江苏省扬州市2014年中考数学试题

合集下载

江苏省扬州市梅岭中学2014届中考一模数学试题

江苏省扬州市梅岭中学2014届中考一模数学试题

图①
23.(本题满分 10 分)已知:如图,在 ABC 中, ACB 90 , CAB 的平分线交 BC 于 D , DE AB ,垂足为 E ,连结 CE ,交 AD 于点 H . (1)求证: AD CE ;
19. (本题满分 8 分) (1) 计算: 27 2 cos 30 ( )
0
1 2
2
1 3 ;
(2) 化简:
x 3 5 x 2 . x2 x2
20.(本题满分 8 分)解不等式组: 2 x 1 1 x
3( x 1) ( x 3) 8 ,并求它所有整数解的和. 1 2 3
2 的图象上,第二象限内的点 B 在反 x
▲ .
k 的图象上,且 OA⊥OB ,tanA= 3 ,则 k 的值为 x A
A´ B´ E E´ C D D´ (第 15 题) (第 18 题)
B
三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定区域 内作答,解答时应写出必 ....... 要的文字说明、证明过程或演算步骤)
A.-1 B.1 C.2 D.3
4.下面调查中,适合采用普查的是 A.调查全国中学生心理健康现状. C.调查我市食品合格情况. B.调查你所在的班级同学的身高情况. D.调查扬州电视台《今日生活》收视率.
5. 如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组 成的新图形为中心对称图形,该小正方形的序号是 A.① 视图是 B.② C.③ D.④ 6. 如图,图 1 是一个底面为正方形的直棱柱,现将图 1 切割成图 2 的几何体,则图 2 的俯
2013~2014 学年第二学期九年级模拟测试数学试卷

江苏省扬州市邗江区2014届九年级中考一模数学试题

江苏省扬州市邗江区2014届九年级中考一模数学试题
.3
B . x3· x5= x15
C .x4÷x= x3
D
.( x之相关的结果个数约为
3930000,这个数用科学记数法表示为
A. 0.393 ×10 7
B . 393×104
C. 39.3 ×105
D .3.93 ×106
A.①②
B.②③
C. ②④
D. ③④
8.如图,已知在 Rt△ ABC中, AB=AC=2,在△ ABC内作第一个内接正方形 DEFG;然后取
GF 的中点 P,连接 PD、 PE,在△ PDE内作第二个内接正方形 HIKJ;再取线段 KJ 的中
点 Q,在△ QHI 内作第三个内接正方形 ,, 依次进行下去,则第
x
3 (2 x
1) ≤ 4,①
2
1 3x 2x 1. ② 2
三、解答题(本大共 10 题,共 96 分) 19.(本题 8 分)
(1)计算: 2 cos30
3 2 ( 5) 0 ;
( 2)解方程 5x 4 x2
4x 10 1 3x 6 .
20.(本题 8 分)
x2+ 4
x2- 4
化简代数式( x - 4)÷ x2+ 2x
,当 x 满足
且为正整数时,求代数式的值.
4. 两圆的半径分别为 3 和 7,圆心距为 7,则两圆的位置关系是
A .内切
B
.相交
C
.外切
D
5. 下列说法不.正.确. 的是
1
A.某种彩票中奖的概率是 1000 ,买 1000 张该种彩票一定会中奖
B.了解一批电视机的使用寿命适合用抽样调查
.外离
C.若甲组数据方差 S甲2 0.39 ,乙组数据方差 S乙2 0.27 ,则乙组数据比甲组数据稳定

历年江苏省扬州市中考数学试卷(含答案)

历年江苏省扬州市中考数学试卷(含答案)

2017年江苏省扬州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.(3分)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a3.(3分)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.(3分)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差5.(3分)经过圆锥顶点的截面的形状可能是()A.B. C.D.6.(3分)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.127.(3分)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.98.(3分)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.(3分)若=2,=6,则=.11.(3分)因式分解:3x2﹣27=.12.(3分)在平行四边形ABCD中,∠B+∠D=200°,则∠A=.13.(3分)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.(3分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.(3分)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=°.16.(3分)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P 处,且DP⊥BC,若BP=4cm,则EC=cm.17.(3分)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为.18.(3分)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m 的所有取值的和为.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).20.(8分)解不等式组,并求出它的所有整数解.21.(8分)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.(8分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.(10分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.(10分)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB 的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.25.(10分)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O 于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.26.(10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=,OC△OA=;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.27.(12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)28.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G 在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.2017年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•扬州)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.4【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.2.(3分)(2017•扬州)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【解答】解:A、a4•a=a5,不符合题意;B、(a2)2=a4,符合题意;C、a3+a3=2a3,不符合题意;D、a4÷a=a3,不符合题意,故选B.【点评】本题考查了幂的有关运算性质,解题的关键是能够正确的运用有关性质,属于基础运算,比较简单.3.(3分)(2017•扬州)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)(2017•扬州)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【解答】解:由于方差和标准差反映数据的波动情况.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(3分)(2017•扬州)经过圆锥顶点的截面的形状可能是()A.B. C.D.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.【点评】本题考查的是用一个平面去截一个几何体,掌握圆锥的特点是解题的关键.6.(3分)(2017•扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(3分)(2017•扬州)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.8.(3分)(2017•扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【分析】对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点.【解答】解:抛物线y=x2+bx+1与y轴的交点为(0,1)∵C(2,1),∴对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,∴b≥﹣2,故选:C.【点评】本题考查了二次函数图象与系数的关系.解题时,利用了二次函数图象上点的坐标特征来求b的取值范围.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)(2017•扬州)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 1.6×104立方米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•扬州)若=2,=6,则=12.【分析】由=2,=6得a=2b,c=,代入即可求得结果.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.【点评】本题考查了有理数的除法,求得a=2b,c=是解题的关键.11.(3分)(2017•扬州)因式分解:3x2﹣27=3(x+3)(x﹣3).【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(3分)(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=80°.【分析】利用平行四边形的对角相等、邻角互补可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.13.(3分)(2017•扬州)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135分.【分析】根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.【点评】本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.(3分)(2017•扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=50°.【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.【解答】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°﹣80°)÷2=50°.故答案为:50.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(3分)(2017•扬州)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=(2+2)cm.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC﹣BP=(4+4)cm,∵∠EPC=180°﹣90°﹣60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.【点评】本题考查了翻折变换﹣折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.17.(3分)(2017•扬州)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为y=.【分析】设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,得到AC=n,OC=﹣m,根据全等三角形的性质得到AC=OD=n,CO=BD=﹣m,于是得到结论.【解答】解:∵点A是反比例函数y=﹣的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为y=,故答案为:y=.【点评】本题考查了坐标与图形变化﹣旋转,反比例函数图形上点的坐标特征,待定系数法求反比例函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.18.(3分)(2017•扬州)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为15.【分析】由题意m=,令y=,则x=2017﹣y2,可得m==,由m是正整数,y≥0,推出y=1时,m=12,y=2时,m=3,由此即可解决问题.【解答】解:由题意m=,令y=,则x=2017﹣y2,∴m==,∵m是正整数,y≥0,∴y=1时,m=12,y=2时,m=3,∴正整数m的所有取值的和为15,故答案为15.【点评】本题考查无理方程、换元法、正整数等知识,解题的关键是学会利用换元法解决问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)(2017•扬州)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).【分析】(1)根据零指数幂的意原式=义以及特殊角锐角三角函数即可求出答案;(2)根据平方差公式以及单项式乘以多项式的法则即可求出答案.【解答】解:(1)原式=﹣4+1﹣2×+﹣1=﹣3﹣+﹣1=﹣4(2)原式=3a﹣2a2+2(a2﹣1)=3a﹣2a2+2a2﹣2=3a﹣2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•扬州)解不等式组,并求出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,∴不等式组的整数解为﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•扬州)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?【分析】(1)由喜欢“其他”的人数除以所占的百分比即可求出调查的总人数;由喜欢“汤包”所占的百分比乘以总人数求出“汤包”的人数;由喜欢“蟹黄包”的人数除以调查的总人数即可得到所占的百分比,再乘以360即可求出结果;(2)用顾客中喜欢“汤包”所占的百分比,乘以1000即可得到结果.【解答】解:(1)8÷5%=160(人),160×30%=48(人),32÷160×360°=0.2×360°=72°.故条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)30%×1000=300(人).故估计富春茶社1000名顾客中喜欢“汤包”的有300人.故答案为:48人,72.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(8分)(2017•扬州)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.23.(10分)(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【点评】此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.24.(10分)(2017•扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣BC.【解答】解:(1)四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=,∴cos∠BAC==,即=,∴AC=26.∴由勾股定理知:BC===10.又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣10=16.【点评】本题考查了四边形综合题,需要掌握平移的性质,解直角三角形,勾股定理以及菱形的判定与性质等知识点.解答(1)题时,往往误认为四边形ACC'A'是平行四边形,岂不知还要根据已知条件继续证得该四边形是菱形,属于易错题.25.(10分)(2017•扬州)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.【解答】解:(1)结论:DE是⊙O的切线.理由:∵四边形OABC是平行四边形,又∵OA=OC,∴四边形OABC是菱形,∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等边三角形,∴∠AOB=∠BOC=∠COF=60°,∵OB=OF,∴OG⊥BF,∵AF是直径,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四边形BDCG是矩形,∴∠OCD=90°,∴DE是⊙O的切线.(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等边三角形,∴CF=OC.②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.【点评】本题考查切线的判定、平行四边形的性质、等边三角形的判定和性质、弧长公式,解直角三角形等知识,解题的关键是学会添加常用辅助线,证明三角形是等边三角形是解题的突破点,属于中考常考题型.26.(10分)(2017•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB 与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= 0,OC△OA=7;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD=AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD===2,∴BA△BC=BD2﹣CD2=24;(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DN=AN=×OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3,∴S=BC×AO=6.△ABC【点评】此题是三角形综合题,主要考查了勾股定理,含30°的直角三角形的性质,勾股定理,等腰三角形的性质,解(1)的关键是求出OD,解(2)的关键是BD,解(3)的关键是用方程组的思想解决问题,是一道很好的新定义题目.27.(12分)(2017•扬州)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=﹣30,b=1500,∴p=﹣30x+1500,检验:当x=35,p=450;当x=45,p=4150;当x=50,p=0,符合一次函数解析式,∴所求的函数关系为p=﹣30x+1500;(2)设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)即w=﹣30x2+2400x﹣45000,∴当x=﹣=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),即w=﹣30x2+(2400+30a)x﹣(1500a+45000),对称轴为x=﹣=40+a,①若a>10,则当x=45时,w有最大值,即w=2250﹣150a<2430(不合题意);②若a<10,则当x=40+a时,w有最大值,将x=40+a代入,可得w=30(a2﹣10a+100),当w=2430时,2430=30(a2﹣10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.【点评】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.28.(12分)(2017•扬州)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x﹣x2=。

江苏省扬州市2014年中考数学试卷(word版-含解析)

江苏省扬州市2014年中考数学试卷(word版-含解析)

江苏省扬州市2014年中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014•扬州)下列各数中,比﹣2小的数是()2.(3分)(2014•扬州)若□×3xy=3x2y,则□内应填的单项式是()3.(3分)(2014•扬州)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()4.(3分)(2014•扬州)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()5.(3分)(2014•扬州)如图,圆与圆的位置关系没有()6.(3分)(2014•扬州)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()7.(3分)(2014•扬州)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()8.(3分)(2014•扬州)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N 分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=().﹣2 二、填空题(共10小题,每小题3分,满分30分)9.(3分)(2014•扬州)据统计,参加今年扬州市初中毕业、升学统一考试的学生约36800人,这个数据用科学记数法表示为 3.68×104.10.(3分)(2014•扬州)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35 cm.11.(3分)(2014•扬州)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18 cm3.12.(3分)(2014•扬州)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280 人.该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.14.(3分)(2014•扬州)如图,△ABC 的中位线DE=5cm,把△ABC沿DE 折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40 cm3.15.(3分)(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0 .17.(3分)(2014•扬州)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23 .18.(3分)(2014•扬州)设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a 1+1)2+(a 2+1)2+…+(a 2014+1)2=4001,则a 1,a 2,…,a 2014中为0的个数是 165 .三、解答题(共10小题,满分96分)19.(8分)(2014•扬州)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°; (2)化简:﹣÷.20.(8分)(2014•扬州)已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x+=0有两个相等的实数根,求k 的值. =0)=021.(8分)(2014•扬州)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是9.5 分,乙队成绩的众数是10 分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.)乙队的平均成绩是:则方差是:22.(8分)(2014•扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.汁的概率是:故答案为:为:=23.(10分)(2014•扬州)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG 是正方形.厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?﹣=10⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.,,26.(10分)(2014•扬州)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m 的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?===1②根据题意得:由①得:m≥﹣<≤m<∴2≤解得:﹣2≤p<﹣得到=27.(12分)(2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x (元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?解得解得y=;,=﹣b=﹣=6128.(12分)(2014•扬州)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N 在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.====.=PQQBPQ+QB==4 PB=2.2。

江苏省扬州市2014年中考数学试卷及参考答案

江苏省扬州市2014年中考数学试卷及参考答案
江苏省扬州市2014年中考数学试卷
一、选择题
1. 下列各数中,比﹣2小的数是( ) A . ﹣3 B . ﹣1 C . 0 D . 1 2. 若□×3xy=3x2y,则□内应填的单项式是( ) A . xy B . 3xy C . x D . 3x 3. 若反比例函数y= (k≠0)的图象经过点P(﹣2,3),则该函数的图象 A . (3,﹣2) B . (1,﹣6) C . (﹣1,6) D . (﹣1,﹣6) 4. 若一组数据﹣1,0,2,4,x的极差为7,则x的值是( ) A . ﹣3 B . 6 C . 7 D . 6或﹣3 5. 如图,圆与圆的位置关系没有( )
三、解答题
19. (1) 计算:(3.14﹣π)0+(﹣ )﹣2﹣2sin30°;
(2) 化简: ﹣
÷

2
20. 已知关于x的方程(k﹣1)x2﹣(k﹣1)x+ =0有两个相等的实数根,求k的值.
21. 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

7
8
9
7
10
(1) 求证:DE∥BC; (2) 若AF=CE,求线段BC的长度. 26. 对x,y定义一种新运算T,规定:T(x,y)=
,例如:T(0,1)=
=b.
(1) 已知T(1,﹣1)=﹣2,T(4,2)=1. ①求a,b的值;
(其中a、b均为非零常数),这里等式右边是通常的四则运算
②若关于m的不等式组
恰好有3个整数解,求实数p的取值范围;
10
9
10
10
10

10
8
7
9
8
10
10
9

扬州市江都2014年中考第一次模拟考试数学试卷及答案

扬州市江都2014年中考第一次模拟考试数学试卷及答案

第6题图5第题图A. C. D.B.九年级数学试卷注意:请同学们将答案全部写在答题卡上,考试时间:120分钟 总分:150分.一、选择题(本题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应的位置上) 1.13-的倒数是( ▲ )A .3B .13C .3-D .±32.下列标志图中,既是轴对称图形,又是中心对称图形的是( ▲ )3.如图所示的几何体,它的主视图是( ▲ )4.下列运算正确的是( ▲ ) A.416±= B.13131-=⨯÷- C . 62132=⨯ D. a a a 222=÷ 5.用直尺和圆规作一个角的平分线的示意图如图所示,则此作法的数学依据是( ▲ ) A. SAS B. SSS C. HL D. ASA6.如图,A 、D 是O e 上的两个点,BC 是直径,若35D ∠=,则A C B ∠的度数是( ▲ )A .35°B .55°C .65°D .70°7.二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面直角坐标系中的大致图象是( ▲ )8.如图,直线y=x+1分别与x 轴、y 轴相交于点A 、B ,以点A 为圆心,AB 长为半径画 弧交x 轴于点A 1,再过点A 1作x 轴的垂线 交直线于点 B 1,以点A 为圆心,AB 1长为半 径画弧交x 轴于点A 2,……,按此做法进行 下去,则点A 8的坐标是( ▲ ) A .(15,0) B .(16,0) C .(82,0) D .(128-,0)二、填空题(本题共10个小题,每小题3分,共30分.不需写出解答过程,请把正确答案直接填写在答题卡相应位置上)9.2013年扬州市实现地区生产总值约325000000000元,按可比价计算,同比增长12%.将数字325000000000用科学计数法表示为_____▲____.10.某同学近5个月的手机数据流量如下:6068706680,,,,(单位:MB),这组数据的极差是____▲____MB. 11.函数y =自变量x 的取值范围是___▲____.12.等腰三角形的两边长分别为36、,则等腰三角形的周长为___▲___. 13.若3,6==n ma a,则=-n m a ___▲____.14.点(1,3)A m m --在第四象限,则m 的取值范围是___▲____. 15.一元二次方程220x x n +-=有两个相等的实数根,则n =___▲___. 16.如图,正方形网格中,小正方形的边长是1,则阴影部分的面积是__▲__.17.二次函数bx ax y +=2的图象如图,若一元二次方程02=++k bx ax 有实数解,则k的最小值为 ▲ .第8题图 18题图16第题图17第题图18第题图18.如图,在Rt ABC ∆中,90CAB ∠=,2AB AC ==,点D E 、是斜边BC 的三等分点,点F 是AB 的中点,则AD EF +=____▲____.三、解答题(本题共10个小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分10分) (1)计算:21()8cos3032--+︒--(2)解方程组: 32124x y x y +=-⎧⎨-=⎩20.(本题满分8分)先化简,再求值:222412()4422a a a a a a--÷-+--,其中a 是方程23100x x +-=的根.21.(本题满分8分)2014年3月28日是全国中小学安全教育日,为了让学生了解安全知识,增强安全意识,某校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图(说明:A级:90分——100分;B 级:75分——89分;C级:60分——74分;D级:60分以下).请结合图中提供的信息,解答下列问题:(1)扇形统计图中C级所在的扇形的圆心角度数是;(2)请把条形统计图补充完整;(3)若该校共有2000名学生,请你用此样本估计安全知识竞赛中A级和B级的学生共约有多少人?22.(本题满分8分)在一个不透明的袋子中,装有除颜色外其余均相同的红、黄、蓝三种球,其中有2个红球、1个蓝球,从中任意摸出一个是红球..的概率为0.5(1) 求袋中有几个黄球;(2)一手同时摸出两球(相当于第一次随机摸出一球,不放回,再随机摸出第二个球),请用画树状图或列表法求摸到两球至少..一个球为红球的概率;23.(本题满分8分)钓鱼岛自古以来就是中国领土.中国有关部门已对钓鱼岛及其附属岛屿开展常态化、为钓鱼岛东西两端.某日,监视监测.如图,E F中国一艘海监船从A点向正北方向巡航,其航线距离钓鱼岛最近距离CF A点测得钓鱼岛最西端F在点A的北偏东30°方向;航行22海里后到达B点,测得最东端E在点B的东北方向、、在同一直线上).求钓鱼岛东西两端(C F EEF的距离.(结果保留根号)24.(本题满分10分)如图,在菱形ABCD 中,点M 是对角线AC 上一点,且MC MD =.连接DM 并延长,交边BC 于点F . (1)求证:12∠=∠;(2)若DF BC ⊥,求证:点F 是边BC 的中点.,25.(本题满分10分)某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍。

决胜2015中考,2014年中考数学压轴30题精编--江苏篇(试题及答案)

决胜2015中考,2014年中考数学压轴30题精编--江苏篇(试题及答案)

2014年中考数学压轴30题精编--江苏篇1.(江苏省南京市)如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG . (1)设AE =x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)P 是MG 的中点,请直接写出点P 运动路线的长.2.(江苏省苏州市)如图,在△ABC 中,∠C =90°,AC =8,BC =6.P 是AB 边上的一个动点(异于A 、B 两点),过点P 分别作AC 、BC 边的垂线,垂足为M 、N .设AP =x . (1)在△ABC 中,AB =_________;(2)当x =_________时,矩形PMCN 的周长是14; (3)是否存在x 的值,使得△P AM 的面积、△PBN 的面积与矩形PMCN 的面积同时相等?请说出你的判断,并加以说明.3.(江苏省苏州市)如图,四边形OABC 是面积为4的正方形,函数y =xk(x >0)的图象经过点B . (1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形数y =xk(x >0)的图象交于点E 、F ,求线段EFN A C P M B4.(江苏省苏州市)如图,在等腰梯形ABCD 中,AD ∥BC .O 是CD 边的中点,以O 为圆心,OC 长为半径作圆,交BC 边于点E .过E 作EH ⊥AB ,垂足为H .已知⊙O 与AB 边相切,切点为F . (1)求证:OE ∥AB ;(2)求证:EH =21AB ;(3)若BE BH =41,求CEBH的值.5.(江苏省苏州市)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B =90°,∠A =30°,BC =6cm ;图②中,∠D =90°,∠E =45°,DE =4cm .图③是刘卫同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在△DEF 沿AC 方向移动的过程中,刘卫同学发现:F 、C 两点间的距离逐渐____________. (填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?问题②:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形?问题③:在△DEF 的移动过程中,是否存在某个位置,使得∠FCD =15°?如果存在,求出AD 的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.DA E C HB OF(图③)D E F (图②) (图①) A C B6.(江苏省苏州市)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,P A2+PB2+PM2>28是否总成立?请说明理由.7.(江苏省无锡市)如图,已知点A(36,0),B(0,6),经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.(1)用含t的代数式表示点P的坐标;(2)过O作OC⊥AB于C,过C作CD⊥x轴于D.问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时⊙P与直线CD的位置关系.8.(江苏省无锡市)如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满. (1)请在图2中,计算裁剪的角度∠BAD ;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.图1 图2M B A D NC 图39.(江苏省扬州市)在△ABC 中,∠C =90°,AC =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y . (1)求线段AD 的长; (2)若EF ⊥AB ,当点E 在斜边AB 上移动时, ①求y 与x 的函数关系式(写出自变量x 的取值范围) ②当x 取何值时,y 有最大值?并求其最大值;(3)若点F 在直角边AC 上(点F 与A 、C 两点均不重合),点E 在斜边AB 上移动,试问:是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.10.(江苏省南通市)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =m12,要使△DEF 为等腰三角形,m 的值应为多少?B A DC B AD C (备用图)A B C D E F11.(江苏省南通市)已知抛物线y =ax2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与x轴平行,O 为坐标原点.(1)求直线AB 和这条抛物线的解析式; (2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由;(3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.12.(江苏省南通市中考网上阅卷模拟考试)已知二次函数y =-x2+bx +c 的图象与x 轴交于B (-2,0),C (4,0)两点,点E 是对称轴l 与x 轴的交点. (1)求二次函数的解析表达式;(2)T 为对称轴l 上一动点,以点B 为圆心,BT 为半径作⊙B ,当直线CT 与⊙B 相切时,求T 点的坐标; (3)若在x 轴上方的P 点为抛物线上的动点,且∠BPC 为锐角,求PE 的取值范围;(4)对于(1)中得到的关系式,若x 为整数,在使得y 为完全平方数的所有x 的值中,设x 的最大值为m ,最小值为n ,次小值为s ,(注:一个数如果是另一个整数的完全平方,那么就称这个数为完全平方数.)求m 、n 、s 的值.13.(江苏省徐州市)如图①,梯形ABCD 中,∠C =90°.动点E 、F 同时从点B 出发,点E 沿折线BA -AD -DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1cm/s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD =__________cm ,梯形ABCD 的面积=__________cm 2;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1 :2.14.(江苏省徐州市)如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点M 处,点C 落在点N 处,MN 与CD 交于点P ,连接EP . (1)如图②,若M 为AD 边的中点.①△AEM 的周长=__________cm ;②求证:EP =AE +DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.图① 图②B C E A D FNP M 图①B C EA D FNP M15.(江苏省徐州市)如图,已知二次函数y =-41x2+23x +4的图象与y 轴交于点A ,与x 轴交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC .(1)点A 的坐标为____________,点C 的坐标为____________;(2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P 为x 轴上方的抛物线上的一个动点,连接P A 、PC ,若所得△P AC 的面积为S ,则S 取何值时,相应的点P 有且只有....两个,并求出此时点P 的坐标.16.(江苏省徐州市中考网上阅卷作答训练)如图,在平面直角坐标系中,矩形OABC 的两边OA 、OC 分别在x 轴、y 轴的正半轴上,OA =4,OC =2.点P 从点O 出发,沿x 轴以每秒1个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转90°得点D ,点D 随点P 的运动而运动,连接DP 、DA . (1)请用含t 的代数式表示出点D 的坐标;(2)求t 为何值时,△DP A 的面积最大,最大为多少?(3)在点P 从O 向A 运动的过程中,△DP A 能否成为直角三角形?若能,求t 的值;若不能,请说明理由; (4)请直接..写出随着点P 的运动,点D 运动路线的长.17.(江苏省连云港市)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有_____________; (2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD =S△AED .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图2,四边形ABCD 中,AB 与CD 不平行,且S △ACD >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由;(4)如图3,四边形ABCD 是任意凸四边形,P 是AB 边上的任意一点(不与A 、B 重合),请画出过点P 的面积等分线.18.(江苏省连云港市)如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐标为(-2,-2),半径为2.函数y =-x +2的图象与x 轴交于点A ,与y 轴交于点B ,点P 为AB 上一动点. (1)连接CO ,求证:CO ⊥AB ;(2)若△POA 是等腰三角形,求点P 的坐标;(3)当直线PO 与⊙C 相切时,求∠POA 的度数;当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的函数关系,并写出t 的取值范围.图1 B C D AE 图2 C D AB图319.(江苏省连云港市中考网上阅卷模拟考试)如图,在平面直角坐标系中,已知点A (m ,0)(0<m<2)、B (22,0),以AB 为边在x 轴下方作正方形ABCD ,点E 是线段OD 与正方形ABCD 的外接圆的交点,连接BE 与AD 相交于点F . (1)求证:BF =DO ;(2)若AE ︵=DE ︵,试求经过B 、F 、O 三点的抛物线l 的解析式;(3)在(2)的条件下,将抛物线l 在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新图象,若直线BE 向上平移t 个单位与新图象有两个公共点,试求t 的取值范围.20.(江苏省张家港市初三网上阅卷适应性考试)如图1,抛物线y =ax2-2ax -b (a<0)与x 轴交于点A 、点B (-1,0),与y 轴的正半轴交于点C ,顶点为D . (1)求顶点D 的坐标(用含a 的代数式表示); (2)若以AD 为直径的圆经过点C . ①求抛物线的解析式;②如图2,点E 是y 轴负半轴上的一点,连结BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1 :2,求点M 、N 的坐标;③如图3,点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相切,求点Q 的坐标.图1图3图221.(江苏省常州市)如图,已知二次函数y =ax2+bx +3的图像与x 轴相交于点A 、C ,与y 轴相较于点B ,A (-49,0),且△AOB ∽△BOC . (1)求C 点坐标、∠ABC 的度数及二次函数y =ax2+bx +3的关系式; (2)在线段AC 上是否存在点M (m ,0),使得以线段BM 为直径的圆与边BC 交于P 点(与点B 不同),且以点P 、C 、O 为顶点的三角形是等腰三角形?若存在,求出m 的值;若不存在,请说明理由.22.(江苏省常州市)如图,在矩形ABCD 中,AB =8,AD =6,点P 、Q 分别是AB 边和CD 边上的动点,点P 从点A 向点B 运动,点Q 从点C 向点D 运动,且保持AP =CQ .设AP =x . (1)当PQ ∥AD 时,求x 的值;(2)当线段PQ 的垂直平分线与BC 边相交时,求x 的取值范围;(3)当线段PQ 的垂直平分线与BC 边相交时,设交点为E ,连接EP 、EQ ,设△EPQ 的面积为S ,求S 关于x 的函数关系式,并写出S 的取值范围.Q A B C D P AB CD (备用图)23.(江苏省泰州市)如图,二次函数y =-21x2+c 的图象经过点D (-3,29),与x 轴交于A 、B 两点. (1)求c 的值;(2)如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;(3)设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)24.(江苏省泰州市)在平面直角坐标系中,直线y =kx +b (k 为常数且k ≠0)分别交x 轴、y 轴于点A 、B ,⊙O 半径为5个单位长度.(1)如图甲,若点A 在x 轴正半轴上,点B 在y 轴正半轴上,且OA =OB . ①求k 的值②若b =4,点P 为直线y =kx +b 上的动点,过点P 作⊙O 的切线PC 、PD ,切点分别为C 、D ,当PC⊥PD 时,求点P 的坐标; (2)若k =-21,直线y =kx +b 将圆周分成两段弧长之比为1 :2,求b 的值.(图乙供选用)25.(江苏省盐城市)如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75º,以CD 为一边的等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ;(3)如图2所示,若F 为线段CD 上一点,∠FBC =30º.求 DFFC的值.26.(江苏省盐城市)已知:函数y =ax 2+x +1的图象与x 轴只有一个公共点. (1)求这个函数关系式;(2)如图所示,设二次..函数y =ax2+x +1图象的顶点为B ,与y 轴的交点为A ,P 为图象上的一点,若以线段PB 为直径的圆与直线AB 相切于点B ,求P 点的坐标;(3)在(2)中,若圆与x 轴另一交点关于直线PB 的对称点为M ,试探索点M 是否在抛物线y =ax2+x +1上,若在抛物线上,求出M 点的坐标;若不在,请说明理由.ABCDE 图1ABCDE图2F27.(江苏省镇江市)如图,已知△ABC 中,AB =BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,连结OE ,CD =3,∠ACB =30°. (1)求证:DE 是⊙O 的切线; (2)分别求AB ,OE 的长;(3)填空:如果以点E 为圆心,r 为半径的圆上总存在不同的两点到点O 的距离为1,则r 的取值范围为____________________.28.(江苏省镇江市)如图,在直角坐标系xO y 中,Rt △OAB 和Rt △OCD 的直角顶点A ,C 始终在x 轴的正半轴上,B ,D 在第一象限内,点B 在直线OD 上方,OC =CD ,OD =2,M 为OD 的中点,AB 与OD 相交于E ,当点B 位置变化时,Rt △OAB 的面积恒为21. 试解决下列问题:(1)填空:点D 坐标为____________;(2)设点B 横坐标为t ,请把BD 长表示成关于t 的函数关系式,并化简; (3)等式BO =BD 能否成立?为什么? (4)设CM 与AB 相交于F ,当△BDE 为直角三角形时,判断四边形BDCF 的形状,并证明你的结论.29.(江苏省镇江市)对非负实数x “四舍五入”到个位的值记为< x >,即:当n 为非负整数时,如果n -21≤x <n +21,则< x >=n . 如:<0 >=<0.48 >=0,<0.64 >=<1.493 >=1,<2 >=2,<3.5 >=<4.12 >=4,… 试解决下列问题: (1)填空:①<π>=________(π为圆周率);②如果<2x -1>=3,则实数x 的取值范围为________________;(2)①当x ≥0,m 为非负整数时,求证:<x +m >=m +< x >②举例说明<x +y >=<x >+<y >不恒成立; (3)求满足<x >=34x 的所有非负实数x 的值; (4)设n 为常数,且为正整数,函数y =x2-x +41的自变量x 在n ≤x <n +1范围内取值时,函数值y 为整数的个数记为a ,满足<k >=n 的所有整数k 的个数记为b .求证:a =b =2n .30.(江苏省淮安市)如图(a ),在平面直角坐标系中,点A 的坐标为(12,0),点B 的坐标为(6,8),点C 为OB 的中点,点D 从点O 出发,沿△OAB 的三边按逆时针方向以2个单位长度/秒的速度运动一周. (1)点C 的坐标是(_____,_____),当点D 运动8.5秒时所在位置的坐标是(_____,_____);(2)设点D 运动的时间为t 秒,试用含t 的代数式表示△OCD 的面积S ,并指出t 为何值时,S 最大; (3)点E 在线段AB 上以同样速度由点A 向点B 运动,如图(b ),若点E 与点D 同时出发,问在运动5秒钟内,以点D ,A ,E 为顶点的三角形何时与△OCD 相似(只考虑以点A 、O 为对应顶点的情况).31.(江苏省宿迁市)已知抛物线y =x2+bx +c 交x 轴于A (1,0)、B (3,0)两点,交y 轴于点C ,其顶点为D .(1)求b 、c 的值并写出抛物线的对称轴;(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形;(3)抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的1?若存在,求出点Q 的坐标;若不存在,请说明理由.图(b )图(a )2014年中考数学压轴30题精编--江苏篇1.解:(1)当点E 与点A 重合时,x =0,y =21×2×2=2 当点E 与点A 不重合时,0<x≤2 在正方形ABCD 中,∠A =∠ADC =90° ∴∠MDF =90°,∠A =∠MDF ∴△AME ≌△DMF ,ME =MF在Rt △AME 中,AE =x ,AM =1,ME =12+x∴EF =2ME =212+x过M 作MN ⊥BC ,垂足为N (如图)则∠MNG =90°,∠AMN =90°,MN =AB =AD =2AM ∴∠AME +∠EMN =90°∵∠EMG =90°,∴∠GMN +∠EMN =90° ∴∠AME =∠GMN ,∴Rt △AME ∽Rt △NMG ∴MG ME =NMAM =21,∴MG =2ME =212+x∴y =21EFQ ²MG =21²212+x ²212+x =2x2+2 ∴y =2x2+2(0≤x≤2) ················································································· 6分(2)点P 运动路线的长为2 ····················································································· 8分2.解:(1)10 ······················································································································ 2分 (2)5 ························································································································ 4分 (3)∵PM ⊥AC ,PN ⊥BC ,∴∠AMP =∠PNB =90°∵AC ∥PN ,∴∠A =∠NPB ,∴△AMP ∽△PNB ∴当P 为AB 中点,即AP =PB 时,△AMP ≌△PNB此时S △AMP=S △PNB=21AM ²MP =21×4×3=6 而矩形PMCN 的面积=MP ²MC =3×4=12 ∴不存在能使得△P AM 的面积、△PBN 的面积与矩形PMCN 的面积同时相等的x 的值··································································································· 8分3.解:(1)∵四边形OABC 是面积为4的正方形,∴OA =OC =2∴点B 的坐标为(2,2)∴k =x y =2×2=4 ····························································································· 2分 (2)∵正方形MABC ′、NA ′BC 由正方形OABC 翻折所得∴ON =OM =2OA =4,∴点E 的横坐标为4,点F 的纵坐标为4∵点E 、F 在函数y =x4的图象上 ∴当x =4时,y =1,即E (4,1) 当y =4时,x =1,即F (1,4)设直线EF 的解析式为y =mx +n ,将E 、F 两点坐标代入得⎩⎪⎨⎪⎧4m +n =1m +n =4 ∴m =-1,n =5 ∴直线EF 的解析式为y =-x +5 ···································································· 8分4.解:(1)证明:在等腰梯形ABCD 中,AB =DC ,∴∠B =∠C∵OE =OC ,∴∠OEC =∠C ,∴∠B =∠OEC∴OE ∥AB ·········································································································· 3分(2)证明:连结OF∵⊙O 与AB 切于点F ,∴OF ⊥AB ∵EH ⊥AB ,∴OF ∥EH又∵OE ∥AB ,∴四边形OEHF 是平行四边形 ∴EH =OF∵OF =21CD =21AB∴EH =21AB ····································································································· 6分 (3)解:连结DE∵CD 是直径,∴∠DEC =90°,∴∠DEC =∠EHB ∴△EHB ∽△DEC ,∴CE BH =CDBE设BH =k ,∵BEBH =41,则BE =4k ,EH =22BH BE-=15k ∴CD =2EH =215k ∴CE BH =CD BE=kk 1524=15152 ····································································· 9分 5.解:(1)变小 ·························································································································· 2分 (2)问题①:解:∵B =90°,∠A =30°,BC =6,∴AC =12∵FDE =90°,∠DEF =45°,DE =4,∴DF =4 连结FC ,设FC ∥AB ,则∠FCD =∠A =30° ∴在Rt △FDC 中,DC =34DA ECH BOFCDEF30°∴AD =AC -DC =12-34即AD =(12-34)cm 时,FC ∥AB ······························································· 4分 问题②:解:设AD =x ,在Rt △FDC 中,FC 2=DC 2+FD 2=(12-x )2+16(Ⅰ)当FC 为斜边时由AD 2+BC 2=FC 2得:x2+62=(12-x )2+16,∴x =631(Ⅱ)当AD 为斜边时由FC 2+BC 2=AD 2得:(12-x )2+16+62=x2,∴x =649>8(不合题意,舍去) (Ⅲ)当BC 为斜边时由AD 2+FC 2=BC 2得:x2+(12-x )2+16=62即x2-12x +62=0,Δ=144-248<0,∴方程无解另解:BC 不能为斜边 ∵FC >CD ,∴FC +AD >12∴FC 、AD 中至少有一条线段的长度大于6 ∴BC 不能为斜边∴由(Ⅰ)、(Ⅱ)、(Ⅲ)得,当x =631cm 时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形································································································ 7分 问题③:解法一:不存在这样的位置,使得∠FCD =15°理由如下: 假设∠FCD =15°由∠FED =45°得∠EFC =30° 作∠EFC 的平分线,交AC 于点P 则∠EFP =∠CFP =∠FCP =15°∴PF =PC ,∠DFP =∠DFE +∠EFP =60° ∴PD =34,PC =PF =2FD =8 ∴PC +PD =8+34>12∴不存在这样的位置,使得∠FCD =15° ························································ 9分 解法二:不存在这样的位置,使得∠FCD =15°理由如下:假设∠FCD =15°,设AD =x 由∠FED =45°得∠EFC =30° 作EH ⊥FC ,垂足为H ,则HE =21EF =22 ACBD EF15°P 15°15°ACBD EF15°30°HCE =AC -AD -DE =8-x ,且FC 2=(12-x )2+16 ∵∠FDC =∠EHC =90°,∠DCF 为公共角 ∴△CHE ∽△CDF ,∴FC EC =DFHE又(DF HE )2=(422)2=21,∴(FCEC )2=21即1612822+--)()(x x =21,整理得x2-8x -32=0 ∴x 1=4-34<0,x 2=4+34>8,均不合题意,舍去∴不存在这样的位置,使得∠FCD =15° ························································ 9分6.解:(1)设y =a (x -3)2,把B (0,4)代入,得a =94∴抛物线的解析式为y =94(x -3)2 ································································· 2分 (2)解法一:∵四边形OAMB∴可能有三种情况:1、2、3、4;2、3、4、5;3、4、5∵M 点位于对称轴的右侧,且m 、n 为正整数 ∴m 是大于或等于4的正整数,m >4 ∵OA =3,OB =4∴MB 只有两种可能:MB =5或MB =6 当m =4时,n =94(4-3)2=94(不是整数,舍去) 当m =5时,n =94(5-3)2=916(不是整数,舍去) 当m =6时,n =94(6-3)2=4,MB =6 当m ≥7时,MB >6因此只有一种可能,即当点M 的坐标为(6,4)时,MB =6,MA =5 四边形OAMB 四条边的长度分别为3、4、5、6 ············································ 5分 解法二:∵m 、n 为正整数,n =94(m -3)2,∴m 是3的倍数 又∵m >3,∴m =6,9,12,…当m =6时,n =94(6-3)2=4,此时MA =5,MB =6 ∴四边形OAMB 四条边的长度分别为3、4、5、6 当m ≥9时,MB >6∴四边形OAMB 四条边的长度不能是四个连续的正整数 ∴点M 的坐标只有一种可能(6,4) ······························· 5分 (3)解法一:设P (3,t ),MB 与对称轴的交点为D则P A =|t |,PD =|4-t |,PM 2=PB 2=(4-t )2+9∴P A 2+PB 2+PM 2=t2+2[(4-t )2+9]=3t2-16t +50=3(t -38)2+386∴当t =38时,P A 2+PB 2+PM 2有最小值386∴P A 2+PB 2+PM 2>28总是成立 ··································································· 9分7.解:(1)作PH ⊥OB 于H (如图1),∵OB =6,OA =36,∴∠OAB =30°∴HP =32 t ,BH =t +1 2 t =32t ∴P (32 t ,6-32t ) ··················································4分(2)当⊙P 与直线OC 第一次相切时(如图2)12 (6-t )-t =1,∴t =43(s ) 圆心P 到直线CD 的距离为:6×12×32-43×32=536>∴此时⊙P 与直线CD 相离当⊙P 与直线OC 第二次相切时(如图3)12 (6-t )+1=t ,,∴t =83(s ) 圆心P 到直线CD 的距离为6×12×32-43×32=36<1∴此时⊙P 与直线CD 相交························································································································ 10分8.解:(1)由图2的包贴方法知:AB 的长等于三棱柱的底边周长∴AB =30∵纸带宽为15,∴sin ∠BAD =sin ∠ABM =ABAM=3015=21 ∴∠BAD =30° ·································································································· 4分 (2)在图3中,将三棱柱沿过点A 的侧棱剪开,得到如图甲的侧面展开图将图甲中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图乙中的平行四边形ABCD ,此平行四边形即为图2中的平行四边形ABCD由题意知:BC =BE +CE =2CE =2×30cos CD=340 ∴所需矩形纸带的长度为MB +BC =30²cos30°+340=355cm································································································· 10分9.解:(1)在Rt △ABC 中,由勾股定理得AB =22BC AC+=2243+=5∵∠ADC =∠ACB =90°,∠A =∠A ,∴△ACD ∽△ABC ∴AC AD =AB AC ,即3AD =53∴AD =59········································································································· 1分 (2)①由(1)得DB =5-59=516 当0<x≤59时(如图1) 由△AEF ∽△ACB 得AE EF =AC BC ,即xEF=34,∴EF =34x∴y =21AE ²EF =21x ²34x =32x2即y =32x2(0<x≤59) ················································································· 3分 当59<x≤5时(如图2) EB =5-x ,由△FEB ∽△ACB 得EF =43(5-x ) ∴y =21AE ²EF =21x ²43(5-x )=-83x2+815x 即y =-83x2+815x (59<x≤5) ························· 5分②当0<x≤59时,y =32x2的函数值随x 的增大而增大 ∴当x =59时,y 有最大值,y 最大=32×(59)2=2554 图甲 F BA D EC 图乙 FBA DEC图1当59<x≤5时,y =-83x2+815x =-83( x -25)2+3275 ∴当x =25时,y 有最大值,y 最大=3275∵2554<3275 ∴当x =25时,y 有最大值,y 最大=3275 ·························································· 7分 (3)假设存在直线EF 将△ABC 的周长和面积同时平分则AE +AF =21( AC +BC +AB )=21( 3+4+5)=6 又AE =x ,∴当0<x ≤5时,AF =6-x ∴0<6-x <3,∴3<x <6∴3<x ≤5 ······································································································· 8分 如图3,过点F 作FG ⊥AB 于G ,则FG =54AF =54( 6-x ) ∴S △AEF =21AE ²FG =52x ( 6-x ) ···································································· 9分 ∵S △ABC=21AC ²BC =6,∴52x ( 6-x )=3整理得:2x2-12x +15=0解得:x 1=3-26,x 2=3+26 ······················· 10分 ∵x 1=3-26<3,∴x 1不合题意,应舍去∵3<3+26<5,∴x 2符合题意 故存在直线EF 将△ABC 的周长和面积同时平分,此时x =3+26 ········ 12分11.解:(1)设直线AB 的解析式为y =px +q则⎩⎪⎨⎪⎧3=-4p +q0=2p +q 解得⎩⎪⎨⎪⎧p =-21q =1∴直线AB 的解析式为y =-21x +1 ································································ 2分∵当x =3和x =-3∴抛物线的对称轴为y 轴,∴b =0,∴y =ax2+c 把A (-4,3)、B (2,0)代入,得:⎩⎪⎨⎪⎧3=16a +c 0=4a +c 解得⎩⎪⎨⎪⎧a =41c =-1BA C图3E F G。

【真题】扬州市中考数学试卷含答案解析()

【真题】扬州市中考数学试卷含答案解析()

江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2=2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+=故答案为:【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是50,a+b11.(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S=•AB•DE=•3=15.菱形AEBD【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE ﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x的取值范围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,=﹣10(46﹣50)2+4000=3840,∴x=46时,w大答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使。

江苏省扬州市2014年中考数学试题(,含答案)图文

江苏省扬州市2014年中考数学试题(,含答案)图文

江苏省扬州市2014年中考数学试题(word版,含答案)_图文扬州市2014年初中毕业、升学统一考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分)1.下列个数比-2小的是()A.-3B.-1C.0D.1 2.3xy内应该填的单项式是()A.xyB.3xyC.xD.3x 3.若反比例函数k的图像经过,则该函数的图像不经过的点是()...x若一组数据的极差为7,则x的值是()或5.如图,圆与圆的位置关系没有()A.相交B. 相切C.内含D.外离6.如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.0.1B. 0.2C.0.3D.0.4APANO第5题图第6题图D第7 题图第8题图,7.如图,已知,点P在边OA上,点M、N在边OB 上,,若,则()A.3B. 4C.5D.68.如图,在四边形ABCD中,,,点M、N分别在AB、AD边上,若则()A.二、填空题(本大题共10小题,每小题3分,共30分)9.据统计,参加今年扬州市初中毕业、升学统一考试的学生约36800人,这个数据用科学记数法表示为__________10.若等腰三角形的两条变长分别为7cm和14cm,则它的周长为____________cm11.如图,这是一个长方体的主视图与俯视图,由图示数据(单位:cm)可以得出该长方体的体积_______________cm312.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则根据此估计步行的人_______________人。

13.如图,若该图案是由8个全等的等腰梯形拼成的,则图中的。

14.如图,的中位线,把沿DE折叠,使点A落在边BC上的点F处,若 A、F两点间的距离是8cm,则的面积为_______cm。

步行他10% 车乘骑车俯视15.如图,以的边BC为直径的圆O分别交AB,AC于点D、E,连接OD、OE,若,则。

江苏省扬州市邗江区2014届九年级上学期期末考试数学试题

江苏省扬州市邗江区2014届九年级上学期期末考试数学试题

2013—2014学年度第一学期期末试卷九年级数学(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1、下列图形中,是中心对称图形,但不是轴对称图形的是 ()2、式子1-x 在实数范围内有意义,则x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为 ( )A .48(1﹣x )2=36 B .48(1+x )2=36 C .36(1﹣x )2=48 D .36(1+x )2=484、抛物线2)3(2-+=x y 可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移3个单位,再向上平移2个单位B.先向右平移3个单位,再向下平移2个单位C.先向左平移3个单位,再向下平移2个单位D.先向右平移3个单位,再向上平移2个单位5.已知圆锥的底面的半径为3cm ,高为4cm ,则它的侧面积为 ( ) A .15πcm 2B .16πcm 2C .19πcm 2D .24πcm 26、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是 ( )A .4B .5C .6D .82014.01第15题图7、如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是边AD ,AB 的中点,EF 交AC 于点H ,则的值为 ( ) A .B .1C .D .8.如图,已知抛物线x x y 421+-=和直线x y 22=。

我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2。

下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在;④若M=2,则x= 1 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扬州市2014年初中毕业、升学统一考试数学试题
一、选择题(本大题共有8小题,每小题3分,共24分)
1.下列个数比-2小的是( )
A.-3
B.-1
C.0
D.1 2.若 y x
xy 233=⨯,则 内应该填的单项式是( )
A.xy
B.xy 3
C.x
D.x 3 3.若反比例函数)0(≠=
k x
k
y 的图像经过)3,2(-P ,则该函数的图像不经过...的点是( ) A.)2,3(- B. )6,1(- C.)6,1(- D.)6,1(-- 4.若一组数据x ,4,2,0,1-的极差为7,则x 的值是( )
A.3-
B. 6
C.7
D.6或3-
5.如图,圆与圆的位置关系没有( )
A.相交
B. 相切
C.内含
D.外离
6.如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是( )
A.1.0
B. 2.0
C.3.0
D.4.0
7.如图,已知
60=∠AOB ,点P 在边OA 上,12=OP ,点N M 、在边OB 上,PN PM =,
若2=MN ,则=OM ( )
A.3
B. 4
C.5
D.6
8.如图,在四边形ABCD 中,6==AD AB ,CD AD BC AB ⊥⊥,,
60=∠BAD ,点
N M 、分别在AD AB 、边上,若2:1::==ND AN MB AM ,则=∠MCN tan ( )
A.1333
B. 1152
C.9
3
2 D.25-
第5题图
M A B
O
N
P
60
第7题图
第6题图
N
C B
M
A
D
第8题图
二、填空题(本大题共10小题,每小题3分,共30分)
9.据统计,参加今年扬州市初中毕业、升学统一考试的学生约36800人,这个数据用科学记数法表示为__________
10.若等腰三角形的两条变长分别为7cm 和14cm ,则它的周长为____________cm
11.如图,这是一个长方体的主视图与俯视图,由图示数据(单位:cm )可以得出该长方体的体积_______________3
cm
12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则根据此估计步行的人_______________人。

13.如图,若该图案是由8个全等的等腰梯形拼成的,则图中的=∠1__________。

14.如图,ABC ∆的中位线cm DE 5=,把A B C ∆沿DE 折叠,使点A 落在边BC 上的点F 处,若 A 、F 两点间的距离是cm 8,则ABC ∆的面积为_______2
cm 。

15.如图,以ABC ∆的边BC 为直径的圆O 分别交AC AB ,于点E D 、,连接OD 、OE ,若
65=∠A ,则
_______=∠DOE 。

16如图,抛物线)0(2
>++=a c bx ax y 的对称轴是过点)0,1(且平行于y 轴的直线,若点
3俯视
主视
3 2 其他%10 %
10 126 骑车
步行 乘车%15 %15
)0,4(P 在抛物线上,则c b a +-24的值_____________。

17.已知a 、b 是方程032
=--x x 的两个根,则代数式511322
23+--++b a a b a 的值为________。

18.设201421,...,,a a a 是从1,0,1-这三个数中取值的一列数,若69...201421=+++a a a ,4001)1(...)1()1(220142221=++++++a a a ,则2
01421,...,,a a a 中为0的个数____________。

三、解答题(本大题共有10小题,共96分)
19.(本题8分)
(1)计算: 30sin 2)2
1
()14.3(2
--+--π
(2)化简:1
23
1621222+-+÷-+-+x x x x x x x
20.(本题8分)已知关于x 的方程04
1
)1()1(2
=+
---x k x k 有两个相等的实数根,求k 的值。

21.(本题8分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制): 甲 7 8 9 7 10 10 9 10 10 10 乙
10
8
7
9
8
10
10
9
10
9
(1)甲队成绩的中位数是_______分,乙队成绩的众数是________分; (2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4分2
,则成绩较为整齐的是___________队。

22.(本题8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同。

(1)若他去买一瓶饮料,则他买到奶汁的概率是_________;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶油的概率。

23.(本题10分)如图,已知ABC Rt ∆中,
90=∠ABC ,先把ABC ∆绕点B 顺时针旋转
90至DBE ∆后,再把ABC ∆沿射线AB 平移至FEG ∆,DE 、FG 相交于点H 。

(1)判断线段DE 、FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形。

24.(本题10分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作多少件?
25.(本题10分)如图,圆O 与ABC Rt ∆的斜边AB 相切于点D ,与直角边AC 相交于
F E 、两点,连结DE ,已知 30=∠B ,圆O 的半径为12,弧DE 的长度为π4。

(1)求证:DE ∥BC ;
(2)若CE AF =,求线段BC 的长度。

H O
D
A
B
E
C
F
第25题
B
A E C
D
G F 第23题
26.(本题10分)对y x ,定义一种新运算T ,规定:y
x by
ax y x T ++=
2),((其中b a ,均为非
零常数),这里等式右边是通常的四则运算,例如:b b a T =+⨯⨯+⨯=1
021
0)1,0(。

(1)已知1)2,4(,2)1,1(=-=-T T ①求b a ,的值; ②若关于m 的不等式组⎩⎨
⎧>-≤-p
m m T m m T )23,(4
)45,2(恰好有3个整数解,求实数p 的取值范围;
(2)若),(),(x y T y x T =对任意实数y x ,都成立(这里),(y x T ,),(x y T 都有意义),则b
a ,应满足怎样的关系式?
27.(本题12分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金。

“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)。

已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y (件)与销售价x (元/件)之间的关系可用图中的一条折线(实线)来表示。

该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务)。

(1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;
(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收入=支出),求该店员工的人数;
(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?
第27题
x 元/件
71
58 40
60 24 11 0
y 件
28.(本题12分)已知矩形ABCD 的一条边8=AD ,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处。

(1)如图1,已知折痕与边BC 交于点O ,连接OA OP AP ,,.
①求证:OCP ∆∽PDA ∆; ②若OCP ∆与PDA ∆的面积比为1:4,求边AB 的长;
(2)若图1中的点P 恰巧是CD 边的中点,求OAB ∠的度数;
(3)如图2,在(1)条件下,擦去折痕AO 、线段OP ,连结BP 。

动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且PM BN =,连结MN 交PB 于点F ,作BP ME ⊥于点E 。

试问当点N M ,在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求线段EF 的长度。

第28题图1 O B A C D
P F
E B A C D P M
N 第28题图2。

相关文档
最新文档