青海省西宁市九年级上学期数学第一次月考试卷
24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)
2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
2024年青海省西宁市初中学考九年级调研测试(一模)数学试题
2024 年青海省西宁市初中学考九年级调研测试(一模)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,是无理数的是( )A.B .17 C .0.3− D .02.一包零食的质量标识为“702±克”,则下列质量合格的是( )A .66克B .67克C .71克D .74克 3.下列说法正确的是( )A .“买中奖率为110的奖券10张,中奖”是必然事件 B .“汽车累积行驶10000km ,从未出现故障”是不可能事件C .襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D .若两组数据的平均数相同,则方差小的更稳定4.下列计算正确的是( )A .211−=B . 3=−C .22122a a ÷=D .()3263412a a a ⋅−=−5.甲、乙两种物质的溶解度()y g 与温度t (℃)之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随温度升高而增大B .30℃时两种物质的溶解度一样C .0℃时两种物质的溶解度相差10gD .在040−℃℃之间,甲的溶解度比乙的溶解度低6.某校学生去距离学校12km 的博物馆参观,一部分学生骑自行车先走,过了20min 后其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是自行车的速度的2倍,则自行车的速度是( )A .0.3km/minB .0.6km/minC .0.8km/minD .1.2km/min 7.如图,在Rt ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在BAC ∠的内部交于点G ,作射线AG 交BC 于点D .若3AC =,4BC =,则CD 的长为( )A .78B .1C .32D .28.二次函数 ()20y ax bx c a =++≠的y 与x 的部分对应值如下表:根据表格中的信息,得到了如下的结论:①<0abc②二次函数 ²y ax bx c =++可改写为 ()212y a x =−− 的形式 ③关于x 的一元二次方程 2 1.5ax bx c ++=−的根为 120,2x x ==④若0y >,则3x >⑤当2x ≥时,y 有最小值是 1.5−其中所有正确结论的序号是( )A .①②④B .②③⑤C .①③⑤D .②③④⑤二、填空题9.计算:23−= .10.分解因式:222m −= .11.函数y =x 的取值范围是 . 12.如图,ABC 中,点D ,E ,F 分别为,,AB AC BC 的中点,若随机向ABC 内投一粒米,则米粒落在图中阴影部分的概率为13.一个函数的图象分别与x 轴的负半轴、y 轴的正半轴相交,这个函数的解析式可以是 (写出一个即可).14.如图,点P 是反比例函数()0k y x x=>图象上一点,P 经过坐标原点,且与两坐标轴分别交于点()()4,0,0,3A B ,则k = .15.如图,在ABC 中,90C ∠=︒,AC BC ==ABC 绕点A 逆时针方向旋转60︒到ABC '△的位置,则图中阴影部分的面积是 .16.如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边 D 处同时施工,若150,1600m,105ABC BC BCD ∠=︒=∠=︒,则CD =17.如图①,在Rt ABC △中,90B ?? ,动点P 以每秒2个单位长度的速度从A 点出发,沿折线A B C ——运动(到C 点停止),BP 的长y 随运动时间t (s)变化的函数图象如图②所示,则BC 的长是 .18.矩形ABCD 中,6,8AB BC ==,点P 在线段BD 上,过点P 作PE BC ⊥,垂足为点E ,连接AP ,若APD △是等腰三角形,则PE 的长为 .三、解答题19(()1312.7−⎛⎫−+− ⎪⎝⎭ 20.解不等式组:()11311511224x x x x ⎧+>−⎪⎨+≥−⎪⎩,并写出它的所有整数解. 21.先化简,再求值:24211326a a a a −+⎛⎫−÷ ⎪++⎝⎭其中1.a = 22.某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)请用画树状图或列表的方法列出所有等可能出现的结果;(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.23.如图,在菱形ABCD 中,对角线AC 与BD 相交于点 O ,过点D 作 DE BD ⊥交BC 的延长线于点 E .(1)求证:四边形ACED 是平行四边形;(2)若 AC BD ==求tan CDE ∠的值.24.电商平台销售某款儿童玩具,进价为每件10元,在销售过程中发现,每周的销售量y (件)与每件玩具售价x (元)之间满足一次函数关系.当每件玩具售价为12元时,每周的销量为80件;当每件玩具售价为14元时,每周的销量为40件.(1)求y 与x 之间的函数关系式(其中1016x ≤≤,且x 为整数);(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?25.如图,O 的直径AB 经过弦CD 的中点E ,连接AC ,经过点A 的切线与BD 的延长线交于点 P .(1)求证:CAB P ∠=∠;(2)若10,8AB AC ==,求AP 的长26.【问题提出】(1)如图①,在正方形ABCD 中,点E 在DC 边上,连接BE ,AF BE ⊥,垂足为点 G ,交BC 于点 F .请判断AF 与BE 的数量关系,并说明理由.【类比探究】(2)如图②,在矩形ABCD 中,34AB BC =,点E 在DC 边上,连接BE , AF BE ⊥,垂足为点C ,交BC 于点F .求AF BE 的值.【拓展应用】(3)如图③,在(2)的条件下,平移线段AF ,使它经过BE 的中点H ,交AD 于点M ,交BC 于点N ,连接NE ,若 4sin 5MN ENC =∠=,则BC 的长为 .27.如图,抛物线 2y x bx c =++与y 轴交于点()0,2A ,点B 是抛物线的顶点,直线 2x =是抛线物的对称轴,且与x 轴交于点C .(1)求抛物线的函数解析式;(2)点D 是对称轴左侧抛物线上一点,连接BD , 45,DBC ∠=︒求点 D 的坐标.(3)在(2)的条件下,若点M 是x 轴上方抛物线对称轴上一点,点 P 在坐标平面内,且以点A ,D ,M ,P 为顶点的四边形是以AD 为边的菱形,请求出所有符合条件的点M 的坐标。
人教版九年级(上)数学第一次月考试卷(5)
人教版九年级(上)数学第一次月考试卷(5)一、选择题1.下列函数中,是二次函数的有()①y=3(x﹣1)2+1;②y=x+;③y=8x2+1;④y=3x3+2x2.A.1个B.2个C.3个D.4个2.对于二次函数y=3(x+4)2,其图象的顶点坐标为()A.(0,4)B.(0,﹣4)C.(4,0)D.(﹣4,0)3.将抛物线y=﹣(x﹣2)2向右平移1个单位,再向下平移2个单位后,得到的抛物线解析式为()A.y=﹣(x﹣1)2+2B.y=﹣(x﹣1)2﹣2C.y=﹣(x﹣3)2+2D.y=﹣(x﹣3)2﹣24.如图,二次函数y=ax2+bx+c的图象与x轴交于A(﹣4,0)和原点,且顶点在第二象限.下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而减小C.b2﹣4ac<0D.函数值有最小值4a﹣2b+c5.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,则当水面宽8米时,水面下降了()A.米B.2米C.米D.米6.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A.y=﹣x2+10x+1200(0<x<60)B.y=﹣x2﹣10x+1250(0<x<60)C.y=﹣x2+10x+1250(0<x<60)D.y=﹣x2+10x+1250(x≤60)7.已知抛物线y=﹣x2+2x+c,若点(0,y1)(1,y2)(3,y3)都在该抛物线上,则y1、y2、y3的大小关系是()A.y3>y1>y2B.y3<y2<y1C.y3>y2>y1D.y3<y1<y2 8.二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b,c的值分别是()A.2,4B.2,﹣4C.﹣2,4D.﹣2,﹣49.如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为y,AE为x,则y关于x的函数图象大致是()A.B.C.D.10.二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≥0时,x<0或x>4;③函数表达式为y=﹣x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题4分,共24分)11.二次函数y=a(x﹣m)2的图象如图,已知a=,OA=OC,则该抛物线的解析式为.(用顶点式表示)12.点P(a,9)在函数y=4x2﹣3的图象上,则代数式的值等于.13.已知y关于x的二次函数y=﹣x2+(m﹣1)x+m,无论m取何值,函数图象恒过定点A,则点A的坐标为.14.在同一直角坐标系中,已知函数,y2=kx+2(k为不等于零的常数).若函数y2的图象经过y1的图象的顶点,则k,c之间的数量关系为.15.如图所示的是卡塔尔世界杯足球比赛中某一时刻的鹰眼系统预测画面(图1)和截面示意图(图2),足球的飞行轨迹可看成抛物线,足球离地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系的部分数据如表:则该运动员踢出的足球在第s落地.t/s0123…h/m0…16.如图,在平面直角坐标系中,二次函数y=x2+2x﹣3的图象与坐标轴相交于A,B,C 三点,连接AC,BC.已知点E坐标为,点D在线段AC上,且.则四边形BCDE面积的大小为.三、解答题17.计算:(1);(2)x(x+6)=8(x+3).18.如图1是某公园人工湖上的一座拱桥的示意图,其截面形状可以看作是抛物线的一部分.经测量拱桥的跨度AB为12米,拱桥顶面最高处到水面的距离CD为4米.(1)在边长为1的正方形网格中建立适当的平面直角坐标系,根据已知数据描出点A,B,C,并用平滑曲线连接;(2)结合(1)中所画图象,求出该抛物线的表达式;(3)现有一游船(截面为矩形)宽度为4米,顶棚到水面的高度为2.8米.当游船从拱桥正下方通过时,为保证安全,要求顶棚到拱桥顶面的距离应大于0.5米,请判断该游船能否安全通过此拱桥.19.供销社作为国家实施“乡村振兴”战略的中坚力量,可以帮助农民分配协调农产品,推动全国统一大市场尽快构建完成,给老百姓带来真正的实惠.某供销社指导农民生产和销售当地特产,对该特产的产量与市场需求,成本与售价进行了一系列分析,发现该特产产量y产量(单位:吨)是关于售价x(单位:元/千克)的一次函数,即y产量=200x﹣100;而市场需求量y需求(单位:吨)是关于售价x(单位:元/千克)的二次函数,部分对应值如表.…2345…售价x(元/千克)…10201020980900…需求量y需求(吨)同时还发现该特产售价x(单位:元/千克),成本z(单位:元/千克)随着时间t(月份)的变化而变化,其函数解析式分别为x=t+1,.(1)直接写出市场需求量y需求关于售价x的函数解析式(不要求写出自变量取值范围);(2)哪个月份出售这种特产每千克获利最大?最大值是多少?(3)供销社发挥职能作用,避免浪费,指导农民生产,若该特产的产量与市场需求量刚好相等,求此时出售全部特产获得的总利润.20.如图,抛物线y=﹣x2+2x+c与x轴交于A、B两点,若直线y=kx+b(k≠0)与抛物线交于A、C两点,已知A(﹣1,0),C(2,m).(1)求直线AC的函数表达式;(2)若将直线AC沿y轴的正方向向上平移n个单位长度后,与抛物线只有一个公共点,求此时n的值.21.[回归教材](1)已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两个实数解为x1,x2,则有x1+x2=﹣,x1•x2=.这个结论课本上称为一元二次方程根与系数的关系,因为是法国数学家韦达发现的,人们又称它为“韦达定理”.请你证明这个定理.[夯实基础](2)若一元二次方程3x2﹣9x﹣8=0的两个实数解为x1、x2,求3+9x2+5的值.[拓展应用](3)若关于x的一元二次方程x2﹣(2a+1)x+a2+1=0的两个实数解为x1、x2,求+的最小值.22.为研究某种化学试剂的挥发情况,某研究团队在两种不同的场景下做对比实验,收集了该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在直角坐标系中,如图所示.(1)从y=ax+21(a≠0),y=(k≠0),y=﹣0.04x2+bx+c中,选择适当的函数模型分别模拟两种场景下y随x变化的函数关系,并求出相应的函数表达式;(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克.在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?23.【阅读理解】:关于x的函数y=mx﹣2m﹣3(m为常数,且m≠0),经过某个定点,请求出定点的坐标.方法一:先将等式化为(x﹣2)m=y+3的形式,再根据0m=0时有m无数多个解,求得定点的坐标为(2,﹣3);方法二:当m=1时,y=x﹣5;当m=2时,y=2x﹣7;解方程组解得,∴求得定点的坐标为(2,﹣3)【模仿练习】关于x的二次函数y=mx2+(2m+1)x+1(为常数,且m≠0),是否经过定点,如果是,请选择一种方法求出定点的坐标;如果不是,请说明理由.【尝试应用】某“数学兴趣小组”根据学习函数的经验,对函数y=﹣(x﹣1)(|x|﹣3)的图象和性质进行了探究,探究过程如下,请补充完整:(1)计算x与y的几组对应值,其中m=;列表如下:x…﹣4﹣3﹣2﹣101234…y…50﹣3m﹣3010﹣3…(2)如图,在直角坐标系中用描点法画出了函数y=﹣(x﹣1)(|x|﹣3)这个图象;(3)若直线y=tx﹣2t+2与函数y=﹣(x﹣1)(|x|﹣3)(2<x≤4)的图象只有一个交点,请结合函数图象,求出t的取值范围.24.“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.。
九年级数学上册第一次月考试卷(附答案)
九年级数学上册第一次月考试卷(附答案)一.单选题。
(每小题4分,共48分)1.下列各组线段中,成比例线段的一组是()A.1,2,3,4B.2,3,4,6C.1,3,5,7D.2,4,6,82.反比例函数y=6x的图象分别位于()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限3.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2B.3C.4D.5(第3题图)(第4题图)(第9题图)4.如图,在△ABC中,点D,E分别在AB,AC上,若DE∥BC,ADAB =25,DE=6cm,则BC的长为()A.9cmB.12cmC.15cmD.18cm5.点A(a,1)在双曲线y=3x上,则a的值是()A.1B.﹣1C.3D.﹣36.如果两个相似多边形的周长比是2:3,那么它们的面积比是()A.4:9B.2:3C.√2:√3D.16:817.若点A(2,y1),B(﹣1,y2),C(4,y3),都在反比例函数y=8x的图象上,则y1,y2,y3的大小比较是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y2<y1<y38.连续掷两枚质地均匀的硬币,两枚正面朝上的概率是()A.14B.12C.13D.349.如图,点A是函数y=kx图象上一点,AB垂直x轴于点B,若S△ABO=4,则k的值为()A.4B.8C.﹣4D.﹣810.某时刻测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长是12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米11.若反比例函数y=kx的图象的两个分支位于第一、三象限,则一次函数y=kx-k的图象大致是()A. B. C. D.12.若反比例函数y=a-1x(a>1,x<0)图象上有两个点(x1,y1)和(x2,y2),设m=(x1-x2)(y1-y2),则y=mx-m不经过第()象限.A.一B.二C.三D.四二.填空题。
2022-2023学年北师大版九年级数学上册第一次月考测试卷含答案
九年级数学上册第一次月考试卷(满分150分 时间:120分钟)一.单选题。
(每小题4分,共48分)1.方程:①2x 2-13x=1,②2x 2-5xy+y 2=0,③7x 2+1=0,④y22=0,其中是一元二次方程是( )A.①②B.②③C.③④D.①③ 2.矩形,菱形,正方形具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角 3.下列命题中,不正确的是( )A.顺次连接菱形各边中点所得的四边形是矩形B.有一个角是直角的菱形是正方形C.对角线相等且垂直的四边形是正方形D.有一个角是60°的等腰三角形是等边三角形 4.不解方程,判断方程2x 2-4x -1=0的根的情况是( )A.没有实数根B.有两个相等实数根C.有两个不相等实数根D.无法确定 5.在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( ) A.频率就是概率 B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得的频率的值也相同D.随着试验次数的增加,频率一定会逐步稳定在概率数值附近6.若m ,n 是一元二次方程x 2+2x -2021=0的两个实数根,则2m+2n -mn 的值为( ) A.2021 B.2019 C.2017 D.20157.用配方法解方程2x 2+4x+1=0,配方后的方程是( )A.(2x+2)2=﹣2B. (2x+2)2=﹣3C.(x+12)2=12D.(x+1)2=12 8.某公司今年一月产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元,设这个百分数为x ,则可列方程为( )A.200(1+x )2=1400B.200+200(1+x )+200(1+x )2=1400C.1400(1+x )2=200D.200(1+x )3=14009.有一个不透明的口袋中,装有5个红球和3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ) A.15 B.13 C.58 D.3810.根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=√2,当∠B=90°时,如图2,AC=().A.√2B.2C.2√2D.√3(第10题图)(第11题图)(第12题图)11.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数为()A.50°B.55°C.70°D.75°12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,下列结论:①EF=2BE,②PF=2PE,③FQ=2EQ,④△PBF是等边三角形,其中正确的是()A.①②B.②③C.①③D.①④二.填空题。
2023-2024学年九年级(上)第一次月考数学试卷-(含答案)
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
2024年青海省西宁市初中学考九年级调研测试(二模)数学试题
2024年青海省西宁市初中学考九年级调研测试(二模)数学试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列几何体中,主视图是三角形的是()A.B.C.D.3.“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则()A.P=0 B.0<P<1 C.P=1 D.P>14.下列二次根式化简正确的是()A B=C D=5.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是() A.向左平移1个单位长度,再向上平移2个单位长度B.向左平移1个单位长度,再向下平移2个单位长度C.向右平移1个单位长度,再向上平移2个单位长度D.向右平移1个单位长度,再向下平移2个单位长度6.已知O e 的半径等于8cm ,圆心O 到直线l 上某点的距离为8cm ,则直线l 与O e 的公共点的个数为( ) A .0B .1C .1或2D .0或17.无论x 取何实数时,二次函数()2221y x m x m =-++的值始终为正数,则m 的取值范围是( ) A .14m >B .14m <C .14m >-D .14m <-8.如图1,在正方形ABCD 中,4AB =,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度相等,连接DM MN ND ,,.设点M 运动的路程为()04x x ≤≤,DMN V 的面积为S ,则S 与x 之间的函数图象大致是( )A .B .C .D .二、填空题 9.5的算术平方根.10.生物学家发现某种花粉的直径约为0.0000021毫米,数据0.0000021用科学记数法表示为. 11.小丽的笔试成绩为100分,面试成绩为90分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是分.12.已知2x =,2y =,则222x xy y ++=.13.如图,在六边形ABCDEF 中,一个外角α的度数为70︒,则AB C D E ∠+∠+∠+∠+∠=.14.如图,直线()10y kx b k =+≠与2y x =-相交于点(),1P a ,则关于x 的不等式kx b x +>-的解集是.15.如图,以正方形ABCD 的顶点A 为圆心,AB 长为半径画弧,得到扇形纸片BAD ,用16.如图,AB 是O e 的弦,直线DE 与O e 相切于点A ,且36BAE ∠=︒,点C 为O e 上异与A ,B 的一点,则ACB ∠的度数为.17.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC ,第1次折叠使点B 落在BC 的点B '处,折痕AD 交BC 点D ,第2次折叠使点A 落在点D 处,折痕MN 交AB '于点P .若14BC =,MP MN +=.18.如图,△AOB 是直角三角形,∠AOB =90°,∠ABO =30°,点A 在反比例函数y =2x 的图象上,若点B 在反比例函数y =kx的图象上,则k =.三、解答题19.计算:02024132⎛-+- ⎝⎭. 20.先化简,再求值:()()()222233a a a a a -+-++,其中12a =-.21.已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.22.小明参加某商场的“翻牌抽奖”活动,如图所示的4张牌分别对应价值为10,20,30,50(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中50元奖品的概率为________;(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,请用列表或画树状图的方法列出所有等可能的情况,并求出所获奖品总价值不低于60元的概率是多少?23.如图,在矩形ABCD 中,延长BC 到E ,延长CB 到F ,使BF CE =,AE ,DF 交于点G .(1)求证:GE GF =;(2)过点E 作EH EF ⊥,垂足为点E ,交FD 的延长线于点H ,若34AB BE =,4=AD ,求CE 的长.24.中华优秀传统文化源远流长,是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书,许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求这两种图书的单价分别是多少?(2)为筹备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求购买多少本《周髀算经》时总费用最少,此时的总费用是多少元?25.如图,AB 是O e 的直径,CD 是O e 的弦,且点C 是劣弧»BD的中点,AC 与BD 交于点E ,连接AD BC OC OD ,,,.(1)求证:ADC DEC ∽△△; (2)若2AE =,1EC =.求证:四边形DOBC 是菱形;(3)在(2)的条件下,过点C 作O e 的切线,交AB 的延长线于点H ,则OCH △的面积等于_______. 26.【探究发现】(1)如图①,在等边三角形ABC 内部有一点P ,若150APB ∠=︒.求证:222AP BP CP +=. 请将下列证明过程补充完整:证明:将APC △绕A 点逆时针旋转60︒,得到AP B '△,连接PP ', ∴APC ≌△__________,∴AP AP '=,PC =_______,又∵60P PA '∠=︒,∴APP 'V 是等边三角形(_______) ∴PP AP '=,60APP '∠=︒,又∵150APB ∠=︒,∴90BPP '∠=︒, 在Rt BPP '△中,22P P PB '+=___________,即222AP BP CP +=. 【类比延伸】(2)如图②,在ABC V 中,90BAC ∠=︒,AB AC =,三角形内部有一点P ,若135APB ∠=︒. 求证:2222AP BP CP +=(提示:将APC △绕A 点逆时针旋转90°,得到AP B '△,连接PP ') 【联想拓展】(3)如图③,在ABC V 中,120BAC ∠=︒,AB AC =,点P 在直线BA 上方,且60APB ∠=︒,满足()()2220kAP BP CP k +=>(其中0k >).将ACP △绕A 点顺时针旋转__________°,得到ABP '△,连接PP ',过点A 作AH PP '⊥,垂足为H ,则k =_________.27.如图,在平面直角坐标系中,二次函数212y x bx c =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,一次函数122y x =-经过点B ,C .(1)求二次函数的解析式; (2)求证:∠=∠ACO ABC(3)抛物线上是否存在一点P,使PCB ACB BCO∠+∠=∠,若存在,求出点P的坐标;若不存在,请说明理由.。
人教版九年级数学上学期第一次月考试卷(含答案)
人教版九年级数学上学期第一次月考试卷(含答案)一、选择题(本大题共有10小题,每小题3分,共30分)1.如果a为任意实数,下列各式中一定有意义的是…………………………………………()A.aB.a2C.a21D.a212.下列各式中,属于最简二次根式的是…………………………………………………………()A.某2y2B.某y1C.12D.1某23.下列方程,是一元二次方程的是………………………………………………………………()22①3某某20②2某3某y40③某21某4④某20⑤某230某3A.①②B.①②④⑤C.①③④D.①④⑤4.若某3某某,则某的取值范围是……………………………………………………()3某A.某<3B.某3C.0某<3D.某05.方程(某3)(某3)的根为………………………………………………………………()A.3B.4C.4或3D.4或36.用配方法解方程某28某70,则配方正确的是……………………………………………()A.某49B.某49C.某816D.某8577.关于某的一元二次方程(a1)某某a10的一个根为0,则a的值为……………()A.1B.-1C.1或-1D.22222222128.三角形两边长分别是8和6,第三边长是一元二次方程某16某600的一个实数根,则该三角形的面积是……………………………………………………………………………………()A.24B.48C.24或85D.859.下列二次根式中,与3是同类二次根式的是………………………………………………()2310.某农场的粮食产量在两年内从2800吨增加到3090吨,若设平均每年增产的百分率为某,则所列的方程为…………………………………………………………………………………………()A.18B.12C.6D.A.28001某3090;B.1某290;二、填空题(本大题共有10小题,每小题3分,共30分)11.某10某(某).12.在直角坐标系内,点P(5,5)到原点的距离为.13.若a23,b2,且ab0,则ab.14.10在两个连续整数a和b之间,且a10b,那么a、b的值分别是.15.已知一元二次方程某+3某+m=0的一个根为-1,则另一个根为__________.16.某矩形的长为a,宽为b,且(a+b)(a+b+2)=8,则a+b的值为_。
24-25九年级数学第一次月考卷(考试版A4)(浙教版九上第1~2章:二次函数+简单事件的概率)
2024-2025学年九年级数学上学期第一次月考卷(浙教版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:浙教版九年级上册第1~2章(二次函数+简单事件的概率)。
5.难度系数:0.65。
第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将抛物线21y x =+向左平移3个单位长度得到抛物线( )A .()231y x =++B .()231y x =-+C .24y x =+D .22y x =-2.一只不透明的袋子中装有2个黑球和2个白球,这些球除颜色外无其他差别,从中任意摸出3个球,下列事件是随机事件的是( )A .摸出的3个球颜色相同B .摸出的3个球中有1个白球C .摸出的3个球颜色不同D .摸出的3个球中至少有1个白球3.在一个不透明的盒子里装有20个黑、白两种颜色的小球,每个球除了颜色外都相同,小红通过多次摸球试验发现,摸到黑球的频率稳定在0.2左右,则盒子里的白球的个数可能是( )A .4B .8C .10D .164.下列关于抛物线2(1)4y x =-++的判断中,错误的是( )A .形状与抛物线2y x =-相同B .对称轴是直线1x =-C .当2x >-时,y 随x 的增大而减小D .当31x -<<时,0y >5.宁夏素有“塞上江南”之美誉,这里既有古老的黄河文明,又有雄浑的大漠风光.某校开展“大美宁夏,闽宁同行”旅游主题活动.选取三个景点:A .沙坡头,B .六盘山,C .水洞沟.每位参加交流的学生都可以从中随机选择一个景点,则小明和小颖选择同一个景点的概率为( )A .19B .29C .13D .236.已知二次函数()21y a x =-,当1x <-时,y 随x 增大而减小,则实数a 的取值范围是( )A .0a >B .1a <C .1a ¹D .1a >7.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB 的长度)是1米.当喷射出的水流距离喷水头2米时,达到最大高度1.8米,水流喷射的最远水平距离OC 是( )A .6米B .5米C .4米D .1米8.在同一平面直角坐标系中,一次函数y ax b =+与二次函数2y ax bx =+的图像可能是( )A .B .C .D .9.如图是二次函数()20y ax bx c a =++¹图象的一部分,且经过点(2,0),对称轴是直线12x =,给出下列说法:①0abc <;②1x =-是关于x 的方程20ax bx c ++=的一个根;③若点1215,,(,33M y N y æö-ç÷èø)是函数图象上的两点,则12y y >.其中正确的个数为( )A .0B .1C .2D .310.已知抛物线22y x x m =-++交x 轴于点(,0)A a 和(,0)B b ,下列四个命题:①0m >;②对于抛物线上的一点(,)P x y ,当0x >时,y m >;③若1a =-,则3b =;④抛物线上有两点1(P x ,1)y 和2(Q x ,2)y ,若121x x <<,且122x x +>,则12y y >;其中真命题的序号是( )A .①②B .①③④C .③④D .②③④第二部分(非选择题 共90分)二、填空题:本题共6小题,每小题3分,共18分。
2022年青海省西宁市城区中考数学试卷
2022年青海省西宁市城区中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3分)下列各数是负数的是()A.0B .C.﹣(﹣5)D .2.(3分)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2B.5C.10D.113.(3分)下列运算正确的是()A.a2+a4=a6B.(a﹣b)2=a2﹣b2C.(a2b)3=a6b3D.a6÷a6=a4.(3分)关于x的一元二次方程2x2+x﹣k=0没有实数根,则k的取值范围是()A.k <﹣B.k ≤﹣C.k >﹣D.k ≥﹣5.(3分)家务劳动是劳动教育的一个重要方面,教育部基础教育司发布通知要求家长引导孩子力所能及地做一些家务劳动.某校为了解七年级学生平均每周在家的劳动时间,随机抽取了部分七年级学生进行调查,根据调查结果,绘制了如下频数分布表:组别一二三四劳动时间0≤x<11≤x<22≤x<3x≥3x/h频数1020128根据表中的信息,下列说法正确的是()A.本次调查的样本容量是50人B.本次调查七年级学生平均每周在家劳动时间的中位数落在二组C.本次调查七年级学生平均每周在家劳动时间的众数落在四组D.若七年级共有500名学生,估计平均每周在家劳动时间在四组的学生大约有100人6.(3分)在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为xg,根据题意列方程得()A.20x=40×50×3B.40x=20×50×3C.3×20x=40×50D.3×40x=20×507.(3分)如图,∠MON=60°,以点O为圆心,适当长为半径画弧,交OM于点A,交ON于点B;分别以点A,B为圆心,大于AB的长为半径画弧,两弧在∠MON的内部相交于点P,画射线OP;连接AB,AP,BP,过点P作PE⊥OM于点E,PF⊥ON于点F.则以下结论错误的是()A.△AOB是等边三角形B.PE=PFC.△P AE≌△PBF D.四边形OAPB是菱形8.(3分)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上)9.(2分)﹣的绝对值是.10.(2分)计算:3x2•(﹣2xy3)=.11.(2分)若正n边形的一个外角是36°,则n=.12.(2分)某校围绕习近平总书记在庆祝中国共产主义青年团成立100周年大会上的重要讲话精神,开展了主题为“我叫中国青年”的线上演讲活动.九年级(1)班共有50人,其中男生有26人,现从中随机抽取1人参加该活动,恰好抽中男生的概率是.13.(2分)如图,直线y1=k1x与直线y2=k2x+b交于点A(1,2).当y1<y2时,x的取值范围是.14.(2分)在Rt△ABC中,∠C=90°,AC=1,BC=,则cos A=.15.(2分)如图,△ABC中,AB=6,BC=8,点D,E分别是AB,AC的中点,点F在DE上,且∠AFB=90°,则EF=.16.(2分)如图,等边三角形ABC内接于⊙O,BC=2,则图中阴影部分的面积是.17.(2分)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=.18.(2分)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD 边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.三、解答题(本大题共9小题,第19、20、21、22题每题7分,第23、24题每题8分,第25、26题每题10分,第27题12分,共76分.解答时将必要的文字说明、证明过程或演算步骤写在答题卡相应的位置上)19.(7分)计算:(﹣2)3++()﹣1.20.(7分)解不等式组:,并写出该不等式组的最大整数解.21.(7分)解方程:﹣=0.22.(7分)“青绣”是我省非遗项目,其中土族盘绣、湟中堆绣、贵南藏绣、河湟刺绣等先后列入国家级、省级非物质文化遗产代表作名录.(1)省文旅厅为调查我省青少年对“青绣”文化的了解情况,应选择的调查方式是(填“全面调查”或“抽样调查”);(2)为了增进我省青少年对“青绣”文化的了解,在一次社会实践活动中设置了转盘游戏.如图所示,一个可以自由转动的转盘,指针固定不动,转盘被分成了大小相同的4个扇形,并在每个扇形区域分别标上A,B,C,D(A代表土族盘绣、B代表湟中堆绣、C代表贵南藏绣、D代表河湟刺绣).游戏规则:每人转动转盘一次,当转盘停止时,指针落在哪个区域就获得相应的绣品(若指针落在分界线上,重转一次,直到指针指向某一区域内为止).请用画树状图或列表的方法求出甲,乙两名同学获得同一种绣品的概率,并列出所有等可能的结果.23.(8分)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的边长.24.(8分)如图,正比例函数y=4x与反比例函数y=(x>0)的图象交于点A(a,4),点B在反比例函数图象上,连接AB,过点B作BC⊥x轴于点C(2,0).(1)求反比例函数解析式;(2)点D在第一象限,且以A,B,C,D为顶点的四边形是平行四边形,请直接写出点D的坐标.25.(10分)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC 相切于点E,交BC于点F,连接DF,OE交于点M.(1)求证:四边形EMFC是矩形;(2)若AE=,⊙O的半径为2,求FM的长.26.(10分)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.27.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A 恰好落在抛物线上的点E处.(1)求抛物线解析式;(2)连接BE,求△BCE的面积;(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.2022年青海省西宁市城区中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3分)下列各数是负数的是()A.0B.C.﹣(﹣5)D.【分析】先化简各式,然后再进行判断即可.【解答】解:A.0既不是正数也不是负数,故A不符合题意;B.>0,故B不符合题意;C.﹣(﹣5)=5,5>0,故C不符合题意;D.﹣<0,故D符合题意;故选:D.【点评】本题主要考查了负数的定义.解题的关键是掌握负数的定义,要注意0既不是正数,也不是负数.2.(3分)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2B.5C.10D.11【分析】根据三角形三边关系定理得出6﹣4<a<6+4,求出2<a<10,再逐个判断即可.【解答】解:∵长度是4,6,a的三条线段能组成一个三角形,∴6﹣4<a<6+4,∴2<a<10,∴只有选项B符合题意,选项A、选项C、选项D都不符合题意;故选:B.【点评】本题考查了三角形的三边关系定理,能熟记三角形的三边关系定理是解此题的关键,注意:三角形的任意两边之和都大于第三边,三角形的两边之差小于第三边.3.(3分)下列运算正确的是()A.a2+a4=a6B.(a﹣b)2=a2﹣b2C.(a2b)3=a6b3D.a6÷a6=a【分析】用完全平方公式,合并同类项,幂的运算法则依次判断即可.【解答】解:∵a2,a4不是同类项,不能合并,∴A不合题意.∵(a﹣b)2=a2﹣2ab+b2,∴B不合题意.∵(a2b)3=a6b3,∴C符合题意.∵a6÷a6=a0=1,∴D不合题意.故选:C.【点评】本题考查完全平方公式,合并同类项,幂的运算法则,掌握相应法则是求解本题的关键.4.(3分)关于x的一元二次方程2x2+x﹣k=0没有实数根,则k的取值范围是()A.k <﹣B.k ≤﹣C.k >﹣D.k ≥﹣【分析】利用Δ的符号求出k的范围.【解答】解:∵关于x的一元二次方程2x2+x﹣k=0没有实数根,∴Δ<0,∴12﹣4×2×(﹣k)<0,∴1+8k<0,∴k <﹣.故选A.【点评】本题考查一元二次方程解的情况,掌握一元二次方程没有实数根的条件是求解本题的关键.5.(3分)家务劳动是劳动教育的一个重要方面,教育部基础教育司发布通知要求家长引导孩子力所能及地做一些家务劳动.某校为了解七年级学生平均每周在家的劳动时间,随机抽取了部分七年级学生进行调查,根据调查结果,绘制了如下频数分布表:组别一二三四劳动时间0≤x<11≤x<22≤x<3x≥3x/h频数1020128根据表中的信息,下列说法正确的是()A.本次调查的样本容量是50人B.本次调查七年级学生平均每周在家劳动时间的中位数落在二组C.本次调查七年级学生平均每周在家劳动时间的众数落在四组D.若七年级共有500名学生,估计平均每周在家劳动时间在四组的学生大约有100人【分析】利用样本容量、众数、中位数及样本估计总体分别判断后即可确定正确的选项.【解答】解:A.本次调查的样本容量是50,原说法错误,故本选项不合题意;B.本次调查七年级学生平均每周在家劳动时间的中位数落在二组,说法正确,故本选项符合题意;C.无法判断本次调查七年级学生平均每周在家劳动时间的众数落在哪一组,原说法错误,故本选项不合题意;D.若七年级共有500名学生,估计平均每周在家劳动时间在四组的学生大约有500×=80(人),原说法错误,故本选项不合题意.故选:B.【点评】本题考查了样本容量、众数、中位数及样本估计总体,理解这些概念的意义是正确做出判断的前提.6.(3分)在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为xg,根据题意列方程得()A.20x=40×50×3B.40x=20×50×3C.3×20x=40×50D.3×40x=20×50【分析】利用重物的质量×OA的长度=3个钩码的质量×OB的长度,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:20x=40×50×3.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,∠MON=60°,以点O为圆心,适当长为半径画弧,交OM于点A,交ON于点B;分别以点A,B为圆心,大于AB的长为半径画弧,两弧在∠MON的内部相交于点P,画射线OP;连接AB,AP,BP,过点P作PE⊥OM于点E,PF⊥ON于点F.则以下结论错误的是()A.△AOB是等边三角形B.PE=PFC.△P AE≌△PBF D.四边形OAPB是菱形【分析】利用等边三角形的判定,全等三角形的判定与性质,角平分线的性质,和菱形的判定定理对每个选项进行逐一判断即可得出结论.【解答】解:∵以点O为圆心,适当长为半径画弧,交OM于点A,交ON于点B,∴OA=OB,∵∠MON=60°,∴△AOB是等边三角形,∴A的结论正确,不符合题意;∵分别以点A,B为圆心,大于AB的长为半径画弧,两弧在∠MON的内部相交于点P,∴P A=PB,在△OP A和△OPB中,,∴△OP A≌△OPB(SSS),∴∠POA=∠POB.∵PE⊥OM,PF⊥ON,∴PE=PF.∴B的结论正确,不符合题意;∵PE⊥OM,PF⊥ON,∴∠PEA=∠PFB=90°.在Rt△P AE和Rt△PBF中,,∴Rt△P AE≌Rt△PBF(HL).∴③的结论正确,不符合题意;由作图过程可知:OB与PB不一定相等,∴四边形OAPB是菱形不成立,∴④的结论错误,符合题意,故选:D.【点评】本题主要考查了等边三角形的判定,全等三角形的判定与性质,角平分线的性质,基本作图和菱形的判定定理,利用基本作图的过程得出线段相等的条件是解题的关键.8.(3分)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,根据相似比可知:=,即EF=2(3﹣x)所以y=×2(3﹣x)x=﹣x2+3x=﹣(x﹣)2+.∴y与x的关系式为:y=﹣(x﹣)2+.纵观各选项,只有(A)选项图象符合.故选:A.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出y与x的函数关系式是解题的关键,也是本题的难点.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上)9.(2分)﹣的绝对值是.【分析】利用绝对值定义计算即可.【解答】解:|﹣|=;故答案为:.【点评】考查绝对值的计算,关键要掌握绝对值的定义.10.(2分)计算:3x2•(﹣2xy3)=﹣6x3y3.【分析】根据单项式乘单项式,把系数和相同字母分别相乘,只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式.同底数幂相乘,底数不变,指数相加,计算即可.【解答】解:3x2•(﹣2xy3),=3×(﹣2)•(x2•x)y3,=﹣6x3y3.故填﹣6x3y3.【点评】先确定符号,相应的关于整式乘除法的法则需熟练掌握且区分清楚,才不容易出错.11.(2分)若正n边形的一个外角是36°,则n=10.【分析】利用多边形的外角和即可解决问题.【解答】解:n=360°÷36°=10.故答案为:10.【点评】主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数直接让360度除以外角即可.12.(2分)某校围绕习近平总书记在庆祝中国共产主义青年团成立100周年大会上的重要讲话精神,开展了主题为“我叫中国青年”的线上演讲活动.九年级(1)班共有50人,其中男生有26人,现从中随机抽取1人参加该活动,恰好抽中男生的概率是.【分析】直接根据概率求解即可.【解答】解:∵共有50人,男生有26人,∴随机抽取1人,恰好抽中男生的概率是=.故答案为:.【点评】此题考查了概率的求法.通过所有可能的结果求出n,再从中选出符合事件结果数目m,然后根据概率公式P=求出事件概率.13.(2分)如图,直线y1=k1x与直线y2=k2x+b交于点A(1,2).当y1<y2时,x的取值范围是x<1.【分析】根据两函数的交点坐标和函数的图象得出x的范围即可.【解答】解:∵直线y1=k1x与直线y2=k2x+b交于点A(1,2),∴当y1<y2时,x的取值范围是x<1,故答案为:x<1.【点评】本题考查了一次函数与一元一次不等式,能正确根据函数图象得出不等式的解集是解此题的关键.14.(2分)在Rt△ABC中,∠C=90°,AC=1,BC=,则cos A=.【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出cos A即可.【解答】解:由勾股定理得:AB===,所以cos A===,故答案为:.【点评】本题考查了解直角三角形,能熟记锐角三角函数的定义是解此题的关键.15.(2分)如图,△ABC中,AB=6,BC=8,点D,E分别是AB,AC的中点,点F在DE上,且∠AFB=90°,则EF=1.【分析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF=AB.所以由图中线段间的和差关系来求线段EF的长度即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=4.∵∠AFB=90°,D是AB的中点,∴DF=AB=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.【点评】本题考查了三角形的中位线定理的应用,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半,题目比较好,难度适中.16.(2分)如图,等边三角形ABC内接于⊙O,BC=2,则图中阴影部分的面积是.【分析】根据等边三角形的性质可得S△AOB=S△AOC,∠AOC=120°,将阴影部分的面积转化为扇形AOC的面积,利用扇形面积的公式计算可求解.【解答】解:∵△ABC为等边三角形,∴S△BOC=S△AOC,∠AOC=120°,在△OBC中,OB=OC,∠BOC=120°,BC=2,∴OB=OC=2,∴S阴影=S扇形AOC==,故答案为:.【点评】本题主要考查扇形面积的计算,等边三角形的性质,掌握扇形面积公式是解题的关键.17.(2分)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=3﹣3.【分析】先在含30°锐角的直角三角形中计算出两条直角边,再根据旋转性质得到对应边相等、对应角相等得到AC=AC'=C'E=3,BC=B'C'=3,即可解答.【解答】解:在△ABC中,∵∠C=90°,∠B=30°,AB=6,∴AC=3,BC=3,∠CAB=60°,∵将△ABC绕点A逆时针方向旋转15°得到△AB′C′,∴△ABC≌△AB′C′,∠C'AE=45°,∴AC=AC'=C'E=3,BC=B'C'=3,∴B'E=B'C'﹣C'E=3﹣3.【点评】本题考查了旋转的性质,含30度角的直角三角形性质,勾股定理,等腰直角三角形的性质的应用,解题关键是熟练掌握旋转的性质.18.(2分)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD 边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是5或4.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE =AE=5即可;②当P1E=AE=5时,求出BE,由勾股定理求出P1B,再由勾股定理求出底边AP1即可.【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、解答题(本大题共9小题,第19、20、21、22题每题7分,第23、24题每题8分,第25、26题每题10分,第27题12分,共76分.解答时将必要的文字说明、证明过程或演算步骤写在答题卡相应的位置上)19.(7分)计算:(﹣2)3++()﹣1.【分析】先化简各式,然后再进行计算即可解答;【解答】解:原式=﹣8+2+3=2﹣5.【点评】本题考查了实数的运算,负整数指数幂,二次根式的化简,准确熟练地进行计算是解题的关键.20.(7分)解不等式组:,并写出该不等式组的最大整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,解不等式①得:x≤1,解不等式②得:x<﹣2,∴不等式组的解集是x<﹣2,∴该不等式组的最大整数解为﹣3.【点评】本题考查了解一元一次不等式(组),不等式组的整数解的应用,解此题的关键是求出不等式组的解集.21.(7分)解方程:﹣=0.【分析】利用解分式方程的一般步骤解答即可.【解答】解:方程两边同乘以x(x+1)(x﹣1)得:4(x﹣1)﹣3(x+1)=0.去括号得:4x﹣4﹣3x﹣3=0,移项,合并同类项得:x=7.检验:当x=7时,x(x+1)(x﹣1)≠0,∴x=7是原方程的根.∴x=7.【点评】本题主要考查了解分式方程,利用解分式方程的一般步骤解答是解题的关键.22.(7分)“青绣”是我省非遗项目,其中土族盘绣、湟中堆绣、贵南藏绣、河湟刺绣等先后列入国家级、省级非物质文化遗产代表作名录.(1)省文旅厅为调查我省青少年对“青绣”文化的了解情况,应选择的调查方式是抽样调查(填“全面调查”或“抽样调查”);(2)为了增进我省青少年对“青绣”文化的了解,在一次社会实践活动中设置了转盘游戏.如图所示,一个可以自由转动的转盘,指针固定不动,转盘被分成了大小相同的4个扇形,并在每个扇形区域分别标上A,B,C,D(A代表土族盘绣、B代表湟中堆绣、C代表贵南藏绣、D代表河湟刺绣).游戏规则:每人转动转盘一次,当转盘停止时,指针落在哪个区域就获得相应的绣品(若指针落在分界线上,重转一次,直到指针指向某一区域内为止).请用画树状图或列表的方法求出甲,乙两名同学获得同一种绣品的概率,并列出所有等可能的结果.【分析】(1)由题意即可得出结论;(2)画树状图,共有16种等可能的结果,分别为AA、AB、AC、AD、BA、BB、BC、BD、CA、CB、CC、CD、DA、DB、DC、DD,其中甲,乙两名同学获得同一种绣品的结果有4种,再由概率公式求解即可.【解答】解:(1)省文旅厅为调查我省青少年对“青绣”文化的了解情况,应选择的调查方式是抽样调查,故答案为:抽样调查;(2)画树状图如下:共有16种等可能的结果,分别为AA、AB、AC、AD、BA、BB、BC、BD、CA、CB、CC、CD、DA、DB、DC、DD,其中甲,乙两名同学获得同一种绣品的结果有4种,∴甲,乙两名同学获得同一种绣品的概率为=.【点评】此题考查的是用树状图法求概率以及抽样调查.树状图法适合两步或两步以上完成的事件,解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的边长.【分析】(1)由菱形ABCD的四条边相等、对角相等的性质知AB=AD,∠B=∠D;然后根据已知条件“AE⊥BC,AF⊥CD”知∠AEB=∠AFD;最后由全等三角形的判定定理AAS证明△ABE≌△ADF;(2)由全等三角形△ABE≌△ADF的对应边相等知BE=DF,然后根据菱形的四条边相等求得AB=CD,设AB=CD=x,已知CF=2,则BE=DF=x﹣2,利用勾股定理即可求出菱形的边长.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x,∵AB=CD=x,CF=2,∴DF=x﹣2,∵△ABE≌△ADF,∴BE=DF=x﹣2,在Rt△ABE中,根据勾股定理得,AE2+BE2=AB2,即42+(x﹣2)2=x2,解得x=5,∴菱形的边长是5.【点评】本题考查了菱形的性质,解题的关键熟记菱形的性质并灵活运用.菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.24.(8分)如图,正比例函数y=4x与反比例函数y=(x>0)的图象交于点A(a,4),点B在反比例函数图象上,连接AB,过点B作BC⊥x轴于点C(2,0).(1)求反比例函数解析式;(2)点D在第一象限,且以A,B,C,D为顶点的四边形是平行四边形,请直接写出点D的坐标.【分析】(1)先求a,再求解析式.(2)数形结合,利用平行四边形的性质求D的坐标.【解答】解:(1)∵正比例函数y=4x与反比例函数y=(x>0)的图象交于点A(a,4),∴4=4a,∴a=1,∴A(1,4),∴k=4×1=4.∴反比例函数的表达式为:y=.(2)当x=2时,y==2,∴B(2,2).∴BC=2.∵D在第一象限,以A,B,C,D为顶点的四边形是平行四边形,∴AD∥BC,AD=BC=2,∵BC⊥x轴,∴D的坐标为(1,2)或(1,6).【点评】本题考查求反比例函数表达式及点的坐标,掌握待定系数法,充分利用平行四边形性质是求解本题的关键.25.(10分)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC 相切于点E,交BC于点F,连接DF,OE交于点M.(1)求证:四边形EMFC是矩形;(2)若AE=,⊙O的半径为2,求FM的长.【分析】(1)利用直径所对的圆周角是直角及邻补角互补,可求出∠CFD=90°,由⊙O 与AC相切于点E,利用圆的切线垂直于过切点的半径可得出OE⊥AC,进而可得出∠OEC =∠OEA=90°,结合∠C=90°,可得出∠EMF=90°,再利用四个角都是直角的四边形是矩形,即可证出四边形EMFC是矩形;(2)在Rt△AEO中,利用勾股定理可求出OA的长,进而可得出AB的长,由∠AEO=∠C,利用“同位角相等,两直线平行”可得出OE∥BC,进而可得出△AEO∽△ACB,利用相似三角形的性质可求出AC的长,结合CE=AC﹣AE可求出CE的长,再利用矩形的对边相等,即可求出FM的长.【解答】(1)证明:∵BD是⊙O的直径,∴∠BFD=90°,∴∠CFD=90°.∵⊙O与AC相切于点E,∴OE⊥AC,∴∠OEC=∠OEA=90°.又∵∠C=90°,∴∠C=∠CFD=∠OEC=90°,∴∠EMF=90°,∴四边形EMFC是矩形.(2)解:在Rt△AEO中,∠AEO=90°,AE=,OE=2,∴OA===3,∴AB=OA+OB=3+2=5.∵∠AEO=∠C=90°,∴OE∥BC,∴△AEO∽△ACB,∴=,即=,∴AC=,∴CE=AC﹣AE=﹣=.又∵四边形EMFC是矩形,∴FM=CE=.【点评】本题考查了矩形的判定、相切、勾股定理、平行线的判定与性质以及相似三角形的判定与性质,解题的关键是:(1)根据各角之间的关系,找出四边形EMFC的四个角均为直角;(2)利用勾股定理及相似三角形的性质,求出AC的长度.26.(10分)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵a2+b2=9,(a﹣b)2=1,∴原式=9.【点评】本题主要考查因式分解的知识,熟练掌握因式分解的应用是解题的关键.27.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A。
2025届青海省西宁市数学九上开学学业质量监测试题【含答案】
学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届青海省西宁市数学九上开学学业质量监测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列图形是中心对称图形但不是轴对称图形的是()A .菱形B .矩形C .正三角形D .平行四边形2、(4分)如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是()A .3-1B .32C .3D .23、(4分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为()A .9B .6C .4D .34、(4分)方程x(x-2)=0的根是()A .x=0B .x=2C .x 1=0,x 2=2D .x 1=0,x 2=-25、(4分)将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当∠B =60°时,如图(1),测得AC =2;当∠B =90°时,如图(2),此时AC 的长为()A .B .2C D .6、(4分)下列事件中是必然事件是()A .明天太阳从西边升起B .篮球队员在罚球线投篮一次,未投中C .实心铁球投入水中会沉入水底D .抛出一枚硬币,落地后正面向上7、(4分)下列命题中,是假命题的是()A .过n 边形一个顶点的所有对角线,将这个多边形分成()2n -个三角形B .三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点C .三角形的中线将三角形分成面积相等的两部分D .一组对边平行另一组对边相等的四边形是平行四边形8、(4分)一次函数y =x +2的图象与y 轴的交点坐标为()A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一次函数y=ax+b 的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.10、(4分)如图,四边形ABCD 中,//AD BC ,90B ∠=︒,E 为AB 上一点,分别以 ED ,EC 为折痕将两个角(A ∠,B Ð)向内折起,点A ,B 恰好都落在CD 边的点F 处.若3AD =,5BC =,则EF =________.11、(4分)已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1.12、(4分)的结果是______.13、(4分)在菱形ABCD 中,对角线AC 、BD 交于点O ,点F 为BC 中点,过点F 作FE ⊥BC 于点F 交BD 于点E ,连接CE ,若∠BDC =34°,则∠ECA =_____°.三、解答题(本大题共5个小题,共48分)14、(12分)为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.15、(8分)如图,已知M N 、分别为平行四边形ABCD 的边,AD BC 上的点,且DM BN =.(1)求证:四边形AMCN 是平行四边形;(2)当10,90CN BAC =∠=,且四边形AMCN 是菱形,求BN 的长.16、(8分)如图,在△ABC 中,CE ,BF 是两条高,若∠A =70°,∠BCE =30°,求∠EBF 与∠FBC 的度数.17、(10分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位长度,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2;(3)直接写出点B 2,C 2的坐标.18、(10分)如图,已知G 、H 是△ABC 的边AC 的三等分点,GE ∥BH ,交AB 于点E ,HF ∥BG 交BC 于点F ,延长EG 、FH 交于点D ,连接AD 、DC ,设AC 和BD 交于点O ,求证:四边形ABCD 是平行四边形.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)=_________.20、(4分)当m =_____时,x 2+2(m ﹣3)x +25是完全平方式.21、(4分)已知ABC ∆的顶点坐标分别是()0,1A ,()5,1B ,()5,6C -.过A 点的直线L :y ax b =+与BC 相交于点E .若AE 分ABC ∆的面积比为1:2,则点E 的坐标为________.22、(4分)在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其它8个小长方形的高的和的17,且这组数据的总个数为120,则中间一组的频数为_______.23、(4分)x-y+3)2=0,则(x+y)2018=__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在四边形ABCD 中,点,E F 分别是对角线AC 上任意两点,且满足AF CE =,连接,DF BE ,若,//DF BE DF BE =.求证:(1)AFD CEB ∆∆≌(2)四边形ABCD 是平行四边形.25、(10分)甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地后立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为(t 时),y 与t 之间的函数图象如图所示(1)甲车从A 地到B 地的速度是__________千米/时,乙车的速度是__________千米/时;(2)求甲车从A 地到达B 地的行驶时间;(3)求甲车返回时y 与t 之间的函数关系式,并写出自变量t 的取值范围;(4)求乙车到达A 地时甲车距A 地的路程.26、(12分)如图,平面直角坐标系中,()0,4A ,()0,2B ,点C 是x 轴上点,点D 为OC 的中点.(1)求证://BD AC ;(2)若点C 在x 轴正半轴上,且BD 与AC 的距离等于1,求点C 的坐标;(3)如图2,若点C 在x 轴正半轴上,且OE AC ⊥于点E ,当四边形ABDE 为平行四边形时,求直线AC 的解析式.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、菱形是中心对称图形,也是轴对称图形,故本选项错误;B、矩形是中心对称图形,也是轴对称图形,故本选项错误;C、正三角形不是中心对称图形,是轴对称图形,故本选项错误;D、平行四边形是中心对称图形但不是轴对称图形,故本选项正确.故选:D.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【解析】过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE 交AB的延长线于点J;通过证明△CKD≌△CHE(ASA),进而证明所构建的四边形CKJH 是正方形,所以当点E与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.【详解】如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB的延长线于点J;∵将线段CD 绕点C 逆时针旋转90°,得到线段CE ∴∠DCE=∠KCH =90°∵∠ECH=∠KCH -∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK 又∵CD=CE ,CK =CH ∴在△CKD 和△CHE 中 90ECH DCK CK CH DKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA)∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90°∴四边形CKJH 是正方形∴CH=HJ=KJ=C'K ∴点E 在直线HJ 上运动,当点E与点J 重合时,BE 的值最小∵∠A=30°∴∠ABC=60°在Rt △CBK 中,BC=2,∴CK =BCsin60°BK=BCcos60°=1∴KJ =CK 所以BJ =KJ-BK=1-;BE 1.故选A.本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.3、D【解析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=每一个直角三角形的面积为:,214ab a b 252(),∴⨯+-=2a b 25169∴-=-=(),a b 3∴-=,故选D.本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.4、C 【解析】试题分析:∵x(x-1)=0∴x=0或x-1=0,解得:x 1=0,x 1=1.故选C.考点:解一元二次方程-因式分解法.5、A 【解析】根据图1中一个角为60°的等腰三角形可得三角形ABC 为等边三角形:AC=BC=2;再图2中由勾股定理可求出AC 的长即可.【详解】解:如图1,∵AB=AC ,且∠ABC=60°,∴三角形ABC 为等边三角形,AB=AC=BC=2;如图2,三角形ABC 为等腰直角三角形,由勾股定理得:222AC BC AB =+,即:AC ==,故选:A.本题考查了等腰直角三角形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出斜边AC 的长度是解题的关键.【解析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.7、D【解析】根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.【详解】解:A、过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,所以A选项为真命题;B、三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;C、三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;D、一组对边平行且相等的四边形是平行四边形,而一组对边平行另一组对边相等的四边形可以是梯形,所以D选项为假命题.故选:D.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8、A【解析】分析:在解析式中,令y=0,即可求得与x轴交点的坐标了.详解:当y=0时,x+2=0,解得x=−2,所以一次函数的图象与x轴的交点坐标为(−2,0).故选D.点睛:本题考查了一次函数图像上点的坐标特征.解题的关键点:与x 轴的交点即纵坐标为零.二、填空题(本大题共5个小题,每小题4分,共20分)9、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.【解析】先根据折叠的性质得EA=EF ,BE=EF ,DF=AD=3,CF=CB=5,则AB=2EF ,DC=8,再作DH ⊥BC 于H ,由于AD ∥BC ,∠B=90°,则可判断四边形ABHD 为矩形,所以DH=AB=2EF ,HC=BC-BH=BC-AD=2,然后在Rt △DHC 中,利用勾股定理计算出DH=EF=【详解】解:∵分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处,∴EA=EF ,BE=EF ,DF=AD=3,CF=CB=5,∴AB=2EF ,DC=DF+CF=8,作DH ⊥BC 于H ,∵AD ∥BC ,∠B=90°,∴四边形ABHD 为矩形,∴DH=AB=2EF ,HC=BC-BH=BC-AD=5-3=2,在Rt △DHC 中,=∴EF=12.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.11、14【解析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD 中,BD =2.∵菱形的周长为10,BD =2,∴AB =5,BO =3,∴4AO ==,AC =3.∴面积168242S =⨯⨯=.故答案为14.此题考查了菱形的性质及面积求法,难度不大.12、【解析】利用二次根式的性质化简.【详解】==.故选为:13、1.【解析】根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠BDC=∠DBC=34°.∠BCA=∠DCO=90°﹣34°=56°.∵EF垂直平分BC,∴∠ECF=∠DBC=34°.∴∠ECA=56°﹣34°=1°.故答案为1.本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)这两年该企业投入科研经费的年平均增长率为20%;(2)2019年该企业投入科研经费8640万元.【解析】(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【详解】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),列式计算.15、(1)详见解析;(2)10【解析】(1)首先由已知证明AM ∥NC ,BN=DM ,推出四边形AMCN 是平行四边形.(2)由已知先证明AN=BN ,即BN=AN=CN ,从而求出BN 的长.【详解】(1)证明:四边形ABCD 是平行四边形,,//AD CB AD BC ∴=又,DM BN AD DM CB BN =∴-=-.即AM CN =,//AM CN ,∴四边形AMCN 是平行四边形;(2)四边形AMCN 是菱形,,AN CN NAC NCA ∴=∴∠=∠,又90BAC ︒∠=,即90BAN NAC NCA B ︒∠+∠=∠+∠=,,BAN B AN BN ∴∠=∠∴=,AN BN CN ∴==,10BN ∴=.此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.16、∠EBF=20°,∠FBC=40°.【解析】试题分析:在Rt △ABF 中,∠A=70,CE ,BF 是两条高,求得∠EBF 的度数,在Rt △BCF 中∠FBC=40°求得∠FBC 的度数.解:在Rt △ABF 中,∠A=70,CE ,BF 是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt △BCF 中∠FBC=40°.17、(1)答案见解析;(2)答案见解析;(3)点B 2(4,-2),C 2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1;(2)利用网格特点和旋转的性质画出点B 、C 的对应点B 2、C 2,从而得到△AB 2C 2,再写出点B 2、C 2的坐标.试题解析:解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△AB 2C 2即为所求,点B 2(4,﹣2),C 2(1,﹣3).18、证明见解析.【解析】分析:根据题意得出EG、FH 分别是△ABH 和△CBG 的中位线,从而得出ED∥BH,FD∥BG,即四边形BHDG 是平行四边形,从而得出OB=OD,OG=OH,结合AG=CH 得出OA=OC,从而根据对角线互相平分的四边形是平行四边形得出答案.详解:证明:∵G、H 是AC 的三等分点且GE∥BH,HF∥BG,∴AG=GH=HC,EG、FH 分别是△ABH 和△CBG 的中位线,∴ED∥BH,FD∥BG,∴四边形BHDG 是平行四边形,∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,∴四边形ABCD 是平行四边形.点睛:本题主要考查的是平行四边形的性质与判定,属于中等难度的题型.根据中位线的性质得出四边形BHDG 是平行四边形是解决这个问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】根据根式的性质即可化简.【详解】=本题考查了根式的化简,属于简单题,熟悉根式的性质是解题关键.20、8或﹣1【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵x 1+1(m ﹣3)x +15=x 1+1(m ﹣3)x +51,∴1(m ﹣3)x =±1×5x ,m ﹣3=5或m ﹣3=﹣5,解得m =8或m =﹣1.故答案为:8或﹣1.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.21、(5,-43)或(5,-113).【解析】由AE 分△ABC 的面积比为1:2,可得出BE :CE=1:2或BE :CE=2:1,由点B ,C 的坐标可得出线段BC 的长度,再由BE :CE=1:2或BE :CE=2:1结合点B 的坐标可得出点E 的坐标,此题得解.【详解】∵AE 分△ABC 的面积比为1:2,点E 在线段BC 上,∴BE :CE=1:2或BE :CE=2:1.∵B(5,1),C(5,-6),∴BC=1-(-6)=2.当BE:CE=1:2时,点E的坐标为(5,1-13×2),即(5,-43);当BE:CE=2:1时,点E的坐标为(5,1-23×2),即(5,-113).故答案为:(5,-43)或(5,-113).本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.22、15【解析】根据题意可知中间一组的频数占总的频数的18,从而可以解答本题.【详解】∵频数分布直方图中共有9个小长方形,且中间一个长方形的高等于其它8个小长方形的高的和的1 7,∴中间一组数据的频数占总频数的18,而总频数为120,∴中间一组的频数为:1 120158⨯=,故答案为:15.本题考查频数分布直方图,解答本题的关键是明确频数分布直方图表示的含义.23、1【解析】分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.故答案为:1.点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)详见解析【解析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS ),这一判定定理容易证明△AFD ≌△CEB .(2)由△AFD ≌△CEB ,容易证明AD=BC 且AD ∥BC ,可根据一组对边平行且相等的四边形是平行四边形.【详解】证明:(1) //DF BE ,DFA AEB ∴∠=∠又,DF BE AF CE ==∴AFD CEB ∆∆≌(SAS ).(2)DFA BEC ∆≅∆,,AD BC DAC ACB ∴=∠=∠//AD BC ∴∴四边形ABCD 是平行四边形此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .平行四边形的判定,一组对边平行且相等的四边形是平行四边形.25、(1)12080, ;(2)甲车从A 地到达B 地的行驶时间是2.5小时;(3)甲车返回时y 与t 之间的函数关系式是(100502.5 5.5)y t t =-+≤≤;(4)乙车到达A 地时甲车距A 地的路程是175千米.【解析】(1)根据题意列算式计算即可得到结论;(2)根据题意列算式计算即可得到结论;(3)设甲车返回时y 与t 之间的函数关系式为y=kt+b ,根据题意列方程组求解即可得到结论;(4)根据题意列算式计算即可得到结论.【详解】解:(1)甲车从A 地开往B 地时的速度是:180÷1.5=120千米/时,乙车从B 地开往A 地的速度是:(300-180)÷1.5=80千米/时,故答案为:120;80;(2)300120 2.5÷=(小时)答:甲车从A 地到达B 地的行驶时间是2.5小时(3)设甲车返回时y 与t 之间的函数关系式为y kt b =+,则有300 2.50 5.5k b k b =+⎧⎨=+⎩解得:100550k b =-⎧⎨=⎩,∴甲车返回时y 与t 之间的函数关系式是(100502.5 5.5)y t t =-+≤≤(4)30080 3.75÷=小时,把 3.75t =代入100550y t =-+得:175y =答:乙车到达A 地时甲车距A 地的路程是175千米.本题考查了待定系数法及一次函数的解析式的运用,行程问题的数量关系的运用,解答时正确看图理解题意和求出一次函数的解析式是关键.26、(1)见解析;(2),03⎛⎫ ⎪ ⎪⎝⎭C ;(3)4y x =-+【解析】(1)由A 与B 的坐标确定OA 和OB 的长,进而确定B 为OA 的中点,而D 为OC 的中点,利用中位线定理即可证明;(2)作BF ⊥AC 于点F ,取AB 的中点G ,确定出G 坐标;由平行线间的距离相等求出BF 的长,在直角三角形ABF 中,利用斜边上的中线等于斜边的一半求出FG 的长,进而确定出三角形BFG 为等边三角形,即∠BAC=30°,设OC=x ,则有AC=2x ,利用勾股定理求出OA 的长,即可确定C 的坐标;(3)当四边形ABDE 为平行四边形,可得AB ∥DE ,进而得到DE 垂直于OC ,再由D 为OC 中点,得到OE=CE ;再由OE 垂直于AC ,得到三角形AOC 为等腰直角三角形,求出OC 的长,确定出C 坐标;设直线AC 解析式为y=kx+b ,利用待定系数法即可确定AC 的解析式.【详解】解:(1)()0,4A ,()0,2B ,4∴=OA ,2OB =,BD ∴是AO 的中点,又D Q 是OC 的中点,BD ∴是AOC ∆的中位线,//BD AC ∴.(2)如图1,作BF ⊥AC 于点F ,取AB 的中点G ,则G (0,3);∵BD ∥AC ,BD 与AC 的距离等于1,∴BF=1,∵在Rt △ABF 中,∠AFB=90°,AB=2,点G 为AB 的中点,∴FG=BG=12AB=1,∴△BFG 是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x ,则AC=2x ,根据勾股定理得:OA ==∵OA=4∴4333OC OA ==⨯=.,03C ⎛⎫∴ ⎪ ⎪⎝⎭.(3)如图2,当四边形ABDE 为平行四边形,∴AB ∥DE ,∴DE ⊥OC ,∵点D 为OC 的中点,∴OE=EC ,∵OE ⊥AC ,∴∠0CA=45°,∴OC=0A=4,∴点C 的坐标为(4,0)或(-4,0),设直线AC 的解析式为y=kx+b (k ≠0).由题意得:404k b b +=⎧⎨=⎩解得:14k b =-⎧⎨=⎩∴直线AC 的解析式为4y x =-+.的关键.。
2023年青海省西宁市中考数学试卷(含答案)
西宁市城区2023年初中学业水平暨高中招生考试数学试卷考生注意:1.本试卷满分120分,考试时间120分钟。
2.本试卷为试题卷,不允许作为答题卷使用,答题部分请在答题卡上作答,否则无效。
3.答题前,考生务必将自己的姓名、准考证号、考点、考场、座位号写在答题卡上,同时填写在试卷上。
4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑(如需改动,用橡皮擦干净后,再选涂其他答案标号)。
非选择题用0.5毫米的黑色签字笔答在答题卡相应位置,字体工整,笔迹清楚。
作图必须用2B 铅笔作答,并请加黑加粗,描写清楚。
第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.-2023的相反数是( ) A.2023B.-2023C.12023D.12023-2.算式-3□1的值最小时,□中填入的运算符号是( ) A.+B.-C.×D.÷3.河湟剪纸被列入青海省第三批省级非物质文化遗产名录,是青海劳动人民结合河湟文化,创造出独具高原特色的剪纸.以下剪纸图案既是轴对称图形又是中心对称图形的是( )ABCD4.下列说法正确的是( )A.检测“神州十六号”载人飞船零件的质量,应采用抽样调查B.任意画一个三角形,其外角和是180°是必然事件C.数据4,9,5,7的中位数是6D.甲、乙两组数据的方差分别是20.4s =甲,22s =乙,则乙组数据比甲组数据稳定 5.下列运算正确的是( )=5=-C.2(311=-D.63= 6.如图1,在ABC △中,90ACB ∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于P ,Q 两点,作直线PQ 交AB ,AC 于点D ,E ,连接CD .下列说法错误..的是( )图1A.直线PQ 是AC 的垂直平分线B.12CD AB =C.12DE BC =D.:1:4ADE DBCE S S =△四边形7.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,根据题意列方程组得( )A. 4.5112y x y x -=⎧⎪⎨=-⎪⎩B.112x y y x -=⎧⎪⎨=-⎪⎩C. 4.5112y x y x -=⎧⎪⎨=+⎪⎩D. 4.5112x y y x -=⎧⎪⎨=+⎪⎩8.直线1y ax b =+和抛物线22y ax bx =+(a ,b 是常数,且0a ≠)在同一平面直角坐标系中,直线1y ax b =+经过点()4,0-.下列结论:①抛物线22y ax bx =+的对称轴是直线2x =- ②抛物线22y ax bx =+与x 轴一定有两个交点③关于x 的方程2ax bx ax b +=+有两个根14x =-,21x = ④若0a >,当4x <-或1x >时,12y y > 其中正确的结论是( ) A.①②③④B.①②③C.②③D.①④第Ⅱ卷(非选择题 共96分)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上)9.如果气温上升6℃记作+6℃,那么气温下降2℃记作__________℃.10.从党的二十大报告中了解到,我国互联网上网人数达1030000000.将1030000000用科学记数法表示为______.11.计算:223()a b a ⋅-=__________.12.有五张看上去无差别的卡片,正面分别写着227,-0.5,π,0.背面朝上混合后随机抽取一张,取出的卡片正面的数字是无理数的概率是__________.13.象征吉祥富贵的丁香花是西宁市市花.为美化丁香大道,园林局准备购买某种规格的丁香花,若每棵6元,总费用不超过5000元,则最多可以购买__________棵.14.在Rt ABC △中,90ACB ∠=︒,12AB =,42A ∠=︒,则BC 的长约为__________.(结果精确到0.1.参考数据:sin 420.67︒≈,cos 420.74︒≈,tan 420.90︒≈)15.已知蓄电池的电压恒定,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图2所示,如果以此蓄电池为电源的用电器,流过的电流是2A ,那么此用电器的电阻是__________Ω.图216.在ABC △中,AB AC =,100BAC ∠=︒,点D 在BC 边上,连接AD ,若ABD △为直角三角形,则ADB ∠的度数是__________.17.如图3ABCD 内接于O ,分别过点A ,D 作O 的切线,两条切线交于点P ,则图中阴影部分的面积是__________.图318.如图4,在矩形ABCD 中,点P 在BC 边上,连接PA ,将PA 绕点P 顺时针旋转90°得到PA ',连接CA '..若9AD =,5AB =,CA '=BP =__________.图4三、解答题(本大题共9小题,第19、20、21、22题每小题7分,第23、24题每小题8分,第25、26题每小题10分,第27题12分,共76分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上)19.(本小题满分7分)计算:401|1( 3.14)π-+--. 20.(本小题满分7分)计算:2(23)(5)(5)a a a --+-. 21.(本小题满分7分) 先化简,再求值:22211a a b a b a ab⎛⎫-÷⎪-+-⎝⎭,其中a ,b 是方程260x x +-=的两个根. 22.(本小题满分7分)藏毯作为青海省非物质文化遗产项目之一,与波斯毯、东方毯并称为世界三大名毯.西宁作为藏毯之都,生产的藏毯已成为青海名副其实的特色产品,更是一张通往世界的“金名片”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青海省西宁市九年级上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)下列函数中,不是反比例函数的是()
A . xy=1
B . y=﹣
C . y=
D . y=
2. (2分)将代数式x2﹣10x+5配方后,发现它的最小值为()
A . ﹣30
B . ﹣20
C . ﹣5
D . 0
3. (2分)(2017·泰安模拟) 如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y= (x>0)上,则k的值为()
A . 2
B . 3
C . 4
D . 6
4. (2分)已知m是方程x2﹣x﹣=0的一个根,则m2﹣m的值是()
A . 0
B . 1
C .
D . -
5. (2分)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=
的图象上,且OA⊥OB,cosA=,则k的值为()
A . -3
B . -6
C . -4
D . -2
6. (2分)方程 x2 = 3x的根是()
A . x=3
B . x= -3
C . 0或3
D . 无解
7. (2分)用反证法证明命题:“若a,b是整数,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()
A . a,b都能被3整除
B . a不能被3整除
C . a,b不都能被3整除
D . a,b都不能被3整除
8. (2分) (2018八下·长沙期中) 若关于x的一元二次方程2x2-2x+3m-1=0的两个实数根x1 , x2 ,且x1·x2>x1+x2-4,则实数m的取值范围是()
A . m>
B . m≤
C . m<
D . <m≤
9. (2分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()
A . 1
B . 2
C . 3
D . 4
10. (2分)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于()
A . ﹣12
B . ﹣1
C . 4
D . 无法确定
二、填空题 (共10题;共11分)
11. (1分)(2017·南宁) 对于函数y= ,当函数值y<﹣1时,自变量x的取值范围是________.
12. (1分)(2017·平顶山模拟) 关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则m的取值范围为________.
13. (1分) (2018九下·绍兴模拟) 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y= (x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.
14. (2分) (2016九上·武胜期中) 已知一元二次方程x2﹣6x﹣5=0两根为a、b,则
①a+b=________
②ab=________.
15. (1分)某种植物的主干长出若干数目的枝干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数目是21,则每个支干长出________.
16. (1分) (2018九上·潮南期末) 一元二次方程x(x+3)=0的解是________.
17. (1分)(2017·宁波模拟) 如图,已知原点O,A(0,4),B(2,0),将△OAB绕平面内一点P逆时针旋转90°,使得旋转后的三角形的两个顶点恰好落在双曲线上,则旋转中心P的坐标为________。
18. (1分)已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为________ .
19. (1分)(2017·呼和浩特模拟) 如果直线y=mx与双曲线y= 的一个交点A的坐标为(3,2),则它们的另一个交点B的坐标为________.
20. (1分) (2020九下·合肥月考) 某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图)。
当该物体与地面的接触面积为0.25m²时,该物体对地面的压强是________ Pa。
三、解答题 (共6题;共56分)
21. (10分)综合题。
(1) 3(x+1)2=12
(2) 3(x﹣2)=5x(x﹣2).
22. (5分)已知反比例函数y=(k为常数,k≠1).
(1)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(3)若其图象的一支位于第二象限,在这一支上任取两点A(x1、x2)、B(x2、y2),当y1>y2时,试比较x1与x2的大小;
(4)若在其图象上任取一点,向x轴和y轴作垂线,若所得矩形面积为6,求k的值.
23. (15分)(2018·南山模拟) 某公司经市场调查发现,该公司生产的某商品在第x天的售价(1≤x≤100)为(x+30)元/件,而该商品每天的销售量y(件)满足关系式:y=220-2x,如果该商品第15天的售价按8折出售,仍然可以获得20%的利润.
(1)求该公司生产每件商品的成本为多少元;
(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?
(3)该公司每天需要控制人工、水电和房租支出共计a元,若考虑这一因素后公司对最大利润要控制在4000元至4500元之间(包含4000和4500),且保证至少有90天的盈利,请直接写出a的取值范围.
24. (10分) (2016九上·南岗期末) 暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.
(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?
(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金?
25. (6分) (2019八下·南关期中) 如图,在平面直角坐标系中,双曲线=经过□ 的顶点、,点的坐标为(, 1),点在轴上,且∥ 轴,平行四边形的面积是8.
(1)求双曲线和AB所在直线的解析式;
(2)点(,)、(,)是双曲线=(<0)图象上的两点,若>,则 ________;;(填“<”、“=”或“>”)
26. (10分)(2019·临海模拟) 知识背景
当a>0且x>0时,因为(﹣)2≥0,所以x﹣2 + ≥0,从而x+ (当x= 时取等号).
设函数y=x+ (a>0,x>0),由上述结论可知:当x= 时,该函数有最小值为2 .
应用举例
已知函数为y1=x(x>0)与函数y2= (x>0),则当x= =2时,y1+y2=x+ 有最小值为2 =4.
解决问题
(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?
(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共10题;共11分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共6题;共56分) 21-1、
21-2、
22-1、
23-1、
23-2、
23-3、24-1、
24-2、
25-1、
25-2、
26-1、
26-2、。