎨⎪-<⎩的解集为x<2,则k的取值范围是_______.8.解下列不等式组,并把它们的解集在数轴上表示出来:(1)324,519;x xx>+⎧⎨->⎩(2)11,212(2)3;xx-⎧<⎪⎨⎪--<⎩(3)3(2)4,211;52x xx x--≥⎧⎪-+⎨<⎪⎩(4)31(21)4,2132 1.2xxx⎧--≤⎪⎪⎨+⎪>-⎪⎩二、综合创新作业9.(综合题)已知不等式组1,1,1. xxx k>-⎧⎪<⎨⎪<-⎩(1)分别求出当k=12,k=3,k=-2时,不等式组的解集;(2)由(1)可知,不等式组的解集随k值的变化而变化,当k为任意数时,•写出不等式组的解集.10.(应用题)为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,•那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?•共有多少个交通路口安排值勤?11.(创新题)要使关于x的方程5x-2m=3x-6m+1的解在-3与4之间,m必须在哪个范围内取值?12.(1)(2005年,广东茂名)今年6月份,我市某果农收获荔枝30吨,香蕉13吨,•现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨;①该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来.②若甲种货车每辆要付运费2000元,乙种货车每辆要付运费1300元,则该果农应选择哪种方案可使运费最少?最少运费是多少元?(2)(2005年,梅州)为节约用电,某学校于本学期初制定了详细的用电计划.如果实际每天比计划多用2度电,那么本学期的用电量将会超过2530度;•如果实际每天比计划节约2度电,•那么本学期用电量将会不超过2200•度电.•若本学期的在校时间按110天计算,那么学校每天用电量应控制在什么范围内?三、培优作业: 13.(探究题)在车站开始检票时,有a(a>0)名旅客在候车室等候检票进站,•检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,•检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,•以使后来到站的旅客能随到随检,至少要同时开放几个检票口?14.(趣味题)九年级三班学生到阅览室读书,班长问老师要分成几个小组,•老师风趣地说:假如我把43本书分给各个小组,若每组8本,还有剩余;若每组9本,•却又不够,你知道该分几个小组了吗?请你帮助班长分组.注意解题过程,不能光猜哟!15.(开放题)已知不等式:(1)1-x<0;(2)22x<1;(3)2x+3>1;(4)0.2x-3<-2.你喜欢其中哪两个不等式,请把它们选出来组成一个不等式组,求出它的解集.数学世界这种称法便宜了谁某食品店只有一台不等臂的天平和一只1千克的砝码,一顾客欲买2千克糖果,售货员先将砝码置左盘,糖果置右盘,平衡后,将此次称得的糖果给顾客,再将砝码置右盘,糖果置左盘,平衡后,又将第二次称得的糖果给顾客,试问,这种称法便宜了谁?答案: 1.C 2.A 3.C4.D 点拨:由于不等式组3,xx a>⎧⎨>⎩的解集是x>a,依据不等式组的解集“大大取大”的确定方法可知a≥3,故选D.5.B6.m≥2 点拨:由不等式组x无解可知2m-1≥m+1,解得m≥2.7.k≥2 点拨:解不等式①,得x>2.解不等式②,得x<k.因为不等式组的解集为x<2,所以k≥2.8.(1)x>4;(2)1<x<3;(3)-7<x≤1;(4)-54≤x<3.解集分别见图:9.解:(1)当k=12时,不等式组的解集为-1<x<12;当k=3时,不等式组无解;当k=-2时,不等式组的解集为-1<x<1.(2)当k≥2时,不等式组无解;当0<k<2时,不等式组的解集为-1<x<1-k;当k≤0时,不等式组的解集为-1<x<1.点拨:要讨论不等式组的解集,应先确定k的取值的“界点”.k•的取值的“界点:可由-1=1-k,1=1-k求出,即k=2,0.10.解:设这个学校共选派值勤学生x人,到y个交通路口值勤.根据题意得:478,48(1)8. x yx y-=⎧⎨≤--<⎩将方程①代入不等式②,4≤78+4y-8(y-1)<8,整理得:19.5<y≤20.5,根据题意y取20时,这时x为158.答:学校派出的是158名学生,分到了20个交通路口安排值勤.11.解:解方程5x-2m=3x-6m+1得x=412m-+.要使方程的解在-3与4之间,只需-3<412m-+<4.解得-74<m<74.12.(1)解:①设安排甲种货物x辆,则安排乙种货车(10-x)辆,依题意,得42(10)30, 2(10)13. x xx x+-≥⎧⎨+-≥⎩解这个不等式组,得5,7. xx≥⎧⎨≤⎩∴5≤x≤7.∵x是整数,∴x可取5,6,7,即安排甲、乙两种货车有三种方案:第一种:甲种货车5辆,乙种货车5辆;第二种:甲种货车6辆,乙种货车4辆;第三种:甲种货车7辆,乙种货车3辆.②方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,•所以当甲种货车的数量越少时,总运费就越少,故该果农应选择第一种方案运费最少,•最少运费是16500元.方法二:第一种方案需要运费:2000×5+1300×5=16500(元);第二种方案需要运费:2000×6+1300×4=17200(元);第三种方案需要运费:2000×7+1300×3=17900(元).∴该果农应选择第一种方案运费最少,最少运费是16500元.(2)解:设学校每天用电量为x度,依题意可得:110(2)2530, 110(2)2200.xx+>⎧⎨-≤⎩解得:21<x≤22,即学校每天用电量应控制在21度~22度范围内.13.解:设至少同时开放n个检票口,且每分钟旅客进站x人,检票口检票y人.依题意,得3030,10210,55.a x ya x y a x ny+=⎧⎪+=⨯⎨⎪+≤⎩①-②得y=2x.把y=2x代入①得a=30x.把y=2x,a=30x代入③得n≥3.5.∵n只能取整数,∴n=4,5,…答:至少要同时开放4个检票口.14.解:设有x个小组,根据题意得843,943.xx<⎧⎨>⎩解这个不等式组,得479<x<538.根据题意,x为正整数,∴x=5.因此班长应将学生分为5组.15.第一种:由(1)和(2)得:10,(1)21.(2)2xx-<⎧⎪⎨-<⎪⎩解(1)得:x>1,解(2)得:x<4.所以不等式组的解集为:1<x<4.第二种:由(1)和(3)得:10,(1) 23 1.(3)xx-<⎧⎨+>⎩解(1)得:x>1,解(3)得:x>-1.所以不等式组的解集为:x>1.第三种:由(1)和(4)得:10,(1)0.23 2.(4)xx-<⎧⎨-<-⎩解(1)得:x>1,解(4)得:x<5.所以不等式组的解集为:1<x<5.第四种:由(2)和(3)得:21,(2)223 1.(3) xx-⎧<⎪⎨⎪+>⎩解(2)得:x<4,解(3)得:x>-1.所以不等式组的解集为:-1<x<4.第五种:由(2)和(4)得:21,(2)20.23 2.(4) xx-⎧<⎪⎨⎪->-⎩解(2)得:x<4,解(4)得:x<5.所以不等式组的解集为:x<4.第六种:由(3)和(4)得:231,(3) 0.23 2.(4) xx+>⎧⎨-<-⎩解(3)得:x>-1,解(4)得:x>5.所以不等式组的解集为:-1<x<5.数学世界答案: 设天平两臂的长度分别为x、y(不妨令x>y).两次称得的糖果分别为m1、m=2千克,•依力矩平衡原理可得:m1·x=1·y,m2·y=1·x.亦即m1=yx,m2=xy.而当x>y时,一定有(x-y)2>0,即x2+y2>2xy.从而有,m+m=yx+xy=22x yxy+>2xyxy=2.由此可见,售货员两次称得的糖果多于2千克,实际情况是亏了店家便宜了顾客.。