实数复习课教案

合集下载

《实数复习课》教学设计

《实数复习课》教学设计

《实数复习课》教学设计教学目标1.使学生进一步理解一个数的平方根、算术平方根及立方根的意义;2.理解无理数和实数的意义;3.熟练地求出一个正数的平方根、算术平方根和实数的立方根;4.会对实数分类以及进行实数的近似计算.教学重点和难点重点:平方根、算术平方根、实数的概念及其计算.难点:算术平方根、实数的综合运算和代数与几何的综合运用. 教学过程设计一、复习基本概念1.什么叫一个数a的平方根,怎样表示?什么叫数a的算术平方根?怎样表示?其中a可以分别表示什么数?2.什么叫一个数a的立方根?怎样表示?其中a可以表示什么数?3.任何实数都有平方根吗?都有立方根吗?4.什么叫无理数?什么叫实数?实数与数轴的点有什么关系?答:1.如果一个数的平方等于a,这个数就叫做a的平方根,表示为±a数.的非负的平方根叫做算术平方根,表示为a,其中a≥0.2.如果一人数的立方等于a,这个数就叫做a的立方根,表示为3a,其中a为任意实数.3.正数和0有平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,任何实数都有一个立方根.4.无限不循环小数叫做无理数.有理数和无理数统称为实数.实数与数轴上的点一一对应.二、例题例1 a为何值时,下列各式有意义?(1)a2;(2)-a;(3)a+2;(4)3 a-1;(5)a+-a;(6)3 2a+1 a.要判断a为何值时各式有意义,首先要弄清各式都表示什么,成立的条件是什么.(1),(2),(3)式都表示算术平方根,(5)为两个算术平方根的和,各式被开方数都应为非负数,(4),(6)式都表示立方根.任何实数都可以进行立方运算,但应注意,当被开方数是分数时,分数的分母不能为0.解 (1)因为a为任何实数时,a2≥0,所以a为任意实数时,a2有意义.(2)因为要使-a有意义,必须使-a≥0,即a≤0,所以当a≤0时,-a有意义.(3)因为要使a+2有意义,必须a+2≥0,即a≥-2,所以当a≥-2时,a+2有意义.(4)因为3 a-1有意义,a-1可取任意实数,即a为任意实数,所以当a为任意实数时3a-1的意义.(5)因为要使a有意义,必须使a≥0;要使-a有意义,必须使-a≥0,即a≤0,所以要使a+-a 有意义,a必须等于0.因此仅当a=0时,a+-a有意义.(6)因为2a+1a是分式,当a≠0时有意义,所以当a≠0时,3 2a+1a有意义.例2 计算:(1)求5的算术平方根与2的平方根之和;(保留三位有效数字)(2)|2-5|-|5+2|;(精确到0.01)(3)|a-π|+|2-a|(2<a<π).(精确到0.001)上列各题是进行实数运算.问:计算各式的思路和方法是什么?答:根据各题的要求分别取其近似值,转化为有理数进行计算.含有绝对值的式子应先根据实数绝对值的意义,去掉绝对值的符号,再进行计算.解 (1)因为5的算术平方根为5,2的平方根是±2.所以5的算术平方根与2的平方根之和为5±2.又因为5≈2.236,2≈1.414,所以5+2≈2.236+1.414=3.65,5-2≈2.236-1.414≈0.82.(2)因为2<5所以2-5=-(5-2).所以|2-5|-|5+2|=5-2-5-2=-22≈-2×1.414≈-2.83.(3)因为2<a<π,所以|a-π|=-(a-π)=π-a,|2-a|=-(2-a)=-2+a.因此|a-π|+|2-a|=π-a-2+a=π-2≈3.142-1.414=1.73.指出:1.例2中的有关运算实际是进行实数运算,有理数的运算律和运算性质,在实数范围内仍然成立.2.无理数的运算,可以转化为用相应的(或题目指定)近似有限小数进行,有的题目可根据问题的要求取其近似值,转化成有理数进行运算.例3 (1)如图,已知正方形ABCD的面积是4a2,E,F,G,H分别为正方形四条边的中点,依次连结E,F,G,H得到一个正方形.求这个正方形的边长(用带根号的数表示).(2)当a=4时,正方形EFGH的边长是多少?(精确到0.01).分析:求正方形EFGH的边长,首先应求出正方形ABCD的边长.由于正方形的面积等于它的一边的平方,所以它的一条边是面积的算术平方根.已知E,F,G,H是正方形ABCD的各边的中点,所以BF=BE,再在直角三角形EBF中,用勾股弦定理可求出EF的长.解 (1)在正方形ABCD中,AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.因为正方形ABCD的面积=AB2抽以AB2=4a2.因为4a2>0,a>0,所以AB=4a2=2a.同理,BC=2a.因为E是AB中点,F是B中点,所以BE=12AB=a,BF=12BC=a. 在Rt△EBF中,EF2=BE2+BF2=a2+a2=2a2,所以EF=2a2=2a(a>0).(2)当a=4时,EF=42≈4×1.414=5.66.三、小结1.在解答有关被开方数是字母的式子是否有意义的问题,要根据所涉及的概念的意义去考虑,如例1中的(1),(2),(3),(5)各式都表示算术平方根,因此被开方数必须是非负数,从这个意义去考虑使式子有意义的字母的取值范围.2.在进行实数运算时,可根据各题的要求分别取无理数的近似值,转化成有理数进行计算.对于含绝对值的式子,应先根据实数的绝对值的意义,去掉绝对值的符号再进行计算,有理数的运算性质和运算律在实数范围内仍然成立.3.在代数中解答几何题,是代数和几何的综合,是数和形的结合,在解答过程中一定要结合图形的几何性质,把论证和计算结合起来.。

课时41_总复习_初中数学总复习第一讲:实数-教案

课时41_总复习_初中数学总复习第一讲:实数-教案

2020 年中考总复习第一讲《实数》【教学目标】1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法与近似数的概念,能按要求用四舍五入法求一个数的近似值,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.【教学重难点】教学重点是实数的概念及运算;教学难点是非负数 a2、|a|、 a (a≥0)的综合应用。

【教学过程】教学环节教学内容设计意图知识点1:实数的分类⎧⎧⎧正整数⎫⎪⎪⎪⎪⎪⎪整数⎨零⎪⎪有理数⎪⎪负整数⎪⎨⎩⎬实数⎪⎪⎪⎨⎪⎧正分数⎪⎪⎪分数⎨⎪⎪⎩⎩负分数⎭⎪⎧正无理数⎫无理数⎨⎬⎪⎩⎩负无理数⎭1、(2019 桂林)若海平面以上1045 米,记作+1045 米,则海平面以下155 米,记作()(A)-1200 米(B)-155 米(C)155 米(D)1200 米2、(2019 峡西)已知实数-1,0.16, 3 ,π,25 ,23 4 ,其中为无理数的是.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.1.数轴:规定了原点、正方向和单位长度的直线借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.2.相反数:像 2 和-2 这样,只有符号不同的两个数互为知识点 2:相反数.特别地,0 的相反数是 0.数轴、相 3.倒数:乘积为 1 的两个数互为倒数;反数、倒 4.绝对值:数轴上,表示数a的点与原点的距离叫做数a的数、绝对绝对值,记作|a|.正数的绝对值是它本身,负数的绝对值值是它的相反数,0 的绝对值是 0.3、(2019 广州) | -6|= ( )A.-6 B.6 C.-1D.1 6 64、(2019 玉林) 9 的倒数是 ( )A.1B.-1C.9 D.-9 9 95、(2017 广州)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )(A)-6 (B)6 (C)0 (D)无法确定1.科学记数法示,下列式子成立的是( )(A)a>b (B)|a|<|b| (C)a+b>0 (D a<0)b知识点 6:实数的运算1、六种基本运算:加、减、乘、除、乘方、开方.2、运算顺序:先算乘方、开方,最后算加减.如果有括号,就先算括号里面的;同级运算要按照从左到右的顺序进行.3、运算律:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a b=b a乘法结合律:(a b)c=a(b c)分配律:(a+b)c=a c+b c、2019深圳)计算:9-2cos600+(1)-1+(π-3.14)0812、(2018 广东)已知a -b +b -1 = 0 ,则a +1 =.13.(2019枣庄)对于实数a、b,定义关于“⊗”的一种运算:a ⊗b=2a+b.例如3 ⊗ 4=2×3+4=10.求4 ⊗(一3)的值.熟练掌握实数的运算,小结有理数无理数实数的分类科学记数法、近似数作差比较法实数实数的大小比较作商比较法数轴图示法数轴、相反数倒数、绝对值常考运算及法则实数的运算实数的混合运算顺序总结本节课的主要内容,形成知识网络。

(完整版)《实数》复习课教案

(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。

实数复习课教案

实数复习课教案

第四章实数复习课教案课程标准:(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。

(2)了解乘方与开方互为逆运算,会用开方运算求百以内整数的平方根,会用立方运算求百以内整数的立方根,会用计算器求平方根和立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。

(4)能用有理数估计一个无理数的大致范围。

学习内容与学情分析:本章主要考察是平方根、算术平方根、立方根、无理数、实数的有关概念,及相关性质。

并运用性质,解决实数的相关计算。

在分别学习了有理数、无理数之后,再将两类数综合,得到一个总称“实数”。

请学生们尝试将实数在数轴上表示,对于七年级的学生而言将有理数在数轴上表示难度不大,但学生们通过应用勾股定理和圆弧的特征将有理数表示在数轴之上,理解稍有难度。

然后,及时地让学生们练习巩固,体会成功,不自觉地培养其数形结合的思想。

学习目标:1、理解平方根、算术平方根、立方根的概念,掌握其性质,并会求某些数的平方根或立方根。

2、理解无理数,实数的概念,会对实数进行分类。

3、理解实数与数轴上的点的对应关系,会求实数的相反数,倒数,绝对值。

评价设计:1、通过知识梳理,以及基础题1,2,3能力题4,6,7检测目标一的达成。

2、通过知识梳理,以及基础题6,检测目标二的达成。

3、通过基础5,能力2,检测目标三的达成。

学习过程:一、知识梳理:1、平方根概念、性质2、算术平方根的概念、性质、及公式3、立方根的概念、性质、及公示4、实数的概念、分类、性质,及用数轴上的点如何表示二、基础题1、求下列各数的平方根及算术平方根:972 81492、求下列各数的立方根:343 -81 3、求下列各式的值: ①22.7-)( ②22.7-)( ③333④333)( 4、满足52-〈〈x 的整数x 有___________。

5、14.3-π的相反数是______,绝对值是______,倒数是_________。

八年级实数复习课教案

八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。

(2)掌握实数的性质,如相反数、绝对值、平方等。

(3)学会运用实数解决实际问题。

2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。

(2)运用实例分析,培养学生解决实际问题的能力。

3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。

二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。

(2)无理数:不能表示为两个整数比的数。

2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。

(2)绝对值:数轴上表示一个数的点到原点的距离。

(3)平方:一个数与自身的乘积。

三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。

2. 难点:实数在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。

2. 运用举例法,分析实数在实际问题中的应用。

3. 组织小组讨论,培养学生的团队协作能力。

五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。

2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。

3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。

4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。

5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。

6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。

六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。

(2)学生能熟练运用实数的性质解决实际问题。

2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。

(2)练习题:评估学生运用实数性质解决问题的能力。

(3)小组讨论:观察学生在团队中的参与程度和协作效果。

七、教学资源1. 教材:八年级数学教材。

2. 课件:实数复习的相关课件。

3. 练习题:针对实数性质的练习题。

《实数》复习课教案

《实数》复习课教案

《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。

本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。

【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。

1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。

实数复习教案

实数复习教案

实数复习教案教学分析教学目标:1、了解算术平方根、平方根、立方根、实数及其相关概念;2、会用根号表示并会求数的算术平方根、平方根、立方根;3、数系扩充到实数后,掌握实数的有关概念及其运算律;4、培养学生归纳、整理所学知识的能力。

本章重难点:重点:算术平方根、平方根、立方根、实数及其相关概念及其运算; 难点:算术平方根、实数及其相关知识的综合运用。

教学设计教学过程:一、算术平方根、平方根、立方根1、七年级上学期,由盈亏问题、上升下降问题、前后问题我们引入了负数,这使我们对数的认识有了第一次的扩充,使数扩充到了有理数的范围。

由前节课我们由正方形的面积求其边长的问题,引入了根式,在根式的估计计算中我们发现有些根式是无限不循环小数,从而对数有了新的定义即无理数和实数的概念。

那么实数这一章有那些基本的概念需要我们掌握呢?请大家一起回答下面的问题:(ppt )(1)16的算术平方根是 ,符号表示为 ;16的平方根是 ,符号表示为 ;(2)27的立方根是 ,符号表示为 ;(3)下列数中是无理数的是 .-1,311,0.3,2π,49,38-,0,0.1010010001…(相邻两个1之间0的个数逐次加1)2、各概念的再次回顾呈现:(ppt )算术平方根的定义:如果一个正数的平方等于a ,那么这个数就叫做a 的算术平方根,a 的算术平方根表示为a . 即如果一个正数....x ,有a x =2,则x 叫做a 的算术平方根,表示为a x =. 平方根的定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根,a 的平方根表示为±a . 即如果一个数...x ,有a x =2,则x 叫做a 的平方根,表示为a x ±=. 立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根,a 的立方根表示为3a . 即如果一个数x ,有a x =3,则x 叫做a 的立方根,表示为3a x =.3、问题1:平方根与算术平方根有什么区别和联系?问题2:平方根与立方根有什么区别和联系?问题3:立方根、平方根、算术平方根都是通过什么运算得到的?这种运算和乘方之间有什么关系?活动形式:学生小组讨论交流并归纳,教师抽组回答并给予点评后带领学生归纳结论.(1)平方根与算术平方根有什么区别和联系:它们的联系有:① 平方根包含算术平方根,算术平方根是平方根的一种;② 存在条件相同:平方根与算术平方根都是只有非负数才有;③ 0的平方根、算术平方根都是0.它们的区别是:① 从定义上就不同;② 个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③ 表示方法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a ;④ 取值范围不同:正数的平方根一正一负,它们互为相反数;正数的算术平方根只有一个.(2)平方根与立方根有什么区别和联系:它们的联系有:① 0的平方根、立方根都是0;② 平方根、立方根都是开方的结果.它们的区别是:① 定义不同;② 个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有立方根,一个负数有一个立方根;③ 表示方法不同:正数a 的平方根表示为±a ,a 的立方根表示为3a ;④ 被开方数的取值范围不同:±a 中的被开方数a 是非负数;3a 中的被开方数为任意数.(3)乘方与开方运算的关系:立方根、平方根、算术平方根都是通过开方运算得到的,开方运算和乘方运算是互为逆二、实数范围内的相关概念相反数:实数a 的相反数是-a ,实数a -b 的相反数是b -a .绝对值:实数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ,,,或实数⎪⎩⎪⎨⎧<--=->--=-).0()0(0)0(b a a b b a b a b a b a ,,,实数与数轴的关系:实数与数轴上的点一一对应.1、填空:-5的相反数是 ,-5的绝对值是 .23-的相反数是 ,23-的绝对值是.2、在数轴上表示下列数:2,2.三、实数的运算实数的运算:实数也可以进行加、减、乘、除、乘方、开方等运算,运算法则采用有理数的运算法则.1、口答题.请迅速说出下列两组题的答案,并说出运算规律.(1)2+8= (2)2×8=2+(-8)= 2×(-8)=(-2)+(-8)= (-2)×(-8)=2、请完成下列各题,并说说你是怎么算的.(1)222+= (2)3)322(-+= )22(2-+= 23522++-= )22(2-+-=(3)2×2×2=22⨯= 333222⨯⨯=)122(2-=)313(32-=四、相关知识的综合运用1、解方程:042=-x2、求下列式子中x 的取值范围,并说出根据.x x ;3 3、(1)已知0=+y x ,求x ,y 的值.(2)已知032=++-y x ,求x ,y 的值.活动形式:找学生上台解答,其他学生在下面解答.五、课堂小结通过本节课的学习,你有哪些收获?(知识上或思想方法上)小结:本节课的思想方法有类比、转化和分类讨论等思想。

《实数(复习课) 》教案

《实数(复习课) 》教案
课堂探究:
复习专题一:平方根与算术平方根
1. 16的平方根是_
2.的算术平方根是___
3.化简:= _____
4.说出下列各式的值:
复习专题二:立方根的定义与性质
求下列各式的值
复习专题三:实数
1.的相反数是_____
2.比较大小:____3
3.计算:
巩-2和5x+6,求这个数?
2.已知2a-1的平方根是 ,3a+b的算数平方根是4,求a+2b的平方根。
达标测评:
(见试卷)
课堂小结:
作业策略
1.整理易错知识在笔记本上
2.复习试卷(四)
A,B层学生全部完成1
C层完成复习试卷中的填空、选择部分和解答题15-17
分层布置作业,让我们的学生在数学上有不同的进步
教学反思
温馨提示:
达标测评:
鼓励学生作答,抢答,激励每组的学生学习,树立学习数学的信心。
1.教师(在大屏幕)解读学习目标
2.在后板完整书写巩固提升1和2题,规范学生的书写,完善学生的思路
学习任务
课前准备:
做复习卡上的题目
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
3、知识梳理,夯实基础 15’
4、巩固提升,拓展运用 15’
5、达标测评,小结作业 6’
课前准备:
学情预见:学生对实数这一章的知识点可能有些遗忘,解决问题时考虑的不全面。
方法指导:如有困难,可同本组学生交流探讨。
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。

实数教学设计(复习课)

实数教学设计(复习课)

实数教学设计(复习课)【学习目标】1.了解实数的意义,并能将实数按要求进行准确的分类;2.熟练掌握实数大小的比较方法;(重点)3.了解实数和数轴上的点一一对应,能用数轴上的点表示无理数.(难点)【学习过程】一、自主探究使用计算器计算,把下列有理数写成小数的形式,你有什么发现?5327119-,,,,254911二、探究新知1、实数的概念和分类(1)、归纳概念:任何一个有理数都可以写成_______小数或________小数的形式。

反过来,任何______小数或____________小数也都是有理数观察通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数,π=L也是无理数____________小数又叫无理数, 3.14159265结论: _______和_______统称为实数你能举出一些无理数吗?(2)、试一试把实数分类像有理数一样,无理数也有正负之分。

-,例如2,33,π是____无理数,233-,π-是____无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:实数2、实数与数轴上的点我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______这样,无理数可以用数轴上的点表示出来(2)总结:事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数3、实数的大小比较与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大.议一议不用计算器,5与2比较哪个大?与3比较呢?三、当堂练习1.下列说法正确的是()A.a一定是正实数B.2217是有理数C.22是有理数D.数轴上任一点都对应一个有理数2.有一个数值转换器,原理如下,当输x=81时,输出的y是()A.9B.3C.3D.±33.判断快枪手——看谁最快最准!(1)实数不是有理数就是无理数. ( )(2)无理数都是无限不循环小数. ( )(3)带根号的数都是无理数. ( )(4)无理数都是无限小数. ( )(5)无理数一定都带根号. ( )4.把下列各数填入相应的括号内:有理数:{ }; 无理数:{ }; 整数:{ }; 负数:{ }; 分数:{ }; 实数:{ }.5. 37与6的大小.四、我的感悟这节课我的最大收获是:我不能解决的问题是:五、课后反思9-3564π•6.043-39-313.0。

《实数》复习课教案

《实数》复习课教案

第2章实数回顾与思考一、学生起点分析本章学习至此,学生已经认识了无理数,学习了实数概念及相关运算,从而将原有有理数扩充到了实数范围,使得对数的认识更进一步深入,让学生感受到了数系扩充的必要性与作用.在前面的探究活动中,学生已经掌握了相关数学知识,并具备了一定的数学能力,掌握了类比、数形结合等数学思想方法,也具备了一定的合作学习经验,为学习本节“知识回顾与思考”奠定了基础.二、教学任务分析本章是在学习了勾股定理及有理数等知识的基础上,进行的数系第二次扩张,使学生对数的认识进一步深入.本课是对整章内容的复习与归纳,在教学过程中不必多过地追求概念,只要学生能够结合具体情境,从意义上理解主要概念即可.作为复习归纳课,学生虽对相关知识基本掌握,但是知识间的联系还不够清楚,对于一些综合性较强的题在方法上还有所欠缺,因此本节的教学中应将整章知识点进行梳理整合,并以典型题作为载体让学生从题中悟知识点,从题中悟数学思想与方法.因此,本节课的教学目标是:①复习无理数、算术平方根、平方根、立方根、实数、二次根式及相关概念,会用根号表示,并会求数的平方根、立方根并进行相关运算;②在实数的有关概念和运算律、运算法则的教学中,让学生体会类比的思想;③通过复习提高学生归纳整理的能力,并在师生互动、生生互动的过程中让学生学会倾听学会交流;本章概念较多,学生容易混淆,因此本节的重点应帮助学生理清无理数、算术平方根、平方根、立方根、实数、二次根式的概念.本章的难点体现在以下几处:①算术平方根的双重非负性有着重要的作用,常与平方、绝对值等具有非负性的知识结合在一起应用;②实数的混合运算也一向是学生计算的难点,学生往往在运算顺序、运算法则上出错;③本章对学生数形结合的能力有较高要求,如实数与几何知识勾股定理结合在一起就是学生掌握的难点.本章的知识结构框图222333(0)x a x a x a x a x ax a a x x a x a x a x a x a a a ⎧⎧⎨⎪⎪⎩⎨⎧⎪⎨⎪⎩⎩⎧=⎪⎪==±⎨⎪=⎪⎩⎧=⎪⎨==⎪⎩≥整数有理数分数实数分类正无理数无理数负无理数定义:如果一个数的平方等于,即,那么这个数叫做的平方根平方根表示:若,则算术平方根:若,则的算术平方根为定义:如果一个数的立方等于,即,那么这个数叫做的立方根立方根表示:若,则实数定义:式子叫做二次根式二次根式最简二次223333()(0)()(0,0)(0,0)a a a a a a a a a a b ab a b a a a b b b ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎨⎪⎪⎩⎪⎪⎧=≥⎪⎪⎪⎪=⎪⎪⎪=⎪⎪⎪⎪⎨=⎪⎪⎪⎪⋅=≥≥⎪⎪⎪⎪=≥≥⎪⎪⎩⎪⎪⎩根式:被开方数不含分母,也不含能开得尽方的因数或因式重要性质实数的性质应用三、教学过程设计本节课设计了五个教学环节:第一环节:知识回顾;第二环节:典例精析;第三环节:运用巩固;第四环节:课堂小结;第五环节:布置作业.第一环节 知识回顾知识点填空:(1) 无限不循环小数 叫做无理数.(2) 有理数和无理数 统称为实数.⎧⎧⎪⎪⎨⎪⎪⎩⎨⎧⎪⎪⎨⎪⎪⎩⎩整数有理数分数实数分类正无理数无理数负无理数. (3) 实数 和数轴上的点是一一对应的.(4)=2a a ;)0()(2≥=a a a ;a a =33)(;a a =33;)0,0(≥≥=⋅b a ab b a ;)0,0(≥≥=b a ba b a. (5)把分母中的根号化去,叫做 分母有理化 .(6)最简二次根式应满足的条件是被开方数不含分母,也不含能开得尽方的因数或因式 .(7)同类二次根式:几个二次根式化成 最简二次根式 后,如果被开方数相同,这几个二次根式就叫做同类二次根式;化简时,有同类二次根式要合并,可以约分的分式要约分.设计说明:以上7个填空题老师可带着学生共同完成,通过填空让学生清晰本章的几个重要概念,特别是(4)中的几个易混点可通过此环节帮助学生理清楚.这样也为解决下一环节中的经典例题做好知识点的扎实铺垫.第二环节 典例精析(一)实数的相关概念例1、下列各数中,哪些是有理数,哪些是无理数?23,35,3.14159265,9,π-,31-,2(5)-,3.1010010001…(相邻两个1之间0的各数逐次加1)设计说明:此题考查概念.整数和分数统称为有理数,这是有理数的判断方法.无理数是无限不循环的小数,这是无理数的判断方法.而无限不循环小数主要有以下几种:①开方开不尽的方根;②含π的数;③是无限小数且不循环.在判断时还应注意,一定要抓住概念的本质而不是根据数的形式,如此题中的9,2(5)-虽然都含有根号,但它们都是有理数.所以此题中的有理数有:3.14159265,9,2(5)-;无理数有:23,35,π-,31-,3.1010010001…(相邻两个1之间0的各数逐次加1)(二)实数的相关性质及运算例2、实数a 、b 在数轴上的位置如图所示,化简2()a b b a ++-.设计说明:此题考查算术平方根的意义,也培养学生的读图能力,体现数学中的数形结合思想方法.由数轴上a 、b 的位置可知0a b +<,0b a ->,从而根据算术平方根与绝对值的意义有:2()()2a b b a a b b a a b b a a ++-=-++-=--+-=-例3、计算:(1)14010- (2) 4821319125+- 设计说明:意在复习实数的运算法则及二次根式的化简.111019104041021010101010-=-=-=- 11113512948543916310392310333239332233-+=-+=-⋅+=-+=例4、(1)已知a 、b 满足230a b -++=,求2013()a b +的值(2)已知242423y x x =---+,求y x 的值.设计说明:运用算术平方根的双重非负性解决此题,这也是本章的难点之一.解:(1)20,30a b -≥+≥ 又230a b -++=20,30a b ∴-=+=2,3a b ∴==-201320132013()(23)(1)1a b ∴+=-=-=-(2)240,420x x -≥-≥24420x x ∴-=-=2x ∴=0033y ∴=-+=328y x ∴==(三)实数中的数形结合例5、已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为多少?设计说明:此题是关于运用实数相关知识解决三角形中线段长度的问题.其易错点是△ABC 的形状有两种情况,学生容易忽略钝角三角形的情况.通过此题意在提高学生运用分类讨论的思想解决数学问题的能力.分析:(1)当△ABC 为锐角三角形时,易求BD =15,DC =6,从而求得BC =15+6=21.(2)当△ABC 为钝角三角形时,易求BD =15,DC =6,从而求得BC =15-6=9. 第三环节 运用巩固1.下列说法错误的是( )A .4的算术平方根是2B .2是2的平方根C .-1的立方根是-1D .-3是2(3)-的平方根2.当32<<x 时,求代数式21616426x x x -++-的值.3.若12x x +-有意义,求x 的取值范围. 4.一等腰三角形的腰长与底边之比为5:6,它底边上的高为68,求这个等腰三角形的周长与面积.设计说明:通过这几道题意在巩固第二环节的学习效果,让学生自己动笔练习,并在独立完成后通过小组合作来进行交流订正.答案:1.D 2.2 3.2x > 4.817ABC C ∆=,51ABC S ∆=BC AD B C AD第四环节 课堂小结请同学们认真思考下列问题:1、通过本堂课的学习我收获了什么?2、我还有哪些没有解决的困惑?设计说明:用2分钟左后时间让学生思考这两个问题,并请学生回答,及时肯定学生的收获并加以归纳,同时发现学生的困惑及时答疑.第五环节 布置作业完成课本4951P 复习题知识技能1题、4题、10题;数学理解14题;问题解决21题.设计说明:1题是关于有理数与无理数概念的题;4题为实数的运算题;10题考查的是“实数与数轴上的点一一对应”这一知识点,巩固数形结合的思想方法;14题看似简单,其实考查了本章的众多概念,特别适合用于检验学生对基础知识的掌握情况;21题为实数的应用,在考查计算的同时也锻炼了学生作图、读图、数形结合的综合能力.四、教学设计反思1.选择性的使用例题在此教学设计中,例题数量并不少,针对不同的学生群体,老师可适当删减,做到有的放矢,但是建议概念例题保留.2.给予学生充分的表达和交流的机会老师可以在前四个环节中根据具体情况采用不同的教学方法,可以师生互动也可以生生互动,通过交流讨论让学生学会表达、学会倾听、学会归纳.其实教学活动最主要的意图就是让学生主动起来,应多给予学生交流的时间与机会.3.注意收集学生生成性的学习资源在师生的问答活动中、在学生的独立思考中、在生生之间的互动交流中都会迸发出许多我们难以预料的惊喜或困惑,也许是一些精彩的发言、也许是一个精妙的方法、也许是一个典型的错误、也许一个重要的经历、也许是一串宝贵的收获…这些在课堂中新生成的资源是学生学习过程中的宝贵财富,因此我们应鼓励学生多收集这些闪光点用以形成自己可以学习借鉴的学习资源.。

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。

本节课的主要内容是实数的定义、性质以及实数与数轴的关系。

教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。

但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。

因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够运用实数的概念解决实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。

六. 教学准备1.教材、教案、PPT。

2.练习题。

3.数轴教具。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。

2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。

3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。

4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。

5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。

6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。

7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。

8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。

八年级数学实数教案5篇

八年级数学实数教案5篇

八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。

北师大版数学八年级上册6《实数》教案3

北师大版数学八年级上册6《实数》教案3

北师大版数学八年级上册6《实数》教案3一. 教材分析北师大版数学八年级上册第六单元《实数》是学生在学习了有理数和无理数的基础上,进一步研究实数的性质和运算。

本节课通过介绍实数的分类、实数与数轴的关系以及实数的运算,使学生对实数有一个全面的认识,培养学生数形结合的数学思想。

二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的了解。

但学生在实数的分类、实数与数轴的关系以及实数的运算方面还存在一定的困难。

因此,在教学过程中,要关注学生的个体差异,针对不同程度的学生进行引导和讲解。

三. 教学目标1.了解实数的分类,掌握实数与数轴的关系。

2.掌握实数的运算方法,能够熟练进行实数的计算。

3.培养学生的数形结合思想,提高学生的数学素养。

四. 教学重难点1.实数的分类2.实数与数轴的关系3.实数的运算五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,分析案例使学生理解实数的性质和运算,小组合作学习提高学生的参与度和合作能力。

六. 教学准备1.教案、PPT、教学素材2.数轴、实数卡片3.学生分组名单七. 教学过程导入(5分钟)1.复习有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?2.引导学生思考实数的定义,引出实数的概念。

呈现(10分钟)1.呈现实数的分类:正实数、负实数和零。

2.介绍实数与数轴的关系,展示数轴,让学生直观地感受实数与数轴的对应关系。

操练(10分钟)1.分组进行实数运算练习,如加减乘除、比较大小等。

2.教师选取每组的代表作品进行点评和讲解。

巩固(10分钟)1.让学生自主完成课后练习,巩固实数的分类和运算。

2.教师巡回指导,解答学生的疑问。

拓展(10分钟)1.引导学生思考实数在实际生活中的应用,如长度、面积等。

2.让学生举例说明实数在其他学科中的应用。

小结(5分钟)1.教师引导学生总结本节课的主要内容和实数的性质。

2.学生分享自己在课堂上的收获和感受。

八年级实数复习课教案

八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,包括有理数和无理数。

(2)掌握实数的性质,如整数、分数、正数、负数、相反数、绝对值等。

(3)学会实数的运算方法,包括加、减、乘、除、乘方等。

2. 过程与方法:(1)通过复习实数的定义和性质,加深对实数概念的理解。

(2)通过例题讲解和练习,提高学生解决实数运算问题的能力。

(3)培养学生的逻辑思维能力和数学表达能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养积极的学习态度。

(2)培养学生的团队合作精神,学会与他人交流和讨论。

二、教学内容1. 实数的定义及分类:有理数和无理数。

2. 实数的性质:整数、分数、正数、负数、相反数、绝对值等。

3. 实数的运算方法:加、减、乘、除、乘方等。

三、教学重点与难点1. 教学重点:(1)实数的定义及分类。

(2)实数的性质和运算方法。

2. 教学难点:(1)无理数的概念及其与有理数的区别。

(2)实数运算的复杂问题解决方法。

四、教学过程1. 导入新课:(1)复习实数的定义及分类,引导学生回顾已学知识。

(2)提问学生实数的性质和运算方法,检查学生的掌握情况。

2. 教学实数的定义及分类:(1)通过讲解和示例,引导学生理解实数的定义。

(2)介绍有理数和无理数的分类,并举例说明。

3. 教学实数的性质:(1)通过讲解和示例,引导学生掌握实数的性质。

(2)进行实数性质的练习,巩固学生的理解。

4. 教学实数的运算方法:(1)通过讲解和示例,引导学生学会实数的运算方法。

(2)进行实数运算的练习,提高学生的运算能力。

五、作业布置2. 完成课后练习题,巩固所学知识。

3. 准备课堂小测验,测试学生对实数的掌握程度。

六、教学评估1. 课堂问答:通过提问学生实数的定义、性质和运算方法,评估学生对知识的掌握程度。

2. 课后作业:检查学生完成的课后练习题,评估学生对实数运算的掌握情况。

3. 课堂小测验:进行课堂小测验,评估学生对实数的整体掌握程度。

《实数》复习课教学设计

《实数》复习课教学设计
3、实际问题的运算.
小结
引导、总结
由学生小结
五、作业
1、计算:
2、先化简,再求值:
其中
课题:实数(复习)
教学目标:
1、加强对实数的有关概念、性质及其运算规律的理解。
3、能运用实数的运算解决简单的实际问题,提高学生的应用能力。
教学重点:
平方根、算术平方根、立方根概念与性质,二次根式的运算法则。
教学难点:
利用平方根、算术平方根、立方根进行有关计算,化简二次根式,注意平方根与算术平方根的区别
教学过程:
教学步骤
设计意图
教师活动
学生活动
教学媒体和教学形式
一、知识网络
1、实数的分类:
(1)按定义分类
(2)按正、负分类
2、实数的相关概念:
(2)绝对值、相反数、倒数的意义与有理数相同.
(3)实数与数轴上的点是一一对应的.
(4)实数的运算法则、运算律与有理数相同.
让学生对本章所学的知识
提问
回答。
出示知识网络
巩固二次根式
提问
回答。
显示复习内容
二、做一做
1、把下列各数分别填入相应的集合内:
(相邻两个5之间的7的个数逐次加1)
正数集合:__________________________
有理数集合:__________________________
无理数集合:___________________________
3、实数的基本性质、法则
加深理解实数的基本性质、法则
提问
回答。
显示实数的基本性质、法则
4、二次根式
1、二次根式的定义
一般地,形如 的式子叫做二次根式, 叫做被开方数。

实数复习课教案

实数复习课教案

实数复习教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;4.理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.教学重难点:1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.一、基础知识1、有理数(1) 有限小数:小数部分的位数是有限的小数。

(2) 无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

例如:…,…等等。

2、无理数(1)无理数:无限不循环小数叫做无理数。

(2)无理数的特征:1)无理数的小数部分位数不限;2)无理数的小数部分不循环,不能表示成分数的形式。

3、实数有理数和无理数统称为实数。

(1)实数的分类:(2)实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。

数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。

(实数与数轴上的点一一对应。

)(3)实数大小比较的方法:1)有理数大小的比较法则在实数范围内同样适用,即:法则1:在数轴上表示的两个实数,右边的数总比左边的数大。

法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。

2)平方比较法。

3)作差比较法。

(4)运算:有理数的运算法则,运算顺序,运算性质在实数中同样适用。

二、典型例题…,,3π,,,其中,无理数的个数有()A、1 B、2 C、3 D、4练习:1、在,,π,3.,2+…,这些数中,无理数的个数为( ).2、下列实数,,,,,中无理数有()A.个B.个C.个D.个3.数, 2 ,π,…,17,9 中,无理数的个数为()A.2个B.3个C.4个D.5个例2.x取何值时,下列各式有意义.(1); (2);. 例3 已知,求的值;例4.求下列各数的平方根,算术平方根:(1);(2);(3).例5.=________.)0(233<•-a a a =________.练习: 1、36的平方根是 ;16的算术平方根是 ;2、8的立方根是 ;327-= ;3、37-的相反数是 ;绝对值等于3的数是4、的倒数的平方是 ,2的立方根的倒数的立方是 。

(完整版)实数复习课公开课教案

(完整版)实数复习课公开课教案

实数复习课教案活动目标1.复习平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.复习无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.复习数轴、相反数、绝对值的性质,并在实数范围内准确运用。

4. 能对实数进行运用和比较大小。

活动重点1. 平方根、立方根的概念、性质,会求一个实数的平方根、立方根。

2.对实数准确分类和比较大小。

活动难点:掌握实数的有关概念及会进行实数大小比较;会进行开平方和开立方运算,会求一个非负数的算术平方根;能够运用实数的有关性质解决问题教学准备课件、导学案活动过程一、 知识疏理(一) 平方根、算术平方根、立方根⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 设计意图:对比复习平方根、算术平方根、立方根让学生对知识之间的联系,进一步掌握它们之间的区别,达到正确求一个数的方根的目的。

一点一练我能行!1.明辩事非3是9的算术平方根 ( )0的平方根是0,0的算术平方根也是0 ( )(-2)2的平方根是2- ( )64的立方根是4± ( )-10是1000的一个立方根 ( )2.填一填25的平方根是 16的算术平方根是 27的立方根是______ 327 的平方根是_________3.火眼睛睛(1)A .3B .3-C .3±D . 9(2)下列说法中正确的是( )A .81的平方根是±3B .1的立方根是±1C .1=±1D .-5是5的平方根的相反数(3)下列式子中① 4是16的算术平方根,即4= ②4是16的算术平方根,即4=③-7是49的算术平方根,即7= ④7是(-7)²的算术平方根,即7= 其中正确的是( )A. ①③B. ②③C. ②④D. ①④(二)实数的分类、性质、比较大小、运算1.实数分类(按定义分和按正负分)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0分类中特别强调无理数的形式针对练习:(2) 73是( ): A .无理数B .有理数C .整数D .负数1、在下列各数、、、、、、、、27111311010010001.672232.0051525354.0 π 中无理数的个数是( )A .2B .3C .4D .52、把下列各数填在相应的大括号内: 1010010001.2,64,333.3,14.3,,75,13---π 整数集合:{ ……};分数集合:{ ……};有理数集合:{ };无理数集合:{ }。

第六章实数复习课教案

第六章实数复习课教案

第六章《实数》复习七( )班 姓名________座号:______ 第____小组一、自学范围:(P40-62)二、自学目标:1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;4.理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.教学重难点:1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、基础知识回顾:1、有理数(1) 有限小数:小数部分的位数是有限的小数。

(2) 无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

例如: 0.333 …, 5.32727 …等等。

2、无理数(1)无理数:无限不循环小数叫做无理数。

(2)无理数的特征:1)无理数的小数部分位数不限;2)无理数的小数部分不循环,不能表示成分数的形式。

3、实数(1)实数的分类:(2)实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。

数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。

(实数与数轴上的点一一对应。

)(3)实数大小比较的方法:1)有理数大小的比较法则在实数范围内同样适用,即:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0法则1:在数轴上表示的两个实数,右边的数总比左边的数大。

法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。

2)平方比较法。

3)作差比较法。

(4)运算:有理数的运算法则,运算顺序,运算性质在实数中同样适用。

四、典型习题(一)、选择题1、下面几个数:-1.732 ,1.010010001…,,3π,,其中,无理数的个数有( )A 、1B 、2C 、3D 、42、4的平方根是( )A.2B.-2C.±2D.±23、下列说法中正确的是( )A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数 4、如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A 、211B 、1.4C 、D 、 5、设,则下列结论正确的是( ) A. B. C. D.6.下列各式中,无意义的是( )A.-3B.3-C.2(3)-D.310-7、下列各组数中,互为相反数的一组是( )A.-2与2(2)-B.-2与38-C.-2与-12D.│-2│与2 8、 下列说法正确的是 ( )A 、的算术平方根是-3;B 、的平方根是±15.C 、当x=0或2时,D 、是分数(二)、填空题 9、36的平方根是 ;16的算术平方根是 ;10、8的立方根是 ;327-= ;11、37-的相反数是 ;绝对值等于3的数是12、3的倒数的平方是 ,2的立方根的倒数的立方是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数复习
教学目标
1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2.会用计算器进行数的加、减、乘、除、乘方及开方运算;
3.了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;
4.理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.
教学重难点:
1.平方根和算术平方根的概念、性质,无理数与实数的意义;
2.算术平方根的意义及实数的性质.
一、基础知识
1、有理数
(1) 有限小数:小数部分的位数是有限的小数。

(2) 无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

例如:0.333 …, 5.32727 …等等。

2、无理数
(1)无理数:无限不循环小数叫做无理数。

(2)无理数的特征:
1)无理数的小数部分位数不限;
2)无理数的小数部分不循环,不能表示成分数的形式。

3、实数
有理数和无理数统称为实数。

(1)实数的分类:
(2)实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。

数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。

(实数与数轴上的点一一对应。


(3)实数大小比较的方法:
1)有理数大小的比较法则在实数范围内同样适用,即:
法则1:在数轴上表示的两个实数,右边的数总比左边的数大。

法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。

2)平方比较法。

3)作差比较法。

(4)运算:有理数的运算法则,运算顺序,运算性质在实数中同样适用。

二、典型例题
例1.下面几个数: ,1.010010001…,
,3π,,,其中,无理数的个数有( )A 、1 B 、2 C 、3 D 、4
练习:1、在-1.732,2,π, 3.4
1 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5 B.
2 C.
3 D.4
2、下列实数
317,π-,3.14159 8,32721中无理数有( ) A.2个 B.3个 C.4个 D.5个
3.数3.14, 2 ,π,0.323232…,17
,9 中,无理数的个数为( ) A.2个 B .3个 C .4个 D .5个
例2.x 取何值时,下列各式有意义.
(1)x -2; (2)12+x ;
. 例3 已知322+-+-=x x y ,求x y 的值;
例4.求下列各数的平方根,算术平方根:
(1)972;(2)25;(3)252⎪⎭
⎫ ⎝⎛-. 例5.31-23(1)-
)0(233<•-a a a =________.
练习: 1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、37-的相反数是 ;绝对值等于3的数是
4、3的倒数的平方是 ,2的立方根的倒数的立方是 。

523的相反数是 ,23-的相反数的绝对值是 。

627726-的相反数之和的倒数的平方为 。

7.64的平方根是 ,立方根是 .
8.51-的相反数是 ,绝对值是 . 9.若==x x 则6 .
10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是
11.当10≤≤x 时,化简__________12=-+x x ;
例6.已知22(4)20,()y x y x y z xz -++++-=求的平方根。

例7. 点A 在数轴上表示的数为
,点B 在数轴上表示的数为,则A ,B 两点的距离为______
练习:1、如图,数轴上表示1,
的对应点分别为A ,B ,点B 关于点A 的对称点为C ,
则点C 表示的数是( ).
A .-1
B .1-
C .2-
D .-2 2、已知实数、、在数轴上的位置如图所示:
化简 例10、414、226、15三个数的大小关系是( ) A.414<15<226; B. 226<15<414;
C.414<226<15 ;
D. 226<414<15
3:比较大小:2113532 23
例11 化简计算
(1) 233221-+-+- (2)23325332
(3)22)7()3(+-; (4)3)33232(⨯++-; 五、课后练习
一、填一填:
1.16的平方根记作_______,等于________.
2.16的值为________.
4.两个无理数的和为有理数,这两个无理数可以是______和_______.
5.若│x 2-25│+3y -=0,则x=_______,y=_______.
6.已知x 的平方根是±8,则x 的立方根是________.
二、选一选:
7.4的平方根是( )
A.2
B.-2
C.±2
D.±2
8.下列各式中,无意义的是( )
A.-3
B.3-
C.2(3)-
D.310-
9.下列各组数中,互为相反数的一组是( )
A.-2与2(2)-
B.-2与38-
C.-2与-12
D.│-2│与2 10. 下列说法正确的是 ( )
A.1的平方根是1;
B.1的算术平方根是1;
C.-2是2的平方根;
D.-1的平方根是-1
三、做一做:
12.判断下列说法是否正确
(1)的算术平方根是-3; (2)的平方根是±15.
(3)当x=0或2时,
(4)是分数。

相关文档
最新文档