2019年数学新同步湘教版必修2第4章 4.5.2 利用数量积计算长度和角度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5.2 利用数量积计算长度和角度
1.长度公式 |a |=a ·a . 2.夹角余弦公式 cos 〈a ,b 〉=a ·b |a ||b |=a ·b
a 2·
b 2
. 3.垂直条件 a ·b =0⇔a ⊥b .
已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为( ) A.π
6 B .π4
C.π3
D .π2
[提示] 设a ,b 的夹角为θ,则cos θ=a ·b |a ||b |=21×4=12,∴θ=π
3
.
[例1] 已知向量a (1)|a +b |; (2)|3a -4b |; (3)|(a +b )·(a -2b )|.
[边听边记] 由已知得a ·b =|a ||b |cos θ=4×2×cos 120°=-4,a 2=|a |2=16,b 2=|b |2=4.
(1)∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =16+2×(-4)+4=12, ∴|a +b |=2 3.
(2)∵|3a -4b |2=(3a -4b )2=9a 2-24a ·b +16b 2 =9×16-24×(-4)+16×4=304, ∴|3a -4b |=419.
(3)∵(a +b )·(a -2b )=a 2-a ·b -2b 2
=16-(-4)-2×4=12, ∴|(a +b )·(a -2b )|=12.
1.已知向量a ,b 满足:a 2=9,a ·b =-12,求|b |的取值范围. 解:∵|a |2=a 2=9,∴|a |=3. 又a ·b =-12,∴|a ·b |=12. ∵|a ·b |≤|a ||b |, ∴12≤3|b |,∴|b |≥4.
故|b |的取值范围是[4,+∞).
[例2] 已知非零向量a ,b 满足a +3b 与7a -5b 互相垂直,a -4b 与7a -2b 互相垂直,求a 与b 的夹角.
[思路点拨] 首先转化向量的两个垂直关系,得出中间结论与cos θ=
a·b
|a ||b |
联立求解. [边听边记] 由已知条件得⎩
⎪⎨⎪⎧
(a +3b )·(7a -5b )=0,(a -4b )·(7a -2b )=0,
即⎩
⎪⎨⎪⎧
7a 2
+16a ·b -15b 2=0, ①7a 2-30a ·b +8b 2=0, ② ②-①得23b 2-46a ·b =0,
∴2a·b =b 2,代入①得a 2=b 2,∴|a |=|b |, ∴cos θ=a·b |a||b |=12b
2
|b |2=1
2.
∵θ∈[0,π],∴θ=π
3
.
2.已知向量a ,b 的夹角为30°,且|a |=3,|b |=1,求向量p =a +b 与q =a -b 的夹角θ的余弦值.
解:p ·q =(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=3-1=2. ∵|p |=|a +b |=a 2+2a ·b +b 2=3+23cos 30°+1=7, |q |=|a -b |=a 2-2a ·b +b 2=3-23cos 30°+1=1, ∴cos θ=p ·q |p ||q |=27×1
=277.
1.已知向量a ,b 满足a·b =0,|a |=|b |=1,则|a -b |=( ) A .0 B .1 C .2
D . 2
解析:|a -b |2=(a -b )2=a 2-2a ·b +b 2=1-0+1=2,∴|a -b |= 2. 答案:D
2.已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=( ) A .5 B .4 C .3
D .1
解析:∵|a +b |=13,
∴(a +b )2=13,即a 2+2a·b +b 2=13, 也就是|a |2+2|a ||b |cos θ+|b |2=13.
将θ=120°,|a |=3代入可得|b |2-3|b |-4=0. 解得|b |=4或|b |=-1(舍去). 答案:B
3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A.π
3 B .π2
C.2π3
D .
5π6 解析:∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,
即2|a |2+|a ||b |cos 〈a ,b 〉=0.
∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0,
∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π
3.
答案:C
4.已知|a |=1,|b |=2,且(a +b )·a =0,则a ,b 的夹角为________. 解析:∵(a +b )·a =|a |2+a ·b =0,∴a ·b =-1,cos 〈a ,b 〉=-1|a ||b |=-1
2,
∴〈a ,b 〉=120°. 答案:120°
5.已知|a |=4,|b |=8,a 与b 的夹角是120°. (1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(ka -b ). 解:由已知得,a ·b =4×8×⎝⎛⎭
⎫-1
2=-16. (1)①∵|a +b |2=a 2+2a ·b +b 2=16+2×(-16)+64=48,∴|a +b |=4 3. ②∵|4a -2b |2=16a 2-16a ·b +4b 2=16×16-16×(-16)+4×64=768, ∴|4a -2b |=16 3.
(2)∵(a +2b )⊥(ka -b ),∴(a +2b )·(ka -b )=0, ∴ka 2+(2k -1)a ·b -2b 2=0,
即16k -16(2k -1)-2×64=0.∴k =-7. 即k =-7时,a +2b 与ka -b 垂直.
6.已知向量a =(1,2),b =(-3,4). (1)求a +b 与a -b 的夹角; (2)若a ⊥(a +λb ),求实数λ的值. 解:(1)∵a =(1,2),b =(-3,4), ∴a +b =(-2,6),a -b =(4,-2), ∴cos 〈a +b ,a -b 〉 =
(-2,6)·(4,-2)40×20=-2040×20
=-2
2.
又∵〈a +b ,a -b 〉∈[0,π], ∴〈a +b ,a -b 〉=
3π
4
. (2)当a ⊥(a +λb )时,a ·(a +λb )=0, ∴(1,2)·(1-3λ,2+4λ)=0, 即1-3λ+4+8λ=0,解得λ=-1.