用矩阵的初等变换求逆矩阵

合集下载

矩阵求逆初等变换法

矩阵求逆初等变换法

矩阵求逆初等变换法矩阵求逆是在线性代数中一个非常重要的概念,它可以用于解决大量的问题。

在实际的应用中,我们通常采用初等变换法来求逆矩阵,这样可以极大地简化计算并且提高效率。

本文主要介绍矩阵求逆初等变换法的基本概念和具体实现方法。

一、矩阵求逆的定义和概念矩阵求逆的本质是寻找一个矩阵A的逆矩阵B,使得A 与B的乘积等于单位矩阵I,即AB=BA=I,其中I为n阶单位矩阵。

矩阵A的逆矩阵可以表示为A^-1。

对于方阵,如果其行列式不为0,则可以求出其逆矩阵。

而对于非方阵,则不能直接求逆矩阵,需要通过一些方法先将其转化为方阵,再进行求逆操作。

二、矩阵求逆初等变换法初等变换是线性代数中的一种操作,它可以用来变换矩阵的形式,进而使得矩阵的某些性质更加明显。

初等变换包括以下三种:(1)交换矩阵的两行或两列(2)将矩阵的一行或一列乘以非零常数(3)将矩阵的一行或一列乘以非零常数加到另一行或另一列上去根据初等变换的性质,我们可以使用一组初等变换将任何一个方阵化为一个单位矩阵,进而得到其逆矩阵。

具体实现方法如下:(1)首先,将矩阵A增广为一个n*2n的矩阵(即在A的右边增加一个n* n的单位矩阵I);(2)通过一系列初等变换将矩阵A化为一个上三角矩阵U;(3)继续通过一系列初等变换将U化为单位矩阵I;(4)此时矩阵A的右半部分就是其逆矩阵B。

下面,我们通过一个例子来具体说明这个过程:设矩阵为A=[1, 2, 3; 0, 1, 4; 5, 6, 0](1)将A增广为一个2n* n的矩阵[A,I]=[1, 2, 3, 1, 0, 0; 0, 1, 4, 0, 1, 0; 5, 6, 0, 0, 0, 1](2)通过一系列初等变换将矩阵A化为一个上三角矩阵U[1, 2, 3, 1, 0, 0; 0, 1, 4, 0, 1, 0; 5, 6, 0, 0, 0, 1]→R2-R1→[1, 2, 3, 1, 0, 0; 0, -1, 1, -1, 1, 0; 5, 6, 0, 0, 0, 1]→R3-5R1→[1, 2, 3, 1, 0, 0; 0, -1, 1, -1, 1, 0; 0, -4, -15, -5, 0, 1]→-R2→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, -4, -15, -5, 0, 1]→R3+4R2→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, 0, -11, 1, -4, 1]→-R3/11→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, 0, 1, -1/11, 4/11, -1/11]→R2+R3→[1, 2, 3, 1, 0, 0; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]→-R1-2R2+3R3→[1, 0, 0, 1/11, 2/11, -1/11; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]得到上三角矩阵U为U=[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 0,3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11](3)通过一系列初等变换将U化为单位矩阵I[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]→R2-3R3→[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 3/11, -1/11, 2/11; 0, 0, 1, -1/11, 4/11, -1/11]→R1-2R2-3R3→[1, 0, 0, 7/11, -2/11, -1/11; 0, 1, 0, 3/11, -1/11, 2/11; 0, 0, 1, -1/11, 4/11, -1/11]此时得到的右半部分就是矩阵A的逆矩阵B,即B=[7/11, -2/11, -1/11; 3/11, -1/11, 2/11; -1/11, 4/11, -1/11]三、总结矩阵求逆是线性代数中一个基本的操作,而初等变换法则可以很有效地简化求解的过程。

线性代数:初等变换法求逆矩阵(finalff3)

线性代数:初等变换法求逆矩阵(finalff3)
线性代数
初等变换法求逆矩阵及 解矩阵方程
初等变换法求逆矩阵
线性代数
两个已知结论 1、n阶矩阵A可逆当且仅当A能够表示成若干初等 矩阵的乘积,即存在初等矩阵P1, P2, … , Pm使得
A= P1P2…Pm .
2、在矩阵A的左边乘以一个初等矩阵相当于对A进 行一次相应的初等行变换;
在A的右边乘以一个初等矩阵相当于对A进行一 次相应的初等列变换.
例 求矩阵X,使AX=B,其中
1 2 3
2 5
A
2
2
1
,
B
3
1
.
3 4 3
4 3
解 若A可逆,则X= A−1B.
1 2 3 2 5
(A
B)
2
2
1
3
1
3 4 3 4 3
3 2
X
2
3
.
1 3
1 0 0 3 2
0 0
1 0
0 1
2 1
3 3
小结
线性代数
1、初等变换求逆矩阵
(A E) 初等行变换 (E A−1 )

A
E
初等列变换
E
A1
2、初等变换求解矩阵方程
(1) A可逆,AX=B
X= A−1B
(A B) 初等行变换 (E A−1 B )
(2) A可逆, XA=C
X= CA−1
A 初等列变换 E
C
CA1
初等行变换法求逆矩阵
线性代数
若A可逆,则A−1可逆,因而A−1可以表示成若干初 等矩阵Q1, Q2, … , Qm 的乘积,即A−1= Q1Q2…Qm .
A可逆, A1 A E

初等变换法求逆矩阵

初等变换法求逆矩阵

1 0 0 1 3 2 r2 ( 2)
0 0
2 0
0 1
3 1
6 1
5 1
r3
( 1)
r2


2) 1 A01

0 1
10 03
r3

1)
0
0
2 11
13

3 3
2
1
3532 .
2 11

52
说明:(1)将(A E)化为行最简形矩阵; (2)此方法中只能作初等行变换.
一、初等变换法求逆矩阵
例1

1 A 2
2 2
13,求 A1.
3 4 3

A
E



1 2
2 2
3 1
1 0
0 1
0 0
3 4 3 0 0 1
r2 2r1 1 2 3 1 0 0 r1 r2 0 2 5 2 1 0
r3


1)

0 0
0 1 0
0 0 1
3 2 1
23 , 3
3 2 X 2 矩阵[重点 掌握]
初等行变换
(A E)
( E A1).
2.初等变换法的解矩阵方程
初等行变换
(A B)
(E
A 1 B )
初等变换法求逆矩阵
引入:公式法求逆矩阵的缺点 一、初等变换法求逆矩 二、方法推广
引入:公式法求逆矩阵的缺点
逆矩阵的计算公式 A1 1 A A
适用范围:二阶、三阶的方阵.
缺点:当矩阵的阶数比较高时,求伴随矩阵 计算量太大,不易实施.

用矩阵的初等变换求逆矩阵_百度文库.

用矩阵的初等变换求逆矩阵_百度文库.

用矩阵的初等变换求逆矩阵一、问题提出在前面我们以学习了用公式求逆矩阵,但当矩阵A的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢?(饿了再吃)二、求逆矩阵方法的推导(“润物细无声”“化抽象为自然”)我们已学习了矩阵初等变换的性质,如1.定理2.4 对mxn矩阵A,施行一次初等行变换,相当于在A的左边乘以相应m 阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵。

2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。

3.定理2.5的推论A可逆的充要条件为A可表为若干初等矩阵之积。

即4.推论 A可逆,则A 可由初等行变换化为单位矩阵。

(1)由矩阵初等变换的这些性质可知,若A可逆,构造分块矩阵(A︱E,其中E为与A 同阶的单位矩阵,那么(2)由(1)式代入(2)式左边,上式说明分块矩阵(A︱E经过初等行变换,原来A的位置变换为单位阵E,原来E 的位置变换为我们所要求的,即三,讲解例题1. 求逆矩阵方法的应用之一例解:四,知识拓展2.求逆矩阵方法的应用之二利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A︱E经过初等行变换,原来A的位置不能变换为单位阵E,那么A不可逆。

例解:而上面分块矩阵的第一块第二行全为零,它不可能变换为单位矩阵,所以A不可逆。

3.求逆矩阵方法的应用之三利用矩阵初等行变换解矩阵方程(“润物细无声”)对一般的矩阵方程求解,我们可以先求,然后求X=B。

现在我们介绍另外一种方法求矩阵方程。

其实在推导求逆矩阵方法的过程就是求解矩阵方程的过程,因为求就是求解矩阵方程的解,而对一般的矩阵方程只要将中的E换成B,然后利用初等行变换,即其中的B即为所求矩阵方程的X。

例解:。

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆矩阵是线性代数中的重要概念,它在解线性方程组、计算行列式和求解线性变换等问题中具有重要的应用价值。

在实际问题中,我们经常需要求解矩阵的逆矩阵,因此掌握求解逆矩阵的方法对于深入理解线性代数具有重要意义。

本文将介绍几种常用的求解矩阵逆的方法,希望能够帮助读者更好地理解和掌握这一重要概念。

方法一,代数余子式法。

对于一个n阶矩阵A,如果它的行列式|A|不等于0,则矩阵A是可逆的,即存在逆矩阵A^(-1)。

我们可以通过代数余子式的方法来求解矩阵的逆矩阵。

首先,我们需要计算矩阵A的伴随矩阵adj(A),然后利用公式A^(-1) = adj(A)/|A|来求解逆矩阵。

这种方法在理论上是可行的,但在实际计算中可能会比较复杂,尤其是对于高阶矩阵来说,计算量会非常大。

方法二,初等变换法。

初等变换法是一种比较直观和简单的方法,它通过一系列的初等行变换将原矩阵变换为单位矩阵,然后将单位矩阵通过相同的初等行变换变换为逆矩阵。

这种方法在实际计算中比较方便,并且适用于各种情况,但是需要进行大量的计算,对于高阶矩阵来说,计算量也会比较大。

方法三,矩阵分块法。

矩阵分块法是一种比较灵活和高效的方法,它将原矩阵分解为若干个子矩阵,然后通过一定的变换将原矩阵变换为单位矩阵,再将单位矩阵变换为逆矩阵。

这种方法在理论上和实际计算中都比较方便,尤其适用于特殊结构的矩阵,如对称矩阵、三对角矩阵等。

但是对于一般的矩阵来说,可能会比较繁琐。

方法四,Gauss-Jordan消元法。

Gauss-Jordan消元法是一种经典的求解逆矩阵的方法,它通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为逆矩阵。

这种方法在实际计算中比较高效和方便,尤其适用于计算机程序实现。

但是对于特殊结构的矩阵,可能会存在一些特殊情况需要处理。

综上所述,求解矩阵的逆矩阵有多种方法,每种方法都有其适用的场景和特点。

在实际问题中,我们可以根据具体的情况选择合适的方法来求解逆矩阵,以达到高效、准确地计算的目的。

矩阵求逆的方法

矩阵求逆的方法

前言矩阵理论在《线性代数》课程中有着重要的地位,矩阵和数相仿可以运算,特别是乘法和数一样有逆运算,其定义为:对于 n 阶方阵 A,如果存在 n 个阶段 B 使得 AB=BA=E,则 n 个阶方阵 A 为可逆的,B 为 A 的逆矩阵。

掌握好求逆矩阵的方法对线性方程组、二次型、线性变换等问题的解决有很大帮助。

关于矩阵求逆问题,不同的《线性代数》教材介绍了不同的方法。

下面对求逆矩阵方法进行全面论述,并做一步探讨。

1矩阵求逆常见的几种方法 1.1 用伴随矩阵法求逆矩定理1.1.1:n 阶矩阵)(ij a A =可逆的充要条件0≠A ,而且当)2(≥n 阶矩阵A 有逆矩阵,*-=A AA 11,其中*A 伴随矩阵。

例1 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=412112013A 是否可逆?若可逆,求1-A 解:A A ∴≠=05可逆又511=A ,421=A ,3131=A ,1012=A ,1222=A ,332-=A ,013=A ,123=A ,133=A∴*-=A AA 11 例 2 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,求()1-*A 解:1-*=A A A ,又()kB kB 11--=, 所以()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡====---*5430220011011011111A A A AA A且有规律可循。

对于三阶以上方阵用该方法逆矩阵,不仅计算量大且易出错,一般不用此种方法。

对求出逆矩阵正确与否,一般用E AA A A ==--11来检验是否正确。

1.2 用初等变换法求逆矩阵定理 1.2.1 如果n 阶方阵A 可逆,则存在有限个初等矩阵,l P P P 21,使得l P P P A 21=。

如果A 可逆,则1-A 也可逆,由上述定理, 存在初等矩阵l Q Q Q ,,,21 使得l Q Q Q A 211=-那么A A AA E 11--== 即A Q Q Q E l 21= E Q Q Q A l 211=-于是我们得到一个求逆矩阵的方法如下:如果n 阶方阵A 可逆,作一个n n 2⨯的矩阵E A ,然后对此矩阵施以初等行换,使A 化为单位矩阵E 同时化为1-A ,即:E A 1-−−−→−A E 初等行变换例1 用初等行变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=521310132A 的逆矩阵解:=E A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100132310521100010001521310132 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--201010100910310521211010100600310521⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→316161100123210103461361001316161100010310100521 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=-3161611232134613611A 同理,如果n 阶矩阵A 可逆,作一个n n ⨯2的矩阵⎥⎦⎤⎢⎣⎡E A ,然后此矩阵施以初等变换,使矩阵A 化为单位阵E ,则同时E 化为1-A ,即⎥⎦⎤⎢⎣⎡−−−→−⎥⎦⎤⎢⎣⎡-1A E E A 初等列变换。

求矩阵逆的方法

求矩阵逆的方法

求矩阵逆的方法
方法一,伴随矩阵法。

对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。

我们可以通过求解伴随矩阵来得到A的逆矩阵。

首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。

方法二,初等变换法。

初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。

这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。

方法三,分块矩阵法。

对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。

例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。

方法四,特征值分解法。

对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。

通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。

方法五,数值逼近法。

对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。

例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。

总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。

在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。

希望本文能够对您有所帮助,谢谢阅读!。

初等行列变换求逆矩阵 -回复

初等行列变换求逆矩阵 -回复

初等行列变换求逆矩阵-回复初等行列变换是矩阵运算中常用的一种方法,用于简化矩阵的求逆过程。

在本文中,我们将使用初等行列变换的方法来求一个矩阵的逆。

首先,我们需要明确什么是矩阵的逆。

一个n阶矩阵A,如果存在一个n 阶矩阵B,使得AB=BA=In(其中In是n阶单位矩阵),那么矩阵B就是矩阵A的逆矩阵,记作A的逆矩阵为A^(-1)。

现在,我们假设有一个n阶方阵A,我们的目标是求出它的逆矩阵A^(-1)。

我们可以通过一系列的初等行列变换来实现这个目标。

初等行列变换分为三类:对调两行(列),用一个非零数乘某一行(列),与某一行(列)相加(减)若干倍的某一行(列)。

首先,我们将A矩阵和一个n阶单位矩阵I(I的每个元素i,j等于1当i=j 时,否则等于0)进行横向合并,形成一个2n阶的矩阵[A I]。

以下是求一个3阶方阵的逆矩阵的一个例子,我们将从头开始一步一步解释求逆的过程。

\[A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i\end{bmatrix}\]我们首先将A矩阵和一个3阶单位矩阵I进行横向合并,形成一个6阶的矩阵[A I]。

\[ \begin{bmatrix} a & b & c & 1 & 0 & 0 \\ d & e & f & 0 & 1 & 0 \\ g & h & i & 0 & 0 & 1 \end{bmatrix}\]接下来,我们进行初等行变换。

首先,我们使用第一行的第一个元素a,将第二行的第一个元素d和第三行的第一个元素g变为0。

具体操作是使用第一行乘以d/a,再用结果乘以第二行然后减去第一行。

\[\begin{bmatrix} a & b & c & 1 & 0 & 0 \\ 0 & e-\frac{db}{a} &f-\frac{cf}{a} & -\frac{cd}{a} & 1 & 0 \\ 0 & h-\frac{gb}{a} &i-\frac{hc}{a} & -\frac{gc}{a} & 0 & 1 \end{bmatrix}\]然后,我们使用第二行的第二个元素(e-\frac{db}{a}),将第一行的第二个元素b变为0。

初等变换法求逆矩阵原理

初等变换法求逆矩阵原理

初等变换法求逆矩阵原理嘿,朋友们!今天咱来唠唠初等变换法求逆矩阵这个神奇的事儿。

咱就说矩阵啊,就像是一个神秘的大盒子,里面装着好多好多数字。

而逆矩阵呢,就像是这个大盒子的一把钥匙。

那怎么找到这把钥匙呢?这就得靠初等变换法啦!你想啊,这就好比是搭积木,我们要把一堆乱乱的积木搭成我们想要的形状。

初等变换就像是我们的小手,这儿动动,那儿挪挪,慢慢地就把积木搭好了。

比如说,我们有一个矩阵,乍一看,哇,好复杂呀!但别慌,我们就开始用初等变换法。

就像是解开一团乱麻,一点点地理清楚。

我们通过行变换或者列变换,把这个矩阵慢慢地变成一个我们熟悉的样子。

这过程是不是很有趣呢?就好像是在玩一个解谜游戏。

我们不断地尝试,不断地探索,直到找到那个正确的答案。

而且哦,初等变换法可神奇了,它就像一个魔法棒,轻轻一挥,就能把复杂的问题变得简单起来。

你难道不觉得这很厉害吗?比如说,我们遇到一个很难搞的矩阵,怎么看都不知道该怎么办。

但只要我们拿起初等变换这个魔法棒,嘿,奇迹就发生了!那些数字就开始乖乖地听话,按照我们想要的方式排列起来。

这就好像是我们在走迷宫,一开始找不到路,但是只要我们沿着正确的方向走,慢慢地就能走出去啦。

初等变换法就是我们在矩阵迷宫里的指引呀!你再想想,要是没有初等变换法,我们面对那些复杂的矩阵该怎么办呢?岂不是要抓耳挠腮,不知所措啦?所以说呀,初等变换法求逆矩阵真的是太重要啦!它就像是我们在数学世界里的秘密武器,有了它,我们就能攻克一个又一个难题。

朋友们,好好去感受初等变换法的神奇吧!让我们在矩阵的世界里畅游,找到那把打开神秘大门的钥匙!这就是初等变换法求逆矩阵,是不是很有意思呢?真的值得我们好好去钻研呀!原创不易,请尊重原创,谢谢!。

求逆矩阵初等行变换规则

求逆矩阵初等行变换规则

求逆矩阵初等行变换规则
求逆矩阵是线性代数中的一个重要概念,它在很多应用领域都有广泛的应用。

逆矩阵的概念可以理解为,对于一个矩阵A,如果存在一个矩阵B,使得矩阵A与矩阵B的乘积为单位矩阵I,同时矩阵B 与矩阵A的乘积也是单位矩阵I,那么我们称矩阵B是矩阵A的逆矩阵,记作A的逆矩阵为A^-1。

在求逆矩阵的过程中,我们可以使用初等行变换来辅助计算。

初等行变换是指对矩阵进行一系列的操作,包括交换两行、某一行乘以一个非零常数、某一行加上另一行的若干倍。

这些操作不会改变矩阵的秩,因此可以在不改变矩阵的逆性质的同时,简化计算。

下面是求逆矩阵的一般步骤:
1. 将原矩阵A写成增广矩阵[A|I]的形式,其中I为单位矩阵。

2. 对增广矩阵进行初等行变换,将[A|I]化简为[I|B]的形式,其中B即为逆矩阵。

3. 如果A不可逆,则无法找到矩阵B,这时矩阵A被称为奇异矩阵。

4. 如果A可逆,则B即为A的逆矩阵。

在进行初等行变换时,需要注意以下几个规则:
1. 交换两行的位置:可以将矩阵的两行进行交换,这不会改变矩阵的逆性质。

2. 乘以一个非零常数:可以将矩阵的某一行乘以一个非零常数,这也不会改变矩阵的逆性质。

3. 两行相加:可以将矩阵的某一行加上另一行的若干倍,这同样不会改变矩阵的逆性质。

通过使用这些规则,我们可以将矩阵A进行初等行变换,最终得到逆矩阵B。

总之,通过使用初等行变换规则,我们可以求得矩阵的逆矩阵,从而在线性代数的计算中得到更加简化和高效的计算方法。

通过初等变换求逆矩阵的方法思政

通过初等变换求逆矩阵的方法思政

通过初等变换求逆矩阵的方法思政一、概述在矩阵理论中,矩阵的逆是一个重要的概念。

矩阵的逆是指一个矩阵与其逆矩阵相乘得到单位矩阵。

求解矩阵的逆矩阵是线性代数中的常见问题,通过初等变换求逆矩阵是一种常见且有效的方法。

本文将探讨通过初等变换求逆矩阵的方法思政。

二、矩阵的逆定义对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=E(E 为n阶单位矩阵),则称B是A的逆矩阵。

矩阵的逆矩阵是一个重要的概念,它在解线性方程组、求解矩阵方程等问题中都有着重要的应用。

三、初等变换初等变换是矩阵运算中的常用方法,主要包括对换两行或两列、某一行或列乘以一个非零常数、某一行或列加上另一行或列的若干倍。

通过这些简单的操作,可以改变矩阵的行列式、行空间等性质。

四、使用初等变换求逆矩阵的方法思政1. 确定原始矩阵我们要确定需要求逆的原始矩阵A。

假设原始矩阵A为一个n阶方阵。

2. 构造增广矩阵将原始矩阵A与n阶单位矩阵I做成一个2n阶的增广矩阵[A|I]。

3. 初等变换通过初等变换,将增广矩阵[A|I]变为[I|B],其中B即为矩阵A的逆矩阵。

4. 检验逆矩阵我们需要通过简单的计算和检验,确定矩阵B确实是矩阵A的逆矩阵,即满足BB=I。

五、示例分析接下来,我们通过一个具体的示例来演示通过初等变换求逆矩阵的方法思政。

假设我们有一个3阶方阵A如下:A = [[1, 2, 3], [4, 5, 6], [7, 8, 10]]我们首先生成3阶单位矩阵I:I = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]然后构造增广矩阵[A|I]:[A|I] = [[1, 2, 3, 1, 0, 0], [4, 5, 6, 0, 1, 0], [7, 8, 10, 0, 0, 1]]接下来,我们通过初等变换将增广矩阵[A|I]变为[I|B]。

经过一系列的初等变换操作,最终得到增广矩阵[I|B]:[I|B] = [[1, 0, 0, -1, 1, 0], [0, 1, 0, 2, -2, 1], [0, 0, 1, -1, 1, -1]]可以看到,矩阵B即为原始矩阵A的逆矩阵。

初等列变换求可逆矩阵

初等列变换求可逆矩阵

初等列变换求可逆矩阵
【原创实用版】
目录
1.初等列变换的概念和意义
2.初等列变换求可逆矩阵的方法
3.初等列变换与初等行变换的异同
4.总结
正文
一、初等列变换的概念和意义
初等列变换是指对于一个矩阵,通过行或列的线性组合,使得矩阵的某一列(或行)变为单位矩阵。

初等列变换是线性代数中一种重要的矩阵变换方法,它可以将一个可逆矩阵变为简化阶梯形矩阵,从而方便地求出矩阵的逆矩阵。

二、初等列变换求可逆矩阵的方法
对于一个可逆矩阵 A,我们可以通过初等列变换将其变为简化阶梯形矩阵,从而求出矩阵的逆矩阵。

具体操作步骤如下:
1.对矩阵 A 进行初等列变换,将其变为阶梯形矩阵;
2.若矩阵 A 是满秩矩阵,则可以求得矩阵 A 的逆矩阵;
3.若矩阵 A 不是满秩矩阵,则无法求得矩阵 A 的逆矩阵。

三、初等列变换与初等行变换的异同
初等列变换和初等行变换都是矩阵的线性变换,它们有以下异同点:
1.相同点:
- 都是矩阵的线性变换,不改变矩阵的行列式值;
- 都可以用来求解矩阵的逆矩阵。

2.不同点:
- 初等列变换是针对矩阵的列进行操作,而初等行变换是针对矩
阵的行进行操作;
- 初等列变换适用于对角矩阵和简化阶梯形矩阵,而初等行变换
适用于一般矩阵;
- 初等列变换求逆矩阵的方法较为简单,但对于非满秩矩阵无法
求得逆矩阵,而初等行变换可以求得任意矩阵的逆矩阵,但方法较为复杂。

四、总结
初等列变换是求解可逆矩阵逆矩阵的一种有效方法,通过初等列变换,我们可以将可逆矩阵变为简化阶梯形矩阵,从而方便地求出矩阵的逆矩阵。

初等变换的逆矩阵

初等变换的逆矩阵

初等变换的逆矩阵初等变换是矩阵运算中的一种基本操作,它可以通过对矩阵的行或列进行加减乘除等操作,来改变矩阵的形式和性质。

在矩阵的求解和应用中,初等变换是非常重要的一种工具,它可以帮助我们简化矩阵的运算和求解过程,提高计算效率和准确性。

在初等变换中,我们通常会用到三种基本的操作,即交换矩阵的两行或两列、将矩阵的某一行或某一列乘以一个非零常数、将矩阵的某一行或某一列加上另一行或另一列的若干倍。

这些操作可以通过矩阵的乘法和逆矩阵来实现,其中逆矩阵是指对于一个方阵A,如果存在一个方阵B,使得AB=BA=I,那么B就是A的逆矩阵,记作A^-1。

在初等变换中,我们可以通过矩阵的乘法和逆矩阵来实现三种基本操作,具体如下:1. 交换矩阵的两行或两列假设我们要交换矩阵A的第i行和第j行,那么我们可以构造一个交换矩阵P,使得P*A交换了第i行和第j行,即:P = [1, 0, ..., 0, 0, ..., 1, 0, ..., 0][0, 1, ..., 0, 0, ..., 0, 1, ..., 0][..., ..., ..., ..., ..., ..., ..., ..., ...][0, 0, ..., 0, 1, ..., 0, 0, ..., 1][0, 0, ..., 1, 0, ..., 0, 0, ..., 0][..., ..., ..., ..., ..., ..., ..., ..., ...][0, 0, ..., 0, 0, ..., 1, 0, ..., 0][0, 0, ..., 0, 0, ..., 0, 1, ..., 0][..., ..., ..., ..., ..., ..., ..., ..., ...]其中,P的第i行和第j行交换了1的位置,其余位置都是0。

这样,我们就可以通过P*A来交换矩阵A的第i行和第j行。

同样地,如果我们要交换矩阵A的第i列和第j列,那么我们可以构造一个交换矩阵Q,使得A*Q交换了第i列和第j列,即:Q = [1, 0, ..., 0, 0, ..., 0][0, 1, ..., 0, 0, ..., 0][..., ..., ..., ..., ..., ...][0, 0, ..., 0, 1, ..., 0][0, 0, ..., 1, 0, ..., 0][..., ..., ..., ..., ..., ...][0, 0, ..., 0, 0, ..., 1][0, 0, ..., 0, 0, ..., 0][..., ..., ..., ..., ..., ...]其中,Q的第i列和第j列交换了1的位置,其余位置都是0。

初等行变换法求逆矩阵

初等行变换法求逆矩阵

初等行变换法求逆矩阵要说求逆矩阵,咱们就得聊聊那一套初等行变换的玩法。

听上去是不是挺高大上的?但其实也没那么复杂,跟咱们平时调皮捣蛋的方式还挺像的。

咱们就把这些矩阵当成一个个小朋友,每个小朋友都有自己的特点。

有的高,有的矮,有的胖,有的瘦。

要想让他们“逆转”过来,得先理一理他们的秩序,简单点儿说,就是把这些小朋友排好队,让他们听话。

先来点儿基本的概念。

你得有一个方阵,这个方阵就像是一个小班级,里面的每一个数字都是小朋友。

要是这个班级的学生特别优秀,成绩杠杠的,咱们就可以通过行变换,给他们重新排序,找出他们的“逆朋友”。

什么叫行变换呢?其实就是简单的三招:交换行、倍乘行和加减行。

这就像是在课堂上,老师让你们互换位置,或者给你们加点儿小任务,让你们更团结。

咱们先说说交换行。

这就像是班里两个小朋友吵架,老师一看,赶紧让他们换个位置,嘿,气氛立马就变了,心里那个舒坦呀。

数学上也是一样,咱们把矩阵的某两行调换一下,整个阵型就焕然一新了。

调换几次,甚至能发现原来一切都没那么复杂,反而更容易处理。

接着是倍乘行,这招儿可厉害了。

想象一下,一个小朋友跑得飞快,老师说:“好吧,你这次跑得特别好,咱们给你加点儿分。

”在矩阵里,这就意味着把某一行的每个数字都乘上一个常数,哎,这样一来,整个班级的风气都变了,瞬间就升华了。

每个小朋友都跟着变得更加出色,大家互相带动,气氛相当好。

再说加减行。

这个就像是班级里有一个小朋友特别喜欢分享,每次都主动把自己的糖果分给别人。

数学上说的就是把一行的数字加到另一行里,嘿,大家都开心得不得了。

你一口我一口,大家的数字都在变,变得越来越好。

这个时候,大家就像是一家人,齐心协力,共同进步,最终实现了逆转。

好啦,经过这一番折腾,咱们的班级终于整齐划一了,完美的样子就出来了。

这时候,你再看看刚开始的那个方阵,心里会不会感慨万千?真是物是人非,境随心转。

通过这几招,咱们就成功求出了逆矩阵,简直是大功告成,值得庆祝一番。

考研数学:用初等变换求逆矩阵及乘积的方法

考研数学:用初等变换求逆矩阵及乘积的方法

考研数学:用初等变换求逆矩阵及乘积的方法来源:文都教育在考研数学线性代数中,初等变换是一种非常重要的方法,被广泛地用于很多题型的求解之中,如行列式的计算、矩阵的求逆、线性方程组的求解、矩阵秩的计算、化二次型为标准型等。

初等变换包括初等行变换和初等列变换,具体说有三种:互换两行(列)、某行(列)乘以一个非零数、某行(列)乘以一个数加到另一行(列)。

下面我们对初等变换在矩阵求逆及乘积中的应用做些分析总结,供各位考研的学子参考。

一、用初等变换求逆矩阵及乘积的方法1、用初等行变换求逆矩阵1A -:对(,)A E 作初等行变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1A -,即1(,)(,)rA E E A -→,由此即求得1A -;2、用初等列变换求逆矩阵1A -:求1A -也可用初等列变换,对A E ⎛⎫⎪⎝⎭作初等列变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1A -,即1c A E E A -⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭,由此即求得1A -;3、用初等行变换求1A B -:对(,)A B 作初等行变换,将其中的A 变为单位矩阵E ,这时矩阵B 就变为1A B -,即1(,)(,)rA B E A B -→,由此即求得1A B -;4、用初等列变换求1BA -:对A B ⎛⎫⎪⎝⎭作初等列变换,将其中的A 变为单位矩阵E ,这时矩阵B 就变为1BA -,,即1c A E B BA -⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭,由此1BA -此即求得1BA -.上面的1)和2)实际上是3)和4)的特殊情况,只要取B E =即得1)和2)。

下面只要证明3)和4)即可。

证:3)由于作一次初等行变换相当于左乘一个初等矩阵,所以对A 作一系列的初等行变换得到单位矩阵E 相当于A 左乘一个可逆阵P ,使PA E =,这时1P A -=,1(,)(,)(,)(,B)P A B PA PB E PB E A -===,即1(,)(,)rA B E A B -→;4)同3)类似,由于作一次初等列变换相当于右乘一个初等矩阵,所以对A 作一系列的初等列变换得到单位矩阵E 相当于A 右乘一个可逆阵P ,使AP E =,这时1P A -=,1A AP E P B BP BA -⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即1c A E B BA -⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭.二、典型实例例1.设011111112A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求1A -.解:作初等行变换:011100111010(,)111010011100112001021011r rA E --⎛⎫⎛⎫⎪ ⎪=-→-→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭1111010100312011100010111(,)001211001211rr E A -----⎛⎫⎛⎫ ⎪ ⎪→--→-= ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,故1312111211A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭.例2.解矩阵方程211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭.解:记上面的方程为XA B =,因为0A ≠,所以A 可逆,1X BA -=,对A B ⎛⎫⎪⎝⎭作初等列变换得:211121100210120101111111130113113132432342325c cc A B --⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=→→→--- ⎪⎪ ⎪⎪⎝⎭--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭100100100110010110101001103121221123282352355333c c c ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪- ⎪→→→- ⎪ ⎪ ⎪--⎪ ⎪- ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪⎝⎭⎝⎭⎝⎭,故122182533X BA --⎛⎫⎪== ⎪-- ⎪⎝⎭. 矩阵的逆运算是一种最基本最重要的运算,而初等变换是求逆矩阵的一种最常用的方法,大家一定要熟练掌握。

初等列变换求可逆矩阵

初等列变换求可逆矩阵

初等列变换求可逆矩阵【原创实用版】目录1.初等列变换与可逆矩阵的关系2.初等列变换的定义和性质3.如何使用初等列变换求可逆矩阵4.举例说明初等列变换求可逆矩阵的过程5.总结正文一、初等列变换与可逆矩阵的关系初等列变换是指对矩阵进行行或列的操作,使其变为一个新的矩阵,但保持原矩阵与新矩阵的行列式相等。

可逆矩阵是指一个矩阵与其逆矩阵相乘等于单位矩阵,即满足 A * A^-1 = I(I 为单位矩阵)。

初等列变换与可逆矩阵有着密切的关系,因为通过初等列变换可以将一个可逆矩阵转化为单位矩阵,从而求出该矩阵的逆矩阵。

二、初等列变换的定义和性质初等列变换主要包括以下两种操作:1.行变换:将矩阵的行进行交换或翻转,以达到将矩阵化为上三角矩阵或简化矩阵的目的。

2.列变换:将矩阵的列进行交换或翻转,以达到将矩阵化为上三角矩阵或简化矩阵的目的。

初等列变换具有以下性质:1.初等列变换不改变矩阵的行列式值。

2.初等列变换不改变矩阵的秩。

3.初等列变换可以将可逆矩阵化为单位矩阵。

三、如何使用初等列变换求可逆矩阵假设有一个可逆矩阵 A,我们要通过初等列变换将其化为单位矩阵。

具体的操作步骤如下:1.计算矩阵 A 的行列式值,判断矩阵 A 是否可逆。

2.如果矩阵 A 可逆,则计算矩阵 A 的逆矩阵 A^-1。

3.通过初等列变换,将矩阵 A 化为单位矩阵。

具体操作为:将矩阵 A 的某一列(或行)作为变换的依据,通过交换或翻转其他列(或行)以使得矩阵 A 变为单位矩阵。

四、举例说明初等列变换求可逆矩阵的过程假设有一个可逆矩阵 A = [1 2; 3 4],我们要通过初等列变换将其化为单位矩阵。

1.计算矩阵 A 的行列式值:|A| = 1 * 4 - 2 * 3 = -22.计算矩阵 A 的逆矩阵:A^-1 = [4 -3; -2 1]3.通过初等列变换,将矩阵 A 化为单位矩阵:- 将第二列减去第一列的 2 倍:A" = [1 2; 3 -4]- 将第二行减去第一行的 2 倍:A"" = [1 -4; 3 2]- 将第三行减去第二行的 1 倍:A""" = [1 -4; 0 2]- 将第四行减去第三行的 2 倍:A"""" = [1 -4; 0 0]通过以上初等列变换,可逆矩阵 A 最终被化为单位矩阵。

初等列变换求可逆矩阵

初等列变换求可逆矩阵

初等列变换求可逆矩阵1. 什么是初等列变换?初等列变换是矩阵运算中的一种操作,通过对矩阵的列进行变换,可以改变矩阵的形状和性质。

初等列变换包括三种操作:交换两列的位置、用一个非零常数乘以某一列、将某一列的倍数加到另一列上。

2. 可逆矩阵的定义在矩阵理论中,可逆矩阵也称为非奇异矩阵或满秩矩阵。

一个n阶矩阵A是可逆的,当且仅当存在一个n阶矩阵B,使得AB=BA=I,其中I是单位矩阵。

3. 初等列变换与可逆矩阵的关系初等列变换可以改变矩阵的形状和性质,包括矩阵的秩。

对于一个n阶矩阵A,如果通过一系列的初等列变换可以将A变为单位矩阵I,那么矩阵A就是可逆的。

证明:假设矩阵A经过一系列的初等列变换可以变为单位矩阵I,即存在一系列的初等矩阵P1, P2, …, Pn,使得Pn * … * P2 * P1 * A = I。

我们知道,初等矩阵的逆矩阵也是一个初等矩阵,所以可以将上式变为Pn * … * P2 * P1 * A * (Pn * … * P2 * P1)^-1 = I * (Pn * … * P2 * P1)^-1。

由于单位矩阵乘以任何矩阵等于该矩阵本身,并且任何矩阵乘以单位矩阵等于该矩阵本身,所以上式可以进一步简化为 A * (Pn * … * P2 * P1)^-1 = I。

因此,A的逆矩阵等于(Pn * … * P2 * P1)^-1,即矩阵A是可逆的。

4. 初等列变换的具体操作4.1 交换两列的位置交换矩阵A的第i列和第j列的位置,可以用一个初等矩阵Pij来表示。

初等矩阵Pij是一个单位矩阵I,将第i列和第j列交换位置后得到的矩阵。

例如,对于一个3阶矩阵A,交换第1列和第2列的位置,可以用初等矩阵P12来表示:P12 = [[0, 1, 0], [1, 0, 0], [0, 0, 1]]则有 P12 * A = B,其中B是将A的第1列和第2列交换位置后得到的矩阵。

4.2 用一个非零常数乘以某一列用一个非零常数k乘以矩阵A的第i列,可以用一个初等矩阵Pi(k)来表示。

初等矩阵的逆矩阵的三个公式

初等矩阵的逆矩阵的三个公式

初等矩阵的逆矩阵的三个公式初等矩阵是在单位矩阵的基础上进行某些简单的行变换或列变换得到的矩阵。

它们具有许多重要的性质和应用。

在矩阵论中,初等矩阵的逆矩阵也是一个非常重要的概念。

下面将介绍初等矩阵的逆矩阵的三个公式。

第一个公式是关于初等行变换的逆矩阵,即将一个矩阵A通过一次初等行变换得到矩阵B,那么矩阵B的逆矩阵乘以A就等于单位矩阵。

具体来说,如果B是通过将A中的第i行与第j行交换得到的,其中i 不等于j,那么B的逆矩阵乘以A等于单位矩阵,即B^-1 * A = I。

这个公式告诉我们,通过交换两行可以消去一个初等行变换。

第二个公式是关于初等列变换的逆矩阵,与第一个公式类似。

如果B是通过将A中的第i列与第j列交换得到的,其中i不等于j,那么A乘以B的逆矩阵等于单位矩阵,即A * B^-1 = I。

这个公式表明,通过交换两列可以消去一个初等列变换。

第三个公式是关于初等矩阵的逆矩阵的乘法规律。

假设A是通过对单位矩阵进行一次初等行变换得到的矩阵,B是通过对单位矩阵进行一次初等列变换得到的矩阵,那么A的逆矩阵乘以B的逆矩阵等于对单位矩阵进行这两次初等变换得到的矩阵的逆矩阵,即(A * B)^-1 =B^-1 * A^-1。

这个公式告诉我们,逆矩阵的乘法顺序与初等变换的顺序相反。

初等矩阵的逆矩阵的三个公式为我们解决线性方程组和矩阵的相似性等问题提供了有效的工具。

通过这些公式,我们可以快速地计算出初等矩阵的逆矩阵,并应用到具体问题中。

同时,这些公式也揭示了矩阵的内在结构和变换规律的一些重要性质,具有重要的指导意义。

总之,初等矩阵的逆矩阵的三个公式是矩阵论中的重要概念,通过对初等行变换和初等列变换的理解,我们可以根据这些公式来进行矩阵的运算和求解。

在实际应用中,这些公式的应用广泛,能够帮助我们解决各种与矩阵相关的问题。

因此,深入理解和应用初等矩阵的逆矩阵的三个公式对于学习和研究线性代数和矩阵论具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。

李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。

作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。

下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。

用矩阵的初等变换求逆矩阵
一、问题提出
在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求
A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃)
二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”)
我们已学习了矩阵初等变换的性质,如
1.定理
2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。

2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。

3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。


4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。

(1)
由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么
(2)
由(1)式 代入(2)式左边,
上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置变换为我们所要求的1A -,即
211211111111
12112112s t s s t t m P P P AQ Q Q E A P
P P P EQ Q Q Q R R R ----------=⇒=∆ 11121m R R R A E ---= 111121m R R R A ----= ()()122n n n n
A E E A -⨯⨯−−−−−→ 1*1A A A -=()()()1111A A E A A A E E A ----==111121m A R R R ----=
()()111121m R R R A E E A ----=
三,讲解例题
1. 求逆矩阵方法的应用之一
例 解:
四,知识拓展
2.求逆矩阵方法的应用之二
利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A ︱E )经过初等行变换,原来A 的位置不能变换为单位阵E ,那么A 不可逆。

例 解:
而上面分块矩阵的第一块第二行全为零,它不可能变换为单位矩阵,所以A 不可逆。

3.求逆矩阵方法的应用之三
利用矩阵初等行变换解矩阵方程 (“润物细无声”)
1112120,113A A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭设求。

112100120010113001A E ⎛⎫ ⎪=- ⎪ ⎪⎝⎭
()2131r r r r +-112100032110001101⎛⎫ ⎪−−→ ⎪ ⎪-⎝⎭110302030312001101⎛-⎫ ⎪−−→- ⎪ ⎪-⎝⎭
132322r r r r --30211012010133001101⎛⎫- ⎪−−→- ⎪ ⎪ ⎪-⎝⎭313r 1423310012010133001101⎛⎫-- ⎪ ⎪→- ⎪ ⎪- ⎪⎝⎭12r r -11423312133101A -⎛⎫-- ⎪ ⎪⇒=- ⎪ ⎪- ⎪⎝⎭112122145,41211111A A ----⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭
设求。

12121000214501004121001011110001A E ⎛---⎫ ⎪- ⎪= ⎪ ⎪ ⎪-⎝⎭()12121000036921000969401001231001⎛---⎫ ⎪- ⎪→ ⎪- ⎪ ⎪-⎝⎭12121000000011030969401001231001⎛---⎫ ⎪- ⎪→ ⎪- ⎪ ⎪-⎝⎭
对一般的矩阵方程 求解,我们可以先求1A - ,然后求X =1
A -
B 。

现在我们介绍另外一种方法求矩阵方程。

其实在推导求逆矩阵方法的过程就是求解矩阵方程的过程,因为求1A -就是求解矩阵方程 的解,而对一般的矩阵方程 只要将 中的E 换成B ,然后利
用初等行变换,即
其中的1
A -
B 即为所求矩阵方程 的X 。


解:
五、小结
1.矩阵初等行变换:求逆、判断矩阵是否可逆、 解矩阵方程
2.思考:若XA=B ,如何用初等变换法求X?
贺建辉
2007-11-21
AX E =AX B =AX B =()A E ()()
122n n n n A B E A B -⨯⨯−−−−−→ AX B =123252213134343A B AX B X ⎛⎫⎛⎫
⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设,,若,求。

123252213134343A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭()1232502519026212⎛⎫ ⎪→---- ⎪ ⎪----⎝⎭102140251900113⎛--⎫ ⎪→---- ⎪ ⎪---⎝⎭100320204600113⎛⎫ ⎪→- ⎪ ⎪---⎝⎭100320102300113⎛⎫ ⎪→-- ⎪ ⎪⎝⎭132X 2313A B -⎛⎫ ⎪⇒==-- ⎪ ⎪⎝⎭。

相关文档
最新文档